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Abstract. By transporting warm and salty water poleward, the Gulf Stream system maintains a mild climate in northwestern

Europe while also facilitating the dense water formation that feeds the deep ocean. The sensitivity of North Atlantic circulation

to future greenhouse gas emissions seen in climate models has prompted an increasing effort to monitor the various ocean

circulation components in recent decades. Here, we synthesise available ocean transport measurements from several obser-

vational programs in the North Atlantic and Nordic Seas, as well as an ocean state estimate (ECCOv4-r4), for an enhanced5

understanding of the Gulf Stream and its poleward extensions as an interconnected circulation system. We see limited coherent

variability between the records on interannual time scales, highlighting the local oceanic response to atmospheric circulation

patterns and variable recirculation time scales within the gyres. On decadal time scales, we find a weakening subtropical cir-

culation between the mid-2000s and mid-2010s, while the inflow and circulation in the Nordic Seas remained stable. Differing

decadal trends in the subtropics, subpolar North Atlantic, and Nordic Seas warrant caution in using observational records at a10

single latitude to infer large-scale circulation change.

1 Introduction

The steady supply of warm Gulf Stream water from the subtropics to subpolar latitudes is crucial for maintaining a mild, mar-

itime climate in northwestern Europe (Kwon et al., 2010; Palter, 2015). Projected slowdown of the North Atlantic circulation

as a response to global warming (e.g., Manabe and Stouffer, 1994; Weijer et al., 2020; Sen Gupta et al., 2021) has therefore15

motivated extensive observational efforts to monitor and understand variability and potential future change (Cunningham et al.,

2007; Mercier et al., 2015; Lozier et al., 2017; Østerhus et al., 2019; Rhein et al., 2019). Inferences about large-scale circula-

tion change are typically made based on observing systems measuring circulation strength at carefully selected fixed locations.

However, it remains unclear to what extent, and on which time scales, the extended Gulf Stream system should be considered a

meridionally coherent circulation system. Here, we use North Atlantic and Nordic Seas ocean transport measurement records20

to investigate meridional coherence, interannual variability, and potential trends within the Gulf Stream system.
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Figure 1. Main North Atlantic and Nordic Seas circulation features. Climatological potential temperature from the ECCOv4 ocean state esti-

mate (1992-2017) with major circulation features indicated in arrows. (a) The horizontal view; purple and black arrows indicate upper-ocean

and deep-ocean circulation, respectively (DWBC; Deep Western Boundary Current, NAC; North Atlantic Current, NwASC; Norwegian At-

lantic Slope Current, EGC; East Greenland Current). (b) The vertical view; transect follows the WOCE A16 section until 52◦N, from where

it veers into the Nordic Seas over the Iceland-Scotland Ridge and toward the Fram Strait. In (a) the dashed lines show the observational

sections included in the analysis. Note the nonlinear y-axis and nonlinear colorbar in (b).

As a narrow western boundary current, the Gulf Stream is a part of the subtropical gyre (Figure 1a). At approximately

35◦N, the Gulf Stream separates from the coast and broadens, reaching a maximum of around 150 Sv at 60◦W (Hogg, 1992).

The North Atlantic Current continues as the north-eastward extension of the Gulf Stream past the Grand Banks, transporting

roughly 27 Sv into the eastern subpolar North Atlantic (Roessler et al., 2015). Substantial subtropical and subpolar recirculation25

characterizes the North Atlantic circulation (e.g., Daniault et al., 2016). Still, almost 2/3 of the waters flowing across the

Greenland-Scotland Ridge into the Nordic Seas come from the Gulf Stream (Asbjørnsen et al., 2021), highlighting the direct

connection between the Gulf Stream and the Atlantic water ultimately reaching the Arctic via the Norwegian Atlantic Current.

Here, we consider the North Atlantic Current and the Norwegian Atlantic Current as part of the ’Gulf Stream system’, but

retain the terminology ’the Gulf Stream’ for the boundary current along the North American coast.30

The Gulf Stream and its poleward extensions are important to the large-scale overturning circulation where water is trans-

formed from light to dense water masses through surface heat loss and mixing at high latitudes (e.g., Mauritzen, 1996; Lozier,
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2012). The Atlantic Meridional Overturning Circulation (AMOC) is quantified as the zonally integrated and vertically accumu-

lated meridional flow in the North Atlantic, of which the Gulf Stream and its extensions form the essential northward flowing

branch between 25◦N and 70◦N. The resulting overturning streamfunction depicts an upper-cell where warm, subtropical wa-35

ter flows northward and cold North Atlantic Deep Water flows southward at depth (Figure 1b). While considerable effort has

been made to observe and understand the AMOC, it is by definition a zonally integrated view of the circulation which masks

variability in the individual currents (e.g., Lozier, 2010; Wunsch and Heimbach, 2013; Roquet and Wunsch, 2022). Both model

and observational studies show, for instance, limited coherent variability between subtropical and subpolar AMOC on seasonal

to decadal time scales (Bingham et al., 2007; Lozier et al., 2010; Mielke et al., 2013; Moat et al., 2020; Jackson et al., 2022).40

As an alternative to the integrated AMOC view, we do a first assessment of observed variability in the northward flowing

upper-ocean branches within the Gulf Stream system.

The North Atlantic Ocean exhibits pronounced variability on a range of time scales. The dominant mode of interannual

atmospheric variability, the North Atlantic Oscillation (NAO; Figure S1), drives ocean circulation changes through both wind

stress and surface heat flux anomalies on interannual to decadal time scales (e.g., Eden and Willebrand, 2001; Marshall et al.,45

2001; Sarafanov, 2009). The subpolar North Atlantic has distinct decadal trends in heat- and freshwater content linked to

subpolar gyre dynamics (Piecuch et al., 2017; Desbruyères et al., 2021; Fox et al., 2022). On multidecadal time scales, warm

and cold phases referred to as the Atlantic Multidecadal Variability are characterized by basin-wide sea surface temperature

anomalies with AMOC variability thought to be an important driver (Zhang et al., 2019). In addition to internal variability,

externally forced global warming is projected to slow down the AMOC over the 21st century by reducing dense water formation50

at subpolar latitudes (e.g., Lique and Thomas, 2018; Weijer et al., 2020).

The observational record is relatively short considering the wide range of time scales characterizing North Atlantic variabil-

ity. The AMOC strength has been measured in the subtropics at 26.5oN since 2004 (RAPID; Cunningham et al., 2007) and in

the subpolar North Atlantic at approximately 55oN since 2014 (OSNAP; Lozier et al., 2017). The Nordic Seas inflow branches

and the Norwegian Atlantic Current have been monitored since the 1990s (Orvik and Skagseth, 2003b; Ingvaldsen et al., 2004;55

Østerhus et al., 2019). For the interannual to decadal time scales resolved by the records so far, it remains unclear to what extent

the different branches of the Gulf Stream system will exhibit coherent variability and thus can be used to make inferences about

the large-scale circulation. Distinguishing naturally occurring variability from an externally forced global warming signal is

furthermore a major challenge (Baehr et al., 2008; Kelson et al., 2022).

Here, we focus on observational records of circulation strength from the Florida Current in the subtropical North Atlantic60

to the Norwegian Atlantic Current in the Nordic Seas (Figure 2). We use the ECCOv4-r4 ocean state estimate to extend

the analysis back to 1992 and explore mechanisms of interannual to decadal variability. In evaluating the Gulf Stream and

its poleward extensions as an interconnected circulation system within this time period, we identify patterns of connections

and disconnections which have implications for the interpretation of single observational records in the context of large-scale

circulation change.65
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Table 1. Ocean transport measurement records in the North Atlantic and Nordic Seas. The mean transport is the absolute value of the monthly

mean volume transport. STD is the standard deviation of the monthly means, with exception of the Oleander record (*) where STD is the

standard deviation of annual means. Records included are the Florida Current (FC) and Western Boundary Current (WBC) at RAPID, Gulf

Stream (GS) at the Oleander section, North Atlantic Current (NAC) at OSNAP-East, inflow at the Greenland-Scotland Ridge (GSR), and the

Norwegian Atlantic Slope Current (NwASC) at Svinøy and the Barents Sea Opening (BSO). Records quantifying overturning strength are

included at RAPID (mocz), OSNAP (mocσ), and the Greenland-Scotland Ridge (GSR overflow). The notation (mocz) and (mocσ) denotes

depth-space and density-space overturning strength, respectively.

Section ∼Latitude Time period Mean [Sv] STD [Sv] Data source

RAPID FC 26◦N Mar 1982 - Aug 2021 31.8 2.5 Meinen et al. (2010)

RAPID WBC 26◦N Apr 2004 - Dec. 2020 33.2 3.3 Smeed et al. (2018)

RAPID mocz 26◦N Apr 2004 - Mar 2020 16.9 3.4 Moat et al. (2020)

Oleander GS 36◦N Jun 1993 - Feb 2018 95.0 4.1* Rossby et al. (2019)

OSNAP NAC 55◦N Aug 2014 - Jun 2020 19.2 3.2 Fu et al. (2023)

OSNAP mocσ 55◦N Aug 2014 - Jun 2020 16.4 3.7 Fu et al. (2023)

GSR inflow 60◦N Oct 1994 - Jul 2016 7.4 1.1 Østerhus et al. (2019)

GSR overflow 60◦N Jul 1997 - Apr 2017 5.4 0.5 Østerhus et al. (2019)

Svinøy NwASC 62◦N Apr 1995 - May 2020 4.5 0.9 Orvik (2022)

BSO NwASC 73◦N Sep 1997 - Mar 2017 2.0 1.0 Ingvaldsen et al. (2004)

2 Methods

The strength of the ocean circulation is monitored by a number of observational arrays in the North Atlantic and Nordic Seas. In

Section 2.1, we give an overview of the ocean transport measurements used in the analysis (Figure 2): the Florida Current and

Western Boundary Current at 26.5◦N, the Gulf Stream at the Oleander section, the North Atlantic Current at OSNAP-East, the

Greenland-Scotland Ridge inflows to the Nordic Seas, the Norwegian Atlantic Current at Svinøy, and the Atlantic water inflow70

to the Barents Sea. While our focus is the upper-ocean circulation, we also show estimates of overturning strength (Figure 3):

maximum of the overturning streamfunction at the RAPID and OSNAP sections, and overflow transports at the Greenland-

Scotland Ridge. The ECCOv4-r4 ocean state estimate is described in Section 2.2, and the data treatment is explained in Section

2.3.

2.1 Observing systems75

The Florida Current has been measured since 1982 and is the longest, near-continuous volume transport time series in the North

Atlantic (Larsen and Sanford, 1985; Baringer and Larsen, 2001). The volume transport is inferred from submarine telephone

cables measuring the motionally induced voltage difference across the strait between Florida and Grand Bahama Island. The

31.8± 2.5 Sv transported by the Florida Current constitute the the starting point of the Gulf Stream together with the Antilles
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Figure 2. Volume transport time series for the observed Gulf Stream system. From the southernmost to the northernmost section; the

Florida Current (FC) and Western Boundary Current (WBC; includes the Antilles Current) at RAPID, the Gulf Stream (GS) component

at the Oleander section, the North Atlantic Current (NAC) at OSNAP-East, the combined Faroe-Shetland Channel, Iceland-Faroe-Ridge,

and Denmark Strait inflows at the Greenland-Scotland Ridge (GSR), the Norwegian Atlantic Slope Current (NwASC) at Svinøy and at the

Barents Sea Opening (BSO). The monthly mean time series have been filtered with a 1-year low-pass triangular filter to highlight interannual

variability.

5



Current to the east (Meinen et al., 2019). Because variability in the Antilles Current is important for the overall variability at80

the western boundary (Figure 2), we additionally include the total Western Boundary Current transport as defined in Smeed

et al. (2018) transporting on average 33.2± 3.3 Sv (Table 1).

The RAPID-MOCHA array has been active since 2004, estimating the flow across 26.5◦N (Cunningham et al., 2007; Moat

et al., 2020). Considering the circulation to be in near geostrophic balance away from boundaries, the RAPID array estimates

the mid-ocean geostrophic transport from the thermal wind relation using dynamic height moorings located at the western and85

eastern continental shelves and on both sides of the Mid-Atlantic Ridge (McCarthy et al., 2015). The full AMOC estimate

additionally relies on current meter moorings measuring the Antilles Current, cable measurements from the Florida Current,

and the Ekman transport calculated from ERA5 wind stress (Hersbach et al., 2020). The AMOC strength at RAPID shown in

Figure 3 is the maximum of the estimated overturning streamfunction in depth-space (mocz), and thus reflects the strength of

the net upper-ocean circulation at 26.5◦N.90

An ADCP mounted on the container ship CMV Oleander allows for estimating volume fluxes from velocities measured

along a transect from New Jersey to Bermuda (Flagg et al., 1998; Rossby et al., 2005). The ADCP measures velocities down

to 250-400 m depth for the 1992-2004 period, and down to 500-600 m from 2005 and onwards (Sanchez-Franks et al., 2014).

Because the measurements do not cover the full depth, the Oleander record is a volume flux for a 1 m thick layer at 52

m depth (unit; Sv/m). We here focus on the Gulf Stream component defined as the northeastward, high-velocity core as95

provided in Rossby et al. (2019). Using a scale factor of 700, the total Gulf Stream transport in the 0-2000 m layer can be

estimated (Rossby et al., 2014), averaging to 95.0± 4.1 Sv (Table 1). Due to variable sampling frequency related to ship time

and equipment failure, the Oleander transport is estimated in 1-year segments stepped at half-year intervals. As a result, the

Oleander record has different temporal resolution than the other time series displayed in Figure 2.

The OSNAP observing system, deployed in 2014, monitors the North Atlantic circulation at subpolar latitudes (Lozier et al.,100

2017). The two sub-arrays OSNAP-East and OSNAP-West use densely spaced current meter and dynamic height moorings

in the boundary currents and over the Reykjanes Ridge. OSNAP also relies on Argo float data, satellite altimetry, glider

observations, and the surface wind field to estimate velocities and property fields away from the moorings (Li et al., 2017).

Here, we use the North Atlantic Current transport across OSNAP-East (Figure 2), defined as the net transport east of 25.6oW

and above the 27.66 kg/m3 isopycnal. We also show the AMOC strength in density-space (mocσ) for the full OSNAP line105

(Figure 3), which quantifies water mass transformation from light to dense water north of the section.

The three inflow branches to the Nordic Seas across the Greenland-Scotland Ridge are monitored by three sub-arrays with

current meter moorings at the Faroe-Shetland Channel (Berx et al., 2013), Iceland-Faroe Ridge (Hansen et al., 2015), and

north of the Denmark Strait at the Hornbanki section (Jónsson and Valdimarsson, 2012). Regular CTD cruises also sample

the sections multiple times a year. For the Faroe-Shetland Channel and Iceland-Faroe Ridge, the volume transport time series110

combine in situ observations with satellite altimetry. On average, 2.7± 1.1 Sv is transported in the Faroe-Shetland Channel,

3.8± 0.6 Sv across the Iceland-Faroe Ridge, and 0.9± 0.3 Sv with the Denmark Strait branch (Østerhus et al., 2019). While

the Iceland-Faroe Ridge component has the highest volume transport of the three inflow branches, the Faroe-Shetland Channel

component dominates interannual variability (Figure S2a). In Figure 3, we show the transport of the Greenland-Scotland Ridge
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Figure 3. Volume transport time series quantifying overturning strength. The Denmark Strait and Faroe-Bank-Channel overflows at the

Greenland-Scotland Ridge (GSR), overturning strength in density space (mocσ) at OSNAP, and overturning strength in depth-space (mocz)

at RAPID. The monthly mean time series have been filtered with a 1-year low-pass triangular filter to highlight interannual variability. Note

that the y-axis of the GSR overflow panel has been flipped.

overflows (the Denmark Strait and Faroe-Bank Channel overflows), which quantifies the amount of dense water formed north115

of the ridge and exported to the Atlantic Ocean (Hansen et al., 2016; Jochumsen et al., 2017).

North of the Greenland-Scotland Ridge, the Norwegian Atlantic Current transports water northward in a two-branch system;

the Norwegian Atlantic Slope Current and the Norwegian Atlantic Front Current. A mooring in the Norwegian Atlantic Slope

Current has been measuring its variability since 1995 (Orvik and Skagseth, 2003a; Orvik, 2022). The mooring is located at

the Svinøy section in the core of the Norwegian Atlantic Slope Current at position 62◦48’N, 4◦55’E. Because the current is120

nearly a barotropic shelf edge current, a single current meter at 100 m depth can be used to estimate the total transport of

the Norwegian Atlantic Slope Current when scaled with the Svinøy section area (Orvik and Skagseth, 2003a). Applying the

scaling factor, the mean Svinøy transport is 4.5± 0.9 Sv (Table 1).

At the entrance to the Barents Sea, a current meter mooring array has monitored the Atlantic inflow through the Barents

Sea Opening since 1997 (Ingvaldsen et al., 2002, 2004). The mooring array extends from 71◦30’N to 73◦30’N, with the exact125

number of moorings deployed varying over the measurement period. On average, the Atlantic inflow through the Barents Sea

Opening is 2± 1.0 Sv (Table 1).
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2.2 ECCOv4-r4 ocean state estimate

To supplement relatively short observational records, we analyse circulation strength in the ECCO Version 4 Release 4

(ECCOv4-r4) ocean state estimate spanning 1992-2017. The ECCOv4-r4 estimate provides a dynamically consistent solution130

for the global ocean and sea ice state by using nearly all modern ocean observations to constrain an ocean general circulation

model with a 1◦ nominal horizontal resolution (Forget et al., 2015; ECCO Consortium et al., 2021). The ECCOv4-framework

uses the adjoint method to iteratively reduce the model-data misfit by adjusting initial conditions, surface boundary conditions,

and model parameters (Heimbach et al., 2005). The observational constraints consist of profiles from Argo floats, Ice-Tethered

Profilers, marine mammals, individual CTD stations, as well as satellite observations of sea level, sea surface salinity and tem-135

perature, sea ice concentration, and ocean bottom pressure from GRACE and GRACE-FO. As observed ocean transport time

series are not used as direct constraints in the ECCOv4-framework, the observed and ECCOv4-r4 transport estimates shown

here can be considered independent.

In defining the transport sections in ECCOv4-r4, we stay as geographically close to the observational transects as the coarse

grid allows. For instance, because the complex topography in the Straits of Florida is not fully resolved, we define the Florida140

Current transport in ECCOv4-r4 as the transport on the continental shelf. For the full Western Boundary Current transport, the

secondary core with northward flowing water off the shelf is additionally included. We use the same definitions of the currents

as for the observational transports, given that these remain meaningful definitions when studying the ECCOv4-r4 transects. For

instance at OSNAP-East, the same 27.66 kg/m3 isopycnal is used to define the North Atlantic Current in observations and in

ECCOv4-r4 as watermass properties are generally well-constrained in ECCOv4-r4.145

Previous releases of the ECCOv4 state estimate have been shown to reproduce well the observed variability in heat and salt

in the subpolar North Atlantic (Piecuch et al., 2017; Sanders et al., 2022) and the Nordic Seas (Asbjørnsen et al., 2019; Tesdal

and Haine, 2020). In terms of overturning in the North Atlantic, ECCOv4 skilfully reproduces variability at 26.5◦N (Evans

et al., 2017; Kostov et al., 2021), though the mean AMOC strength is slightly weaker than in observations (Figure S3). At the

OSNAP-East section, the AMOC strength (here in density-space) is also somewhat weaker than in observations (Figure S4).150

ECCOv4-r4 captures the observed peak in mocσ in 2015/16 (Figure S4c), but the overlapping time period with observations is

too short to get a fair assessment of how well interannual variability is represented.

For the upper-ocean components, interannual variability in the Florida Current is very well represented in ECCOv4-r4

(Figure 4a), though the transport magnitude is slightly lower than in observations (27 Sv versus 32 Sv in observations). At the

Oleander section, direct comparison in terms of variability is difficult due to the temporal resolution of the Oleander record.155

However, we note that the Gulf Stream in ECCOv4-r4 fails to intensify sufficiently when moving northward, leaving it too weak

at the Gulf Stream separation latitude - a common issue for ocean and climate models (Sen Gupta et al., 2021). The ECCOv4-r4

estimate captures the volume transport magnitude and variability at the Greenland-Scotland Ridge and Svinøy sections well

(Figure 4a). However, the Greenland-Scotland Ridge inflow in ECCOv4-r4 has a too weak Denmark Strait component (0.2

Sv) and too strong Iceland-Faroe Ridge component (4.7 Sv) compared to observations (0.9 Sv and 3.8 Sv, respectively). The160
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climatological mean for the Barents Sea Opening inflow is accurate in ECCOv4-r4 (2.03 Sv in observations vs. 2.16 Sv in

ECCOv4-r4), though there is little agreement on interannual variability as discussed previously in Asbjørnsen et al. (2019).

2.3 Data treatment

For the observational records with a higher-than-monthly temporal frequency, we compute monthly means of the volume

transport time series. To highlight interannual variability, we filter with a 1-year low-pass triangular filter (24-month filter165

width; Figure 2). Six months are removed at the start and the end of the filtered transport time series to limit the edge effects

from filtering. When filtering, shorter gaps in the measurement records (no more than five consecutive months) are smoothed

over, while more extensive gaps such as the one between November 1998 and May 2000 in the Florida Current record, are

treated as a discontinuous time series. The filtered volume transport anomalies from the time mean are shown when comparing

observations and the ECCOv4-r4 state estimate (Figure 4). Because the Oleander transport is estimated in 1-year segments170

stepped at half-year intervals, it is not low-pass filtered like the other time series.

To assess the co-variability between the transport time series, we calculate the correlation coefficient between the different

low-pass filtered observational and ECCOv4-r4 time series. We show correlation at lag zero (Table 2), and for the ECCOv4-

r4 estimate we also identify the maximum correlation for lag times between zero and six years (Figure S5). Several of the

observational time series have a limited overlapping period of available data, and autocorrelation further limits the number175

of independent data points. We therefore use the Chelton (1983) method at the 95% confidence level to assess whether the

correlation between two time series is significant. The method uses the effective degrees of freedom to compute a correlation

coefficient value as a threshold for significance. The threshold for significant correlation varies substantially, taking a high

value when the effective degrees of freedom is low. Throughout, we refer to the correlation analysis between the transport

sections as a way to assess meridional coherence within the Gulf Stream system.180

We estimate linear trends over the extent of the individual observational records using the least squares method (Table 3).

Trends in the ECCOv4-r4 state estimate are evaluated over the 1992-2017 period. The trend calculations are performed on

the unfiltered monthly mean time series. To assess whether the trend values are significantly different from zero at the 95%

confidence level, we use the modified Mann-Kendall test for autocorrelated data (Hamed and Rao, 1997). In Figure S6, we

additionally show the 95% confidence interval for the trend estimates.185

3 Observed coherence, variability, and change

Observations of circulation strength at fixed locations are often used to make inferences about the state of the large-scale

circulation (e.g. Smeed et al., 2018; Østerhus et al., 2019). Here, we view the different circulation components in the context of

the extended Gulf Stream system, focusing on observed coherence between the branches monitored on interannual time scales,

and potential trends over the respective measurement periods.190
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Figure 4. Interannual to decadal volume transport variability in ECCOv4-r4 and observations. (a) ECCOv4-r4 transport anomalies from

the time mean (1992-2017) are displayed in colors, with corresponding observational time series (as in Figure 2) in black. Significant

correlations between observational and ECCOv4-r4 time series are indicated in bold font. (b) Equivalent ECCOv4-r4 transport sections as in

(a), but smoothed with a 5-year low-pass filter to highlight decadal variability. The time series show the total volume transport, not anomalies,

so that the magnitude of decadal trends is visible.
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3.1 Meridional coherence

Circulation in the North Atlantic Ocean adjusts to changes in local surface forcing (wind and buoyancy) through rapid prop-

agation of boundary waves at the western boundary, slow westward propagation of Rossby waves, and advection of density

anomalies with the ocean currents (Johnson and Marshall, 2002; Zhang, 2010; Marshall and Johnson, 2013). The range in time

scales of these processes communicating change (advection; ∼3-4 years from subpolar to subtropical latitudes, Kelvin waves;195

< 1 year, Rossby waves; interannual-decadal time scales) makes the adjustment period potentially long, and the system’s

meridional coherence is thought to increase with increasing time scale considered (e.g., Gu et al., 2020). Limited meridional

coherence between the subtropical and subpolar AMOC strength is seen in both models and observations (e.g., Bingham et al.,

2007; Lozier et al., 2010; Mielke et al., 2013; Jackson et al., 2022). On interannual time scales, variability in subtropical AMOC

strength is dominated by local wind stress, which in-part explains the limited coherence with subpolar AMOC variability driven200

by a combination of wind and buoyancy anomalies (Zhao and Johns, 2014; Kostov et al., 2021).

More meridionally coherent signals in the AMOC have been explored in previous studies. Using EOF analysis, Zou et al.

(2020) identify a meridionally coherent AMOC mode and a gyre-opposing AMOC mode in multiple ocean models. Han (2023)

finds a coherent signal on seasonal to interannual time scales in ECCOv4-r3 linked to isopycnal heaving and the associated

adiabatic redistribution of water (also called ’sloshing’). Still, the lack of coherence in the full signal remains a challenge for the205

observing systems and detection of potential emerging trends in the North Atlantic circulation (Frajka-Williams et al., 2023).

Comparing the volume transport time series of the upper-ocean branches included in our analysis shows limited meridional

coherence within the Gulf Stream system on interannual time scales for all sensible lags (Table 2, Figure S5a). The North

Atlantic Current at the OSNAP-East section shows high zero-lag correlation with the Greenland-Scotland Ridge, Svinøy, and

Barents Sea Opening sections downstream, but the correlations are not statistically significant as the degrees of freedom are210

low for the short OSNAP record (Table 2). Between the transport at the Svinøy section and the inflow through the Barents Sea

Opening, there is a weak but statistically significant relationship (r=0.30) at zero lag time. The remaining observational records

show little sign of covariance. For instance, the correlation between the Western Boundary Current at 26.5oN and the Gulf

Stream at Oleander is not significant, which is consistent with previous studies finding surface-layer transport to decorrelate

quickly when moving north along the Gulf Stream path (Chi et al., 2023).215

In contrast to the observational records, some more distinct patterns of coherence are found within the ECCOv4-r4 estimate

(Table 2). The strongest relationships identified are at zero lag time between transport sections that are geographically close and

upstream of major recirculation branches. Specifically, we find coherence within the Gulf Stream boundary current (Florida

Current/Western Boundary Current at 26.5oN and the Oleander section) and within the Nordic Seas (Greenland-Scotland Ridge

inflow, Svinøy, Barents Sea Opening). Covariability at zero lag must be a result of fast boundary wave propagation or the ocean220

responding to regional scale atmospheric forcing. Testing for a range of lag times, we find no covariance between the subtropics

and the subpolar North Atlantic, or the subpolar North Atlantic and the Nordic Seas on interannual time scales in ECCOv4-r4

(Figure S5a).
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Table 2. Correlation between the transport sections. Correlations at zero lag time between low-pass filtered volume transport anomalies

from the time mean for the observational records (gray cells; see Table 1 for overlapping time periods), and for the equivalent ECCOv4-r4

transport (white cells; 1992-2017 period). For the Oleander observational record, linear interpolation is used to obtain monthly values for the

correlation. Significant correlations at the 95% confidence level are in bold font (Chelton (1983) method for evaluating significance).

RAPID FC RAPID WBC Oleander GS OSNAP NAC GSR inflow Svinøy NwASC BSO NwASC

RAPID FC 1 0.71 0.07 0.08 -0.16 -0.25 0.22

RAPID WBC 0.91 1 0.26 -0.16 0.21 0.15 0.25

Oleander GS 0.71 0.78 1 0.43 -0.15 -0.12 0.36

OSNAP NAC -0.27 -0.20 -0.19 1 0.82 0.73 0.88

GSR inflow -0.12 -0.27 -0.06 0.18 1 0.38 0.10

Svinøy NwASC 0.06 -0.05 0.19 -0.00 0.79 1 0.30

BSO NwASC -0.46 -0.63 -0.54 0.09 0.52 0.32 1

Within the Ekman layer, the ocean responds to the local surface wind stress independently at each latitude. We therefore

additionally check coherence within ECCOv4-r4 when removing the upper 100m before integrating across the sections (Table225

S1). Removing the Ekman layer does not notably increase the correlations or establish any new relationships between the

analysed sections. Similarly to the full section transports, testing for different lag times reveals no systematic patterns of

coherence that can be linked to advection times of anomalies (Figure S5b).

Based on the correlations between the ECCOv4-r4 transport sections, we conclude that meridional coherence in the Gulf

Stream system is limited to the gyre structures on interannual time scales, considering the Nordic Seas boundary current230

system as a separate gyre-like structure. We see, similarly, that the three main gyres structures exhibit differing behaviour also

on decadal time scales (Figure 4b), which is discussed further in Section 3.2.

3.2 Change over the observational record

Under future emission scenarios, climate models consistently project a weakened AMOC (e.g., Weijer et al., 2020) and to

somewhat lesser extent, Gulf Stream (Sen Gupta et al., 2021; Asbjørnsen and Årthun, 2023). There is, however, no consensus235

on whether such a weakening has already occurred over the past century. Some paleo and proxy reconstructions indicate that

the AMOC has already weakened (e.g., Thornalley et al., 2018; Caesar et al., 2021), potentially by as much as 15% since the

mid-20th century (Caesar et al., 2018). Kilbourne et al. (2022) argue, on the other hand, that circulation strength from paleo

records is poorly constrained, and advise against concluding from subsets of records. When a more complete set of available

proxy records for the AMOC is considered the findings are inconclusive (Moffa-Sánchez et al., 2019), illustrating the complex240

relationship between the ocean state and the different proxy types and locations.

Various methods to reconstruct the circulation strength from historical hydrography or sea level are commonly applied as an

alternative to paleo proxies for the most recent century. Fraser and Cunningham (2021) find no statistically significant trend over
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Table 3. Linear trends over monthly mean transport time series in observations and in ECCOv4-r4 (1992-2017). The trends are given in

Sv/year. For the observations, the time periods over which the trends are calculated are given in Table 1. Significant trends at the 95%

confidence level in bold font (modified Mann-Kendall trend test for autocorrelated data (Hamed and Rao, 1997)). The 95% confidence

intervals for the estimated trends are shown in Figure S6.

Trends in: Observations ECCOv4-r4

RAPID FC -0.030 -0.067

RAPID WBC -0.036 -0.074

Oleander GS 0.022 -0.108

OSNAP NAC -0.160 0.052

GSR inflow 0.012 0.006

Svinøy NwASC -0.002 -0.012

BSO NwASC 0.011 0.015

the past century (1900-2019) when using the Bernoulli inverse to reconstruct the AMOC strength from hydrography at 50◦N.

Similarly, Rossby et al. (2020) find no long-term trend (1900-2020) in the reconstructed geostrophic transport of the Nordic245

Seas inflow, or in the Gulf Stream volume transport from direct observations (Rossby et al., 2014). Using inverse models based

on hydrographic transects, Caínzos et al. (2022) find no systematic change in the AMOC at any latitude when comparing the

past three decades; neither do Fu et al. (2020). Reconstructing the AMOC at 26◦N for the 1981-2016 period from hydrography,

Worthington et al. (2021) similarly find no decline in the subtropical AMOC. At the same latitude, Piecuch (2020) finds some

indication of a weakening Florida Current over the 1909-2018 period using historical tide gauge measurements and Bayesian250

analysis. In the observational records analysed here, only the Florida Current and AMOC at RAPID (both at 26◦N) display a

statistically significant weakening over their respective observational periods (Table 3, Table S2). A weakening Florida Current

since 1982 is also found in a recent, more comprehensive analysis, combining the cable measurements with altimetry and

in-situ measurements and their associated observational uncertainties (Piecuch and Beal, 2023). For the ECCOv4-r4 period

(1992-2017), we find a significant weakening trend for all the subtropical sections (Table 3) due to weakening transports255

between the mid-2000s and mid-2010s (Figure 4b). We note, however, that the weakening trend identified for the subtropical

sections cannot be explicitly connected to anthropogenic forcing. Pronounced multidecadal transport variability is highlighted

in previous studies (e.g., Fraser and Cunningham, 2021; Rossby et al., 2020) and the 26-year ECCOv4-r4 period is too short

to represent such multidecadal signals. At RAPID, the notable weakening in overturning between 2006 and 2010 is explained

by changes in the upper mid-ocean transport and Ekman transport components (Figure S2c), which have been shown to result260

from adjustments to wind forcing (Roberts et al., 2013; Zhao and Johns, 2014). To detect anthropogenically forced weakening

at 26◦N, as much as 60 years of observations could be required (Baehr et al., 2008; Lobelle et al., 2020).

In the subpolar North Atlantic, the North Atlantic Current at OSNAP-East displays a strengthening after 2007 consistent with

a strengthening subpolar gyre in that period (Koul et al., 2020). At the Greenland-Scotland Ridge and in the Nordic Seas, the
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circulation shows no weakening over the different observational records or for the ECCOv4-r4 period (Tables 3). As pointed out265

in Østerhus et al. (2019), the observed overflow transports seen in Figure 3 indicate that any AMOC slowdown during the past

two decades does not stem from reduced overturning in the Nordic Seas and Arctic Ocean. North of the Greenland-Scotland

Ridge, transports at Svinøy show no trend (Orvik, 2022, and Table 3). At the Barents Sea Opening there is a strengthening

over the ECCOv4-r4 period which is not seen in the observational record (Table 3). However, trends in observed sea surface

height found in Polyakov et al. (2023) suggest that there might have been an increased transport in the northernmost Barents270

Sea Opening inflow branch after the mid-2000s that is not fully captured by the mooring array.

Consistent with our results, previous studies have also found differing decadal trends between the subtropical, subpolar,

and Nordic Seas gyres. For instance, Jackson et al. (2022) show evidence of differing decadal trends in the subtropical and

subpolar AMOC over the historical record. They find a strengthening subtropical AMOC from 2001 to 2005 and a weakening

from 2005 to 2014, while the subpolar AMOC likely strengthened from 1980 to the mid-1990s and then weakened until the275

2010s. In future emission scenarios, climate models show the Nordic Seas gyre strengthening in the second half of the 21st

century, something which enhances water mass transformation in the Nordic Seas and thus may act as a stabilizing factor for

an overall weakening AMOC south of the Greenland-Scotland Ridge (Årthun et al., 2023).

3.3 Mechanisms of interannual to decadal variability

Variability in the North Atlantic and Nordic Seas is closely linked to atmospheric forcing. To identify the atmospheric circu-280

lation patterns most closely associated with interannual volume transport variability at the ocean observation sites, we regress

the annual mean sea level pressure onto the annual mean volume transport time series in ECCOv4-r4 (Figure 5, Figure S7)

and in observations (Figure S8). Consistent with the analysis assessing meridional coherence (Table 2), we find interannual

variability in the subtropics, subpolar North Atlantic, and Nordic Seas to be associated with different atmospheric circulation

patterns.285

For the subtropical ocean transports, a low-pressure anomaly over the Labrador Sea and a basin-wide high-pressure anomaly

over the subtropics are associated with a stronger Gulf Stream on interannual time scales (Figure 5a-b). Previously, Baringer and

Larsen (2001) found a negative correlation between the Florida Current strength and the NAO on interannual time scales, but

the relationship was only seen to hold for the period 1986-1998 (Meinen et al., 2010; Sanchez-Franks et al., 2014). Rather than

the NAO and associated shifts in the latitude and strength of the climatological sea level pressure pattern, Hameed et al. (2021)290

find a link between the longitudinal position of the Icelandic Low and Florida Current transport at zero lag time (r =−0.50).

When perturbing the ECCOv4-r4 state estimate with the onshore wind stress anomalies associated with an eastward shifted

Icelandic Low, they get a sea level increase along the North American coast and a weakened Florida Current. The pattern

seen in Figure 5a-b associated with a strengthened Gulf Stream resembles a westward shift of the Icelandic Low and is thus

consistent with the mechanism in Hameed et al. (2021), previously also shown to be important for shifts in the Gulf Stream295

northern boundary (Sanchez-Franks et al., 2016). However, we note that several mechanisms not addressed here are thought to

contribute to interannual variability in the Florida Current, such as eddy activity east of The Bahamas (Frajka-Williams et al.,

2013), excursions of the Loop Current upstream (Hirschi et al., 2019), and ENSO (Dong et al., 2022).
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Figure 5. Transport variability and large-scale atmospheric circulation patterns. Annual mean sea level pressure (SLP; hPa) regressed onto

annual mean volume transport (VT; Sv) time series in ECCOv4-r4; (a) Western Boundary Current at 26.5oN (wbc), (b) Gulf Stream at

the Oleander section (oleGS), (c) North Atlantic Current at OSNAP-East (nac), (d) Greenland-Scotland Ridge inflow (gsr), (e) NwASC at

Svinøy (svin) and (f) Barents Sea Opening (bso). The volume transport time series has been normalized (X−µx
σx

) for comparable magnitudes

between the panels. The unit is hPa per standard deviation of volume transport. The major features in the regression patterns discussed are

significant at the 90% confidence level (Ebisuzaki, 1997). Gray contour lines show the climatological SLP pattern (contour interval: every 3

hPa from 1007 to 1019 hPa). The crosses mark the approximate location for the volume transport time series.
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Figure 6. Transport variability and large-scale oceanic circulation patterns. Annual mean barotropic streamfunction (ψ; Sv) regressed onto

annual mean volume transport (VT; Sv) time series in ECCOv4-r4; (a) Western Boundary Current at 26.5oN (wbc), (b) Gulf Stream at

Oleander section (oleGS), (c) North Atlantic Current at OSNAP-East (nac), (d) Greenland-Scotland Ridge inflow (gsr). The volume transport

time series has been normalized (X−µx
σx

) for comparable magnitudes between the panels. Unit is Sv per standard deviation of volume

transport. Gray contour lines show the climatological barotropic streamfunction pattern (dashed line where ψ takes negative values). The

crosses mark the approximate location for the volume transport time series. The major features in the regression patterns discussed are

significant at the 90% confidence level (Ebisuzaki, 1997).

For the North Atlantic Current across OSNAP-East, an increased transport is associated with a strengthened climatological

sea level pressure pattern resembling the NAO in a positive state (NAO+; Figure 5c). On interannual time scales, the pattern300

likely relates to locally strengthened westerly winds which strengthen the subpolar gyre as seen in the associated barotropic

streamfunction in Figure 6c. In ECCOv4-r4, a strengthened North Atlantic Current across OSNAP-East thus reflects a stronger

subpolar gyre, but does not necessarily lead to a strengthened inflow across the Greenland-Scotland Ridge or a strengthened

Nordic Seas gyre. The finding is consistent with the weak correlations between the North Atlantic Current and the downstream

components in Table 2. The decadal trends in the North Atlantic Current (Figure 4b) agree with multiple subpolar gyre indices305

indicating a weakening subpolar gyre from the mid-1990s to 2005, followed by a strengthening (Koul et al., 2020). The evolu-

tion fits with the accumulated historic NAO forcing seen in Figure S9, consistent with persistent NAO+ conditions spinning up

the subpolar gyre due to strengthened wind stress curl and elevated heat loss (Eden and Willebrand, 2001; Sarafanov, 2009).

The sea level pressure pattern associated with a strong Greenland-Scotland Ridge inflow (Figure 5d) mainly arises from the

Faroe-Shetland Channel component which dominates the net inflow variability (Figure S2a). The pattern in Figure 5d shows310

a strengthened and northeastward shifted Icelandic low and Azores high, which is near identical to the equivalent regressions
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for the Svinøy and Barents Sea Opening sections (Figure 5e-f). The northeastward shift suggests a corresponding shift of the

westerlies and the storm tracks. From previous studies it is well established that the Faroe-Shetland Channel inflow typically

increases under NAO+ conditions due to a strengthened sea surface height gradient across the channel (e.g. Chafik, 2012;

Bringedal et al., 2018). Regressing ERA5 sea level pressure onto the observational Faroe-Shetland Channel volume transport315

shows a more canonical NAO+ anomaly consistent with previous studies (not shown). For variability at the Svinøy section, the

relationship with the NAO is less straightforward and known to be more closely associated with the position of the westerlies

rather than the strength (Orvik, 2022). More low-pressure systems directed into the Nordic Seas due to a northeastward shifted

storm track strengthen the southwesterly winds along the Norwegian coast, and sets up onshore Ekman transport and piling

along the coast which in turn strengthens the Norwegian Atlantic Slope Current (Skagseth and Orvik, 2002; Richter et al.,320

2009). The barotropic streamfunction anomaly associated with a stronger Greenland-Scotland Ridge inflow (and Svinøy and

Barents Sea Opening components) is a strengthened Nordic Seas gyre (Figure 6d). Moreover, the anticyclonic anomaly in the

intergyre-region seen in Figure 6d can be interpreted as a more tilted North Atlantic Current (Marshall et al., 2001), which

potentially means that more water crosses the Greenland-Scotland Ridge and less recirculates within the subpolar gyre.

We do find relatively straightforward relationships between regional atmospheric circulation (represented by sea level pres-325

sure) and the section volume transports. These zero-lag regressions (Figure 5) are likely most representative of sea level

pressure patterns related to ocean circulation’s relative immediate barotropic response to anomalous atmospheric forcing (e.g.,

Eden and Willebrand, 2001). It should be noted that the ocean responds to the atmosphere on a range of time scales and also

influences the atmosphere through feedback mechanisms (Marshall et al., 2001).

The barotropic streamfunction anomaly patterns (Figure 6) indicate that strong transports at the individual sections are typi-330

cally associated with a strengthened gyre structure locally, with little sign of the other two gyres strengthening simultaneously.

This suggests that recirculation and branching within the three major gyres is likely a key factor in explaining the lack of co-

herence between the northward transport within each gyre structure. For instance, downstream of the 95 Sv in the Gulf Stream

core at Oleander, substantial subtropical recirculation occurs (Mann, 1967; Meinen and Watts, 2000) as well as mixing with

subpolar water masses (e.g., Brambilla et al., 2008) before the North Atlantic Current transports roughly 20 Sv across OSNAP-335

East. Of the 20 Sv crossing OSNAP-East, only 7-8 Sv crosses the Greenland-Scotland Ridge meaning that roughly 50% of the

water recirculates within the subpolar gyre (Table 1). Our results thus indicate that while the subtropical gyre, subpolar gyre,

and Nordic Seas gyre are connected through the northward transport of subtropical-origin water, they are disconnected by the

recirculation within the gyres (Figure 7).

4 Summary and conclusions340

In this study, we have synthesized available ocean transport measurements and the ECCOv4-r4 ocean state estimate to inves-

tigate variability within the Gulf Stream system on interannual to decadal time scales. We find little coherence between the

observational records at different latitudes on interannual time scales (Table 2). In the ECCOv4-r4 estimate we find evidence

of regional coherence, with subtropical variability being distinct from subpolar and Nordic Seas variability. These findings also
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Figure 7. Idealized view of the North Atlantic and Nordic Seas circulation. The Gulf Stream system is connected through the northward

transport of subtropical-origin water (red color), but disconnected by recirculation within the gyre structures (pink color). Seen from a mass-

balance perspective at 26oN, the Gulf Stream is shown using two circles highlighting it partly compensating for the Deep Western Boundary

Current and partly being the western boundary of the wind-driven subtropical gyre. The Deep Western Boundary Current flowing south is

represented by the blue circle at depth. The zonally-integrated view of the circulation is shown on the side, illustrating warm upper-ocean

water being gradually transformed and sinking at high latitudes as a part of the AMOC.

translate to decadal time scales, where in ECCOv4-r4 we find a weakening Florida Current at 26.5oN and Gulf Stream at the345

Oleander section after the mid-2000s, while the Nordic Seas inflow and circulation remain stable or strengthened (Table 3,

Figure 4b).

A higher degree of coherence within the ECCOv4-r4 framework compared to the observational records can be due to a

number of reasons. Firstly, the overlapping time periods between some of the observational records are short, making the

threshold for significance high. Secondly, ECCOv4-r4 has a coarse model grid which will smooth high-frequency variability350

from, for instance, eddies. Thirdly, just as models have their biases, observational records have observation errors related

to calibration, sampling, and system design (e.g., McCarthy et al., 2015) which potentially could hide a more meridionally

coherent signal.

The limited coherence across the subtropical, subpolar, and Nordic Seas gyres identified here highlights the role of local

oceanic response to atmospheric circulation patterns. Specifically, transport variability within the gyres is associated with vari-355

ability in the position and strength of the Azores high and the Icelandic low (Figure 5), meaning that regional atmospheric

circulation patterns are a major influence at the observation locations through strengthening or weakening the different gyres.

Removing the Ekman layer transports from the analysis does not notably increase covariance between the sections on inter-

annual time scales (Table S1), meaning that it is not simply transport anomalies in the Ekman layer that overshadow a more
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meridionally coherent signal. While we focus on upper-ocean transports in the Gulf Stream system, our findings agree with ob-360

served (Lozier et al., 2010; Frajka-Williams et al., 2019; Moat et al., 2020; Jackson et al., 2022) and simulated (Bingham et al.,

2007; Gu et al., 2020) patterns of disconnect between the subpolar and subtropical AMOC, highlighting different overturning

behaviours between the gyres (Figure 7).

While observations and models show that ocean heat anomalies and other tracers can propagate persistently poleward

through the North Atlantic Ocean, leading to potential for skillful climate prediction (e.g., Keenlyside et al., 2008; Årthun365

et al., 2017), our results herein indicate that volume transport anomalies do not. Therefore, the mechanism by which the gyres

exchange, for instance, heat anomalies, remains unclear and is thus a challenge to address following up on the present study.

In climate models, the Gulf Stream is projected to weaken over the 21st century as both the Deep Western Boundary

Current and the subtropical gyre circulation weakens (Beadling et al., 2018; Asbjørnsen and Årthun, 2023). Being limited to

interannual-decadal time scales, we are unable to determine how the observational trends over the respective measurement370

periods (Table 3) relate to anthropongenic forcing. We note, however, that none of the circulation branches display any signs

of past or near-future collapse. The RAPID record, moreover, shows that sizable shorter term trends such as the reduced

overturning between 2006 and 2010 (Figure S2c) can occur from oceanic adjustments to surface wind forcing (Roberts et al.,

2013; Zhao and Johns, 2014; Kostov et al., 2021).

In finding little coherence between the gyre structures on interannual to decadal time scales, our results reinforce the need for375

caution in inferring large-scale circulation change from single observational records within the time scales that are currently

resolved. Improved mechanistic understanding of the variability and continued monitoring of the circulation at a range of

latitudes is therefore required to predict and detect emerging trends.

Data availability. The ECCOv4-r4 ocean state estimate (ECCO Consortium et al., 2021) is available at https://ecco-group.org/products.htm.

ERA5 reanalysis data (Hersbach et al., 2020) is available at https://doi.org/10.24381/cds.f17050d7. Observational Barents Sea Opening380

and Svinøy volume transport time series (Ingvaldsen et al., 2004; Orvik, 2022) are available through the Norwegian Marine Data Cen-

tre (http://metadata.nmdc.no/UserInterface) and are provided by the Institute of Marine Research and University of Bergen, respectively.

Greenland-Scotland Ridge volume transports (Østerhus et al., 2019) are available online at http://www.oceansites.org/tma/gsr.html. The OS-

NAP observational data (Fu et al., 2023) is available at https://doi.org/10.35090/gatech/70342 through the Overturning in the Subpolar North

Atlantic Program. Oleander section volume fluxes (Rossby et al., 2019) are available at https://oleander.bios.asu.edu/data/oleander-fluxes/385

through the Oleander Project. The RAPID-MOCHA-WBTS observational data (Moat et al., 2022) is available at https://doi.org/10.5285/

e91b10af-6f0a-7fa7-e053-6c86abc05a09 through the RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary

Time Series programme. The Florida Current volume transports (Meinen et al., 2010) are available on the Atlantic Oceanographic and

Meteorological Laboratory web page (www.aoml.noaa.gov/phod/floridacurrent/) through the DOC-NOAA Climate Program Office - Ocean

Observing and Monitoring Division.390
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