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Abstract. Finding agricultural managements able to increase soil organic carbon without a reduction in crop yields is important 10 

to: decrease soil erosion, protect soil ecosystem services, increase soil health, help to curb net CO2 emissions toward the EU 

goal of carbon neutrality. Various studies have shown that catch crops, when managed in the proper way, may result in an 

increase in soil carbon stocks; however, recent studies have cast doubts on those findings, due to short study duration (3 years 

or less), few data points, and catch crops mismanagement. Model studies to estimate the potentials of catch crops for soil 

carbon sequestration shown mixed results; however, in these studies, only the direct effects of catch crops (i.e. the input of 15 

carbon from crop inclusion in the soil) was accounted for. Here, we show the result of a study to compare two crop 

managements: traditional against catch crop together with precision agriculture. We measured agricultural productivity, soil 

organic carbon, soil respiration, and soil conditions in two different sites in Italy for a period of 4+ years, then we modelled 

the field managements using a modified version of RothC model, to account for both direct and indirect catch crop effects on 

soil. The results show that catch crops and precision agriculture can result in an increase in soil organic carbon, with no effects, 20 

or, in some cases, an increase in crop production.  

1 Introduction 

Soils in Mediterranean climates are often depleted in soil organic carbon (SOC; de Brogniez et al., 2015); this can be seen as 

an opportunity for the sequestration of carbon into the soil using focused agricultural practices (Dimassi et al., 2014). Soil is 

both a sink and a source of CO2 due to anthropogenic and natural drivers (Committee on the Environment, Public Health and 25 

Food Safety, 2022); turning the soils into net sinks of CO2 is fundamental to reach carbon neutrality and maintain the global 

temperature rise within 1.5 °C (Ipcc, 2022). Carbon enters the soil as organic matter and is then mineralized by the soil 

microorganisms (Lehmann & Kleber, 2015); SOC can thus be increased by increasing the input of organic matter and/or 

decreasing the rate of mineralization (Lal, 2004). Every agricultural practice aimed at increasing SOC should study both soil 
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inputs and outputs: some studies show that increasing the input of organic matter to the soil, for example, can result in a net 30 

increase in soil CO2 emissions (C. Liu et al., 2014; Wang et al., 2019). Moreover, regenerative agricultural practices proposed 

for increasing SOC stocks should also demonstrate that they do not impact agricultural yields, in order to avoid increases in 

food prices (Bai & Cotrufo, 2022) or indirect land use changes (Balugani et al., 2022; Jones & Albanito, 2020).  

Of the various agricultural practices aimed at increasing soil carbon, the use of catch crops and precision agriculture together 

looks particularly promising (Schreefel et al., 2020). Precision agriculture is the application of technologies and principles to 35 

manage spatial and temporal variability associated with all aspects of agricultural production for the purpose of improving 

crop performance and environmental quality (Pierce & Nowak, 1999). Catch crops are crops that are cultivated between crops 

either spatially (crops cultivated in the inter-rows of other crops, Couëdel et al., 2018, also called relay cropping, Lamichhane 

et al., 2023) or temporally (after harvesting a crop and before planting the new one, also referred as cover crops; Vogeler et 

al., 2022). Catch crops can be incorporated into the soil instead of harvested, in order to provide nutrients (N, P, S) and organic 40 

matter; in that case, it is referred to as “green manure”.  

Catch crops, apart for the direct effect of increasing the input of organic matter into the soil, have been shown to have “indirect 

effects” such as (Young et al., 2021): decrease soil erosion, since they provide cover to otherwise bare soil (López-Vicente et 

al., 2021); increase total plant production (Hijbeek et al., 2017); increase N2O emissions (Sandén et al., 2018); increase 

macropores, and thus water infiltration (Haruna et al., 2020); change soil temperature (Blanco-Canqui & Ruis, 2020); either 45 

increase or have no effect on SOC (Poeplau & Don, 2015). However, the use of catch crops requires appropriate timing for 

planting and harvest/incorporation in the soil as green manure (Cherr et al., 2006); thus, the combined use of catch/cover crops 

and precision agriculture is particularly recommended. Various studies have recently shown the beneficial effects of catch 

crops in Mediterranean climate (Cerdà et al., 2022; Curto et al., 2015; Sanz-Cobena et al., 2017; Shackelford et al., 2019; 

Ventura et al., 2022); however, the increase in SOC stock due to catch and cover crop application was recently questioned 50 

(Chaplot & Smith, 2023). Various initiatives exist to study and foster soil carbon sequestration, and most of them took catch 

crops into account; for example, the French “4 per 1000” initiative (Kon Kam King et al., 2018) and the CarboSeq project, 

https://ejpsoil.eu/soil-research/carboseq; in both cases the approach is to combine field experiments with modelling to evaluate 

the potential of various agricultural practices for carbon sequestration (Bruni et al., 2021; Seitz et al., 2022). 

The use of field experiments to build, calibrate and validate soil models has been highlighted as the most effective approach 55 

to large scale, long term estimates of SOC dynamics (Paustian et al., 2019; Smith et al., 2020). The RothC model is one of the 

most used soil carbon dynamic models, due to its simple design and low requirement of data (Coleman & Jenkinson, 1996). 

The simple design of RothC, however, can also be a hurdle to estimate the potential of agricultural practices whenever these 

practices affect soil processes not explicitly modelled in RothC. For example, catch crops have been modelled in RothC by 

accounting only for their direct effect, i.e. increase in organic carbon input into the soil; the indirect effects on soil temperature 60 

and water regime have been neglected even though they have a role in soil carbon dynamics (Constantin et al., 2015; Nieto et 
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al., 2013; Seitz et al., 2022). Not accounting for catch crops indirect effects may lead to incorrect model calibration, since the 

mineralization rate, in RothC, is affected by both soil temperature and soil water content. 

Another problem of the RothC model is related to the ratio between measured parameters and calibrated ones, especially when 

the calibrated parameters are numerous and only SOC data are used as target for the calibration procedure. First, this approach 65 

requires long term experiments (around 10 years, Smith 2004) to obtain sufficient data to detect a significant trend in SOC 

useful for RothC calibration. Second, the over-parametrization problem could lead to equifinality and decrease of the reliability 

of the model projections (Menichetti et al., 2016). Cagnarini et al., 2019, has shown that RothC equifinality problem can be 

minimized by conducting a multi-objective calibration: instead of using only SOC data as a target for calibration, multiple 

timeseries of relevant soil variables could be used to constrain the model parameters. The use of high accuracy, high frequency 70 

timeseries data related with the direct and indirect effects of the specific agricultural practice to be assessed would solve 

multiple problems: equifinality, erroneous calibrations due to incorrect mineralization rates, and time required for the 

calibration of RothC. In the case of catch crops, this points to timeseries of soil temperature, soil moisture, and a similar 

timeseries directly related with soil carbon dynamics.  

Soil respiration is a quantity that can be measured continuously in the field, with a frequency of one measurement every 30 75 

minutes or hourly when using automated gas chambers (Sánchez-Cañete et al., 2017). Total soil respiration (Rs) can be thought 

as the sum of the respiration by autotrophic organisms (mostly plant roots) and the respiration by heterotrophic organisms 

(mostly microbes and fungi in the soil degrading dead organic matter). However, the influence of roots on the emission of CO2 

in the soil goes beyond root respiration: roots emit exudates that are quickly degraded, parts of the roots die continuously and 

are degraded by heterotrophs; the respiration from these two mechanisms can be referred to as rhizosphere respiration 80 

(𝑅𝑟ℎ𝑖𝑧𝑜𝑠𝑝ℎ𝑒𝑟𝑒), and microbes in the rhizosphere may degrade soil organic matter with a different rate than in non-rhizosphere 

soil, a process called “root priming” (𝑅𝑝𝑟𝑖𝑚𝑖𝑛𝑔, Kuzyakov, 2006). Thus, 𝑅𝑠 can be described as the sum of its autotrophic 

component (𝑅𝑎) and its heterotrophic component (Rh), or as the sum of root-induced respiration (Rr) and soil basal respiration 

(Rb).  

Soil respiration has been already used to calibrate RothC with short timeseries in laboratory conditions, where roots are absent 85 

(Mondini et al., 2017); however, to be used in field conditions, there is the need to separate Ra from 𝑅𝑠, since RothC only 

estimates the CO2 flux from the degradation of soil organic matter (including exudates and dead roots). Various partitioning 

methods exist for field conditions, for example trenching (Dondini et al., 2017); however, soil respiration from a trenched plot 

may not represent basal respiration with respect to the non-trenched plot, as discussed in Savage et al. (2018). Other methods 

exist (e.g. leaf clipping (Macdonald et al., 2004), tree girdling (Subke et al., 2004), root excision (Cheng et al., 2005), etc…); 90 

in a comprehensive review, Kuzyakov, (2006) indicates as a promising, yet rarely used method, the regression technique 

(Kucera & Kirkham, 1971), which correlates changes in Rr with changes in root biomass (Hill et al., 2004; Tomotsune et al., 

2013). 
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The objective of this study was to compare combined catch crops and precision agriculture on one hand, and traditional 

practices on the other, from the point of view of soil carbon sequestration potential and of agricultural productivity. To do so, 95 

we: (a) conducted two field experiments with duration 4+ years where we measured agricultural productivity, SOC, soil micro-

climate, weather conditions, and CO2 flux with gas chambers; (b) partitioned measured 𝑅𝑠 into 𝑅ℎ and 𝑅𝑎 using a method 

inspired by the regression technique (Kucera & Kirkham, 1971); (c) conducted a multi-objective calibration of RothC using 

as target variables SOC, soil heterotrophic respiration, soil water content and soil temperature, in this order of importance, to 

test its ability to predict catch crop effects on SOC dynamics. 100 

2 Materials and methods 

2.1 Field sites 

Two field experiments were set up at experimental farms in Ravenna (locality of Cà Bosco; 44° 29' 15." N, 12° 10' 44." E, 

experimental area 7 hectares) and in Foggia (locality of San Giuseppe; 41° 29' 27" N, 15° 30' 14" E, experimental area 7,5 

hectares), as shown in Figure 1. The two sites differ by soil types, water regimes, climate and land use; their differences are 105 

meant to assure that the study results are representative for most conditions found in Italy. The Ravenna site is characterized 

by: silty clay loam inceptisol in the west side and silty loam inceptisol in the east side; 4 m elevation a.m.s.l.; flat landscape; 

humid sub-tropical climate (Cfa by Köppen-Geiger classification, Beck et al., 2018), with mean yearly temperature of 14.3 

°C, cumulative annual rainfall of 659 mm, and rain events concentrated in spring and fall. The Foggia site is characterized by: 

silty clay loam vertisol; 70 m elevation a.m.s.l.; flat landscape; cold semi-arid climate (BSk by Köppen-Geiger), with mean 110 

yearly temperature of 16.9 °C and cumulative annual rainfall of 554 mm. 

2.2 Field experiment setup and management 

The field experiments were setup and managed by Horta Srl as part of the experimental fields of EU LIFE Project for 

Agricultural GReenhouse gases EmiSsions Through Innovative Cropping systems (Agrestic, https://www.agrestic.eu/en/), 

with the objective of promoting adoption of regenerative agricultural practices aimed at mitigating climate change by 115 

decreasing emissions from soil to the atmosphere, increasing soil organic carbon, and increasing organic nitrogen availability. 

The experimental sites were used to compare two management practices arranged in 8 plots (Figure 1): Conventional Cropping 

System (CCS) and Efficient Cropping System (ECS); CCS uses fertilizers, pesticides, irrigation and soil tillage in line with 

the practices followed generally in the surrounding farms; ECS uses fertilizers, pesticides, irrigation and seeding density as 

suggested by a dedicated Decision Support System (DSS) developed by Horta Srl, while conservative soil tillage, relay crops 120 

and catch crops are included and managed under expert agronomists advice. The arrangement of the field experiments and the 

details of crop sequence are summarised in Figure 2.  
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Figure 1: Plots and management practices subdivision, with the equipped devices (soil temperature sensors, soil gas chambers, and 

weather station), for the two experimental fields in a) Ravenna and b) Foggia, and c) the location of the experimental farms in Italy.  125 

The same management was used for both ECS and CCS and both experimental sites during the first period (January 2018 to 

June 2019); this was done to standardize the starting conditions of the experiment, and to test the hypothesis that measurements 

from ECS and CCS are comparable when the two managements are kept equal, on the same experimental site. Figure 2 shows 

that, starting from December 2019, in ECS: (a) the soil remains bare for a shorter period, (b) N availability in the soil is higher 

due to the use of leguminous crops (pea Pisum Sativum L. in Ravenna and lentil Vicia Lens (L.) Coss. & Germ in Foggia), (c) 130 

total productivity is increased due to relay cropping (alfalfa Medicago Sativa L. in Ravenna and a mix of horseradish Raphanus 

sativus L. var. oleiformis Pers., clover Trifolium repens L. and Phacelia tanacetifolia in Foggia). Cereal residues are removed 

from field and sold, while other production crops, as well as cover crops, are never removed, just incorporated in the soil.  
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Figure 2: Crop rotation management in (a) Ravenna and (b) Foggia experimental sites. 135 

2.3 Measurements 

The measurements taken in both experimental sites can be divided in: data collected continuously through monitoring stations 

(shown in detail in Figure 1), and data collected by researchers, regularly, in the field. The former category of data can be 

divided into: meteorological timeseries collected using a weather station located few meters from the experimental site, soil 

temperature and soil moisture timeseries collected using dedicated dataloggers on all the plots, soil respiration timeseries 140 

collected on the central plots (4 and 5 in Figure 1, representative of ECS and CCS conditions) using a dedicated datalogger. 

More specifically, the weather stations monitored: air temperature, air humidity, net total solar radiation, precipitations, wind 

direction and velocity, and leaf wetness (METOS sensor, from Pessl, Austria), with data stored hourly. The soil timeseries 

were acquired using water content reflectometers and thermistors (20-25 cm depth) connected to a wireless datalogger (xNode, 

xFarm, Italy), with data stored hourly. The soil respiration measurements were taken using alternatively all the chambers (LI-145 

COR: LI-850 gas analysers for CO2 and N2O, respectively, from West System and Sant’Anna School of Advanced Studies, 

Volpi et al., 2020), in each plot, in a way to get a measurement every 15 minutes (1 hour sampling frequency for each chamber).  

The data collected by hand consisted in: dry matter production, marketable yield, biomass humidity, root index, irrigation, 

fertilization, pesticide application, depth of soil tillage. From 2020 onwards crops biomass was sampled right before crop 

harvest or, in case of a cover crop, crop destruction. Samples were weighed before and after oven drying to obtain humidity 150 

and plot’s biomass production. One sample for each plot and each plant part was made from 4 randomized repetitions across 

the whole plot, then externally analysed to get carbon and nitrogen content in percentage of dry matter (analytical method ISO 
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16634-2:2016). Soil samples for SOC measurements were collected at depth 30 cm with a manual auger on October (in 

Ravenna) and November (in Foggia) in 2019, while on September from 2020 onwards. One sample for each plot was formed 

from 4 randomized areas (3 samples in each area for a total of 12 samples) and then sent to a nearby analysis centre for the 155 

determination of SOC in g kg-1 dry matter using Walkley-Black method (Walkley & Black, 1934). Later, SOC values were 

converted into tC ha-1 as in equation 1, using soil samples’ depth and standard bulk density corresponding to the USDA soil 

texture classification: 

𝑆𝑂𝐶 =
104 ∙ 𝑑𝑒𝑝𝑡ℎ ∙ 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∙ 𝑆𝑂𝐶 

106            (1) 

 160 

2.4 Soil respiration partitioning 

The regression method developed by Kucera & Kirkham, (1971) assumes that root biomass and root derived soil respiration 

are correlated, and that the correlation can be determined with a linear fit. This method does not modify soil or root conditions, 

and it is applicable whenever enough information on soil root biomass and soil respiration is available. This method is 

particularly interesting for crops, since a lot of information on root development is usually available, the vegetation is 165 

comprised of a single or maximum two species, and other methods are not usually available (girdling, root excision, separation 

between root and soil is very difficult). A recent application of the method is described in Tomotsune et al., (2013). The only 

limit of this method is that root biomass is expected to correlate with root derived respiration (𝑅𝑟), which is the respiration of 

the rhizosphere, and not 𝑅𝑎, which is the respiration of the root only; therefore the method allows a separation of 𝑅𝑏 and 𝑅𝑟 

rather than 𝑅𝑎 and 𝑅ℎ. 170 

To partition 𝑅𝑠, we used the continuous, 4+ years dataset of soil respiration in ECS and CCS, and, for each management type, 

we analyzed: (i) 𝑅𝑠 measured at various temperatures in winter; (ii) 𝑅𝑠 measured during the growing season; (iii) 𝑅𝑠 measured 

right after the harvest during non-winter months. The assumptions we used were that: (i) winter bare soil 𝑅𝑠 was representative 

of 𝑅𝑏; (ii) 𝑅𝑠-𝑅𝑏 is correlated with changing root biomass during the growing season, and it can be used to estimate 𝑅𝑟; (iii) 

𝑅𝑟 after harvest is actually 𝑅𝑟 − 𝑅𝑎. 𝑅ℎ is known to be affected by soil temperature and humidity (Bauer et al., 2012; Cook & 175 

Orchard, 2008; Neogi et al., 2014; Zhong et al., 2016), while 𝑅𝑎 is correlated with incoming solar radiation influencing plant 

photosynthesis (Fitter et al., 1999). Using these assumptions, and controlling for the effects of soil temperature and soil 

moisture using multiple regression, we can estimate a function for 𝑅𝑎 and 𝑅ℎ. More specifically, the correlations used have 

been: 

𝑅𝑠 = 𝑅𝑎 + 𝑅ℎ,            (2) 180 

𝑅𝑠 = 𝑅𝑟 + 𝑅𝑏,             (3) 

𝑅𝑟 = 𝑅𝑎 + 𝑅𝑟ℎ𝑖𝑧𝑜𝑠𝑝ℎ𝑒𝑟𝑒  + 𝑅𝑝𝑟𝑖𝑚𝑖𝑛𝑔,          (4) 
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𝑅ℎ = 𝑅𝑏 + 𝑅𝑟ℎ𝑖𝑧𝑜𝑠𝑝ℎ𝑒𝑟𝑒  + 𝑅𝑝𝑟𝑖𝑚𝑖𝑛𝑔,          (5) 

𝑅𝑟 = 𝑘𝑟𝑅𝑜𝑜𝑡𝐵𝑖𝑜𝑚𝑎𝑠𝑠 + 𝑘𝑟,𝑅𝑎𝑑𝑅𝑎𝑑𝑛𝑒𝑡 + 𝑘𝑟,𝑇𝑇 + 𝑘𝑟,𝜃𝜃,        (6) 

𝑅𝑎 = 𝑘𝑎𝑅𝑜𝑜𝑡𝐵𝑖𝑜𝑚𝑎𝑠𝑠 + 𝑘𝑎,𝑅𝑎𝑑𝑅𝑎𝑑𝑛𝑒𝑡 + 𝑘𝑎,𝜃𝜃,         (7) 185 

𝑅𝑏 = 𝑘𝑏,𝑇𝑇 + 𝑘𝑏,𝜃𝜃,            (8) 

With 𝑇 average topsoil temperature, 𝜃  average topsoil water content, 𝑅𝑎𝑑𝑛𝑒𝑡  net solar radiation, 𝑘𝑟 , 𝑘𝑟,𝑅𝑎𝑑 , 𝑘𝑟,𝑇 , 𝑘𝑟,𝜃 , 𝑘𝑎 

,𝑘𝑎,𝑅𝑎𝑑, 𝑘𝑎,𝜃, 𝑘𝑏,𝑇, 𝑘𝑏,𝜃 , the empirical coefficients of the multiple regression linear functions for 𝑅𝑟, 𝑅𝑎 and 𝑅𝑏. We analyzed 

the data and performed all multiple regression analyses using R lm methods (Ihaka & Gentleman, 1996, supplementary 

material). The results of the analyses for both areas and both managements were then used to calibrate the RothC simulations 190 

(see section 2.6). 

 

2.5 RothC version used: RothC_20N for Mediterranean climates 

The Rothamsted Carbon model (RothC-26.3) simulates soil carbon dynamics with monthly timestep, by assuming that carbon 

entering the soil is subdivided into four different carbon pools, and that the carbon in the pools mineralizes by first order decay 195 

kinetics (Coleman & Jenkinson, 2014). The RothC model takes into account the soil only, there is no sub-model for the 

simulation of plant growth; this means that the user directly sets the input of organic carbon into the soil based on field 

measurements or independent plant models. More specifically, in RothC, the organic carbon entering the soil is first divided 

into two “fresh” organic matter pools: decomposable plant matter (DPM) and resistant plant matter (RPM). The carbon 

mineralized from any pool then goes to: the atmosphere as CO2, the biological carbon pool (BIO), and the humified carbon 200 

pool (HUM); the amount of carbon going to CO2 is defined based on the clay percentage in the soil, while the subdivision 

between BIO and HUM is fixed (46% and 54%, respectively). The DPM, RPM, BIO and HUM pools difference is in their 

degradation constants: Kdpm, Krpm, Kbio and Khum being 10, 0.3, 0.66, 0.02 years-1, respectively. It is important to understand 

that these pools are theoretical (a way to fit four decay function to SOC measurements) and cannot be measured in the reality; 

some attempts have been performed to connect them to measurable quantities, but with limited results (Skjemstad et al., 2004; 205 

Zimmermann et al., 2007).  

The pools decay functions are modified by three parameters that depend on soil temperature, soil water content, and soil 

vegetation cover (a, b, c parameters, respectively). The a and the b parameters are based on empirical functions that link air 

temperature and topsoil moisture deficit (TSMD) with mineralization rates, similarly to the empirical functions usually 

established between soil CO2 emissions (Rh) and other environmental variables (Sánchez-Cañete et al., 2013). TSMD is 210 

calculated by RothC with a simple bucket model: each monthly time step, the water in the soil is calculated as the budget 

between previously stored water, input from precipitation and irrigation, output from evapotranspiration (calculated 
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independently by the user); the water in the soil is constrained between a maximum wetness (field capacity) and maximum 

dryness (wilting point when vegetation is present, 55.5% of wilting point when the soil is bare). The soil water deficit modifier 

decreases mineralization rates linearly from a maximum (no effect, b = 1), between field capacity to water matric potential of 215 

-1 bar) to a minimum (20% of maximum mineralization rates, b = 0.2) between -1 bar and -15 bar (wilting point). The c 

parameter influences the b parameters, as explained above, and affects mineralization rates if plants are present (a simulation 

of priming).  

Due to the empirical nature of RothC, its functions have been adapted to various different conditions around the world with 

different approaches (Paul & Polglase, 2004; Stamati et al., 2013); with a specific version of RothC for Mediterranean 220 

conditions developed by Farina et al., (2013), called RothC20_N. The modifications introduced by Farina et al., (2013) were: 

(i) to allow the TSMD to reach a value corresponding to capillary water when the soil is vegetated (-1000 bar); (ii) the 

maximum TSMD when the soil is bare is -15 bar; (iii) the minimum value of b can change from 0.2 to 0.1. Another modification 

introduced in the method is to directly define the TSMD limits based on pedotransfer functions, rather than using the empirical 

parameter already defined in the model. The empirical nature of the carbon pools means that they cannot be calibrated 225 

separately, however, their combined effect on carbon dynamics can be calibrate based on two measurable quantities: SOC 

stocked in the field (corresponding to the sum of all the SOC pools in RothC; slow change, slow rate of measurement, large 

uncertainty) and CO2 emitted due to organic matter mineralization (𝑅ℎ, corresponding to the sum of all the CO2 emitted by all 

pools in RothC; fast change, fast rate of measurement, low uncertainty).  

2.6 RothC and RothC20_N simulations 230 

We set up the initial conditions for the RothC and RothC20_N model, i.e. the initial quantity of carbon in the model carbon 

pools, with the standard approach found in the literature: using spin-up run simulations. As explained in section 2.5, RothC 

carbon pools cannot be directly measured in the field; as such, the model initialization makes use of SOC measurements taken 

at the beginning of the experiment, with the SOC quantity fractionated among the pools using the relative relevance of the 

pools at equilibrium conditions. The spin-up run is aimed at estimating these equilibrium conditions: it is based on the 235 

assumption that we know the input conditions for the experimental site in the past, and that said conditions were stable for a 

time long enough to let the carbon pools reach equilibrium. The conditions are then used to run a simulation starting from 

empty SOC pools, until all the pools have reached equilibrium. For the two spin-up runs (one for Ravenna and the other for 

Foggia field sites), we assumed 500 years of continuous cultivation of three different types of crops, using as weather 

conditions the average of conditions measured between 2004 and 2021.  240 

After determining the initial conditions, we set up four simulations for each experimental site: ECS and CCS simulations using 

RothC basic model, and ECS and CCS using RothC20_N as in Farina et al. (2013). The input provided to the RothC model 

consisted of: monthly air temperature and precipitation from the weather station; aboveground input of organic matter, 

irrigation, soil vegetation cover, soil bulk density from direct field observations; evapotranspiration calculated with Penman-
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Monteith (Monteith, 1980) and Hargreaves (Hargreaves & Samani, 1982) using the weather station data; belowground carbon 245 

input estimated using observations of root development; DPM/RPM ratio determined based on standard values given for crops. 

We decided to use two different methods to estimate evapotranspiration in order to assess the sensitivity of the model to the 

change in calculation method. 

Aboveground and belowground carbon inputs are calculated starting from direct observations of yield (𝑦𝑖𝑒𝑙𝑑), above ground 

biomass (𝐴𝑔𝑏) and root biomass (𝑑𝑟𝑦 𝑟𝑜𝑜𝑡), all in tonnes ha-1. First the dry yield is calculated as 250 

𝑑𝑟𝑦 𝑦𝑖𝑒𝑙𝑑 = 𝑦𝑖𝑒𝑙𝑑 − [𝑦𝑖𝑒𝑙𝑑 ∙  𝑦𝑖𝑒𝑙𝑑 𝐻2𝑂%],        (9) 

The harvest index (𝐻𝐼) and root index (𝑅𝐼) are calculated as: 

𝐻𝐼 =
𝑑𝑟𝑦 𝑦𝑖𝑒𝑙𝑑

𝐴𝑔𝑏
, 𝑅𝐼 =

𝑑𝑟𝑦 𝑟𝑜𝑜𝑡

𝐴𝑔𝑏
;          (10) 

Finally, aboveground carbon input (𝐴𝑔𝐼, in tonnes of C ha-1) is calculated as: 

𝐴𝑔𝐼 =  [
𝑑𝑟𝑦 𝑦𝑖𝑒𝑙𝑑 ∙ (1−𝐻𝐼)

𝐻𝐼
] ∙ 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑙𝑒𝑓𝑡 𝑜𝑛 𝑓𝑖𝑒𝑙𝑑 ∙ 𝐶 𝑐𝑜𝑛𝑡𝑒𝑛𝑡,      (11) 255 

Where 𝐶 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 is the carbon content of the considered plant part in percentual of dry matter, 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑙𝑒𝑓𝑡 𝑜𝑛 𝑓𝑖𝑒𝑙𝑑 is in 

percentage; belowground carbon input (, in tonnes of C ha-1), is calculated as: 

𝐵𝑔𝐼 =  
𝑑𝑟𝑦 𝑦𝑖𝑒𝑙𝑑  ∙ 𝑅𝐼

𝐻𝐼
,           (12) 

Where 𝑅𝐼 stands for root index, the ratio of root with respect to total aboveground biomass as dry matter. 

The input provided to the RothC20_N model is the same as the basic model, plus the TSMD calculated independently using 260 

the observed retention curve of the soil material. 

We calibrated all the models using the 4+ years datasets from plot 4 and 5 from each of the field sites (the two plots with 

respiration and soil moisture and temperature data series). The calibration procedure followed the multi-objective calibration 

framework presented in Cagnarini et al., (2019), and consisted in the use of the GLUE (global likelihood uncertainty analysis) 

analysis (Beven & Binley, 2014), according to limits of the acceptability criteria (X. Liu et al., 2009). We calibrated the 265 

following 5 parameters: kinetic constants Kdpm, Krpm, Kbio and Khum (four parameters), the inert organic matter pool IOM (one 

parameter). The objectives of the calibration were the observed: SOC, soil water content (translated into TSMD), and 

partitioned Rh. The data on CO2 and N2O soil emissions are publicly available of the Agrestic website 

(https://www.agrestic.eu/ravenna-co2/). All information on the simulation inputs is available in supplementary materials.  

Following the calibration from plot 4 and 5, we evaluated the overall quality of the calibrations by using the calibrated models 270 

to simulate the SOC stocks in all the other plots (i.e. plots 1, 2, 3, 6, 7, 8 where no observations of 𝑅𝑠 were available) in both 
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sites, then the SOC estimated were averaged for each treatment (ECS, CCS) in each site (Ravenna, Foggia) and compared with 

the averaged SOC observed (and their standard deviation). 

3 Results 

3.1 Soil measurements 275 

 

Figure 3: Measurements of soil water content, soil temperature and soil respiration, in both field sites (Ravenna and Foggia) and 

both treatments plots equipped with gas chambers (plot 4 CCS and plot 5 ECS). 

Figure 3 shows the time series measurements taken in the field. The soil water content time series show small differences 

between plot 4 (CCS) and plot 5 (ECS); depending on the type of crop plantation one plot may show marginally higher or 280 

lower soil water content with respect to the other, but, on average, no clear difference is visible. During summers the soil water 

content is always very low in both Ravenna and Foggia sites, but the lowest values of soil water content are reached in Foggia, 

due to drier weather and different soil properties. The soil temperature does not change between ECS and CCS in general; the 

temperatures are in general 1°C higher in Foggia than in Ravenna. 

Soil respiration is generally higher in Ravenna than in Foggia, with average respiration rates of 0.38 and 0.25 tC ha-1 month-1, 285 

respectively. In Ravenna, the respiration rates are larger in plot 4 (CCS, 0.45 tC ha-1 month-1) than in plot 5 (ECS, 0.30 tC ha-

1 month-1); in Foggia the respiration rates are larger in plot 5 (ECS, 0.27 tC ha-1 month-1) than in plot 4 (CCS, 0.23 tC ha-1 

month-1). The SOC data was available for all plots; the average values are shown in Figure 6: SOC increased more in ECS 
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than in CCS in both Ravenna and Foggia, but the difference is larger in Ravenna than in Foggia. The SOC trends, however, 

are characterized by large errors and variability among plots (see error bars in Figure 6), and it is well known that a period of 290 

around 10 years is required to observe a significant trend from field measurements (Stockmann et al., 2015). For this reason, 

the SOC measurements are presented and analyzed together with RothC and RothC20_N simulations in section 3.3. 

Other important results of the field comparison between ECS and CCS are related to agricultural productivity, water used and 

soil overall emissions (considering N2O). The dry yield was: higher in ECS for durum wheat in both field sites (+ 2% in 

Ravenna and + 18% in Foggia); same for other crops such as tomato (+3% in Ravenna) which produced particularly higher 295 

quality berries (+ 10% Brix degree); overall dry biomass production higher due to catch crops (around 1 t ha-1 yr-1). The water 

used in ECS was lower than that in CCS (-18.9 %) due to lower irrigation for tomato. The use of fertilizer was lower in ECS 

due to the relay crop alfalfa (-31.2 kg ha-1 yr-1) and pea (-22.4 kg ha-1 yr-1) in Ravenna, and due to lentil (-11.5 kg ha-1 yr-1) and 

cover crop (-18.7 kg ha-1 yr-1) in Foggia. Finally, the emissions of N2O measured by the gas chambers were 46% lower in ECS 

than in CCS. 300 

3.2 Soil respiration partitioning 

 

Figure 4: Soil respiration (𝑹𝒔) measurements, and 𝑹𝒉 predicted by partitioning, in both field sites (Ravenna and Foggia) and both 

treatments plots equipped with gas chambers (plot 4 CCS and plot 5 ECS). 

The soil respiration partitioning shows very good fits for soil respiration in Ravenna in both summer and winter periods when 305 

no crop was present. The estimates of 𝑅ℎ are generally lower than measured 𝑅𝑠, as expected, apart from few periods (winter 

2020 for CCS, summer 2021 for ECS, see supplementary materials). In Foggia the fitting was less satisfactory in CCS and 

ECS (worse in CCS) in winter, but better in summer. Figure 4 shows the results of the soil respiration partitioning; apart for 
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some periods in which the 𝑅ℎ predictions are larger than the 𝑅𝑠 observations, especially in winter 2020 in Foggia and some 

few days in summer in general, the predictions make sense (𝑅𝑠 larger when crop growing and standing, 𝑅ℎ large after harvest, 310 

then decreasing). The analysis of the residuals, i.e. the difference between observed 𝑅𝑠 and model estimates of 𝑅ℎ, show good 

fit with: i) root depth in winter for ECS and CCS in the periods in which crop was present in the field; ii) soil water content in 

summer (ECS); iii) soil water content in both summer and winter in CCS. In general, the prediction of 𝑅ℎ when crop was 

present is larger than 𝑅𝑠 observed when 𝑅𝑠 was very low in Foggia (winter 2020 CCS, winters 2019-2020 in ECS), but lower 

when 𝑅𝑠 was large. 315 

 

3.3 RothC and RothC20_N simulations 

 

Figure 5: SOC, CO2 flux and TSMD measured and modelled using RothC20_N and RothC in the two plots where the gas chamber 

measures were available (plot 4 CCS and plot 5 ECS) in both field sites (Ravenna and Foggia), after calibrating the RothC and 320 

RothC20_N models. 

Figure 5 shows the results of the multi-objective calibration. The estimates of the soil water balance parameters from 

pedotransfer functions as in Farina et al., (2013) yielded very good results for RothC20_N (Figures 5e, 5f): the very low values 

reached during summer are well represented (while completely missed by RothC basic version), just like the field capacity 

values during winter. Since RothC20_N provided the best fit to the water content data, from here on only this version of RothC 325 

will be commented. The calibration of Khum, Krpm, Kbio and Kdpm were deemed site specific, that is, the parameters were fitted 
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using data from both treatment (ECS and CCS) for Ravenna and Foggia. However, the calibration resulted in values very 

similar to the original ones (less than 5% difference). The results show a general good fit with the estimated 𝑅ℎ, even though 

it is possible to see that not all peaks (sudden surges in Rh) were well simulated (especially in months 30 and 42 in Ravenna 

and Foggia), but the average behavior and the average fluxes matched. The calibrated RothC20_N simulations could model 330 

the general SOC trends in the data. 

Figure 6 shows the averaged results for the simulations of all the plots with ECS and CCS in the two field sites; the averaged 

simulations for Ravenna followed very well the general trend observed in the measurements, with larger SOC values in ECS 

than in CCS. In Ravenna, the averaged SOC estimated by RothC20_N shows an increase in SOC for the ECS treatment (while 

the observation trend is not statistically significant) and a slow increase in the difference between the SOC in ECS with respect 335 

to CCS (also shown by the observations). In Foggia, the simulations show a decrease in SOC for both ECS and CCS, with 

ECS having slightly more SOC than CCS. However, the averaged observations show an increase in SOC in both ECS and 

CCS (but trend not significantly different from zero). Therefore, the averaged simulations appear to slightly underpredict the 

SOC with respect to the observations. 

 340 

 

Figure 6: SOC measured in the field and modelled using RothC20_N, averaged on all ECS and CCS plots in a) Ravenna and b) 

Foggia field sites. 

4 Discussion 

Notwithstanding the difference in soil properties and climatic conditions of the two field sites, the differences in the soil 345 

conditions that affected SOC stocks (that is, soil temperature and soil water content) were very small. The main difference was 

in the soil water content (Figure 3a, b), that was drier in Foggia than in Ravenna, even though this difference was overall small, 

due to the irrigation procedure which increased soil water content whenever reaching wilting point when a crop was present. 

Soil water content was somehow different in ECS than in CCS, with less water used in ECS and different irrigation times. All 

these differences in soil water regime were simulated properly by RothC20_N. The differences in 𝑅𝑠 measured in ECS and 350 
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CCS are due to the different timings of crops between the two plots 4 and 5 in both sites. 𝑅𝑠 appears to be smaller in Foggia 

than in Ravenna (Figure 3e, f), probably due to the difference in carbon input between the two sites, since this difference was 

captured by RothC20_N as well (Figure 5c, d).  

The partitioning method estimated 𝑅ℎ values very close to those predicted independently by the RothC20_N simulations, 

giving credibility to both methods. Some trouble was related to wild fluctuations in the data especially in the Foggia site, which 355 

could be due to the soil cracking around the chamber (observed in the field during summer) and, possibly, preferential flow of 

CO2 out of the cracks. Another problem was that, when 𝑅𝑠 was low during a cropping period, the estimates of 𝑅ℎ were larger 

than the actual measurement of 𝑅𝑠 (see Figure 4, September 2020 in Ravenna, January 2021 in Foggia). Some mismatch in 

respiration peaks is visible between 𝑅ℎ partitioned and RothC20_N simulated, and they will be discussed further below. 

The calibration of the RothC20_N model resulted in very good simulations of the soil water regime observed in plots 4 and 5 360 

for both sites, especially of the dry periods with almost no rain during summer. The calibration could fit satisfactorily both 

SOC trends and 𝑅ℎ measurements without changing appreciably the calibrated parameters, with less than 5% change in the 

initial values. More specifically, the calibration had a small effect on Kdpm (12 instead of 10 yr) and Khum (0.018 instead of 0.02 

yr-1).  

Some mismatch is evident in the peaks of 𝑅ℎ partitioned and simulated by RothC20_N, especially in August-September 2020 365 

and May-June 2021 (Simulation months 30-31 and 41-42, Figure 5c, d). In Ravenna, ECS simulation shows similar peaks as 

𝑅ℎ partitioned, but of lower intensity, while CCS seems to miss the peaks by few months; in Foggia, ECS partitioned 𝑅ℎ shows 

peaks that are completely absent from the 𝑅ℎ  simulated. One possibility for this mismatch is that the partitioned 𝑅ℎ  was 

incorrect due to missing data from catch crop and legumes root development; however, if that was true we would see different 

mismatch in 2020 (when the catch crop was incorporated in the soil) and 2021 (no catch crop in Foggia), but the mismatch is 370 

the same in both years. Another possibility is related to the soil water content: in both August 2020 and May-June 2021 the 

two sites experienced very dry periods; even if the soil water conditions were well simulated by RothC20_N, it is possible the 

model missed the effect of dry soil on the microbial metabolism: in dry soil conditions, microbial metabolism (and, thus, Rs) 

is supposed to decrease; however, in soils experiencing regular dry periods, microbial communities may adapt to dry soil 

conditions (Brangarí et al., 2021). Unfortunately we cannot test this hypothesis, since we did not measure enzymatic activity 375 

in the soil. 

The comparison between the two field managements, ECS and CCS, showed that ECS increased SOC stocks, decreased CO2 

emissions from the field, while still being profitable from the farmer point of view. In general, we could see less CO2 emissions 

(-33%) and N2O emissions, less use of fertilizers, less use of water, same or better crop yields, and increase in SOC from 

measurements, with a small increase trend in SOC (but with small statistical significance). Thus, the ECS method generates 380 

more or equal agricultural output (and profits) with respect to CCS, while decreasing the amount of input. The decrease in 

fertilizers use and irrigation practices is likely to result in a reduction in indirect CO2 emissions as well, i.e. emissions produced 
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before field activity, but this should be evaluated properly in a LCA study (available upon request). If carbon accounting 

methods would be put in place, or in the case there was a standardized methodology to reward soil carbon sequestration 

alongside emission reductions, ECS would be even more interesting as a practice for the farmers, due both to reduced emissions 385 

and increased carbon stored in the soil. Moreover, Labouyrie et al., (2023), using LUCAS data from across the EU, showed 

that properly managed agriculture may result in larger soil microbial diversity with respect to other land uses, even natural 

grasslands. 

Comparing the present study with literature, shows that our contribution is important toward assessing the effects of catch and 

cover crops in increasing SOC stocks. Starting from a comprehensive review by Poeplau & Don, (2015), various articles have 390 

claimed that catch and cover crops have the potential to increase SOC; however, a recent article by Chaplot & Smith, (2023) 

put those results into question. Our study seems to contribute to the debate, since it fits in the description of the “acceptable” 

study by Chaplot & Smith, (2023), and showing that catch and cover crops increase SOC stocks, as discussed further below. 

Poeplau & Don, in their 2015 review compiling data from 139 plots at 37 different sites, show that the use of catch crop 

increased SOC by 0.32 t C ha-1 yr-1 within the first ∼50 years, and then discuss the amount of carbon which could be sequestered 395 

up to soil saturation; however, how carbon saturation works is still under discussion at the time of writing this article (Georgiou 

et al., 2022; Lavallee & Cotrufo, 2021). Hansen et al., (2015) found that soil organic carbon (SOC) did not increase 

significantly after 7 years of straw incorporation in two experimental sites in Denmark. Shackelford et al., (2019), reviewing 

data from experiments in Mediterranean climate, shows that cover crops resulted in 13% less water, 9% more organic matter, 

41% more microbial biomass, 16% higher yields when legume cover crops used. Similar results were found in an experiment 400 

in Germany (Gentsch et al., 2020). In a review on potential methods for soil carbon sequestration in agriculture, Tiefenbacher 

et al., (2021) showed that the use of catch crops is one of the most promising (together with other strategies applied in this 

study, i.e. smart irrigation and diversified crop rotation). Lessmann et al., (2022) meta-analysis of other meta-analyses, showed 

that increasing crop diversification as well as the use of catch crops and cereals within arable crop rotation schemes has the 

potential to sequester an additional 153 Mton of C yr-1 globally. Cerdà et al., (2022), in an experiment conducted in Valencia 405 

(Spain), showed that soil organic matter increased from 1.14 to 1.63% after 10 years of treatments using catch crops.  

Modeling shows more uncertain effects of catch and cover crops on SOC stocks. Modelling of carbon sequestration potential 

from organic agriculture using Century (Foereid & Høgh-Jensen, 2004) predicted that cover crops could increase soil organic 

matter during the first 50 years of about 0.1-0.4 t C ha-1 y-1. However, Seitz et al., (2022) used RothC and C-Tool to predict 

potential of cover crops for carbon sequestration in Germany, accounting only for the direct effects of cover crops. They found 410 

that cover crops alone cannot turn croplands from carbon sources to sinks. However, growing them reduces bare fallow periods 

and SOC losses and thus is an effective climate change mitigation strategy in agriculture. 

There are only few studies showing no or negative effects of cover and catch crops on SOC stocks: Hijbeek et al., 2017, using 

data from 20 long term experiments, showed that catch crops do not increase yields, if there is no N deficiency in the soil; 
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however, this means they may be useful to reduce fertilization, as observed here (and as observed by Couëdel et al., 2018). 415 

Triberti et al., 2016 showed that the application of catch crops may result in a decrease in SOC stocks; however, this was 

mainly due to the impact of intensified agricultural management in the same plot where the catch crop was applied. Finally, a 

recent re-analysis of published studies by Chaplot & Smith, (2023) questioned the findings of previous review articles (e.g. 

Poeplau & Don, 2015) on the basis of the type of experiments collected. Chaplot & Smith, (2023) claim that 31 out of the 

collected 37 studies had a duration of 3 years or less or kept cover crops on the field too long, and thus could not discriminate 420 

the effects of catch crops. Of the remaining 6 studies, only one study showed a positive impact. Using the methodology of 

Chaplot and Smith, the study presented here qualifies as acceptable to estimate SOC trends due to catch-cover crops in the 

first 30 cm soil, and we were able to show an increase in SOC, with predicted rate of 0.4 t C ha-1 yr-1.   

However, the findings of this study need to be put into context, so we list here its limitations. The duration of the study, even 

if longer than 4 years, is still below the 10 years usually needed to identify a SOC trend with certainty. The analysis of two 425 

different areas in two different climates increases the robustness of the findings, but two sites are still not enough to represent 

the whole Mediterranean conditions (even though they give indications about the variability involved). The fact that long (8+ 

years) SOC datasets are required to properly calibrate the model is partly solved using partitioned 𝑅ℎ data, but this still leaves 

doubts on the relevance of the trends observed from SOC measured in the field. Another important limitation is the lack of 

proper root biomass growth estimates for some of the catch crops used, which resulted in poor partitioning of 𝑅𝑠 into 𝑅ℎ and 430 

𝑅𝑎. Even though the partitioning method used here has some uncertainties, the use of trenching has also its own difficulties, 

related to dead material increasing 𝑅ℎ in the trenched vs non trenched sites, lack of rhizospheric priming, lack of 𝑅ℎ from 

exudates and other material from roots. The final limitation here is that RothC is a well-established and widely used model, 

but the scientific consensus is that such models are not able to properly model the processes regulating the carbon dynamics 

in the field, and thus is not robust against changes in the soil conditions (e.g. due to climate change or due to changes in soil 435 

management). Even though this problem has been recognized since more than a decade (Wieder et al., 2018), there are still no 

reliable and applicable successors to RothC and Century like models. Another limitation of RothC is that it simulates only the 

C cycle and does not account for N limitation; this is usually not a problem in agricultural fields due to N fertilization, but we 

will fix this problem in the future, including N cycle modeling calibrated using the N2O emissions measured with the gas 

chambers.  440 

5 Conclusions 

This study shows that the use of cover and relay crops, integrated with the use of precision agriculture techniques (field sensors 

communicating with agricultural DSS models to advise the farmer on how to act and when) can result in agricultural practices 

that are both economically and environmentally sustainable. In this particular case, we were able to show increases in the 

carbon sequestered by the soil, a reduction in fertilizers and water used in the field, without any negative impact on the 445 
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production of food (or, in some cases, even increasing it). The sequestration of carbon from the atmosphere is paramount to 

balance anthropic emissions and help reach carbon neutrality; in the future, a carbon market or some types of carbon accounting 

will probably increase the desirability of carbon farming in agriculture.  

The soil respiration partitioning method used here, inspired by the regression method developed by Kucera (1971), gave results 

very similar to those obtained independently from a RothC simulation, showing that the method is viable whenever enough 450 

data on soil respiration are collected (typically, by a battery of automated gas chambers). The method could be applied to Eddy 

Covariance data as well, when used in agricultural settings, with a careful determination of the measurements footprint. The 

partitioned 𝑅ℎ could be used to calibrate soil biogeochemical models in a reliable way, using shorter observation times with 

respect to calibrations based on SOC measurements alone. 

The version of RothC modified by Farina et al., (2013) for Mediterranean conditions performed very well in its prediction of 455 

soil water content in the experimental fields, since it was able to properly reproduce the soil conditions during long periods 

without precipitations. This is particularly relevant in a changing climate, where more intense precipitation events and longer 

dry spells are expected over most of the European continent. The multiobjective calibration method used is potentially a very 

good method, but in our case the estimates from RothC were already very good, and as such, the calibration had only a very 

small effect on the model parameters (< 5%).  460 
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