Response to Referee #2

We greatly appreciate the reviewer for providing constructive comments, which have helped us improve the paper quality. We have addressed all of the comments carefully, as detailed below. The original comments are in black and our responses are in blue.

Overall Comments

This manuscript analyzes the long-term trends of air pollutant concentrations of NO2, SO2, CO, O3, (NO2+O3) and PM2.5 in 10 Canadian cities using observational concentrations and deweathered concentrations. The latter were generated with two machine learning methods. Correlation analysis was carried out to evaluate the association between concentrations and provincial level air emissions. Further, the impact of wildfire on PM2.5 air quality trend was investigated apparently by assuming all high concentrations were due to wildfires. The three datasets, the observed concentrations, and the deweathered concentrations by each of the two methods, yield similar trends in general. Therefore, the variation in weather conditions has a very small impact on the trends of annual mean concentrations, as expected. The long-term trends are consistent with results reported by other researchers with a few exceptions. The topic is relevant to the journal of ACP. The manuscript has a great potential to advance our knowledge in terms of the effectiveness of existing control mensurate in Canada and the directions of future mitigation policies. However, more in-depth analysis could strengthen the scientific contributions of the manuscript. Further, there are quite a few clarification issues. These are listed in the section below.

Response: We have added in-depth analysis and clarified vague statements in the revised manuscript, such as (1) adding a brief description of the advantages and limitations of the two machine learning (ML) methods in Introduction, (2) clarified input and output variables of the ML training and testing ins Section 2, (3) adding city-level point source emissions to help interpret the obtained trends of the pollutants in several places in Section 3, (4) adding a subsection (the new 4.1) to summarize perturbations due to varying weather conditions on the decadal trends of pollutants, among many other changes as specified in detail below.

Specific Comments

Abstract

Line 20, “on the time scale of 20 years or longer, the perturbation from varying weather conditions exerted a very minor influence on the decadal trends of original annual averages (within ±2%) in ~70% of the cases, and a moderate influence up to 16% of the original trends in the other 30% cases”. Those statistics were not presented in the main body. Further, leaping from the difference in the annual means between the observed and deweathered data to “influence on the decadal trends of original annual
averages” could be problematic.

Response: We have added a new subsection to address this issue, which reads:

“4.1 Perturbations due to varying weather conditions on the decadal trends

Perturbations due to varying weather conditions on the decadal trends of the studied pollutants are presented in detail in Section 3 above, and key findings are briefly summarized here. The perturbations are defined as the percentage differences between the trends of the original and deweathered annual average concentrations. In ~70% of the studies cases covering all the selected criteria pollutants in the ten cities, the perturbation due to varying weather conditions had an influence of within ±2% on the decadal trends of the original annual averages over the 20-year period. In the remaining cases, relatively larger perturbations were identified, but at most 16%, keeping in mind that a portion of the percentage differences between the trends of the original and deweathered annual average concentrations was likely caused by errors inherent from BRTs and RF predictions.

Specifically, in all the cases except CO in Quebec city (for which the calculated perturbation is 7% from BRTs and 12% from RF), at least one of the two machining leaning methods generated a perturbation of smaller than 5%. For example, the top three largest perturbations obtained from using one of the two machining leaning methods were all for SO$_2$, including 16% from RF in Winnipeg, 14% from BRTs in Montreal and 13% from RF from BRTs in Toronto; however, the corresponding perturbations from using another one of the two machining leaning methods were quite smaller (4%, 0.2% and 3%, respectively), indicating possible large methodology uncertainties. Thus, perturbations due to varying weather conditions should be generally small on the two-decade time scale in most cases.”

Introduction

A review of the “two popular machine-learning packages” (Line 167) should be presented, including the advantages over other methods, shortcomings or limitations, and applications in air quality studies.

Response: We have added a brief summary of the two packages in the revised introduction, which reads: “Machine learning techniques such as the random forest (RF) algorithm and boosted regression trees (BRTs) have been demonstrated to be a powerful tool to decouple impacts of emission changes and perturbations from varying weather and/or meteorological conditions, enabling the derivation of deweathered trends in air pollutants concentrations (Grange et al., 2018; Grange and Carslaw, 2019; Ma et al., 2021; Mallet, 2021; Shi and Brasseur, 2020; Wang et al., 2020; Munir et al., 2021; Lovric et al., 2021; Hou et al., 2022; Lin et al., 2022). The advantages and limitations of RF algorithm and BRTs have been described in detail in earlier studies (Grange et al., 2018; Grange and Carslaw, 2019). Briefly, BRTs method is fast to train and make prediction, but suffers heavily from overfitting, which may result in unreliable
predictions. RF method can control the overfitting, but yields a poor prediction for outliers in large percentiles. Thus, using two methods with different strengths and weaknesses, although their predictions are similar in many ways, can constrain methodology uncertainties and better evaluate perturbations due to varying weather conditions than using only one method, as has been demonstrated in our earlier study (Lin et al., 2022).”

Method

The training of some machine learning methods requires input of known values of the dependent or output variable to facilitate the learning. For example, observed O3 concentrations are required to train the model to predict O3 concentrations using O3 precursor concentrations. Kindly specify all input variables in the training stage as well as the input and output during the testing stage. If deweathered air pollutant concentrations are required in the training phase, provide the sources of such datasets. Kindly clarify that the training and testing were conducted for each site for each pollutant. It would be useful to have the performance matrix presented. Kindly clarify 1) whether the performance presented are the results of the training phase or testing phase, 2) whether the trends presented are based on the training datasets, testing datasets, or the entire dataset, for the original, RF algorithm, and the BRTs, respectively.

Response: We have revised Section 2.2 to clarify these issues. All input variables were listed, and the training data sets were specified.

Fig 1 suggests that the observed concentrations were used in training and testing. There are two questions, 1) would a well trained and tested model be expected to predict concentrations with systematic and significant deviation for the observed values, 2) when the predicted concentrations deviate systematic and significantly from the observed values, is the bias due to a) a poorly trained model, b) uncertainty of the model predictions, c) influence of some factors, such as weather conditions, or d) some combination of causes listed in a)-c).

Response: The answer to question 1 above is “Yes”, as has been widely reported in literature. As for question 2 above, the exact reasons for the bias in ML predictions are too complicated, and it is definitely important in developing the next generation of ML. However, our study here focuses on the application instead of the development of ML, and the detailed analysis on the ML performance issue is indeed beyond the scope of this study. We indeed need to make sure that the performance of the predictions meets the criteria values such as those set by USEPA.

Consequently, the use of regression slopes between the original and deweathered annual means to infer “perturbation from varying weather conditions” or “influence on the decadal trends of original annual averages” is debatable. As the authors pointed out,
the predictions of both models carry large uncertainties, and the agreement between the two models could be poor at times (Line 399). Therefore, some statements in the Abstract could be rephrased. Nonetheless, the 95% confidence intervals (CI) of each of the three annual concentration slopes, i.e., observed, RF-deweathered, BRTs-deweathered, could be used to determine whether the slopes are statistically different at 95% CI, and if yes in some cases perhaps derive a bound of the influence of the weather conditions on the long-term trend of original annual averages, with caution.

Response: We agree that the differences in the trends between the three sets of annual average concentrations could be largely due to the errors associated with the ML methods. We thus have added a detailed explanation on such issues in the revised section 4.1, as described in the response to the comment for the Abstract above.

We feel that it is very challenging to add the 95% confidence intervals in the trend analysis, which may not worth the great effort since we can already conclude that (1) trend differences due to varying weather conditions are mostly very small (<2% for 70% cases and <5% in most other cases) on the two-decade time scale, and (2) methodology uncertainties are mostly larger than the actual trend differences between the original and deweathered concentrations. We have added these details in the revised section 4.1.

Line 117, “To establish the relationship between air pollutants concentrations and emission reductions, the deweathered and original mixing ratios (or mass concentrations) of the air pollutants were correlated with the corresponding provincial-level emissions.” Did you mean the concentrations and emissions were correlated as seen in previous analysis, or correlation between concentrations and emissions was analyzed in this study? Kindly specify whether Pearson or Spearman correlation analysis was used and justify the method selection.

Response: We have revised the sentence as follows: “Pearson correlation analysis was further conducted for the deweathered and original mixing ratios (or mass concentrations) of the air pollutants against the corresponding provincial-level emissions”.

The use of “provincial-level emissions” (Line 120) in the analysis should be justified when there is a large variation of emission reductions among different cities in a province, such as Ontario. Note that the National Pollutant Release Inventory (National Pollutant Release Inventory - Canada.ca) could provide emission inventories at a smaller spatial scale.

Response: We have added Table S2 for the city-specific primary emissions to strengthen our analysis in the revision. However, only air pollutant emissions from point sources after 2002 are available from the database.

Line 129, “2.1 Monitoring sites and data sources”. Kindly specify 1) the averaging time
and unit of each pollutant. 2) when a large percentage of data is missing in a particular year, either pollutant concentrations or meteorological parameters, was that year considered in the trend analysis?

Response: The averaging time and unit have been added in the revised Table S1. We have also revised this part as follows: “Multiple monitoring sites exist in most cities, but only one urban background site was selected in each city mentioned above based on the following criteria: with the most complete dataset of the five selected criteria pollutants (NO₂, CO, SO₂, O₃ and PM₂.5), with the longest data record, and with valid data in each year (Table S1). In cases with a data gap longer than a year, e.g., in Quebec City, Halifax and Calgary, data at a nearby urban background site (within 1 km) were then used to fill the gap.”

The deweathered concentrations were less affected by the data loss in a particular year because they are generally constant through a particular year. Moreover, the deweathered and original annual averages generally show consistent results, e.g., there were data loss for NO₂ mixing ratios in Halifax during a few months in some years, but the difference between the BRTs-deweathered and original annual averages was ≤3%.

Line 189, “The testing datasets were different between the RF algorithm and the BRTs.” Kindly 1) justify the use of different testing datasets for the RF algorithm and the BRTs and the impact of this approach on the comparison of the performance of the two machine-learning methods. 2) whether the training datasets were the same or different between the RF algorithm and the BRTs.

Response: The software randomly divides the training and testing data sets and the user cannot control this. This point has been clarified in the revision. Normally, over one hundred thousand datasets are used for training for each pollutant in a city. Any random choice on using over one hundred thousand datasets for training of machine learning would not yield any detectable difference.

Line 265, “100th percentile”, kindly explain this term, considering that the maximum concentration is still part of the sample. For example, the 90th percentile means 90% of the data points are below that value. Similarly, “95th-100th percentile PM₂.5 mass concentration” (Line 519) needs explanation.

Response: The 100th percentile is the maximum value in a particularly year and this has been defined in the revision. With the definition, it is fine to use 95th-100th percentile PM₂.5 mass concentration.

Line 282, kindly justify the use of “The M-K analysis” instead of other trend detection methods.

Response: We have added the justification, which reads: “The M-K trend test is a non-
The attribution of all high PM2.5 concentrations to wildfire seems speculative or qualitative. The authors may want to clearly state the assumptions or use wildfire database and airmass directions to identify concentration data points under heavy influence of wildfires.

Response: The influence of large-scale wildfires on time series of PM$_{2.5}$ mass concentrations is very unique and obvious, i.e., a rapid increase to over 100 μg m$^{-3}$, lasting for tens or several days, as shown in Fig. S1ab in the original manuscript. In the last two decades, there were no other natural and anthropogenic sources in Canada that could lead to such rapid increase and long duration of PM$_{2.5}$ mass concentration. We agree that our approach might miss out some moderate and small wildfire contributions and our estimation could be considered as the lower limit value for all wildfires, as clarified in the revision.

The wildfire database suffers from the weakness in distinguishing smoldering combustion and flaming combustion. The former normally yields a much higher contribution to PM$_{2.5}$ mass concentration than the latter, but it is less detectable than the latter. The authors would like to use the pattern of time series of PM$_{2.5}$ mass concentration to identify the influence of large-scale wildfires, although we respect the reviewer’s arguments.

Line 576, “Thus, O$_3$ data with mixing ratios lower and higher than 40 ppb were analyzed separately below, with the former case representing net O$_3$ sinks occurring in the atmospheric boundary layer and the latter one representing net O$_3$ sources occurring therein (Table 3).” Kindly provide citations to support the classification of net source or net sink, i.e., 39 ppb being net sink and 40 ppb being net source. Atmospheric reactions of O$_3$ suggest that both production and consumption occur at urban centers and a short distance downwind. Further, O$_3$ concentrations vary significantly with season and city. Perhaps O$_3$ concentrations collected at a background site could be used instead. Alternatively, the use of city specific median value to obtain two concentration levels in each city could be considered instead of a fixed value of 40 ppb.

Response: Only O$_3$ mixing ratios measured at remote sites under conditions with negligible natural and anthropogenic sinks can be used to estimate the O$_3$ derived from stratosphere, e.g., the observations during polar night at Alert and during the spring at Kejimkujik of Nova Scotia (Lat. 44.433611, Log. -65.205833, the data is available at www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-quality.html.). The stratospheric input with negligible natural and anthropogenic sinks is quite stable at 40 ppb (Barrie et al., 1988, and references therein). Moreover, 40 ppb has been widely used as a threshold value to evaluate the impacts of O$_3$ on ecosystems (e.g., AOT40) (this information has been added in the revised manuscript).
Results

When reporting model performance in the main body, the units of the statistical metrics should be included when applicable.
When presenting r or R² values, p-values should be included in the plots.

Response: The related information were added in the revised manuscript where applicable.

Line 403, “The increased uncertainties led to the difference between the RF-deweathered and original SO₂ mixing ratios being up to 16% in Winnipeg.” Kindly clarify how these uncertainties were quantified for each pollutant in each city.

Response: This part has been revised as follows: “The increased uncertainties led to the difference between the RF-deweathered and original SO₂ mixing ratios being up to 16% in Winnipeg, based on the slope of 1.16 listed in Table S4. The difference between the BRTs-deweathered and original SO₂ mixing ratios was, however, only 4%, suggesting that the perturbation due to varying weather conditions might be within 4%-16%. Again, the RF algorithm suffers from the weakness in predicting large outlier values.”

Discussion

This section is a mixture of method, results, and discussion. A consolidation of all methods or results in perspective sections could improve the readability of the manuscript.

Response: In the Discussion Section, we try to deepen the analysis, which sometimes needs additional analysis results. We could not find additional methods description in the section, except the justification for the choice of O₃ mixing ratios ≥40 ppb and <40 ppb.

Conclusions

Limitations of the study could be included.

Response: We are not aware of any additional limitations except the methodology uncertainties that have been addressed in various places in Sections 3 and 4.

The reviewer did not find any conclusions on
1) “the perturbations from varying weather conditions on the observed mixing ratios” or on the long-term trends (Line 104)
Response: We have added section 4.1 for a detailed summary and we have revised the abstract for a brief summary on this finding. We feel that there is no need to repeat such a statement in the Conclusion section since there are already too many materials in this section summarizing the other major results. Simply repeating materials already presented in the Abstract in the Conclusion section may not be a good practice in our opinion.

2) whether the deweathered datasets yield any trends which are statistically different from that by the original dataset,

Response: See our response above related to this comment.

3) the benefit of employing two machine learning methods, and
4) whether the deweathering process is recommended in trend analysis of air quality.

Response: The benefit of employing two machine learning methods has been well reported in the literature and is presented in Introduction. However, BRTs suffers from overfitting while RF has the weakness in predicting the outlier in large percentiles. Here, we used both methods for trend analysis and presented the deweathered results, which were generally consistent with the original trends for over 20-year data analysis in Canada, but not for all the cases. We feel that the results could be similar or quite different when the datasets are in different lengths (such as with only 10-year data or less) or in different countries. A general recommendation should not be made solely based on results from just one study.

Overall, the scientific contribution and policy implication of the manuscript could be strengthened by considering the following. Incorporation Canadian perspectives, perhaps a map showing the locations of the 10 cities could aid the discussion of regional or transboundary inputs, if any. Providing city specific information, such as site classification, major emission sources of each pollutant in each city, proximity to major point sources, emissions of such point sources from NPRI. Tidying up the interpretation of statistical results. Offering more reasoning, for example, whether the small influence of weather conditions on the 2-3 decades trends of air quality is expected and why; reasons of large discrepancy in emission trend and concentration trend, such as the decreasing trends in NO2 concentrations when NOx emissions were increasing during the same period (L352), and no trend in CO concentrations when CO emissions were increasing during the same period (L381). Including more in-depth analysis, e.g., whether the deweathered datasets yield any trends which are significantly different from that by the original dataset and why, and whether the two deweathered datasets yield similar or different trends, and why.

Response: We have addressed most of the concerns the reviewer listed here, as can be seen from our detailed response above. However, we admit that we do not have the
capacity to address everything raised here.

Other Clarification Issues

Citations seem missing at times, e.g., L46, “CAAAQS”; L132, NAPS; L282, The M-K analysis.

Response: We are not sure what the reviewer meant here. These acronyms have been defined either in earlier places or on these lines and references have been provided where applicable.

L95, “but most modeling results suffer from large uncertainties, which could exceed annual average changes of the simulated pollutants.” Kindly clarify. Did you mean, “but most modeling results suffer from large uncertainties which could exceed changes in annual means of the simulated pollutant concentrations”?

Response: Agree and corrected.

L99, “weather and/or meteorological conditions”, kindly specify weather conditions and meteorological conditions, or perhaps choose one.

Response: The specific meteorological conditions (variables) that are needed for ML training are specified in section 2.2 and may not be needed here for easy reading.

L104, L14, L306, L309, L601, “the perturbations from varying weather conditions on the observed mixing ratios”, The reviewer is unsure about the “perturbations from varying weather conditions”, perhaps “perturbations due to varying weather conditions”, “perturbations from normal weather conditions”?

Response: The “perturbations due to varying weather conditions” is more suitable. Corrected throughout the manuscript.

L105. “criteria air pollutants”. Kindly specify whether it is “some criteria air pollutants”, or “all criteria air pollutants”.

Response: We changed to “some criteria air pollutants”.

L130, the list of the 10 cities should include the provinces.

Response: We feel this may not be necessary. For example, most of international readers would know Toronto instead of Ontario. If they don’t know Toronto, the inclusion of Ontario does not help anyway. The provinces might be added after the small cities, which are lack of international visibility.
L145, kindly provide 1) a list of monitoring stations in each of the 10 cities that are within 1 km, and 2) a list of sites with one or more years of unfilled missing data. Occasionally, long-term monitoring stations are relocated within a city. Was that encountered in this study?

Response: Fig S1 have listed all sites and the period of missing data used in this study. For all these sites in each city, the information can be found https://open.canada.ca/data/en/dataset/1b36a356-defd-4813-acea-47bc3abd859b. The website has been presented in the manuscript. It is very odd to list those sites, where the data were never used in this study. For some pollutants in some cities, no data are available to fill the missing data, such as no NO\textsubscript{2} data in Calgary since 2007 and Halifax since 2017, as shown in Fig S1a.

Line 147, “SO\textsubscript{2}, CO, NO\textsubscript{x} and PM2.5 emission data”, kindly specify 1) the reporting time period, e.g., annual or monthly, 2) the types of emissions included/excluded, such as residential wood burning and wildfires.

Response: The detailed information can be found in https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-pollutant-emissions.html. The website has been presented in the manuscript.

Line 158, the category of “AQHI between 4-6” should be provided.

Response: We believe the current information is clear enough, i.e., “Outdoor activities may be reduced at AQHI between 4-6 for certain population with some health issues.”

Line 166, “2.2 Statistical analysis”, data sources of “meteorological parameters” are better placed in section 2.1 Monitoring sites and data sources.

Response: We prefer to keep it this way since the meteorological data described here is for ML input. We feel keeping the software package and its input descriptions together is easy to read.

Line 171, “(hour, day, weekday, week and month)”, kind specify each parameter, e.g., hour (0-23), day (1-365 or 366), week (1-52), month (1-12).

Response: It is really unnecessary because the software package is in public domain. The readers should follow the software protocol, especially for input data format, rather than the limited information presented here. This manuscript is already very long and we try to minimize the not-so-critical information.

Line 185, “Nevertheless, good performance can still be achieved in the present study mainly because of multi-decade length of the datasets”. Kindly provide evidence that a
large dataset would lead to a good performance or rephrase.

Response: We believe it is a common sense for ML that more available data for learning, the better results would be obtained for their predictions. This also explains why the extreme values in large percentiles were usually poorly predicted by the ML methods because of their low occurrence frequencies, as shown in Fig 1.

Some results are in the Method section, e.g., Line 201-215, which could be better placed in the Results section.

Response: These materials are not trend analysis results generated form this study, but rather an illustration of the calculation procedure and should be presented in the Method section.

Some methodology descriptions are in the Results or Discussion sections, e.g., Line 563-577, which could be better placed in the Method section.

Response: See our response above for a similar comment.

Line 292, “Fig. 3a and b show decadal variations in the original annual averages of NO2 mixing ratios...” The reviewer could not find “b” being NO2 concentrations. Similarly, not both “Fig. 3c, d” (Line 463) are PM2.5 concentrations.

Response: The order of Fig 3a-d has been corrected.

Line 370, “Halifax (90-92%)…”, kindly clarify the meaning of the ranges.

Response: This sentence has been revised as follows: “The original and deweathered annual averages of CO decreased …”

Line 376 and other places including tables, the term “grand total and transportation emissions” is confusing. Kindly clarify whether there is one item, i.e., “grand total including transportation”, or two items, i.e., “grand total excluding transportation and transportation emissions”. Similarly, “total grand” in some tables.

Response: Rerevised as: “grand total emissions and transportation emissions” everywhere.

Line 440, “The increased O3 mixing ratio values likely reflected the lower limit resulted from the reduced titration reaction between O3 and NO (Simon et al., 2015; Xing et al., 2015).” Kindly rephrase.

Response: The sentence is revised as: “The increased O3 mixing ratio was likely caused by the reduced titration reaction between O3 and NO, considering the reduced
photochemical formation of O₃ in the troposphere.”

Line 555, seasonal averages, kindly specify which months are classified as each of the four seasons.

Response: Added as recommended.

Line 669, kindly clarify whether 1) “decrease in NO₂ during the last 2-3 decades varied by 37%-62%”, or “decrease in NO₂ during the last 2-3 decades ranged 37%-62%”, and 2) “37%-62%” are among the three datasets or among the 10 cities. Tables should be referenced when reporting results.

Response: The range (37%-62%) is among the 10 cities. The sentence has been revised as: “The overall percentage decrease in NO₂ during the last 2-3 decades among the 10 cities ranged from 37% to 62%, and the annual decreasing rates varied from 0.31 ppb year⁻¹ to 0.74 ppb year⁻¹.”

Fig 1, kindly clarify what is being predicted by the models, deweathered concentrations or observed concentrations. If the former, kindly clarify the source of observed deweathered concentrations. If the latter, kindly justify the need of those models.

Response: The caption is revised as “Fig. 1. Performance evaluation of the predicted NO₂ hourly mixing ratios by BRTs and RF algorithm against those observed in Halifax during 1996-2017. Red lines represent linear regression, and color bar reflects data number density. Note that different observational data sets are shown between (a) and (b) because the inputs for the two packages (BRTs and RF) are randomly divided into two groups for training and testing.”

“Fig. 2. Correlations between hourly PM2.5 concentration in a single year and its 22-year average in each hour in Edmonton.” Did you mean, “Fig. 2. Correlations between hourly PM2.5 concentration in a single year and 22-year average PM2.5 concentration in each hour of a year in Edmonton”? Furthermore, the reviewer could not find “percentile series” in the “Left column”.

Response: Corrected.

“Fig. 4 Deweathered hourly mixing ratios of O₃ (left column) and NO₂+O₃ (right column) at levels ≥40 ppb in five eastern Canadian cities.” These bar charts seem to suggest little variability among hourly concentrations within any of the years.

Response: Yes, the deweathered hourly mixing ratios reflect the average of 1000 runs in different meteorological conditions and should have little variability within any of the years, except those accident events.
Fig 6. Kindly clarify the pollutant studied and which factor the “perturbation contribution” refers to.

Response: It should be Fig. 5, and it is for PM$_{2.5}$ (information added)

Editorial Suggestions
Typos, syntax errors, and awkward word choices could be corrected. For example,
Line 62, “95% cities”, perhaps “95% of cities”.
Line 113, “accurately quantify”, suggest considering a more conservative term such as “better quantify”.
Line 130 and other places, “Quebec”, “Quebec City” could be more appropriate.
Line 163, “British Columbia Province”, could be replaced with “British Columbia” or “the province of British Columbia”. Similarly, “Alberta province” (Line 354).
Line 172, “ambient temperature”?
Line 192, “coefficient of determination (R2)” could be more appropriate.
Line 206, “reasonably well reproduced”, kindly rephrase.
Line 211, “good predictions”?
Line 292, “Fig. 3a and 3b”?
Line 342, “strong correlations”?
Line 366, “mixing ratios again the original ones varied from 0.97 to 1.03”, kindly rephrase.
Line 378, “nearly” could be replaced with “approximately”.
Line 399, “regional transport on the continental scale”, kindly rephrase.
Line 410, “large discrepancy”?
Line 595, “In the cases with O3 mixing ratios \geq 40 ppb”?
Line 617, “dominantly contributed to the population-weighted exposure to PM2.5 in northern Canada (59%) and western Canada (18%)”. kindly rephrase.
Line 678, “By only considering”?
Line 693, “caused AQHI to a level of above 10”, perhaps “elevated AQHI to a level of above 10”.

Response: All of the above and similar places have been corrected as recommended.