

1 **GC Insights: The crystal structures behind ~~the optical mineral~~
2 properties of minerals – a case study of using TotBlocks in an
3 undergraduate optical mineralogy lab**

4 Derek D.V. Leung^{1,2}, Paige E. dePolo¹

5 ¹School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom

6 ²Harquail School of Earth Sciences, Laurentian University, Sudbury, Ontario, Canada

7 *Correspondence to:* Derek D.V. Leung (dleung@laurentian.ca)

8 **Abstract.** Spatial thinking represents an on-going challenge in geoscience education, but concrete manipulatives can bridge
9 ~~the this~~ gap by illustrating abstract concepts. In an undergraduate optical mineralogy lab session, TotBlocks were used to
10 illustrate how ~~mineral crystal~~ structures influence ~~optical~~ properties such as cleavage and pleochroism. More abstracted
11 properties, e.g., extinction angles, were increasingly difficult to illustrate using this tool.

12 **1 Introduction**

13 Spatial thinking and understanding complex 3D structures mark fundamental challenges in geology education (Ishikawa
14 and Kastens, 2005; Liben and Titus, 2012; Woods et al., 2016). These challenges extend to the atomic scale where the
15 crystal structures of minerals are difficult to conceptualize (Dyar et al., 2004). Understanding crystal structures is important
16 because the identifiable features of minerals – e.g., cleavage and pleochroism – ultimately arise from crystal structures and
17 their inherent symmetry (Neumann, 1885). Thus, a more intuitive understanding of these abstract systems is desirable.

18
19 Current teaching strategies for visualizing crystal structures include physical manipulatives, e.g., ball-and-stick models ~~and~~
20 paper polyhedral models, and pre-fabricated hexagonal templates (Rodenbough et al., 2015; Wood et al., 2017; He et al.,
21 1990a; 1990b; 1994; Hollocher, 1997; Mogk, 1997) and virtual manipulatives, e.g., visualization software (Moyer et al.,
22 2002; Extremera et al., 2020). 3D-printed physical manipulatives can illustrate unit cells in crystallography (Rodenbough
23 et al., 2015), complex structures like DNA (Jittivadhna et al., 2010; Howell et al., 2019), and other chemical principles
24 (Witzel, 2002; Kaliakin et al., 2015; Melaku et al., 2016; Smiar and Mendez, 2016; Geyer, 2017; Lesuer, 2019; Horikoshi,
25 2020; Melaku and Dabke, 2021).

26
27 The TotBlocks project aims to communicate the crystal structures of modular rock-forming chain and sheet silicate minerals
28 (pyroxenes, amphiboles, micas, and clay minerals) through 3D-printed building blocks (Leung and dePolo, 2022a; Fig. 1a).
29 This work investigates the utility of TotBlocks in communicating the relationship between the crystal structures and
30 optical mineral properties ~~of minerals~~.

31

32 Figure 1 (a) The crystal structure of the mica group, illustrated using TotBlocks (Leung and dePolo, 2022a). (b) Example of
 33 opticalmineral properties visible under the microscope. Biotite (mica group) displays a perfect basal cleavage on the {001} and
 34 displays the strongest pleochroic colour when the substage polarizer is parallel to the layers of octahedral modules in Fig. 1a (top
 35 image). (c) Respondents' understanding of concepts decreased with increasing abstractedness. (d) Proposed spiral learning model
 36 for optical mineralogy, based on insight from Fig. 1c.

37

38 **2 Materials, Methods, Ethics Approvalmethods, and ethics**

39 A one-hour exercise on modular mineralogy (File S1 in the Supplement) was conducted during the last lab (April 2022) of
40 a second-year Optical Mineralogy class at Laurentian University (Sudbury, Canada). After a brief introductory lecture,
41 students sequentially built the crystal structures of the mica, pyroxene, and amphibole (super-)groups using TotBlocks.
42 Using these models, students reflected on ~~the optical~~ properties (pleochroism, cleavage, and extinction angles) they had
43 previously discussed during the semester (Fig. 1b). This session was voluntary for students and attendance was not
44 monitored.

45

46 At the end of the exercise, an optional, anonymous feedback survey consisting of four Likert-scale questions and four free-
47 response questions was distributed ~~to the students~~ (File S2 in the Supplement). Students self-assessed whether their
48 understanding of ~~opticalmineral~~ properties was improved by the lab. ~~They also and~~ reflected on what aspects of the lab
49 worked well ~~for them~~ or could be improved. The data analyzed here (File S3 in the Supplement) were originally collected
50 as teaching feedback. Ethical approval for secondary data usage was granted by the Laurentian University Research Ethics
51 Board (LUREB; #6021264).

52 **3 Results**

53 Fifteen survey responses were collected. Within these surveys, two respondents (13 %) did not complete the self-assessment
54 section and are tabulated as “no response” for all Likert-scale questions.

55

56 No respondents reported a “worse” understanding of topics at the end of the lab for any Likert-scale question (Fig. 1c).
57 87 % (13/15) of respondents reported that their understanding of modular mineralogy was “better” at the end of the lab and
58 no respondents reported the “same” level of understanding. The survey responses for understanding pleochroism and
59 cleavage angles were identical with 67 % (10/15) of respondents reporting they understood the concepts “better” and 20 %
60 (3/15) reporting the “same” level of understanding. The survey responses for understanding of extinction angles were split
61 more evenly with 47 % (7/15) of respondents reporting they understood the concept “better” and 40 % (6/15) reporting the
62 “same” level of understanding. Excluding the two “no response” respondents, 100 % of respondents reported a “better”
63 understanding of modular mineralogy, 77 % reported a “better” understanding of cleavage and pleochroism, and 54 %
64 reported a “better” understanding of extinction angles (Fig. 1c).

65

66 All survey participants engaged with the free-response questions with a general positive consensus observed. Students
67 reported impressions like they “enjoyed the experience” and that ~~“the~~ ~~“instructions~~ were clear and the activity very
68 dynamic.”

69 **4 Discussion**

70 The use of TotBlocks in this lab setting allowed students to learn mineralogical concepts in alignment with the theory of
71 experiential learning (sensu Kolb and Fry, 1975). Kolb and Fry (1975) conceptualize learning as an iterative, four-stage

72 process that cycles through (1) concrete experience, (2) observations and reflections based upon that experience, (3) analysis
73 of those observations to form abstract conceptualizations, and (4) applying these conceptualizations to new experiences.
74 Through (1) the concrete experience of constructing a mineral structure with ~~TotBooks~~~~TotBlocks~~, students engage in active
75 and cooperative learning (Smith et al., 2005), and (2) are invited to observe the modularity of different silicate minerals and
76 reflect on their structural relationships. These reflections provide (3) the abstract foundation for students to then (4) extend
77 these ideas to ~~the physical~~~~mineral~~ properties ~~of minerals and more complex aspects of crystal chemistry~~. The process of
78 students using physical manipulatives to solidify their understanding of crystal structures aligns TotBlocks with the
79 educational theory of constructionism (Harel and Papert, 1991).

80
81 The structure of the lab exercise additionally followed ideas of spiral learning for mineralogy teaching (Bruner, 1966; Dyar
82 et al., 2004). Students began with the mica structure – the protostructure for other modular rock-forming minerals – and
83 ~~then~~ were invited to actively build new concepts ~~of this existing knowledge. Additional~~~~through the construction of~~
84 ~~additional structures. The~~ concepts of cleavage, pleochroism, and extinction angles were introduced in context of the
85 previously developed ideas ~~and built upon the principles the students had encountered.~~ In essence, students began with
86 chemical building blocks, progressed to crystal structures, and then developed further understanding of ~~optical~~~~mineral~~
87 properties (Fig. 1d).

88
89 Using TotBlocks ~~to illustrate optical mineralogy principles~~ in this classroom setting resulted in some preliminary successes.
90 Students felt the advantages of using physical manipulatives. One student noted “paralleling real-life structures into models”
91 was “easy to understand” while another reported “that seeing cleavage and extinction in real life” was an aspect of the lab
92 that worked well. Another student observed that “building” was “different in understanding than just being lectured.” These
93 reported experiences illustrate the efficacy of TotBlocks for concretizing abstract ideas of crystal structures for students
94 similar to the pattern observed by Fencl and Heunink (2007) in physics classrooms. TotBlocks also allowed students to
95 productively engage in informal cooperative learning (Smith et al., 2005). A student reflected that “having to build the
96 structures as a group of 3-4 people really helped to share concepts and opinions about the question[s].” This experience
97 illustrates that the use of these manipulatives in the classroom can support peer-to-peer exchange of insights (Boud, 2001;
98 Keerthirathne, 2020). These responses suggest that TotBlocks supported both experiential and cooperative learning in this
99 lab.

100
101 Despite these successes, we observed a decrease in the students’ understanding of key ~~optical mineralogy~~~~mineral~~ principles
102 with increasing orders of complexity (Fig. 1c). Although the students’ understanding of modular mineralogy improved,
103 fewer students reported similar improvements to their understanding of cleavage and pleochroism. The most challenging
104 concept to impart was extinction angles. This decrease in understanding corresponds to increasing abstractness of concepts
105 from basic building blocks and crystal structures to polarized light and the optical indicatrix, consistent with a spiral learning
106 model (Fig. 1d). ~~This gap in understanding could be addressed by communicating the role of vibration directions in~~
107 ~~understanding the optical properties of minerals. In particular, a diagram illustrating the relationship between the optical~~
108 ~~indicatrix and extinction angles might bridge the conceptual gap identified in this case study (for further discussion see~~
109 ~~Leung, 2023; File S4 in the Supplement).~~

110

111 We also encountered several practical limitations within the lab, with the most notable being the short time allotted to the
112 exercise. The time restriction was evident for the mineral that concluded the lab, the amphibole structure. Three students
113 noted that building the amphibole structure was confusing, suggesting that additional time on that exercise would have been
114 beneficial. A potential solution would be integrating TotBlocks into multiple lab sessions. ~~Increasing students' Repeated~~
115 exposure to TotBlocks throughout ~~an academic~~ term would allow ~~students to learn how TotBlocks work as familiarity with~~
116 physical manipulatives prior to applying them to understanding ~~optical mineral~~ properties. Additionally, several students
117 noted a need for additional support with the construction instructions of the mineral structures in the lab. They shared
118 thoughts like "I think the building of the structures would be easier with step by step image (Ikea furniture)" and "it would
119 be helpful to have step-by-step instructions with images." These reflections demonstrate a need for more clarity in task
120 presentation for students (Rosenshine and Stevens, 1986; Rink, 1994). In future classroom applications of TotBlocks,
121 additional building support could be provided to the students through instructional videos (e.g. Leung and dePolo, 2022b).
122 Finally, this study ~~relies on self-reported reflections and~~ lacks ~~an independent metric for assessing learning improvement~~
123 ~~(i.e. a control group. We do not know whether a student's experience of learning about modular mineralogy without the~~
124 ~~support of TotBlocks would have been significantly better or worse.).~~

125

126 Using TotBlocks as concrete manipulatives within experiential, spiral, and cooperative learning frameworks shows
127 potential for improving ~~students' students'~~ understanding of ~~optical mineralogy concepts mineral properties~~. Incorporating
128 TotBlocks with other representations of crystal structure (e.g. ball-and-stick models and visualization software) in
129 mineralogy classrooms merits further study, particularly in the context of more extended use throughout a course (Tsui and
130 Treagust, 2013).

131

5 Data and ~~Code Availability~~code availability

132 The full source code and 3D model files for the TotBlocks project (GPLv3 license) can be found on Github:
133 <https://doi.org/10.5281/zenodo.5240816> (Leung, 2022).

134

6 Supplement

135 The supplement included in this contribution consists of ~~three~~four files: the original lab manual presented to the students
136 (File S1), the survey presented to the students (File S2), and response spreadsheet (File S3), and a revised lab manual
137 reflecting the pedagogical insights gleaned from this study (File S4).

138

7 Author ~~Contributions~~contributions

139 DDVL conceptualized and designed TotBlocks, delivered the lab exercise, collated survey responses, and made the figure.
140 PEdP contextualized TotBlocks in the pedagogical literature and wrote the first draft of this manuscript. Both authors
141 designed the lab exercise and survey, and discussed and edited the manuscript.

142 **8 Competing interests**

143 Derek D. V. Leung holds the copyright for the TotBlocks design files and source code, but these are distributed under a
144 copyleft, open-source license (GPLv3) that is freely available to the public. Additionally, all of the technical design
145 specifications are published in a previous publication (Leung and dePolo, 2022).

146 **89 Acknowledgements**

147 We thank Sandra Hoy and Lise Carriere (LUREB) for consultation and assistance in submitting the ethics application, and
148 two anonymous LUREB members for their comments strengthening the application. We thank Courtney Onstad (Simon
149 Fraser University) for her advice around the language used in ethics assessments. Andrew McDonald (Laurentian
150 University) provided access to the Optical Mineralogy lab session, and Christopher Beckett-Brown and Melissa Barerra
151 assisted. Godfrey Fitton (University of Edinburgh) helped in clarifying our understanding of the optical indicatrix. We
152 thank Geoscience Communication executive editors Sam Illingworth and John Hillier for their advice and guidance around
153 this manuscript. We also thank David Mogk and Brian Niece for their supportive reviews that helped us clarify the text of
154 this manuscript, and Leslie Almberg for her editorial work in handling the submission.

155 **910 References**

156 Boud, D.: Introduction: Making the move to peer learning, in: Peer Learning in Higher Education: Learning from & with
157 Each Other, edited by: Boud, D., Cohen, Ruth, and Sampson, J., Routledge, London, UK, 1-17,
158 <https://doi.org/10.4324/9781315042565>, 2001.

159 Bruner, J.S.: Toward a Theory of Instruction, Harvard University Press, Cambridge, Massachusetts, USA, 1966.

160 Dyar, M. D., Gunter, M. E., Davis, J. C., and Odell, M. R. L.: Integration of new methods into teaching mineralogy, J.
161 Geosci. Educ., 52, 23–30, 2004.

162 Extremera, J., Vergara, D., Dávila, L. P., and Rubio, M. P.: Virtual and augmented reality environments to learn the
163 fundamentals of crystallography, Crystals, 10, 456, <https://doi.org/10.3390/crust10060456>, 2020.

164 Fencl, H. and Huenink, A.: An exploration into the use of manipulatives to develop abstract reasoning in an introductory
165 science course, Int. J. Schol. Teach. Learn., 1, 1–15, <https://doi.org/10.20429/ijstl.2007.010215>, 2007.

166 Geyer, M. J.: Using interlocking toy building blocks to assess conceptual understanding in chemistry, J. Chem. Educ., 94,
167 202–205, <https://doi.org/10.1021/acs.jchemed.6b00551>, 2017.

168 Harel, I., and Papert, S. (Eds.): Constructionism, Ablex Publishing, Westport, Connecticut, USA, 1991.

169 He, F-c, Liu, L-b, and Li, X-y: Molecular models constructed in an easy way: Part 1. Models of tetrahedron, trigonal
170 bipyramid, octahedron, pentagonal bipyramid, and capped octahedron, J. Chem. Educ., 67), 556–558,
171 <https://doi.org/10.1021/ed067p556>, 1990a.

172 He, F-c, Liu, L-b, and Li, X-y: Molecular models constructed in an easy way: Part 2. Models constructed by using
173 tetrahedral units as building blocks, *J. Chem. Educ.*, 67, 650–652, <https://doi.org/10.1021/ed067p650>, 1990b.

174 He, F-c, Liu, L-b, and Li, X-y: Molecular models constructed in an easy way: Part 3. Models constructed by using octahedral
175 units as building blocks, *J. Chem. Educ.*, 71, 734–738, <https://doi.org/10.1021/ed071p734>, 1994.

176 [Hollocher, K.: Building crystal structure ball models using pre-drilled templates: sheet structures, tridymite, and](#)
177 [cristobalite, in: Teaching Mineralogy, edited by: Brady, J. B., Mogk, D. W., and Perkins III, D., Mineralogical Society of](#)
178 [America, Washington, D.C., USA, 255-282, 1997.](#)

179 Horikoshi, R.: Teaching chemistry with LEGO® bricks, *Chem. Teach. Int.*, 3, 239-255, <https://doi.org/10.1515/cti-2020-0017>, 2020.

181 Howell, M. E., Booth, C. S., Sikich, S. M., Helikar, T., Roston, R. L., Couch, B. A., and van Dijk, K.: Student understanding
182 of DNA structure-function relationships improves from using 3D learning modules with dynamic 3D print models,
183 *Biochem. Mol. Biol. Edu.*, 47, 303-317, <https://doi.org/10.1002/bmb.21234>, 2019.

184 Ishikawa, T. and Kastens, K. A.: Why some students have trouble with maps and other spatial representations, *J. Geosci.*
185 *Educ.*, 53, 184-197, <https://doi.org/10.5408/1089-9995-53.2.184>, 2005.

186 Jittivadhna, K., Ruenwongsa, P., and Panijpan, B.: Beyond textbook illustrations: hand-held models of ordered DNA and
187 protein structures as 3D supplements to enhance student learning of helical biopolymers, *Biochem. Mol. Biol. Edu.*, 38,
188 359-364, <https://doi.org/10.1002/bmb.20427>, 2010.

189 Kaliakin, D. S., Zaari, R. R., and Varganov, S. A.: 3D printed potential and free energy surfaces for teaching fundamental
190 concepts in physical chemistry, *J. Chem. Educ.*, 92, 2106–2112, <https://doi.org/10.1021/acs.jchemed.5b00409>, 2015.

191 Keerthirathne, W. K. D.: Peer learning: an overview: *Int. J. Sci. Eng. Sci.*, 4, 1-6, 2020.

192 Kolb, D. A., and Fry, R.: Towards an applied theory of experiential learning, in: *Theories of group processes*, edited by:
193 Cooper, C., John Wiley and Sons, New York, 33-57, 1975.

194 Leung, D. D. V.: derekdvleung/totblocks: Totblocks 2022.05 (totblocks-2022.05), Zenodo [code],
195 <https://doi.org/10.5281/zenodo.5240816>, 2022.

196 [Leung, D. D. V.: 'Reply to RC1', EGUsphere Preprint Discussion \[comment\], https://doi.org/10.5194/egusphere-2023-294-AC1, 2023.](#)

198 [Leung, D. D. V., and dePolo, P.E.: TotBlocks: exploring the relationships between modular rock-forming minerals with](#)
199 [3D-printed interlocking brick modules, Eur. J. Mineral., 34, 523-538, <https://doi.org/10.5194/ejm-34-523-2022>, 2022a.](#)

200 Leung, D. D. V. and dePolo, P. E.: Learning with TotBlocks: Communicating the crystal structures of modular rock-forming
201 minerals with 3D-printed interlocking brick modules, TIB-AV Portal [video series], https://doi.org/10.5446/s_1236, 2022b.

202 Lesuer, R. J.: Incorporating tactile learning into periodic trend analysis using three-dimensional printing, *J. Chem. Educ.*,
203 96, 285–29, <https://doi.org/10.1021/acsami.1c06204>, 2019.

204 Liben, L. S., and Titus, S. J.: The importance of spatial thinking for geoscience education: insights from the crossroads of
205 geoscience and cognitive science, in: *Earth and Mind II: A Synthesis of Research on Thinking and Learning in the*
206 *Geosciences*, edited by Kastens, K. A., and Manduca, C. A., Geological Society of America Special Paper 486, 51-70,
207 [https://doi.org/10.1130/2012.2486\(10\)](https://doi.org/10.1130/2012.2486(10)), 2012.

208 Melaku, S. and Dabke, R. B.: Interlocking toy building blocks as modules for undergraduate introductory and general
209 chemistry classroom teaching, *J. Chem. Educ.*, 98, 2465-2470, <https://doi.org/10.1021/acs.jchemed.1c00001>, 2021.

210 Melaku, S., Schreck, J. O., Griffin, K., and Dabke, R. B.: Interlocking toy building blocks as hands-on learning modules
211 for Blind and Visually Impaired Chemistry Students, *J. Chem. Educ.*, 93, 1049–1055, 2016.

212 Mogk, D. W.: Directed-discovery of crystal structures using ball and stick models, in: *Teaching Mineralogy*, edited by:
213 Brady, J. B., Mogk, D. W., and Perkins III, D., Mineralogical Society of America, Washington, D.C., USA, 283-290, 1997.

214 Moyer, P. S., Bolyard, J. J., and Spikell, M. A.: What are virtual manipulatives, *Teach. Child. Math.*, 8, 372-377,
215 <https://doi.org/10.5951/TCM.8.6.0372>, 2002.

216 Neumann, F.: Vorlesungen über die Theorie der Elasticität der festen Körper und des Lichtäthers, edited by: Meyer, O. E.,
217 B. G. Teubner-Verlag, Leipzig, Germany, 1885.

218 Rink, J. E.: Task Presentation in Pedagogy, *Quest*, 46, 270-280, <https://doi.org/10.1080/00336297.1994.10484126>, 1994.

219 Rodenbough, P.P., Vanti, W. B., and Chan, S.-W.: 3D-printing crystallographic unit cells for learning materials science
220 and engineering, *J. Chem. Educ.*, 92, 1960-1962, <https://doi.org/10.1021/acs.jchemed.5b00597>, 2015.

221 Rosenshine, B., and Stevens, R.: Teaching functions, in: *Handbook of research on teaching*, 3rd edition, edited by Wittrock,
222 M., 376-391, Macmillan, New York, USA, 1986.

223 Smiar, K. and Mendez. J. D.: Creating and using interactive, 3D-printed models to improve student comprehension of the
224 Bohr model of the atom, bond polarity, and hybridization, *J. Chem. Educ.*, 93,
225 <https://doi.org/10.1021/acs.jchemed.6b00297>, 2016.

226 Smith, K. A., Sheppard, S. D., Johnson, D. W., and Johnson, R. T.: Pedagogies of engagement: Classroom-based practices,
227 *J. Eng. Ed.*, 94, 87–101, 2005.

228 Tsui, C.-Y. and Treagust, D. F.: Introduction to multiple representations: their importance in biology and biological
229 education, in: *Multiple Representation in Biological Education*, edited by:Treagust, D. F. and Tsui, C.-Y., Springer, 3–18,
230 2013.

231 Witzel, J. E.: Lego Stoichiometry, *J. Chem. Educ.*, 79, 352A, <https://doi.org/10.1021/ed079p352>, 2002.

232 Wood, P. A., Sarjeant, A. A., Bruno, I. J., Macrae, C. F., Maynard-Casely, H. E., and Towler, M.: The next dimension of
233 structural science communication: simple 3D printing directly from a crystal structure, *CrystEngComm*, 19, 690,
234 <https://doi.org/10.1039/c6ce02412b>, 2017.

235 Woods, T. L., Reed, S., Hsi, S., Woods, J. A., and Woods, M. R.: Pilot study using the augmented reality sandbox to teach
236 topographic maps and surficial processes in introductory geology labs, *J. Geosci. Educ.*, 64, 199-214,
237 <https://doi.org/10.5408/15-135.1>, 2016.