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Abstract. This study examines the impact force applied from hand taps during Extended Column Tests (ECT), a common 

method of assessing snow stability. The hand-tap loading method has inconsistencies across the United States, Canadian, 

Swiss, and Norwegian written standards, as well as inherent subjectivity. We developed a device, the “tap-o-meter”, to measure 10 

the force-time curves during these taps and collected data from 286 practitioners, including avalanche forecasters and mountain 

guides in Scandinavia, Central Europe, and North America. Peak forces and loading rates are the metrics chosen to 

quantitatively compare the data. The mean, median, and inner quartile peak forces are distinctly different for each loading step 

(wrist, elbow, and shoulder), as are the loading ratesand the peak force approximately doubles from one loading step to the 

next. However, there is considerablesignificant overlap across the range of measurements and examples of participants with 15 

higher force wrist taps than other participants' shoulder taps. This overlap challenges the reliability and reproducibility of ECT 

results, potentially leading to dangerous interpretations in avalanche decision-making, forecasting and risk assessments. Our 

results provide an answer to the question of “How hard do avalanche practitioners tap?” but not necessarily “How hard should 

avalanche practitioners tap?”. These data and insights are intended to facilitate discussion among the tests’ creators, the 

scientific community, and the practitioner community to update thresholds, guidelines, and test interpretation. 20 

1 Introduction 

Snowpack instability describes the propensity for a slope to avalanche (Reuter & Schweizer, 2018). Failure initiation and crack 

propagation are key components of the avalanche release process Snowpack instability describes the propensity for a slope to 

avalanche and has been modeled to include the mechanics concepts of failure initiation and crack propagation as key 

components of the avalanche release process (Reuter & Schweizer, 2018). Stability tests1 help gather crucial information on 25 

weak layer identification, failure initiation, and crack propagation.  In our paper, we will often use terms “snowpack stability” 

and “stability tests”, rather than “snowpack instability” and “instability tests”, due to their widespread usage in the avalanche 

practitioner community. Determining snowpack stability is a core concept in avalanche forecasting and backcountry decision-

making, yet it is a challenging measure to quantify. In backcountry travel, the decision process ultimately ends with a go or 

no-go decision based on an assessment of avalanche likelihood, avalanche size, and potential consequences. Snowpack stability 30 

evaluation is essential in assessing avalanche likelihood in such a context. To aid this complex decision-making process, snow 

 
1 In our paper, we will often use terms “snowpack stability” and “stability tests”, rather than “snowpack instability” and 

“instability tests”, due to their widespread usage in the avalanche practitioner community. 
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stability tests can support decision making in case of conditional stability (e.g., Birkeland et al, 2023).snow stability tests have 

been invented. They provide a structured analytical approach, particularly valuable when direct signs of instability, like recent 

avalanches, shooting cracks, or whumpfs, are absent.  

 35 

 

In contrast, iIn situations with poor snowpack stability, nature provides apparent signs such as recent avalanches, shooting 

cracks, and "whumpfs". These clear  signs of instability are commonly referred to as Class I factors (instability factors) in a 

three-class division based on informational entropy (LaChapelle, 1980; D. McClung & Schaerer, 2006). The more stable the 

snowpack, the greater the load it can support before it fails. The instability can be less evident in these situations, and more 40 

indirect factors such as stability tests (class II) -snowpack factors and class IIIand meteorological factors (class III) shouldmust 

be evaluated. Hence, stability tests (class II) can be of great importance in avalanche forecasting and provide highly valuable 

information to the backcountry traveler.  

 

One of the first documented field snow tests is the shovel shear test developed by Faarlund and Kellermann in 1974 (originally 45 

known as the Norwegermethode; Kellermann, 1990). Although the role of compressive stress in weak layer failure was in 

discussion at the time (Perla & LaChapelle, 1970), weak layer shear strength - measured with a shear frame – was a typical 

metric for slope stability, and the shovel shear test provided a convenient field method of obtaining similar information. 

 

In the late 1980s, Föhn (1987) quantified the Rutschblock (RB) test into the seven known levels today. In the 1990s, the 50 

compression test (CT) became popular (Clarkson, 1993; Jamieson & Johnston, 1996). Both the CT and RB involve loading 

the snow surface, transmitting stress through the slab, and the possibility of weak layer failure. A distinction between these 

tests lies in their load application method: the CT utilizes hand-taps, while the RB test requires the load of a person on skis. 

 

The propensity for an initiated crack to propagate became a popular concept as a collapse-based, crack-propagation model 55 

(Heierli et al., 2008) had conflicting results with a shear-based, crack-propagation model (D. McClung, 1979). In line with this 

discussion, the propagation saw test (PST) (Gauthier & Jamieson, 2008, 2006) and extended column test (ECT) (Simenhois & 

Birkeland, 2006) were developed as field tests to assess propagation propensity. The ECT is a frequently used test by avalanche 

practitioners and recreationists. The test has been validated in different geographies and avalanche climates such as continental 

and intercontinental climates of the United States (Birkeland & Simenhois, 2008; Hendrikx & Birkeland, 2008; Simenhois & 60 

Birkeland, 2009), the Swiss Alps (Techel et al., 2020; Winkler & Schweizer, 2009), the Spanish Pyrenees (Moner et al., 2008) 

and New Zealand (Hendrikx & Birkeland, 2008; Simenhois & Birkeland, 2006). 

 

The four stability tests described above measure different types of information in the snowpack using different triggering 

mechanisms, set-ups, and dimensions. Relevant types of information are whether the test can (1) identify weak layers in 65 
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combination with slabs, (2) measure failure initiation, and (3) measure crack propagation. We have summarized the properties 

of each test in Table 1 with inspiration from Birkeland et al. (2023). 

 

Table 1: Different types of information that can be extracted from the four different stability tests (modified from Schweizer and 

Jamieson, 2010; Birkeland et al. 2023). 70 

Test 
Identifying weak 

layer below slab 

Measures failure 

initiation 

Measures crack 

propagation 

Triggering 

mechanism 

Dimensions 

(width, upslope) 

RB Yes Yes Yes Weight of a human 2 m x 1.5 m 

CT Yes Yes Partly Hand-tap 30 cm x 30 cm 

ECT Yes Yes Yes Hand-tap 90 cm x 30 cm 

PST No Partly Yes Cutting with saw 30 cm x 100 cm1 

1 or the weak layer depth, whatever is greater. 

 

As is evident in Table 1, stability tests are meant to simulate portions ofreflect the avalanche release process .process. To 

connect stability tests with slope-wide avalanche mechanics, a mathematical model of the stability test is needed. To date, 

most of this modeling has been done with the PST (Benedetti et al., 2019; McClung & Borstad, 2012; Van Herwijnen et al., 75 

2016; Weißgraeber & Rosendahl, 2023). A key component of the CT and ECT is the hand-tap loading which creates a boundary 

condition for a mathematical model of the CT and ECT. Creating this model is out of our scope, however, characterizing the 

impact curves isare an important step towards modeling the CT and ECT. 

 

To conduct an ECT, the hand-tap loading method is implemented that was originally developed for the CT. There are subtle 80 

differences in the current guidelines for these hand-taps. The American Avalanche Association (2022) defines the most recent 

US standard as follows. This is similar to the Canadian standard (Canadian Avalanche Association, 2016), which has expanded 

the definition by including the text marked with italics. 

1. “Tap 10 times with fingertips, moving hand from wrist.” 

2. “Tap 10 times with the fingertips or knuckles moving forearm from the elbow. While moderate taps should be harder 85 

than easy taps, they should not be as hard as one can reasonably tap with the knuckles”. 

3. “Hit the shovel blade moving the arm from the shoulder 10 times with open hand or fist. If the moderate taps were 

too hard, the operator will often try to hit the shovel with even more force for the hard taps - and may hurt his or her 

hand”. 

 90 

In other countries, the instructions vary as well. For example, in Switzerland the instructions are simply described using a 

single sentence: «The blade of the avalanche shovel is placed on the block on one side and successively loaded with 10 hits 
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each from the wrist (1-10), the elbow (11-20) and the shoulder (21-30). » (Dürr and Darms, 2016). There are further 

discrepancies if we look at the Norwegian standard (Norwegian Water Resources and Energy Directorate, 2022). 

“For every sequence of 10 taps, the load is increased as follows:  95 

1. Let the hand fall with its own weight, lifted from the wrist.  

2. Let the hand and forearm fall with their own weight, lifted from the elbow. 

3. Let the entire arm fall with its own weight, using a fist, lifted from the shoulder.” 

 

If a failure in the snowpack is detected during any of the taps, the specific tap number along with the depth of the weak layer 100 

is recorded for further investigation. For example, if a failure propagates at the 21st tap at a depth of 40 cm, it would be noted 

as 'ECTP21@40cm. The interpretation of ECT test results remains an open discussion. Originally, a binary interpretation of 

test results was suggested, referred to as ECTorig
 in this paper. Specifically, if a fracture initiates but does not propagate (ECTN), 

then the test result is considered stable. In contrast, if a fracture propagates across the extended column (ECTP, or ECTPV if 

during isolation), then the test result is considered unstable. If no fracture is initiated within the 30 taps, the outcome is neither 105 

stable nor unstable, and should therefore be regarded as inconclusive. 

 

Another classification was suggested by Winkler and Schweizer in 2009 (ECTw09), using three classes divided by the number 

of taps needed to initiate a fracture with or without propagation: 

• ECTP ≤21 – low stability 110 

• ECTP >21 – intermediate stability 

• ECTN or ECTX – high stability 

 

Recent work by Techel et al. (2020) (ECTt20) suggests using four classes and applying the established labels for snow stability: 

poor, fair and good (e.g. American Avalanche Association, 2022): 115 

• ECTP ≤13 – poor 

• ECTP >13 to ECTP ≤22 – poor to fair 

• ECTP >22 or ECTN ≤10 – fair 

• ECTN >10 or ECTX – good 

 120 

The variability in tapping force has been a known limitation for the CT and ECT interpretation (American Avalanche 

Association, 2022; Schweizer & Jamieson, 2010; Techel et al., 2020). Birkeland and Johnson (1999) attempted to remedy this 

limitation by developing the stuffblock test. The test uses a nylon sack filled with ~4.5 kg (10 pounds) of snow which is 

dropped on a CT or ECT column with 10 cm increments until a failure initiation is reached. 

 125 
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There have been some previous studies to measure the applied force of hand tapping, as well as quantify the stress-state within 

the snow during these loads. Logan (2006) made measurements of hand taps during a conference to learn more about timing, 

impact force and technique, but the results were never published. Thumlert and Jamieson (2015) impacted the snow with both 

a drop hammer and hand taps and measured the resulting stress within the snow. Our study expands on the work of Sedon 

(2021) and Griesser et al. (2023). Each of these studies measured tap force by avalanche practitioners (n=69 and n=62, 130 

respectively) in an indoor setting. Furthermore, Griesser et al. (2023) investigateperformed stress measurements during CTs 

in the field and investigated the effects of body characteristics such as weight and height. Their analyses consist of bivariate 

tests, i.e., testing if people who are heavier tap harder, and if people who are taller tap harder. A limitation of this approach is 

that, since height and weight are typically correlated, the tests do not reveal which of the two factors that are more important, 

or if height (weight) affect tap force at a given weight (height). Regarding sampling rate, a critical aspect of accurately 135 

measuring dynamic loads, Sedon (2021) does not specify theirs and Griesser et al. (2023) use a sampling rate of 100 Hz (one 

measurement every 10 ms).  

 

The objective of our work is to develop an improved measurement device with adequate sampling rate that can accurately 

characterize the impact curves of hand-tap loading and investigate the interpersonal variability between participants from 140 

different geographical regions. We plan to use multivariate regression to investigate whether body characteristics, snow 

climate, and gender influence the impact force from hand taps. Furthermore, we intend to not only measure the peak force, but 

also the loading rate, a metric not included in the previous studies by Sedon (2021) and Griesser et al. (2023). It has been well-

established that snow’s response depends on the loading rate (Shapiro et al., 1997), a quantity shown to both influence stress 

wave transmission through snow slabs (Verplanck and Adams, 2024) as well as failure of weak layers such as depth hoar, 145 

facets, and surface hoar (Reiweger et al. 2015). Thus, peak force alone is not enough information to accurately understand and 

predict snow’s response dynamic loads. Determining how snow responds to the applied force from a hand-tap is outside of our 

scope, however, a quantified understanding of how hard practitioners tap will aid in the process of updating standards for test 

execution and interpretation. 

2 Methods 150 

2.1 The device: “tap-o-meter” 

To measure the force from hand taps, a device dubbed the “tap-o-meter” was made. A total of three devices were built to 

enable data collection in different parts of the world in a similar time frame (Fig. 1). Each “tap-o-meter” has the following 

components: 

1. A shovel blade which acts as the loaded surface. 155 

2. A load cell to transduce the tapping force into an electric signal. 

3. Oscilloscope with a voltage amplifier to measure the signal. 
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4. 30 x 30 x 0.6 cm stainless steel base to provide a sturdy foundation. 

2.1.1 Load cell 

A single, cantilever-style load cell from Load Cell Central (GCB3-SS-M-50KG) was used to measure the tapping force. The 160 

recommended capacity of the load cell is 490 N, with an ultimate overload rating of 1,470 N. The full-scale output (FSO) of 

the load cell is 2 mV/V and refers to the maximum output signal that the load cell can produce for its rated capacity.  

2.1.2 Oscilloscope and voltage amplifier 

An oscilloscope (Digilent Analog Discovery II) was used to measure the impact force. The oscilloscope provides a 5-volt input 

to the load cell, which yields a maximum output signal of 10 mV with the FSO from the load cell. The minimum change in 165 

voltage that can be measured by the oscilloscope is 0.2 mV. To increase the measurement resolution, a linear voltage amplifier 

was added between the load cell and the oscilloscope. The amplifier was custom built using an AD8429 amplifier from Analog 

Devices. The amplification, or gain (G), is controlled by an external two-pin resistor (Rext), using the following equation: 

 

𝐺 = 1 +
6000 𝑜ℎ𝑚

𝑅𝑒𝑥𝑡
,           (1) 170 

 

In our study, we used a 30-ohm resistor, resulting in a 201x amplification of the output signal from the load cell. Using this 

setup, the oscilloscope is theoretically able to measure 10,050 steps between 0-490 Newtons, or 30,150 loading steps between 

0-1,470 N. The device was calibrated statically by using a set of known weights ranging from ~50 to 300 N (Appendix-1), 

resulting in a linear regression with R2 = 0.999998.  175 

 

 

Figure 1: The “tap-o-meter” consists of a metal base with the load cell and shovel blade attached above. The load cell is connected 

to the oscilloscope through the custom-built 201x amplifier. 

 180 

To determine an appropriate sampling rate, knowledge of the signal is critical. We are most interested in the peak force and 

loading rate leading up to it. Preliminary testing showed that this rise time is fastest for the shoulder taps and can happen as 

quickly as a few milliseconds. Conservatively assuming this rise occurs over 1 millisecond, a sampling rate of 50 kHz leads 
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to 50 samples in this critical measurement period. A number deemed sufficient for our purposes and within the capabilities of 

the measurement system. 185 

 

The “tap-o-meter” was initially developed using parts in stock at the Norwegian Water Resources and Energy Directorate 

(NVE). Early testing suggested that a ~500 N load cell which NVE had in stock would be capable of accurately recording the 

impact force from taps. Based on data collected prior to those showcased in this paper, it became evident that the impact forces 

from some participants plateaued around 600 N on their shoulder taps. This level surpassed the recommended operating range 190 

of the load cell but stayed within the ultimate overload capacity (~1,500 N). We pinpointed the problem to the amplifier, which 

was reaching its saturation point.  

 

We considered the amplifier properties to avoid two potential issues. Setting it too high would mean losing detail in measuring 

light wrist taps due to an increased background noise. On the other hand, setting it too low would make it impossible to measure 195 

the strongest impact forces.  

 

To address this, we developed a new adjustable amplifier that we tuned to a range from 5 to 1,000 N. This calibration aimed 

to balance the ability to detect high-impact forces while maintaining a low background noise for measuring the force of lighter 

taps. The defined range stayed safely below the load cell’s ultimate overload threshold of 1,225 N. Despite the new adjustment 200 

with the amplifier’s upper limit set to 1,000 N, saturation still occurred in rare instances: once during elbow-level taps 

(representing 0.03% of such taps) and 75 times for shoulder-level taps (2.63% of such taps).  

2.2 Data collection process 

Data collection was conducted at events in Norway, Switzerland, Austria, USA, and Canada. In Norway, data was collected 

from avalanche forecasters and mountain guides. In Switzerland, data was collected at the European Avalanche Warning 205 

Service (EAWS) general assembly. Canadian and Austrian events only included avalanche forecasters. Events in the USA 

contained a mix of avalanche workshop participants and avalanche forecasters. A total of 286 individuals (232 males and 54 

females) contributed to the study. A detailed table of the number of samples, event, and date can be found in Appendix-2. We 

did not provide any specific instructions on how to conduct the ECT other than that we asked participants to tap as they would 

do in the field. We provided a wide range of gloves with different thicknesses, but it was up to the participants themselves to 210 

select which glove, or whether to use a glove at all.  

 

We made the setup as similar as possible by using three identical “tap-o-meter” devices. All “tap-o-meters” were firmly 

attached to a wooden CT (30 x 30 x 85 cm) or ECT (30 x 90 x 85 cm) column (Fig. 1). By using a fixed height, we acquired 

data with a consistent sampling method but are not able to adjust for changes in simulated snowpack thickness. Furthermore, 215 

participants were given the choice to use different types of gloves depending on their preferences. The intent was that all 
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participants should be able to conduct the test like they would do in the field. However, we left the shovel handle off as early 

tests during the development showed that even gentle touches are picked up with our sensitive load cell. No samples were 

collected with the shovel handle on. 

2.2.1 Survey 220 

For each participant, we asked them to fill out a survey where they noted their country of residency, avalanche climate, height, 

weight and gender. The information from the survey was collected to answer the following research questions: 

1. Does height, weight, and/or gender affect tapping force? 

2. Do people tap differently across avalanche climates? 

3. Are there regional differences between Scandinavia, Alps and North America? 225 

2.3 Data processing 

The raw voltage data are processed using python to identify the individual taps. After the taps are identified, two metrics are 

pulled from each one: maximum force (newtons, N) and loading rate (N/s).  Other quantities such as impact duration, rise time, 

and stress were considered but not chosen. Impact duration was not used because the measurements frequently contained long, 

oscillatory tails that are artifacts of the load cell rebounding and vibrating – a phenomenon expected to be less present during 230 

an actual field test. Rise time is calculated as an intermediary step to loading rate. However, loading rate was chosen because 

snow’s response has been shown to depend on its rate of deformation (Shapiro et al., 1997, Reiweger et al., 2015, Verplanck 

and Adams, 2024). Lastly, our measurements are presented as forces (N) rather than stresses (kPa) because presenting it as a 

stress would rely on an assumption of cross-sectional area.  

 235 

The recorded time and voltage are imported as NumPy arrays (Harris et al., 2020). The voltage values are zeroed by subtracting 

the entire array’s mean from each data point. Then, voltage is converted to newtons by scaling according to the calibration. 

Scipy’s (Virtanen et al., 2020) peak finding algorithm, scipy.signal.find_peaks, is implemented to determine when the taps 

occur by comparing neighboring values. The peak finding algorithm is driven with two parameters: a 25 N minimum peak 

magnitude and 0.4 seconds minimum time between peaks. These criteria are chosen by iteratively trying different values and 240 

viewing the results. This peak finding method is used as a first pass through the data and is later refined with a more manual 

process. See Figure 2 for an example of tap data with the peaks algorithmically identified. 
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Figure 2: An example of identifying taps using SciPy’s peak finding algorithm with 25 N minimum peak magnitude and a minimum 245 
of 0.4 seconds between peaks. Using these parameters, the algorithm correctly identified all peaks as it did in 262/286 cases. Manual 

adjustments to the algorithm’s parameters were used in the remaining 24 cases to identify peaks. 

After the peaks are found the individual taps are defined as 70 ms prior to and 40 ms after the peak. These values are chosen 

to allow for enough time surrounding the peak to determine tap metrics. Each tap array is then re-zeroed by subtracting the 

mean of the first 0.2 ms of that specific tap. This re-zeroing process is implemented because subtle shifts in the baseline 250 

recording are occasionally apparent, particularly during the taps hinging from the wrist if the tapper kept contact with the 

shovel blade throughout these taps. The two metrics, maximum force and loading rate, are ascertained from each tap array. 

Maximum force, 𝐹𝑝𝑒𝑎𝑘 , is simply the maximum value in the re-zeroed array. The loading rate, 𝑟, is defined as a linear 

interpolation, Eq. (2), between the maximum force , 𝐹𝑝𝑒𝑎𝑘 , and a threshold value greater than typical noise, 𝜆 . In our 

measurements, a 𝜆 of 15 N was deemed appropriate. The difference in force is divided by the rise time, Δ𝑡, to determine the 255 

loading rate. The rise time is the difference in time between the peak force and the initial threshold crossing. 

𝑟 =
(𝐹𝑝𝑒𝑎𝑘−𝜆)

Δ𝑡
          (2) 

After this automated process is applied to all 286 tap recordings, a manual quality control process is done. This process entails 

viewing the taps for each recording (Fig. 3), flagging misidentified taps, and classifying which taps are hinging from the wrist, 

elbow and shoulder. This manual process determined that 262/286 recordings were correctly processed with the first-pass 260 

algorithm. The remaining 24 recordings were reprocessed by changing the parameters for SciPy’s peak finding algorithm. The 
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changes to peak-finding parameters involved reducing the time between peaks or minimum magnitude until all the clear taps 

are identified.  In some cases, the metrics were not calculated accurately because there was a spike of noise that was close 

enough in time to the tap signal. In these cases, the individual taps were not included in the analyzed data set. After this second 

processing step, the data set is ready for analysis. 265 

 

 

Figure 3: An example of the data processing procedure implemented on a shoulder tap. This procedure acquires two metrics for 

each tap: peak force (N) and loading rate (N/s). 

2.4 Statistical analysis 270 

We tested height, weight, gender, and geographic region to understand the underlying factors influencing hand-tap loading 

using ordinary least squares (OLS) regression models. The peak force was the dependent variable in these models. To compare 

hand-tap loading at different loading steps, we conducted a one-way ANOVA. This analysis assessed whether the mean impact 

forces were statistically different during wrist, elbow, and shoulder taps. ANOVA, or Analysis of Variance, compares the 

means of three or more groups to determine if at least one group's mean is significantly different from the others (Fisher, 1970). 275 

All analyses were considered statistically significant at p-values below 0.05. 
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2.5 Idealization of taps as Gaussian functions 

Both the peak force, 𝐹𝑝𝑒𝑎𝑘, and loading rate, 𝑟, are used to idealize the impact curves. First, consider the equation describing 

a Gaussian function of force, 𝐹, as a function of time, 𝑡. 

𝐹(𝑡) = 𝐹𝑝𝑒𝑎𝑘𝑒
−

1

2
(

𝑡−𝑡𝑝𝑒𝑎𝑘

𝜎
 )

2

 ,          (3) 280 

Where 𝐹𝑝𝑒𝑎𝑘 is the peak force and 𝑡𝑝𝑒𝑎𝑘 is the time at which the peak force occurs. The duration of the force curve is governed 

by 𝜎, the standard deviation if the Gaussian function were to be describing a normal distribution. Since 99.7% of the curve’s 

magnitude occurs during 6𝜎, the duration of impact is defined 6𝜎 in our study. Thus, the rise to peak force occurs over 

approximately 3𝜎, leading to the following relationship to calculate the loading rate, 𝑟. 

𝑟 ≈
𝐹𝑝𝑒𝑎𝑘

3𝜎
 ,           (4) 285 

This is an approximation rather than equality because it assumes a linear rise, rather than the non-linear Gaussian shape. 

However, since loading rate and peak force are the two metrics ascertained from the measured data, this approximation 

provides a convenient way to idealize the measured force curves. Rearranging the approximation yields 

𝜎 ≈
𝐹𝑝𝑒𝑎𝑘

3𝑟
 ,           (5) 

And substituting this relationship for 𝜎 in Eq. (3) yields the Gaussian approximation used to idealize the measured force-time 290 

curves. 

𝐹(𝑡) ≈ 𝐹𝑝𝑒𝑎𝑘𝑒
−

1

2
(

3𝑟(𝑡−𝑡𝑝𝑒𝑎𝑘)

𝐹𝑝𝑒𝑎𝑘
 )

2

 ,         (6) 

 

We performed a set of ordinary least squares (OLS) regression models to understand the underlying factors influencing hand-

tap loading. More specifically, we tested height, weight, gender, and geographic region on impact force during tapping tests. 295 

The peak force was the dependent variable in these models. A one-way ANOVA was conducted to assess whether wrist, elbow 

and shoulder taps were statistically different. All analyses were considered statistically significant at p-values below 0.05. 

3. Results 

3.1 Peak force and loading rateTrends and variability by individual tappers  

The data set consists of 2,837 wrist taps, 2,839 elbow taps, and 2,846 shoulder taps across 286 individuals. Outliers are 300 

excluded using 1.5 times the interquartile range (IQR) method, which is a widely recognized and accepted standard in statistical 

analysis (Tukey, 1977). For peak force, we excluded 119 taps (4.2%) for wrist, 93 taps (3.3%) for elbow and 123 taps (4.3%) 
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for shoulder as outliers. Saturation occurred in rare instances due to a limitation with the amplifier in the “tap-o-meter”. See 

Table 2 for more information.: it happened once (~0.0%) during elbow taps and 75 times (2.6%) during shoulder-level taps 

(Table 2). We provide more details on this in section 4.1.1. 305 

 

Table 2: Number of taps, outliers and saturation taps for peak force and loading rate. 

 Peak Force Loading Rate 

 Wrist Elbow Shoulder Wrist Elbow Shoulder 

No. of taps 2,837 2,839 2,846 2,837 2,839 2,846 

No. of outlier taps 119 (4.2%) 93 (3.3%) 123 (4.3%) 149 (5.2%) 108 (3.8%) 205 (7.2%) 

No. of saturation taps 0 (0.0%) 1 (0.0%) 75 (2.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

 

In Table 3, we provide some descriptive statistics of peak force and loading rate (outliers removed using 1.5 times IQR). The 

median peak force approximately doubles from one loading step to the next at 79 N, 185 N and 373 N respectively. The 310 

standard deviation is also roughly half of the mean peak force for each loading step (wrist, elbow, and shoulder) , showing that 

the variability in loading increases proportionally with increasing peak force. The loading rate, and its standard deviation, 

increases with each load step (i.e. loading step). The loading rate is positively correlated with peak force (R2 = 0.70). 

 

Table 3: Descriptive statistics of peak force and loading rate (outliers removed using 1.5 * IQR). 315 

 Peak Force (N) Loading Rate (N/s) 

 Wrist Elbow Shoulder Wrist Elbow Shoulder 

Mean 79 185 373 8,819 28,836 66,088 

Standard deviationd. 39 82 172 6,745 17,362 41,951 

Min 8 34 45 118 149 2,316 

25th percentile 50 123 239 3,449 15,107 37,128 

Median 73 173 343 6,842 25,068 61,553 

75th percentile 101 237 481 12,763 39,830 90,676 

Max 190 426 893 30,145 81,619 195,812 

 

We observed different mean and median values for each loading step, and if we consider the interquartile range, which 

represents the data between the 25th and 75th percentile, there is nearly no overlap between loading steps. Doing a one-way 

ANOVA, we get a p-value lower than 0.01, indicating that the three loading steps are statistically different from each other, 

mirroring the findings of Sedon (2021) and Griesser et al. (2023). 320 
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In Figure 4, the distribution of peak forces across different tap numbers is graphically represented for three tapping levels. : 

wrist, elbow, and shoulder. For each tap number, a boxplot illustrates the interquartile range, with the median force denoted 

by an orange horizontal line. Individual outliers, shown as circles, showcase the spread of peak forces. While the median forces 

across each loading step remain relatively consistent, there is a large spread across all loading steps. Collectively, this figure 325 

emphasizes the inherent differences in peak forces across the three tapping levels and underscores the variability present within 

each level across different tap numbers. Another method of visualizing the statistical spread of the data is shown in Appendix-

3 with a confusion matrix. 

 

 330 

 

Figure 4: A visualization of the magnitude and variability in peak impact force from the 286 participants from tap 1 to 30. A 

box plot for each tap number displays the minimum, first quartile, median, third quartile, and maximum values. Outliers are 

shown using circular symbols. The load cell reaches saturation at 1,000 N, a threshold which was reached in one elbow tap 

and 75 shoulder taps. 335 

 

 

To showcase the overlap between loading steps, we have made a confusion matrix based on a tapping norm. The IQR for wrist, 

elbow and shoulder is, respectively, 50-101 N, 123-237 N and 239-481 N. We have selected the value between the highest 
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IQR value in one loading step and lowest IQR value in each loading stepin the next to define the tapping norms between 340 

loading steps. For example, the upper bound wrist norm is 112 N which lies halfway between 101 N and 123 N. The lower 

bound for the wrist norm is the 25th percentile threshold, and the upper bound for the shoulder norm is the 75th percentile 

threshold. Using these values, we can make a confusion matrix to highlight how many hand taps that are within each interval 

(Table 4). From this, we can  e.g. see, for example, that 17.79% of elbow taps are within the wrist tapping normm, andor 

25.75% areis within the shoulder norm.  345 

 

Table 4: A confusion matrix based on the tapping norm. The table highlights how large of a proportion of the practitioners that 

have of the peak forces for wrist, elbow and shoulder taps fall within each tapping norm. 

 
 < Wrist  

(< 50 N) 

Wrist  

(50-112 N) 

Elbow 

(112-238 N) 

Shoulder 

(238-481 N) 

> Shoulder 

(> 481 N) 

Wrist  23.48% 53.79% 21.71% 1.02% 0.00% 

Elbow  0.92% 17.79% 53.82% 25.75% 1.73% 

Shoulder  0.04% 1.30% 22.24% 48.70% 27.72% 

 

3.2 Survey resultsExplanatory factors’ correlation with impactingpeak impact force 350 

The three panels in Ttable 5 contain the results for the different loading steps. Panel 1 shows the result for taps from the wrist, 

panel 2 for taps from the elbow, and panel 3 for taps from the shoulder. We have estimated five models for each type of tap to 

evaluate the role of weight (model I), height (model II), and gender (model III), respectively. Models IV and V adds a control 

for gender to the height and weight variables. 

 355 
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Overall, the models explain very little of the variance in peak tap forcetap hardness (between 3.1% and 7.2%). In other words, 

over 90% of peak tap force variance is explained by factors otherother factors than height, weight, gender, and geographical 

region. While we do find a significant positive correlation between tap hardnesspeak tap force and both height and weight, the 

effects are very small. An increase in weight by one kilo is associated with an increase in tap hardnesspeak force by 0.6% to 360 

0.8% in our sample. The effect of height is slightly larger, but still very small. An increase by one centimeter is associated 

with an increase in peak forcetap hardness by about 1%. In addition, in the models for taps from the elbow and shoulder, the 

effects of height and weight drop below 10% significance when we control for gender. The models for elbow and shoulder 

taps further suggest that gender is a more important explanatory factor than height and weight, as can be seen by the relatively 

larger R2-adjusted values for models where gender is included. This result does not hold for wrist taps, where gender is an 365 

equally poor (if not poorer) predictor of tap hardnesspeak tap force as weight and height. In general, our results suggest that 

women’s peak tap force is about 20% less hard in comparison tothan men’s peak force.   

There are two important findings from the regression models. First, the information contained in the explanatory variables 

cannot explain the bulk of the variance in the “tap-o-meter” data. Second, weight and height are significantly and positively 

correlated with tap force as individual explanatory variables (p-value <= 0.05, Appendix-4; p-value <= 0.05, Appendix-5); 370 

however, the significance is no longer apparent when we include gender (Appendix-6; Appendix-7). Thus, gender is the only 

explanatory variable that is significantly correlated with tap force across all multivariate regression models (p-value <= 0.05, 

Appendix-6; p-value <= 0.05, Appendix-7). 
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3.3 Idealization of taps as Gaussian function idealizations 

Both the peak force, 𝐹𝑝𝑒𝑎𝑘, and loading rate, 𝑟, are used to idealize the impact curves. First, consider the equation describing 375 

a Gaussian function of force, 𝐹, as a function of time, 𝑡. 

𝐹(𝑡) = 𝐹𝑝𝑒𝑎𝑘𝑒
−

1

2
(

𝑡−𝑡𝑝𝑒𝑎𝑘

𝜎
 )

2

 ,          (3) 

Where 𝐹𝑝𝑒𝑎𝑘 is the peak force and 𝑡𝑝𝑒𝑎𝑘 is the time at which the peak force occurs. The duration of the force curve is governed 

by 𝜎, the standard deviation if the Gaussian function were to be describing a normal distribution. Since 99.7% of the curve’s 

magnitude occurs during 6𝜎, the duration of impact is defined 6𝜎 in our study. Thus, the rise to peak force occurs over 380 

approximately 3𝜎, leading to the following relationship to calculate the loading rate, 𝑟. 

𝑟 ≈
𝐹𝑝𝑒𝑎𝑘

3𝜎
 ,           (4) 

This is an approximation rather than equality because it assumes a linear rise, rather than the non-linear Gaussian shape. 

However, since loading rate and peak force are the two metrics ascertained from the measured data, this approximation 

provides a convenient way to idealize the measured force curves. Rearranging the approximation yields 385 

𝜎 ≈
𝐹𝑝𝑒𝑎𝑘

3𝑟
 ,           (5) 

And substituting this relationship for 𝜎 in Eq. (3) yields the Gaussian approximation used to idealize the measured force-time 

curves. 

𝐹(𝑡) ≈ 𝐹𝑝𝑒𝑎𝑘𝑒
−

1

2
(

3𝑟(𝑡−𝑡𝑝𝑒𝑎𝑘)

𝐹𝑝𝑒𝑎𝑘
 )

2

 ,         (6) 

UUsing the median metrics along with their 25th and 75th percentiles (Table 3), the force curves idealized as Gaussians are 390 

shown in Figure 5.Using the median metrics along with their 25th and 75th percentiles are plotted in Figure 5. 
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 395 

Figure 5: An idealization of the taps as Gaussian functions. The center lines are from the median metrics and the shading is generated 

from the 25th and 75th percentiles. 
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By idealizing these tap curves as Gaussians, their respective linear impulses can be compared by calculating the area under 

curve (Hibbeler, 2010). Using NumPy’s implementation of the trapezoidal rule (Harris et al., 2020), the median wrist, elbow, 

and shoulder tap impulses are 0.652, 1.000.99, and 1.6058 N*s, respectively.  We estimate the medianaverage loading duration 400 

(6𝜎, section 2.5) of the impact curve to be around 210 ms for the wrist, 1415 ms for the elbow, and 110 ms for the shoulder 

(Figure 5). 

4. Discussion 

Using the data from the “tap-o-meter”, we can provide insight into the impact forces of hand taps and the variability between 

participants. We believe the quantification of the magnitudes and variabilities associated with hand-tap loading will assist with 405 

our understanding and interpretation of the ECT and CT. 

4.1 Comparison of pPeak applied force to other studies 

If we compare the results from our study with the ones from Sedon (2021) and Griesser et al. (2023), we find surprisingly large 

discrepancies when comparing the measured mean values (Table 64). It is unlikely that participants from New Zealand (Sedon, 

2021) tap half as hard as Griesser et al. (2023) observed or one-third of what we observe in our sample from Scandinavia, 410 

Europe, and North America. Griesser et al. (2023) recognize that they are not able to accurately measure peak force values due 

to their lower sampling rate but that the relative differences are systematic when comparing the mean values from wrist, elbow, 

and shoulder with data from our study. We have measured the 62 participants from Griesser et al. (2023) in parallel with our 

own measurement device, and the measurements areis very similar to the rest of our samples. This comparison suggests that 

the differences areis likely due to the difference in sampling rate.  415 

 

Table 64: A comparison of mean peak force values for wrist, elbow, and shoulder from relevant studies. 

Reference Wrist (mean) Elbow (mean) Shoulder (mean)  Sampling rate Samples 

Sedon (2021)1 24 N 62 N 136 N  Unknown 69 

Griesser et al. (2023) 41 N 97 N 185 N  100 Hz 62 

This study 79 N 185 N 373 N  50 kHz 286 

1 Sedon (2021) uses the maximum value from each loading step to calculate the mean between participants. 

 

We estimate the average loading duration of the impact curve to be around 20 ms for the wrist, 15 ms for the elbow and 10 ms 420 

for the shoulder (Figure 5). At a sampling rate of 100 Hz, we would only measure the impact force every 10 ms, making it 

unlikely to capture the peak force value accurately. The discrepancies in sampling rates make for an invalid comparison of 

peak force values between the studies. However, the relative difference between wrist, elbow, and shoulder is almost identical 

for all studies. All three studies have an approximately doubling in peak impact force from wrist to elbow to shoulder. 
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4.2 Body characteristics, gender, and region 425 

Sedon (2021) did not investigate whether there were differences due to weight, height, gender, or geographical region. Griesser 

et al. (2023) investigated shoulder height and found that participants with greater shoulder height had higher impact forces. 

They also mention that they found statistically significant correlations when comparing against height and weight, but no p-

values are provided. Our main finding from the survey data is that only gender has statisticallya statistically significant 

relationship with peak force. Body features (weight and height) are also correlated with peak tap force, but when included in 430 

a multivariate analysis with gender, they disappear. We believe the correlation found by Griesser et al. (2023) for body features 

is likely due to men being, in general, taller and heavier.  

 

Given the variations in observational guidelines for the ECT, we hypothesized that measuring differences among participants 

from the Alps, Scandinavia, and North America would be feasible. Despite this expectation, we observed no regional variations 435 

in peak tapping force. The lack of significant findings might be attributed to our limited predictive capability from the small 

sample size in a statistical context (n=286), or that there are no differences to be found. 

4.32 Variability in tapping force – implications for stability interpretations Variability between participants 

It is widely agreed that whether a crack propagates across the entire column or not is the key discriminator between unstable 

and stable slopes (Techel et al., 2020). However, both Winkler and Schweizer (2009) and Techel et al. (2020) show that the 440 

number of taps provides additional information, allowing a more refined distinction between results related to stable and 

unstable conditions. Techel et al. (2020) found the optimal threshold between ECTP20 and ECTP22, which aligns with the 

ECTP21 threshold suggested by Winkler and Schweizer (2009). Moving away from a binary classification came at the cost of 

introducing intermediate stability classes (Techel et al., 2020).  

 445 

These new intermediate stability class definitions rely heavily on the tap number when failure occurs. Variability in the applied 

force-time curves likely leads to variability in test results, particularly regarding the number of taps required to induce weak 

layer failure. It is important to emphasize that no tests offer a definitive “go/no go” result. With accuracies of around 80% , 

these tests are not reliable enough to be the main factor in our slope scale decision-making (Birkeland et al., 2023). 

 450 

We found the three loading steps to have be statistically different IQRs; this aligns with the results from Griesser et al. (2023), 

which highlight this as a positive outcome and that the CT and ECT loading stephand-tap procedure is somewhat reliable. 

Despite the statistical differences in each loading step, we question the application of average results to individual cases. The 

main difference in our argument lies in relying solely on mean statistics to develop impact force thresholdstapping norms used 

by individuals. For example, from Table 4, we can see that 17.79% and 25.75% of elbow taps have a peak force value that 455 

falls within the tapping norms for wrist and shoulder taps, respectively. This implies that 43.54% (17.79% + 25.75%) of elbow 
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taps would be misclassified as taps hinging from the wrist or shoulder. Assuming peak applied force influences test results, 

then this misclassification of loading steps will lead to a misclassification of test results. Because stability tests results aid in 

an individual’s decision-making process, a misclassification of test results could lead to dangerous consequences in real-world 

applications. 460 

 There is significant overlap between the 25th-75th percentile ranges of force applied during elbow taps with those of wrist 

and shoulder taps, where ~18% and ~26% of the data for elbow taps overlap with wrist and shoulder taps, respectively (Table 

4). These overlaps have practical significance in real-world applications.We observed different mean and median values for 

each loading step, and if we consider the interquartile range, which represents the data between the 25th and 75th percentile, 

there is nearly no overlap between loading steps. Doing a one-way ANOVA, we get a p-value lower than 0.01, indicating that 465 

the three loading steps are statistically different from each other, mirroring the findings of Sedon (2021) and Griesser et al. 

(2023).  

 

Griesser et al. (2023) highlighted the differences as a positive outcome of the test and that impact forces are somewhat reliable. 

Even though each loading steps are statistically different, it is not appropriate to use the average results in individual cases, 470 

especially in scenarios with the potential for fatal outcomes. The main difference in our argument lies in the inherent risk 

of relying solely on mean statistics in avalanche terrain, which is a risky environment. The presence of significant overlap 

between the 25th-75th percentile ranges of force applied during elbow taps with those of wrist and shoulder taps, where ~18% 

and ~26% of the data for elbow taps overlap with wrist and shoulder taps, respectively (Appendix-3). These overlaps have 

practical significance in real-world applications. Our interpretation aligns with the principle of ‘err on the side of caution,’ 475 

especially in fields where the consequences of errors can be catastrophic. 

 

4.3 Body characteristics, gender, and region 

Sedon (2021) did not investigate whether there were differences due to weight, height, gender, or geographical region. Griesser 

et al. (2023) investigated shoulder height and found that participants with greater shoulder height had higher impact forces. 480 

They also mention that they found statistically significant correlations when comparing against height and weight, but no p-

values are provided. Our main finding from the survey data is that only gender has statistically significant relationship with 

peak force. Body features (weight and height) are also correlated with peak tap force, but when included in a multivariate 

analysis with gender, they disappear. We believe the correlation found by Griesser et al. (2023) for body features is likely due 

to men being, in general, taller and heavier.  485 

 

Given the variations in observational guidelines for the ECT, we hypothesized that measuring differences among participants 

from the Alps, Scandinavia, and North America would be feasible. Despite this expectation, we observed no regional variations 
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in peak tapping force. The lack of significant findings might be attributed to our limited predictive capability from the small 

sample size in a statistical context (n=286). 490 

4.4 Idealization of taps as Gaussian functions 

The Gaussian function is often used in wave propagation problems because it represents a smooth, continuous pulse of 

disturbance (Langtangen & Linge, 2017). The measured shape of force-time curves is not a perfect Gaussian (Fig. 3), 

particularly after the peak force has been reached. The noisy, oscillatory decay following the peak is attributed, in part, to the 

instrumentation. Despite these imperfections, we intend to use this idealization as a steppingstone towards mathematical 495 

modelling efforts. In addition to providing this steppingstone, the idealization shown in Figure 5 provides a visualization of 

peak force, loading rate, impact duration, and variability associated with these quantities. The taps from the shoulder are 

generally a sharper pulse (i.e. shorter duration, higher peak force) than a wrist tap.  Despite the impact duration decreasing 

with increasing load step, there is an increase in linear impulse. The linear impulse is equated to the change in linear momentum 

of the system (Hibbeler, 2010). Thus, the increase in snow’s momentum from a hand tap is expected to be larger for higher 500 

load steps despite the shorter duration of impacts. The Gaussian idealization provided a convenient method of comparing linear 

impulses from the tap data whereas direct numeric integration of the load cell data would be inaccurate due to the long, 

oscillatory tails. 

4.5 Future topics of discussion for improved standardsImplications for avalanche practitioners 

Given the variability in tapping demonstrated in this study, we propose two considerations to improve the ECT standards. The 505 

two ideas outlined below are intended to be a foundation for further discussion in the broader avalanche community. 

4.5.1 Reduce tapping variability through the use of training and/or tools. 

The large variability in impact force between individual participants highlights the need for standardization. This could be 

done by creating a better definition of how the test should be conducted in terms of technique and tapping force. When 

interpreting the descriptive definitions from each loading step, it is impossible to infer which impact forces should be used as 510 

a baseline for each loading step. For example, the Norwegian description (Norwegian Water Resources and Energy Directorate, 

2022) using the arm’s weight would depend on the weight of each participant’s arm. Furthermore, using Canada as an example, 

there is no description of how hard each tap should be other than that it should not hurt at shoulder level (Canadian Avalanche 

Association, 2016). However, this would depend on the participant’s pain tolerance, snow properties (dampening) and the 

participant’s glove thickness. 515 

 

The community will need to agree on what the ideal impact force-time curves are. The impact forces presented in this paper 

could be used as a baseline for future clarifications if a “wisdom of crowds” impact force definition is employed (see 
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Surowiecki, 2005 for an introduction to the concept of “wisdom of crowds”). An alternative to the “wisdom of the crowds” is 

a selection of experts could choose to define the appropriate windows and thresholds. 520 

 

With these windows defined, a training device could be developed that measures the impact force and reports back to the 

participants whether they are within the correct window at each hand loading step. If a training device is considered to be the 

best solution to reduce interpersonal variability, we believe this paper provides sufficient information to build such a training 

device. Such devices already exist for CPR training and provides real-time measured feedback on compression rate (cpm), 525 

depth (mm), release (g), compressions count, and inactivity time during CPR, while also enabling responders to self-evaluate 

their performance with event statistics on the spot (Laerdal, 2023). 

 

Another solution could be to develop a tool that ensures consistent impact force, like the stuffblock test (Johnson and Birkeland, 

1998). The test involves filling a nylon sack with 4.5 kg of snow and dropping it in increments of 10 cm. However, this test 530 

type of loading has its challenges. Another solution could be to develop a tool that ensures consistent impact force (e.g., 

stuffblock test or known weights), but this option has its challenges. The peak force and loading rate are coupled and depend 

on the object’s mass, the drop height, and the materials that are in contact during impact. Not only mass and height would need 

to be recommended, but also materials and possible use of cushion-like material to recreate both peak force and loading rate 

of hand taps. Verplanck and Adams (2024) attempted to match the impact curves of hand taps using an acetal mass, foam 535 

cushion, and aluminum plate. However, they attempted to match their own hand taps, not the averages presented in our study. 

4.5.2 Revisiting the stability interpretation of CT and ECT Limit the ECT test’s interpretation 

Our second proposition comes from the implication of defining predictor thresholds based on impact forces from a large 

database of ECTs. The concern is that the large variability in hand-tap loading makes these average-based thresholds relatively 

weak. The thresholds make sense when analyzing large amounts of data (e.g. in the context of avalanche forecasting) but not 540 

when applying the average results to individual cases. We should therefore evaluate whether the importance of the number of 

taps outweighs the risk of misinterpreting the test result. 

 

One thought example could be whether it is appropriatevalid to interpret ECTP20 (intermediate stability)  differently compared 

to ECTP24 (unstable) in individual cases (Winkler et al. 2009), given the large discrepancies in impact force. There is also 545 

precedent for adopting a more straightforward approach in interpreting ECT results at the expense of leaving potentially 

relevant information out, as when shear quality and fracture characteristics were removed from the ECT (Simenhois et al., 

2018). In this approach, we would consider the test result to be unstable if crack propagation occurs, and stable otherwise. 

When using the more simple, binary approach, the impact force becomes less important, and the large variation is less of a 

problem. This interpretation raises the question of why having three steps in the loading procedure. If the avalanche community 550 
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aims to maintain consistency in this three-step loading method, it should adopt a refined version of the standards currently 

used in the United States, Canada, and Norway. 

4.6. Limitations 

4.6.1 The “tap-o-meter” 

While our study has made significant strides in accurately observing the force-time curves from hand taps, there are still areas 555 

that require further exploration. For instance, tap force measurements greater than 490 N may not be as accurate force 

measurements below 490 N because 0-490 N is the recommended load cell range. Also, our calibration assumes the load cell 

responds similarly to dynamic loads as static loads and eccentric loads as centered loads. These potential inaccuracies in the 

measurement technique likely contribute to the range and variability of force measured in this study. Future studies should 

therefore include a load cell with a higher range (e.g. 2,000 N), load cells designed for impacts (e.g. piezo-resistive), and a 560 

fixture to ensure centered loading. By doing so, we can enhance the precision, accuracy, and reliability of our measurements, 

leading to more robust and accurate findings. Despite these potential measurement inaccuracies, our study utilized a sampling 

rate (50 kHz) appropriate for capturing the entirety of the impact curve. This is an improvement over similar studies that used 

a sampling rate of 100 Hz. (Griesser et al. 2023) and 105 Hz (Thumlert and Jamieson, 2015). Sedon (2021) do not provide any 

sampling rate for their study.  565 

4.6.2 Data collection 

Initially, our idea was to have a representative group of participants with different levels of training. However, after the first 

data collection event, we realized that most novices did not know how to do the test, and it was difficult to get a representative 

sample from less experienced participants. 

 570 

Each participant was asked to fill out a survey. In retrospect, an estimate of how many ECTs each participant does in a season 

would be of interest. Most participants noted that they do it regularly at work, recreation or both, but we do not have an idea 

of how frequently they conduct ECTs. 

 

 575 

Furthermore, systematic notes about the tapping technique would also be of interest. A qualitative remark is that many of the 

participants infrequently use their fingertips on wrist taps as in the standards (American Avalanche Association, 2022; 

Canadian Avalanche Association, 2016). There was also a large variability in impact forces because of different techniques 

such as using the weight of the arm versus a shoulder tap so hard that it hurts the hand. In some cases, participants placed a 

glove on the shove to soften the blow. We also observed that some participants increased their impact force during the ten taps 580 

within each level, but we do not see this in our overall data (Figure 4). 
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Furthermore, systematic notes about the tapping technique would also be of interest. A qualitative remark is that many of the 

participants do not use their fingertips on wrist taps as in the standards (American Avalanche Association, 2022; Canadian 

Avalanche Association, 2016). There was also a large variability in impact forces because of different techniques such as using 

the weight of the arm versus a shoulder tap so hard that it hurts the hand. In some cases, participants placed a glove on the 585 

shove to soften the blow. We also observed that some participants increased their impact force during the ten taps within each 

level, but we do not see this in our overall data (Fig. 4). 

4.7 Future work 

During data collection, we asked participants if they regularly conduct CTs or ECTs for work, recreation or both. Participants 

were also asked to self-evaluate their avalanche assessment level on a scale from 1 to 6, following the definitions from the 590 

CARE-panel study (Hetland & Mannberg, 2023). Our hypothesis was that more experienced participants, particularly those 

frequently performing stability tests, would be more consistent within each loading step. However, the study’s shift in focus 

towards more experienced individuals (see Section 4.1.2) meant that we lacked a suitable reference group for comparison. For 

future studies, a more effective approach might involve quantifying the frequency of CTs or ECTs performed by each 

participant per season. This method could provide a more nuanced understanding of the relationship between the quantitative 595 

experience and tapping consistency. 

 

Snow’s response to impact forces remains an active research topic and is out of the scope of this study. However, variability 

in magnitude and duration of applied force will result in variability of the stress state within the snow which may lead to 

variability in test results. For more on this topic, we refer the reader to studies by Napadensky (1964), Wakahama & Sato 600 

(1977), Johnson et al. (1993), Schweizer et al. (1995), van Herwijnen & Birkeland (2014), Thumlert & Jamieson (2015), 

Griesser et al. (2023), and Verplanck and Adams (2024). Quantifying how variability in the applied force may lead to different 

ECT results would be a useful extension of our work presented here. 

5. Conclusion 

In this study, we developed a device that can accurately measure force-time curves from the hand-tap loading method. The 605 

dataset collected is the largest one to date (286 participants, 8522 taps), including data from Scandinavia, the Alps, and North 

America. From these data, we quantified peak force and loading rate for each tap, both of which increased for each loading 

step (i.e. wrist, elbow, shoulder). There is nearly no overlap in peak force from the 25th to 75th percentile between loading 

steps. Yet there is significant overlap in the outer quartiles with examples of some wrist taps with as high of peak force as 

others’ shoulder taps. 610 

 



25 

 

We investigated whether the differences in weight, height, gender, and/or geographical region influence peak force. We found 

that the explanatory variables largely do not account for the variance in the data, and only gender consistently correlates with 

tap force across all statistical models. 

 615 

Our results provide an answer to the question of “How hard do avalanche practitionerswe tap?” but not necessarily “How hard 

should avalanche practitionerswe tap?”. We recommend our data be used to facilitate discussions related to updating guidelines 

for the hand-tap loading method, possibility of including thresholds of peak force and loading rate for each loading step, and 

revisiting the interpretation of test results given the variability of applied load with the current tapping methodology. 
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Appendix 750 

 

Appendix-1: The “tap-o-meter” was calibrated using known weights ranging from ~50 to 300 N.  

 

Event Date Samples 

European Avalanche Warning Services General Assembly 15.06.2022 62 

Montana State University Snow and Avalanche Workshop 26.10.2022 25 

Norwegian Avalanche Observer Workshop 08.11.2022 46 

UIAGM General Assembly Norway 12.11.2022 27 

Friends of the Gallatin National Forest Avalanche Center Instructor Training 15.11.2022 9 

Southwest Montana Ski Patrol Snow Science Day  18.11.2022 30 

Mountain Guides Meeting, Innsbruck #1 30.11.2022 17 

Mountain Guides Meeting, Innsbruck #2 15.12.2022 15 

Forecasters at Parks Canada 24.02.2023 4 

Colorado Avalanche Information Center 02.03.2023 5 

Sawtooth Avalanche Center 08.03.2023 26 

Chugach National Forest Avalanche Information Center 13.03.2023 3 

Gallatin National Forest Avalanche Center Professional Development Workshop 05.04.2023 17 

Appendix-2: A description of each event, date and number of samples gathered. 
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< Wrist  

(< 50 N) 

Wrist  

(50-112 N) 

Elbow 

(112-238 N) 

Shoulder 

(238-481 N) 

> Shoulder 

(> 481 N) 

Wrist 23.48% 53.79% 21.71% 1.02% 0.00% 

Elbow 0.92% 17.79% 53.82% 25.75% 1.73% 

Shoulder 0.04% 1.30% 22.24% 48.70% 27.72% 

Appendix-3: To showcase the overlap between loading steps, we have made a confusion matrix based on a tapping norm. The 

IQR for wrist, elbow and shoulder is respectively 50-101 N, 123-237 N and 239-481 N. We have selected the value between 

the highest IQR value and lowest IQR value in each loading step to define the tapping norm. Using these values, we can make 

a confusion matrix to highlight how many hand taps that are within each interval. From this, we can e.g. see that 17.79% of 

elbow taps are within the wrist tapping norm, or 25.75% is within the shoulder norm.  760 

 

Model 1: Weight  

  ln(wrist) ln(elbow) ln(shoulder) 

        

Weight 0.008** 0.006** 0.006*  

  (0.002) (0.002) (0.002)   

Region (reference is European Alps) 

North America 0.085 0.040 0.095   

  (0.068) (0.059) (0.064)   

Scandinavia -0.041 -0.174* -0.084   

  (0.080) (0.068) (0.070)   

Constant 3.718** 4.717** 5.426** 

  (0.187) (0.179) (0.183)   

        

N 286.000 286.000 286.000   

F-value 4.809 5.294 3.649   

R2-adjusted 0.032 0.051 0.033   

AIC 424.658 359.685 388.486   

Appendix-4: OLS for weight. P-values: + p <= 0.1, * p <= 0.05 and ** p <= 0.01. 
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Model 2: Height 

  ln(wrist) ln(elbow) ln(shoulder) 

        

Height 0.011** 0.010** 0.008*  

  (0.004) (0.003) (0.003)   

Region (reference is European Alps) 

North America 0.106 0.058 0.111+  

  (0.068) (0.059) (0.064)   

Scandinavia -0.031 -0.167* -0.076   

  (0.079) (0.067) (0.068)   

Constant 2.335** 3.444** 4.477** 

  (0.637) (0.588) (0.587)   

        

N 286.000 286.000 286.000   

F-value 4.292 6.406 3.800   

R2-adjusted 0.035 0.057 0.032   

AIC 423.625 357.627 388.669   

Appendix-5: OLS for height. P-values: + p <= 0.1, * p <= 0.05 and ** p <= 0.01. 
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Model 3: Gender and weight  

  ln(wrist) ln(elbow) ln(shoulder) 

        

Female -0.137 -0.218** -0.256** 

  (0.089) (0.080) (0.089)   

Weight 0.005+ 0.002 0.001   

  (0.003) (0.003) (0.003)   

Region (reference is European Alps) 

  

North America 0.100 0.065 0.123+  

  (0.068) (0.057) (0.063)   

Scandinavia -0.023 -0.146* -0.051   

  (0.080) (0.068) (0.071)   

Constant 3.933** 5.061** 5.829** 

  (0.222) (0.209) (0.255)   

        

N 286.000 286.000 286.000   

F-value 4.007 5.835 6.517   

R2-adjusted 0.036 0.070 0.058   

AIC 424.503 354.705 381.780   

Appendix-6: OLS for gender and weight. P-values: + p <= 0.1, * p <= 0.05 and ** p <= 0.01. 
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Model 4: Gender and height  

  ln(wrist) ln(elbow) ln(shoulder) 

        

Female -0.121 -0.199* -0.266** 

  (0.095) (0.088) (0.091)   

Height 0.008+ 0.004 0.000   

  (0.004) (0.004) (0.004)   

Region (reference is European Alps) 

North America 0.113+ 0.070 0.126*  

  (0.067) (0.057) (0.063)   

Scandinavia -0.018 -0.146* -0.048   

  (0.079) (0.066) (0.069)   

Constant 2.955** 4.470** 5.847** 

  (0.801) (0.742) (0.801)   

        

N 286.000 286.000 286.000   

F-value 3.782 6.177 6.519   

R2-adjusted 0.037 0.072 0.058   

AIC 424.046 354.146 381.846   

Appendix-7: OLS for gender and height. P-values: + p <= 0.1, * p <= 0.05 and ** p <= 0.01. 

 

 


