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Abstract. Climate warming has a stronger impact on Arctic climate and sea ice cover (SIC) decline than previously thought.

Better understanding and characterizing the relationship between sea ice, clouds and the implications for surface radiation is

key to improving our confidence in Arctic climate projections. Here we analyze the relationship between sea ice, cloud phase

and surface radiation over the Arctic, defined as north of 60˚N, using active- and passive-sensor satellite observations from three

different datasets. We find that all datasets agree on the climatology and seasonal variability of total and liquid-bearing (liquid5

and mixed-phase) cloud covers. Similarly, our results show a robust relationship between decreased SIC and increased liquid-

bearing clouds in the lowest levels (below 3 km) for all seasons (strongest in winter) but summer, while increased SIC and ice

clouds are positively correlated in two of the three datasets. A refined map correlation analysis indicates that the relationship

between SIC and liquid-bearing clouds can change sign over the Bering, Barent and Laptev seas, likely because of intrusions

of warm air from low latitudes during winter and spring. Finally, the increase of liquid clouds resulting from decreasing SIC10

is associated with enhanced radiative cooling at the surface. Our findings indicate that the newly formed liquid clouds reflect

more shortwave (SW) radiation back to space compared to the surface, generating a cooling effect of the surface, while their

downward longwave (LW) radiation is similar to the upward LW surface emission, which has a negligible radiative impact

on the surface. This overall cooling effect should contribute to dampening future Arctic surface warming as SIC continues to

decline.15

1 Introduction

Clouds can have different radiative effects over the Arctic (Curry et al. (1996); Shupe and Intrieri (2004)), defined as north of

60˚N: cooling in summer generated by sunlight reflection and warming in winter through LW radiative heating of the surface.

In a region where the warming can be up to four times larger than in the rest of the world (Boeke and Taylor (2018)), it is crucial

to determine how clouds respond to climate change and whether their feedback will enhance or dampen the warming. While20

cloud feedback was shown to play a minor role in polar amplification in CMIP5 (Pithan and Mauritsen (2014), Middlemas
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et al. (2020)), studies using the most recent climate model generation (CMIP6) unveil a strong impact of extratropical mixed-

phase clouds on global climate (Zelinka et al. (2020)). Part of the uncertainty in determining cloud variability in polar regions

stems from the extent to which Arctic clouds respond to sea ice loss (Kay and Gettelman (2009); Morrison et al. (2018);

Taylor and Monroe (2023)), which is still debated. Within the context of substantial decrease of sea ice extent over the past25

few decades (Kim et al., 2023), determining how clouds may be affected by this tremendous change is necessary to simulate

realistic projections of polar climate.

The analysis of various observational datasets has led to consensus on the sensitivity of cloud fraction to sea-ice extent

variability in the fall but not in the summer (e.g., (Kay and Gettelman (2009); Morrison et al. (2018)). As the sea-ice cover

(SIC) decreases in the fall, the cloud fraction increases, mostly attributable to low-level liquid clouds (Morrison et al. (2018)).30

A more recent study found a larger cloud fraction over open ocean than over sea ice also in winter and spring (Taylor and

Monroe (2023)). In general, these studies try to better understand the relationship between sea ice and clouds at the process

level and show that clouds are most likely controlled by air-surface coupling. However, they focus on one specific dataset over

a limited amount of years, and disregard the response of ice clouds and more broadly free-troposphere clouds, which can have

a notable radiative impact (L’Ecuyer et al. (2019)).35

In this study, we build on their results to analyze the relationship between sea ice and clouds on longer time scales to advance

our understanding of Arctic climate and with the hope to provide constraint for climate models. We use cloud observations

from three different datasets that discriminate between liquid, ice and mixed-phase clouds. The first dataset is constrained to

years 2007-2010 and is based on CloudSat-CALIPSO retrievals (DARDAR). The second is a new dataset based on CALIPSO-

GOCCP that documents all liquid, mixed-phase and ice-only clouds from 2007 to 2020. The third is a passive-sensor satellite40

dataset based on MODIS retrievals (CERES) and also provides surface flux retrievals. We also analyze all seasons over the

whole Arctic Ocean. After describing the datasets, we show their climatology of the different Arctic cloud types for all seasons.

We then perform a correlation analysis of the SIC with all cloud types. Additionally, we focus on the vertical structure of these

cloud types as a function of sea-ice conditions. Finally, we investigate the radiative impact of these clouds at the surface.

2 Datasets45

2.1 CALIPSO-PHACT

The PHAse Cloud Type (PHACT) product development has been guided by recent ground-based observations to document

the topmost liquid-bearing cloud layers for different cloud types (ice over liquid, liquid only, liquid seeded by ice above,

mixed-phase, multilayer and single layer etc.) and for thin (optical depth ≲ 3) and opaque (optical depth ≳ 3) clouds. PHACT,

which will be fully described in a separate paper, uses instantaneous CALIPSO-GOCCP profiles (Cesana and Chepfer (2013));50

Chepfer et al. (2010)). These profiles document cloud properties obtained from near-nadir lidar profiles at a 333 m along-track

resolution and for 480 m altitude bins. Cloud phase diagnostics are based on the cloud particle sphericity instead of temperature,

in contrast with many passive sensors. Liquid- and ice-dominated altitude bins are discriminated using the polarization state

of the laser return, which changes when backscattered by a non-spherical crystal as opposed to spherical droplets. In highly
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reflective layers, the distinction between the two water phases is more ambiguous, because of multiple scattering and noise,55

and results in undefined-phase clouds, which often correspond to mixed-phase clouds (Cesana et al. (2016)).

PHACT 2D cloud covers and 3D cloud fractions differ from CALIPSO-GOCCP cloud phase statistics in two main ways.

First, PHACT provides ice-only (no liquid in the column) and mixed-phase (liquid with ice below, contiguous or not) cloud

covers, in addition to the traditional liquid (with possibly ice above) phase category. Second, the phase cloud cover is computed

as the number of ice, liquid or mixed-phase cloudy profiles divided by the total number of profiles, consistent with the common60

definition of cloud cover:

CCphase =Nphase/Nprofiles (1)

Where phase means either ice, liquid or mixed-phase.

As a result, the sum of ice-only, liquid, and mixed-phase cloud covers cannot be greater than 1. We note a large difference

in the magnitude of the vertical cloud profiles between CALIPSO-GOCCP and PHACT because PHACT is focused on the65

topmost liquid-layer whereas CALIPSO-GOCCP documents all available vertical levels. Additionally, PHACT contains a

mixed-phase category which is not available in CALIPSO-GOCCP. Mixed-phase clouds are diagnosed when ice or undefined-

phase clouds are retrieved below liquid, either directly underneath or not. Undefined-phase clouds are clouds that are located

underneath highly reflective clouds (i.e., optically thicker, Cesana and Chepfer (2013)) and have been shown to be most likely

mixed-phase clouds at subfreezing temperatures (Cesana et al. (2016)). A validation study against in situ aircraft measurements70

shows that the maximum disagreement fraction between CALIPSO-GOCCP instantaneous profiles – used in PHACT – and

five in situ aircraft flights is ∼ 11.8 % when accounting for in situ aircraft measurement uncertainty (Cesana et al. (2016); their

Table 3).

2.2 CloudSat-CALIPSO DARDAR

The DARDAR product (liDAR/raDAR; Delanoë and Hogan (2010)) uses both CALIPSO and CloudSat observations to retrieve75

vertical profiles of cloud properties with a vertical and horizontal resolution of 60 m and 1.7 km, respectively. The DARDAR

cloud phase algorithm is based on the complementarity of the high sensitivity of the 532 nm lidar to small and spherical liquid

droplets and the 94 GHz radar to large ice crystals. In addition, the algorithm also uses cloudy layer temperature and cloud

geometrical thickness to determine cloud phase. DARDAR distinguishes between ice, mixed, supercooled and warm liquid

clouds. A more detailed explanation of the algorithm is given by Mioche et al. (2015). Since DARDAR is not provided as a80

gridded Level3 product (as opposed to CALIPSO-GOCCP, CALIPSO-PHACT and CERES), we have processed the vertical

profiles for the available time period, computed the cloud phase covers following the same definition as CALIPSO-PHACT

and computed pan-Arctic statistics onto a 1˚x1˚ grid, which was then interpolated to 2.5°x2.5° grid. Similarly, we have used a

cloud phase classification for the 2D maps so that the sum of ice-only, liquid and mixed-phase cloud covers cannot be greater

than 1 and, hence, is equal to the total cloud cover. Should we have used ice-containing and liquid-containing 2D cloud covers85

we could have accounted for liquid or ice two times in the same profile, hence a cloud cover greater than 1.

3



We are not aware of a formal evaluation of DARDAR product but we note that when the lidar signal is fully attenuated (i.e.,

no more signal), the DARDAR algorithm attributes the ice phase to any cloudy pixels at subfreezing temperatures, which may

lead to an overestimate of the ice cloud covers. In addition, Mioche et al. (2015) mention a potential overestimate of mixed-

phase cloud due to excessive supercooled liquid detections, which may have been mitigated in the newer version of DARDAR90

product, which is used here.

2.3 CERES

To study the surface fluxes, we use Clouds and the Earth’s Radiant Energy System (CERES) FluxByCldTyp – Level 3 (Sun

et al. (2022)), which also contains information about the cloud phase. The computation of all-sky and clear-sky fluxes assumes

the same surface type, which means that the surface albedo is accounted for in the computations of cloud radiative effect (CRE)95

values (Section 3). The cloud and cloud phase information is based on MODIS cloud properties. The phase is retrieved for

daytime only using the newest MODIS collection 6 (MODIS-C6) cloud phase algorithm, which employed a decision tree logic

based on four independent tests (Marchant et al. (2016)): cloud top temperature, tri-spectral infrared test using difference in

brightness temperatures, a 1.38µm test to determine the presence of cirrus clouds and a tri-spectral cloud effective radius test.

We note that MODIS-C6 cloud phase has a large agreement fraction with CALIPSO science team cloud phase retrievals (up to100

90%, Marchant et al. (2016)) – for clouds that are detected by both instruments – and that the use of daytime-only observations

is a limiting factor in our analysis (no cloud phase data during the Arctic winter). The original grid of CERES dataset is 1˚x1˚.

We use data from the 2007-2020 overlapping period for PHACT and CERES. DARDAR data is available for 2007-2010 and

2013-2017, however, this latter period is limited to daytime observations, and using it could introduce biases in the comparison.

Although DARDAR 2013-2017 and 2007-2010 shows differences in the total cloud cover that are comparable to that of PHACT105

over the same time periods (Fig. S1 and S2, bottom right plots), major differences appear in DARDAR cloud phase partitioning

that do not in PHACT (Fig. S1 and S2, bottom rows). These differences suggest that using daytime-only data has a strong impact

on DARDAR phase diagnostics.

Finally, all datasets are projected onto a 2.5˚x2.5˚ grid. We note that we find no significant impact of the spatial resolution –

i.e., using either 2.5˚x2.5˚ and 1˚x1˚ grid – for PHACT total, ice and liquid cloud covers over the Arctic (not shown).110

3 Results

Figure 1 shows a comparison of ice, liquid, mixed-phase and total cloud covers for all the datasets. All three datasets agree

very well on the total cloud cover Interestingly, the datasets also detect a very similar liquid cloud cover (in terms of means and

pattern correlations, Table 1 and Fig. S3) with a sharp contrast between land and sea and maxima over the Laptev, Barent and

Greenland seas, even though they use independent methods to retrieve liquid layers. We note that CERES exhibits the largest115

amount of liquid clouds for two reasons (47%). First, it does not distinguish between mixed-phase and liquid clouds and

second, it doesn’t include the winter season north of 70˚N, which is the season with the least liquid cloud amount (Cesana et al.

(2012), their Fig. 1). When accounting for all liquid-bearing clouds (i.e., liquid-only and mixed-phase clouds), the differences
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Figure 1. Average cloud ice, liquid, mixed-phase and total cloud covers (%) for DARDAR (2007-2010; Delanoë and Hogan (2010)), PHACT

(2007-2020) and CERES (2007-2020; Sun et al. (2022)).
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Table 1. Arctic area-weighted mean cloud covers (%) for all datasets from 2007-2010. We note a robust consistency in the liquid-bearing

cloud cover among all datasets.

(%) DARDAR PHACT CERES (< 82°N) CERES

Total 77 68 73 73

Ice 27 18 29 29

Liquid 25 36 44 44

Mixed 25 14 N/A N/A

Liquid-bearing 51 50 44 44

among datasets drastically lessens: 51%, 50% and 44% for DARDAR, PHACT and CERES, respectively. It is worth noting

that although CERES observations come from a passive sensor instrument, which makes it more challenging to detect clouds120

and retrieve their properties over bright surfaces, they are in good agreement with the other two active-sensor observations. The

mixed-phase cloud category is also consistent between DARDAR and PHACT (pattern correlation r = 0.56). Yet DARDAR

diagnoses slightly more mixed-phase clouds than PHACT (25% compared to 14%), likely because the radar is able to penetrate

the clouds deeper and detect precipitating ice below. In this regard, PHACT can be viewed as a lower bound in terms of mixed-

phase cloud cover. On average, these mixed-phase clouds account for about 27% of liquid-bearing clouds in PHACT and 50%125

in DARDAR (Fig. S4, Tab. S1), which is closer to 73% from Arctic ground-based measurements using a radar with a cloud

detection sensibility similar to CloudSat (Silber et al. (2021)). These discrepancies are attributable to lidar attenuation in the

case of PHACT, which does not allow the lidar beam to reach the mixed-phase layer, to ground clutter in the case of CloudSat-

based measurements, which prevents retrieving hydrometeors below 500 m, and to spatial variability (i.e., one data point in

ground-based measurements against an Arctic-wide average in spaceborne measurements). Finally, the greatest differences130

between the datasets in terms of pattern correlation and cloud covers come from the ice clouds. DARDAR and CERES show

more ice clouds than PHACT, and their pattern correlation are smaller than those from liquid clouds. To diagnose cloud cover,

the DARDAR algorithm uses CALIPSO level2 product, which averages the lidar signal along track up to 80 km to be able to

retrieve the thinnest cirrus clouds. This may explain why DARDAR detects more ice clouds than PHACT – although they both

use CALIPSO observations but may also cause false positive detections (Cesana et al. (2016)). CERES reports larger ice cloud135

cover than PHACT because it does not diagnose ice-only cloud column as in PHACT. When accounting for ice above liquid

clouds as well as ice-only clouds, consistent with CERES observations, PHACT detects more ice clouds than CERES (Fig.

S5).

Figure 2 shows the seasonal variability of each cloud type over the Arctic for the three datasets. All datasets exhibit a

maximum in Fall and a minimum in Winter in the total cloud cover, mostly driven by liquid-containing clouds (liquid and140

mixed-phase), which is consistent with previous findings (e.g., Cesana et al. (2012); Lacour et al. (2017); McIlhattan et al.

(2017); Mioche et al. (2015); Shupe (2011)). That seasonality of liquid clouds is mainly attributable to environmental conditions
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Figure 2. Seasonal variability of the Arctic cloud cover (%) for DARDAR (orange, 2007-2010), CERES (purple, 2007-2020) and PHACT

(green, 2007-2020).

7



Figure 3. Colored table of spatial (first five columns) and temporal (last column) correlations between cloud types and SIC for all seasons

and for DARDAR (2007-2010), PHACT (2007-2020) and CERES (2007-2020). Dark red and blue colors indicate strong correlations and

anti-correlations, respectively.

that favor liquid cloud formation, i.e., more moisture and mild temperature in summer and transition seasons as opposed to

winter. Yet we note some small differences between CERES and the CALIPSO-based observations during the winter months,

most likely because of the use of daytime only observations in CERES, which restricts the latitudes during these months. As145

expected, ice cloud cover reaches its lowest value in summer (July) in all datasets, while its maximum occurs in the winter.

Using 2007-2010 instead of 2007-2020 does not change qualitatively or quantitatively our results (Fig. S6).

Next, we explore the relationship between clouds and SIC variability. Given the relatively good agreement in the represen-

tation of the seasonal variability of liquid and total cloud covers between all datasets, we expect to find robust relationships

between these clouds and SIC.150

8



We compute spatial correlations between SIC and cloud covers from each cloud type for our three cloud datasets. Our SIC

comes from ERA5 reanalysis, but we note that no substantial differences are found using a different dataset (Hadley Centre

Sea Ice and Sea Surface Temperature, not shown). Furthermore, we focus on those grid boxes in which SIC varies over the

time period, that is averaged SIC is greater than 0.01 (excluding open-ocean only grid boxes) and smaller than 0.99 (excluding

sea-ice-covered only grid boxes). Using a more restrictive thresholds (0.02 and 0.98 or 0.03 and 0.97) does not affect our results155

qualitatively (Table S1). Our results are consistent with previous literature. We find large and significant negative correlations

between SIC and liquid and total cloud covers from all datasets (Figure 3). In addition, our results show little to no correlation

between SIC and liquid cloud cover for the summer, consistent with previous studies (Kay and Gettelman (2009); Morrison

et al. (2018)). More surprisingly, our analysis indicates that the ice cloud cover is somewhat positively correlated with SIC in

all datasets, though less so in CERES likely because of liquid cloud contamination, which, to our knowledge, has not been160

reported in the literature before. It is also interesting to note that these correlations are stronger when comparing temporal

variability of SIC and cloud covers (temporal correlation) although slightly weaker when using all grid boxes (Figures 4 5 6)

rather than first averaging across the Arctic (Figure 2 last column). This discrepancy might be indicative of the influence of

local parameters other than sea ice on clouds; when looking at a pan-Arctic perspective, this local influence fades out and the

presence of sea ice is associated with synoptical meteorological conditions that favor ice cloud formation and hinders that of165

liquid clouds.

The correlation maps help us better understand the variability of the relationships between each cloud type and SIC as a

function of the seasons (Figures 4 5 6). For liquid clouds (second row), the correlations are generally negative in the fall and

spring while in summer little correlation is found, and in winter, it is mostly negative except over the Bering, Barent and Laptev

seas. This exception might be explained by the incursion of moist and warm air from the Aleutian low – a frequent large-scale170

atmospheric pattern during the Arctic cold season (Overland et al. (1998)). The advection of moist air strongly affects Arctic

surface temperatures (Shulski et al. (2010)). This moist air incursion results in the formation of liquid clouds at subfreezing

temperatures in that area, while the sea ice continues to build up, even though strong Aleutian lows can reduce sea-ice growth

(Walsh et al. (2017), Dörr et al. (2021)). Since these correlations occur mostly over grid boxes in which SIC is close to 1 –

and does not vary much – the total correlation (Figure 3) remains highly negative, even more so than in SON. We speculate175

that it is more difficult for liquid clouds to form over sea ice than it would be in fall because of the lower temperatures – for

similar environmental conditions – hence the stronger negative correlations in winter. We find similar patterns for the mixed-

phase and total cloud correlation maps, which are clearly dominated by the response of liquid-containing clouds (liquid-only

and mixed-phase clouds). Furthermore, we find that the correlations are even stronger for mixed-phase clouds than for liquid

clouds in PHACT. In this dataset, the mixed-phase cloud are more opaque than liquid clouds. Recent literature suggests that180

opaque clouds are at a more mature stage of their lifecycle than thin clouds (Silber et al. (2020)), and therefore, they would

have to linger over open ocean for longer to reach that mature stage, which could explain the stronger correlations of mixed-

phase clouds with open ocean compared to optically thinner liquid clouds. The results are more diverse among the datasets

when it comes to ice clouds. The correlations are mostly positive in PHACT (except in winter). DARDAR correlations are

consistent with those form PHACT in spring and fall while CERES correlations are both negative and positive depending on185
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Figure 4. Maps of correlations between DARDAR cloud types and SIC for each season (2007-2010).
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Figure 5. Maps of correlations between PHACT cloud types and SIC for each season (2007-2020).
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Figure 6. Maps of correlations between CERES cloud types and SIC for each season (2007-2020).
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Figure 7. Effect of sea-ice conditions on cloud type profiles (%) for PHACT (top, 2007-2020), CALIPSO-GOCCP (middle, 2007-2020) and

DARDAR (bottom, 2007-2010)

the season. Despite some disagreements, likely related to the difference in ice cloud definitions, all products agree on positive

correlations when using all months. Ice clouds may have two distinct origins: high cirrus clouds mostly controlled by synoptic-

scale dynamics through so-called intrusions from lower latitudes (Pithan et al. (2018)), and low and mid-level ice clouds driven

by either small convective pockets or local increases in moisture fluxes, which form liquid clouds first and then ice clouds

(Pithan et al. (2018)). Over sea ice, both of these processes might be enhanced since the air is generally colder, explaining190

positive correlations between ice clouds and sea ice.

Next, we take advantage of the active-sensor profiling capability to investigate changes in each cloud-type profile as a

function of the surface conditions to determine what altitude contributes the most to cloud variability (Figure 7). Here we

compute the difference of cloud type profiles above open-ocean minus sea-ice covered grid boxes, where an open-ocean and

sea-ice grid box is defined as SIC < 0.4 and SIC > 0.6, respectively, in order to maximize the number of grid boxes utilized in195

the computation – using more restrictive thresholds does not change our results (see Fig. S7). Since PHACT only document

the uppermost ice cloud level, we also analyze observations from CALIPSO-GOCCP, which documents all cloudy levels and

uses the same cloud and phase diagnostics as well as resolution as PHACT. These results are consistent with our correlation

analysis and provide additional insights. In the low-levels (below 3 km), the cloud cover change is mostly driven by liquid

clouds and the mixed-phase clouds behave like the liquid clouds, which increase over open ocean during all seasons but summer200
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Table 2. Area-weighted changes in longwave, shortwave, and net surface cloud radiative effects (Wm−2) between open-ocean and sea-ice

grid boxes (CERES, 2007-2020).

(Wm−2) DJF MAM JJA SON ANN

∆LWCRE 7.7 10.6 2.6 -0.9 5

∆SWCRE -4.4 -53.3 -57 -15.7 -32.6

∆TotalCRE 3.3 -42.7 -54.4 -16.6 -27.6

(Figure 7c-g-k and d-h-l). In DARDAR and CALIPSO-GOCCP, ice cloud fraction also increases substantially during winter

and spring seasons, albeit to a smaller extent in CALIPSO-GOCCP (Figure 7f-j). This is not captured by PHACT (Figure

7b), a product that only document the uppermost ice cloud layer. The boundary layer is the main contributor in PHACT and

CALIPSO-GOCCP. In DARDAR however – and in CALIPSO-GOCCP to a smaller extent – the ice cloud fraction increases

substantially over open ocean in mid and high levels in all seasons. Yet the associated ice cloud cover changes are negative in205

all products, which means that ice clouds are less frequent but more vertically extended over open ocean. Stronger and more

frequent convection over open ocean compared to sea-ice surface could very well explain this result.

Finally, in order to determine the radiative impact of these cloud changes, we compute net surface LW, SW and total CRE

for open-ocean and sea-ice-covered conditions following the same method as described in the above paragraph (Table 2). Our

results indicate that the increase of cloud cover over open ocean, driven by low-level liquid clouds, corresponds to stronger210

cooling in all seasons but winter, attributable to larger SW reflection than LW absorption. The correlation maps between SIC

and the net effect of the clouds at the surface (Figure 8) are consistent with the correlations found between SIC and liquid

cloud covers, albeit of opposite sign. On the one hand, SIC is positively correlated with net SW CRE at the surface (Figure

8f-j) because the reduction in liquid clouds generated by increased SIC allows more SW radiation to be absorbed. On the other

hand, fewer liquid clouds also reduce the net LW CRE warming at the surface, resulting in a negative correlation of net LW215

CRE and SIC (Figure 8a-e). Yet we note that even when the correlation between clouds and SIC is low (e.g., in summer, Figure

6h), the correlation between net CRE and SIC remains high (Figure 8h), emphasizing the importance of the underlying surface

type for surface CRE. Finally, our results show that the correlation of the net total CRE with sea ice is dominated by the SW

component for all seasons but winter.

To gain additional insights on surface fluxes, we analyze annual anomalies of SW and LW downwelling, upwelling and CRE220

fluxes together with SIC over a longer record (2001 – 2020; Figure 9). We find that, as SIC decreases, SWdn decreases because

more SW radiation is blocked by clouds (Figure 9a). Simultaneously, SWup decreases because the surface albedo is reduced

(i.e., bright sea ice being replaced by dark ocean). Overall, this strengthens the cooling effect of clouds at the surface (i.e., more

negative SW CRE), which is consistent with previous literature looking at surface SW CRE trends during spring and summer

(Lelli et al. (2023)). In the LW (Figure 9b), LWdnincreases, likely driven by the formation of additional low-level liquid clouds225
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Figure 8. Maps of correlations between CERES surface net cloud radiative effects and SIC for each season (2007-2020).
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Figure 9. Time series of surface SW and LW flux and SIC anomalies from CERES observations and ERA5 reanalysis (2001-2020). The

down-welling, up-welling and CRE fluxes correspond to down-pointing triangle, up-pointing triangle and thick solid lines, respectively, for

SW (top) and LW (bottom) radiation while SIC is shown in purple.
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that emit LW down to the surface, and LWup increases as the surface gets warmer. These changes cancel out each other, which

results in a LW CRE that remains neutral.

4 Summary and discussion

Using three independent active- and passive-sensor satellite datasets from the A-train, we analyze the relationship between

sea ice, cloud phase and surface radiation over the Arctic (north of 60˚N). We find that all three satellite datasets depict a230

similar pattern and seasonal variability of total and liquid-bearing cloud covers while DARDAR diagnoses far more ice clouds

with distinct seasonal variability compared to PHACT and CERES. We then show that the strong negative correlation between

Arctic cloud cover and sea ice cover (SIC) is primarily driven by liquid-bearing clouds from the lowest levels (i.e., below 3

km), for which mixed-phase clouds account for 27 % in PHACT and 50 % in DARDAR. This relationship is robust among

all satellite observations for all seasons but summer, which is consistent with findings from previous studies using CALIPSO235

liquid 3D cloud fraction (Morrison et al. (2018)) and CALIPSO-CloudSat total 3D cloud fraction (Taylor and Monroe (2023)).

Unlike in other studies though, we find slightly stronger negative correlations between liquid-bearing clouds and SIC during

winter than fall, which could be due to winter lower temperatures that make it more difficult for liquid-bearing clouds to form

over sea ice. Additionally, our seasonal maps of correlation reveal the presence of regional differences, which may be driven

by local processes and synoptic circulation. In particular over the Bering, Barent and Laptev seas, where winter and spring240

intrusions of low-latitude warm air change the sign of the correlation between liquid cloud cover and SIC. Furthermore, we

show that ice-only clouds (DARDAR and PHACT) also correlate well with SIC on average (with some variability depending on

the season), which has not been reported in the literature to our knowledge. Finally, the increase of liquid-bearing clouds with

open-ocean conditions – and to some extent the decrease of ice clouds – is associated with more radiative cooling from clouds

at the surface, attributable to a larger SW CRE cooling than LW CRE warming. Such a cooling effect is found in all seasons but245

winter, when the LW CRE warming exceeds the SW CRE cooling. A brief analysis of surface flux and SIC anomalies confirm

that in response to SIC decrease, liquid-bearing clouds increase, and their associated radiative effect is a cooling of the surface

driven by the SW component.

In response to climate warming, Arctic SIC has been declining and will most likely continue to do so in the future, with

ice-free summers that could occur as early as 2030 (Kim et al. (2023)). Within this context, it is important to quantify the250

effect of sea-ice loss on clouds, which are a major contributor to surface radiative budget. Our analysis suggests that optically

thick low-level liquid clouds will be more frequent as SIC declines, and this process should contribute to mitigating Arctic

surface warming, except in winter. These results could be used to assess the SIC-cloud relationship in climate models, which

still struggle to represent cloud phase transition (Cesana et al. (2022)), and thereby help narrow down the large uncertainties in

their representation of Arctic amplification (Boeke and Taylor (2018)).255
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era5-pressure-levels-monthly-means?tab=form).
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