
1 
 

Analysis of insoluble particles in hailstones in China 1 

Haifan Zhang1, Xiangyu Lin1, Qinghong Zhang1* , Kai Bi2*, Chan-Pang Ng1, Yangze Ren1, Huiwen Xue1, Li Chen3, Zhuolin 2 
Chang4 3 

1Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China 4 
2Field Experiment Base of Cloud and Precipitation Research in North China, China Meteorological Administration, Beijing 5 
101200, China 6 
3Electron Microscopy Laboratory, Peking University, Beijing 100871, China 7 
4Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic 8 
Agriculture in Arid Regions, China Meteorological Administration, Yinchuan 750002, China 9 

*Corresponding author: Qinghong Zhang (qzhang@pku.edu.cn); Kai Bi (bikai_picard@vip.sina.com) 10 

  11 



2 
 

Abstract. Insoluble particles influence weather and climate by heterogeneous freezing process. Current weather and climate 12 

models face considerable uncertainties in freezing processes simulation due to limited information regarding species and 13 

number concentration of heterogeneous ice-nucleating particles, particularly insoluble particles. Here, for the first time, size 14 

distribution and species of insoluble particles are analyzed in 30 shells of 12 hailstones collected from China, using scanning 15 

electron microscopy and energy dispersive X-ray spectrometry. A total of 289,461 insoluble particles were detected and 16 

identified into 3 species: organics, dust, and bioprotein, utilizing machine learning methods. The size distribution of insoluble 17 

particles of each species varies greatly among the different hailstones but little in their shells. Further, classic size distribution 18 

of organics and dust followed logarithmic normal distributions, which could potentially be adapted in future weather and 19 

climate models, despite the existence of uncertainties. Our findings highlight the need for atmospheric chemistry to be 20 

considered in the simulation of ice freezing processOur finding suggests the aerosol species and number concentration variance 21 

in  different storms should be considered in model simulation of the ice freezing process. 22 

1 Introduction 23 

Insoluble particles, acting as main heterogeneous ice-nucleating particles in the atmosphere(Lamb and Verlinde, 2011), 24 

influence precipitation formation and radiative forcing (Hoose and Möhler, 2012; DeMott et al., 2015), and further impact 25 

weather and climate (Vergara-Temprado et al., 2018). Temperature and vapor supersaturation are used to calculate the number 26 

concentration of ice crystal particles in microphysics parameterization rather than considering the physical properties of ice-27 

nucleating particles in weather and climate models (DeMott et al., 2010). Few models used the freezing parameterization,  28 

which establishes a direct connection between the number concentration of ice-nucleating particles and the number 29 

concentration of ice crystals. The absence of description regarding the number concentration of ice-nucleating particles in 30 

models can result in an incorrect estimation of ice crystals and lead to significant bias in radiative simulations (Vergara-31 

Temprado et al., 2018).  32 

An improved description of the number concentrations of ice-nucleating particles is needed (DeMott et al., 2010), while 33 

obstructed by a lack of complete microphysical observation in clouds about ice-nucleating particles. There are two ways to 34 

sample ice-nucleating particles: The first involves an airborne instrument, named continuous flow thermal gradient diffusion 35 

chamber (Rogers et al., 2001; Prenni et al., 2009; DeMott et al., 2010). The second is done in the laboratory, where scientists 36 

conduct freezing experiments (Hoose and Möhler, 2012). In most cases, it is necessary for an aircraft to collect air parcels for 37 

measurement of the physical properties of ice-nucleating particles in the air. However, former field projects sampled air parcels 38 

in anvils of convective clouds, cirrus and winter mixed-phase stratiform clouds. No flight report or article has reported that 39 

they sampled air parcels through cores in deep convection. This phenomenon is consistent with consideration for flight security. 40 

Thus, current observation is insufficient for describing the whole convective cloud, especially the deep convection in severe 41 



3 
 

storms. Absence about microphysical observations of ice-nucleating particles within severe storms leads to uncertainty in 42 

understanding cold cloud process. 43 

Hailstones, as a product of deep convective clouds, serves as a carrier of information within these clouds. Recently, 44 

analysis revealed large diversity in number concentration of soluble ions among hailstones from different hailstorms (Li et al., 45 

2018). Further, the detection of soluble ions along with isotopic analysis of a huge hailstone revealed an up-and-down hailstone 46 

growth trajectory, which demonstrated that the different shells were formed at different heights (Li et al., 2020). These studies 47 

have proved that aerosol information in convective cloud may be recorded in soluble particles within hailstones (Li et al., 2018, 48 

2020). Similarly, insoluble particles in hailstones can also record aerosol information in severe storms. 49 

Former studies showed that species and number concentration of insoluble particles in hailstones (Vali, 1968; Rosinski, 50 

1966; Michaud et al., 2014) would influence heterogeneous nucleation process (Hoose and Möhler, 2012) and further hailstone 51 

formation (Knight, 1981). Information on the species of insoluble particles can determine the freezing temperature when these 52 

particles participate in the initiation of ice crystal formation and subsequently impact hailstone embryo growth. Biological 53 

particles in hailstones, such as pollen and bacteria, are more efficient ice-nucleating particles than dust within the ice nucleation 54 

region of storm clouds (Michaud et al., 2014). They can raise the freezing threshold temperature above −15 °C , while dust 55 

particles are activated to form ice crystals at temperatures below −15 °C (Michaud et al., 2014). In addition to species, number 56 

concentration of insoluble particles can also influence the hailstone formation. When more dust particles were considered, a 57 

model simulation resulted in larger number concentration of ice crystals, smaller graupels (one type of hailstone embryos) size, 58 

and suppression of the hailstone growth (Chen et al., 2019). Nonetheless, previous studies involving analysis of insoluble 59 

particles in hailstones mainly focused on substances analysis or total number concentration statistics. A size distribution of 60 

insoluble particles in hailstones with species information, which is beneficial for completing microphysical observation in 61 

severe storms, has not been given so far. 62 

This study analyzed insoluble particles in hailstones collected from 8 hailstorms that occurred in China between 2016 63 

and 2021. The identification of insoluble particles in hailstones was conducted using Scanning Electron Microscopy (SEM) 64 

and Energy Dispersive X-ray spectrometry (EDX). The insoluble particles were identified into three species using Self-65 

Organized Maps (SOMs) and the random forest method. The variation in size distribution of insoluble particles in embryos 66 

and different shells was explored. Based on the size distributions, logarithmic normal distributions were fitted to describe the 67 

concentration of organics and dust in deep convection. 68 

2 Methods 69 

2.1 Sample information and experimental design 70 

Hailstones were collected from eight hailstorms that occurred in six provinces of China during warm seasons from 2016 71 
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to 2021 (Table 1, Fig. 1). Volunteers stored the hailstones in clean containers, including plastic bags, glass containers, and 72 

tinfoil, either during or immediately after the hail events. All hailstone samples were transported to a laboratory at Peking 73 

University in Beijing and kept at temperatures ranging from -18 °C to -4 °C. The hailstones were then transferred into vacuum-74 

sealed plastic pockets and preserved in a freezer, maintaining an internal temperature ranging from -29°C to -23°C, until they 75 

underwent further processing and analysis. 76 

 77 
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 78 

Fig. 1: Geographical distribution of collected hailstones. The collecting locations of hailstones are indicated by black dots. Provinces 79 

of China from which the hailstones were collected are represented by six different colors. The number of hailstones we analyzed was 80 

indicated in parentheses. Abbreviations (corresponding to Table 1): BJ - BeiJing; BS - BaiSe; FS - FuShun; GY - GuYuan; GYA - 81 

GuiYAng; YT - YanTai. 82 
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Table 1: Information about collected hailstones. 83 

 84 

a Date and Beijing local time of hailstorms occurrences. Hailstones were collected within 30 min during hail. 
b Latitude and longitude where the hailstone were collected. 
c Total column water vapor values (Beijing local time of ERA5 reanalysis data in square brackets (Hersbach et al., 2018)). 
d Depth between freezing level and orography (Beijing local time of ERA5 reanalysis data in square brackets(Hersbach et al., 
2018)). 
e Location and sample abbreviations. 
f Numbers of hailstones used in the experiments. 
g Diameter of hailstone (— means no record). 
h Insoluble particle number in hailstones. 

                                                     

Date & Beijing  

Local Timea 

Latitude & 

Longitudeb 

Total column 

water vaporc 

(kg / m2) 

Freezing level 

height – 

orography 

altituded (m) 

Location & Sample 

abbreviatione 

Samplesf 

Diameterg 

(mm) 

Particle 

numberh 

19 June 2018, 

18:30 

41.82° N, 

123.85° E 

26.35[18] 3241.66[18] FuShun (FS) 1 13.80 13,648 

10 June 2016, 

15:00 

40.00° N, 

116.32° E 

36.86[14] 3780.52[14] BeiJing (BJ1) 1 — 35,291 

30 June 2021, 

20:18 

39.95° N, 

116.30° E 

31.84[20] 3852.76[20] 

BeiJing (BJ2) 

5 

25.38 14,865 

BeiJing (BJ3) 24.11 20,233 

BeiJing (BJ4) 16.30 20,350 

BeiJing (BJ5) 14.86 14,350 

BeiJing (BJ6) 22.80 18,056 

01 Oct 2021, 

14:02 

37.49° N, 

121.44° E 

32.81[13] 3642.42[13] YanTai (YT) 1 45.00 32,137 

25 Aug 2020, 

18:00 

35.53° N, 

106.32° E 

17.83[17] 422.58[17] GuYuan (GY1) 1 15.00 29,341 

26 Aug 2020, 

16:00 

35.58° N, 

105.93° E 

17.01[15] 835.04[15] GuYuan (GY2) 1 18.50 32,107 

14 Apr 2016, 

20:00 

26.60° N, 

106.72° E 

31.62[19] 2147.58[19] GuiYAng (GYA) 1 26.20 20,690 

09 May 2016, 

18:51 

23.90° N, 

106.60° E 

47.45[18] 4572.70[18] BaiSe (BS) 1 — 38,353 
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Insoluble particles were extracted in the experiments (Fig. 2). The surface of each hailstone was polished to remove any 85 

attached grass or soil. Subsequently, the hailstones were sliced into cross-sections along the major axis, corresponding to the 86 

size of the hailstone embryo. The cross-section were further sliced into shells using heated Fe-Cr alloy wire at an air 87 

temperature below −8°C. The shells within a hailstone were distinguished based on their natural transparency or opacity. 88 

However, hailstones with a major axis < 7 mm could not be sliced due to the mass loss resulting from heating using our 89 

experimental apparatus. 90 

 91 

Fig. 2: Schematic diagram illustrating the experimental framework. [1-2] The surface of each hailstone was polished to remove any 92 

attached grass or soil. [3] Subsequently, the hailstones were sliced into cross-sections along the major axis, corresponding to the size 93 

of the hailstone embryo. [4-7] After photographing the hailstone cross-sections, they were further subdivided into shells using heated 94 

Fe-Cr alloy wire at an air temperature below −8°C. The shells were distinguished based on their natural transparency or opacity. [8] 95 

The solution of melting shell samples was then passed through a filter membrane to isolate the insoluble particles. [9] Each shell 96 

sample underwent analysis using scanning electron microscopy and energy-dispersive X-ray spectrometry to determine the 97 

elemental weight ratios of the insoluble particles within approximately 4 hours. [11] Finally, the elemental weight ratio information 98 

of hailstones was obtained. 99 

 100 

The shells were sequentially labeled with capital letters in alphabetical order, starting from the embryo (designated as 101 

shell A) and progressing toward the crust. After the ice shells melting into a solution, the solution was filtered through a 102 

membrane (VSWP01300, Merck KGaA, Germany) with a pore size of 30 nm. The 1 mL (a total of 5 mL) of distilled water 103 

underwent five passes through the filter membrane to ensure maximum retention of insoluble particles on the membrane. 104 
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Subsequently, the filter membrane was dried under an air temperature of approximately 40°C to satisfy the dry-environment 105 

requirements of SEM. 106 

The number of insoluble particles in each shell was determined using scanning electron microscopy (SEM), with a focus 107 

on particles larger than 0.16 μm. The length along the major axis of the particles was measured using Aztec software (Aztec 108 

software, Oxford Instruments plc, UK) on SEM images. The software was able to randomly capture electron microscopy 109 

photos of the membrane (Aztec User Manual). No particle will be counted repeatedly. Energy-dispersive X-ray spectrometry 110 

(EDX) was utilized to determine the elemental weight ratios of the particles. Only elements with an atomic number greater 111 

than 4 could be detected due to the X-ray input window being made of beryllium. Each shell sample was analyzed within 112 

approximately 4 hours by SEM and EDX. The scanning mode of SEM was set in a random order to reduce errors caused by 113 

bias in the detection area. 114 

2.2 Clustering and classification  115 

The number of insoluble particles was measured using Aztec on SEM images, but the species could not be determined 116 

directly and were identified by machine learning method. The criteria of species classification were established by the SOMs 117 

method to determine the species of unclassified particles. These labeled particles were then regarded as trainning set in random 118 

forest classifier. Details are presented in Fig. 3. 119 

 120 

Fig. 3: Schematic diagram illustrating the methodological framework used for particle identification in this study. A total of 100 121 

matrices 𝐌𝐢 , with 𝒊 ranging from 1 to 100, were utilized in self-organized maps clustering analyses, each containing 81,888 122 

unidentified particles with 19 elemental features (N, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Br, Ba, and Pb). The 123 

centroid matrix 𝐂𝐤,𝐢,𝐣  represents the clustering results obtained through the self-organized maps method with a given cluster 124 
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number 𝒌. The self-organized maps operation with the same 𝒌 was repeated 100 times to ensure result robustness, where 𝒋 125 

denotes the number of repetitions ranging from 1 to 100. Four indices, Silhouette index (Sil), Calinski–Harabasz index (CH), 126 

modified Hartigan index (Hart), and Davies–Bouldin index (DB), were employed to determine the optimal parameters 𝒌, 𝒊, and 𝒋. 127 

The matrix 𝐌𝐢 containing identified 81,888 particles was randomly divided into a training set (80 %) and a test set (20 %) for 128 

random forest classification. The 10-fold cross-validation was utilized to determine the best tree. Abbreviations (corresponding to 129 

Table 1): BJ - BeiJing; BS - BaiSe; FS - FuShun; GY - GuYuan; GYA - GuiYAng; YT - YanTai. 130 

 131 

With reference to the studies of Ault et al. (2012) and Kirpes et al. (2018) and considering the results of elemental weight 132 

ratios determined by EDX analysis, 19 elements (N, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Br, Ba, and Pb) 133 

were selected to confirm the species of particles. C and O were not taken in account when clustering or classifying particles as 134 

the membrane filters were made from cellulose acetate and cellulose nitrate, which contain C, H, N, and O. We could not detect 135 

H because the ray-input window was made of beryllium. All particles showed high contents of C and O but different contents 136 

of N, so N was retained as a feature of classification. 137 

Species of aerosol particles vary with sampling location (Tao et al., 2017). Therefore, when establishing the matrices 138 

of elemental weight ratios for clustering, equal amounts of data were randomly extracted from the sample data from each 139 

province to ensure the inclusion of a consistent proportion of samples from each region in the training process. A hailstone FS 140 

collected from Fushun City, Liaoning Province was shown to contain 13,648 insoluble particles, which was the smallest among 141 

all samples from six provinces (Fig. 1). With random sampling of 13,648 particles from each province, the matrix used in 142 

clustering analyses included 81,888 particles. This operation was repeated 100 times to obtain 100 matrices 𝐌𝐢  with 𝑖 143 

ranging from 1 to 100. 144 

Each matrix 𝐌𝐢 was clustered using the SOMs method. SOMs belong to the category of competitive learning algorithms 145 

and are a type of artificial neural network (Kohonen, 1990). A basic SOMs network consists of an input layer, weight vectors, 146 

and an output layer. Each neuron in the output layer possesses a set of weight vectors, which represent the topological structure 147 

of the neurons in the output layer, associated with the inputs. SOMs are commonly used as dimensionality reduction algorithms, 148 

enabling the representation of high-dimensional data in a lower-dimensional structure while preserving the original topology. 149 

When SOMs are trained on unlabeled data for clustering purpose, it proves highly beneficial in clustering unlabeled and high-150 

dimensional inputs into visualized two-dimensional outputs.  151 

We utilized the SOMs code from MATLAB’s deep learning toolbox. The input of SOMs is 𝐌𝐢. At begin, the neural 152 

network in the output layer was initialized as 1-D dimension with 𝑘 neurons. The number of neurons in the output layer 153 

matches 𝑘 ranging from 2 to 10. The operation of SOMs with the same initialized 𝑘 neurons and input matrix 𝐌𝐢 was 154 

repeated 100 times to ensure result robustness. The clustering result was stored in matrix 𝐂𝐤,𝐢,𝐣, which corresponded to the 155 
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given 𝑘 centroids in 𝐌𝐢 with 𝑗௧௛ SOMs operation. Each 𝐂𝐤,𝐢,𝐣 matrix consists of 𝑘 rows and 19 columns (corresponding 156 

to the number of elemental features). Four indices, namely, the Silhouette index (Rousseeuw, 1987), the Calinski–Harabasz 157 

index (Calinski and Harabasz, 1974), the modified Hartigan index (Sibson and Hartigan, 1976), and the Davies–Bouldin index 158 

(Davies and Bouldin, 1979), were selected as evaluation indicators to determine the parameters 𝑘, 𝑖 and 𝑗. The Silhouette 159 

index, Davies–Bouldin index, and Calinski–Harabasz index assess the similarity between a particle and others within the same 160 

cluster, as well as the dissimilarity across different clusters for a given 𝑘. Hartigan index evaluates whether it is worthy to 161 

increase the 𝑘. Notably, Hartigan index has undergone modifications that preserve its statistical meaning while conserving 162 

computational resources. 163 

Hartigan index (Sibson and Hartigan, 1976) is defined as: 164 

𝐻ሺ𝑘ሻ ൌ ሺ𝑁 െ 𝑘 െ 1ሻ ቈ 
𝑒𝑟𝑟ሺ𝑘ሻ

𝑒𝑟𝑟ሺ𝑘 ൅ 1ሻ
 െ  1቉ , 𝑘 ൌ 2~10 ሺ1ሻ 165 

𝑒𝑟𝑟ሺ𝑘ሻ ൌ ෍ ෍ ൫𝑥௚ െ 𝐶௚൯
ଶ

௫೒∈஼೒

௞

௚ ୀ ଵ

ሺ2ሻ 166 

 167 

𝑘 : the number of clusters. 168 

𝐶 : the centroid of all data 169 

𝑁 : the number of observations in data  170 

𝐶௚ : the centroid of cluster g 171 

𝑥௚ : the observation of cluster g 172 

𝑥௡ : the observation of data 173 

The calculation of 𝐻ሺ𝑘ሻ requires clustering for values of 𝑘 ranging from 2 to 11 in order to obtain 𝐻ሺ2ሻ, 𝐻ሺ3ሻ, …, 174 

𝐻ሺ10ሻ. Clustering particles into 11 clusters would require performing an additional 10,000 iterations of the SOMs, with 100 175 

iterations of extracting 𝐌𝐢 and 100 iterations of SOMs for each 𝐌𝐢. Additionally, we observed that the SOMs did not perform 176 

well in the Silhouette index (Sil), the Calinski–Harabasz index (CH), and the Davies–Bouldin index (DB) when k = 2. As a 177 

result, we introduced modifications to the Hartigan index. 178 

𝐻𝑎𝑟𝑡ሺ𝑘ሻ ൌ ሾ𝑁 െ ሺ𝑘 െ 1ሻ െ 1ሿ ቈ 
𝑒𝑟𝑟ሺ𝑘 െ 1ሻ

𝑒𝑟𝑟ሺ𝑘ሻ
 െ  1቉ ,𝑘 ൌ 2~10 ሺ3ሻ 179 

𝑒𝑟𝑟ሺ𝑘ሻ ൌ ෍ ෍൫𝑥௚ െ 𝐶௚൯
ଶ

௫∈஼೒

௞

௚ ୀ ଵ

, 𝑘 ൒ 2 ሺ4ሻ 180 

 181 

When 𝑘 ൌ  1, it indicates that all particles are belong to one cluster. 182 

𝑒𝑟𝑟ሺ1ሻ ൌ ෍ሺ𝑥௡ െ 𝐶ሻଶ
ே

௡ ୀ ଵ

ሺ5ሻ 183 
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In clustering with a specific value of 𝑘, our objective is to have particles tightly grouped together in feature space while 184 

ensuring that the centroids exhibit a significant dispersion compared to 𝑘 െ  1. A higher value of 𝐻𝑎𝑟𝑡ሺ𝑘ሻ for a given 𝑘 185 

indicates improved clustering performance. The best 𝑘, 𝑖 and 𝑗 was chosen by combining the evaluation of the four indices 186 

(Fig. 4). We applied max normalization to rescale the four indices, 𝑆𝑖𝑙ሺ𝑘ሻ, 𝐶𝐻ሺ𝑘ሻ, 𝐷𝐵ሺ𝑘ሻ, and 𝐻𝑎𝑟𝑡ሺ𝑘ሻ. Subsequently, the 187 

best combination of 𝑘 , 𝑖  and 𝑗  was determined, resulting in ሼ𝑆𝑖𝑙ሺ𝑘, 𝑖, 𝑗ሻ  ൅  𝐶𝐻ሺ𝑘, 𝑖, 𝑗ሻ  ൅  𝐻𝑎𝑟𝑡ሺ𝑘, 𝑖, 𝑗ሻ  െ  𝐷𝐵ሺ𝑘, 𝑖, 𝑗ሻሽ 188 

reaching its maximum. 189 

 190 

191 

Formatted: Indent: First line:  2 ch
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 192 

Fig. 4: Evaluation of self-organized maps clustering results. The clustering results of self-organized maps were evaluated using (a) 193 

Silhouette index, (b) Davies–Bouldin index, (c) Calinski–Harabasz index, and (d) Hartigan index. The self-organized maps operation 194 

was repeated 100 times to ensure result robustness. The solid lines and shading represent the average and spread of 100 repetitions, 195 

respectively. 196 

 197 

The centroid matrix 𝐂𝐤,𝐢,𝐣 with best 𝑘, 𝑖 and 𝑗 was treated as a training set for random forest classification. The chosen 198 

centroid matrix 𝐂𝐤,𝐢,𝐣 with the top four elements is shown in Fig. 5 with k = 6. The first species with low elemental weight 199 

ratio except C and O contents was considered to be organics. The second species with high Fe content and low Cr content was 200 

introduced by the material of the slicer used in the experiment. The third species had a high Al content representing oxides or 201 

carbonates of aluminum. The fourth and fifth species were mineral silicates. So that, the third, fourth, and fifth species were 202 

referred to as “dust”. The last species with high N content was protein-containing biological aerosol. 203 
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204 

 205 

Fig. 5: Centroids of clustering with six clusters from self-organized maps results and each species portion. Colored bars show the 206 
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top four elements of each species. The stem bars show the portion of each species. The average contents of C and O of each species 207 

are marked at the end of the stem bars. 208 

 209 

The random forest method was applied in classifying insoluble particles, which involves randomly growing 100 210 

classification trees. The training set consisted of 80 % of 𝐌𝐢 and 10-fold stratified cross-validation was applied during the 211 

training process to find the best tree among the 100 random trees. The remaining 20 % particles of 𝐌𝐢 was used as the test set 212 

to evaluate the best tree. The confusion matrix of classification results are shown in Fig. 6. All remaining insoluble particles 213 

were classified by this tree. Finally, we identified three species: organics, dust, and bioprotein aerosols. 214 

 215 
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 216 

Fig. 6: Confusion matrix of the best random forest classifier tree. The numbers on the diagonal are accurately predicted insoluble 217 

particles. Numbers in bold indicate the accuracy of prediction of each type. 218 

 219 

2.3 Conversion of insoluble particle number concentration 220 

Particle number was converted to a number concentration per cubic centimeter volume water (hereinafter referred to as 221 

number concentration) using the following formula: 222 

𝑛௟௜௤௨௜ௗ ∙ 𝑉௟௜௤௨௜ௗ  ൌ  𝑁௟௜௤௨௜ௗ  ൌ  𝑁ௗ௜௟௨௧௘ௗ  ൌ  𝑛ௗ௜௟௨௧௘ௗ ∙ 𝑉ௗ௜௟௨௧௘ௗ ሺ6ሻ 223 

The number of insoluble particles in the melted shell solution (𝑁௟௜௤௨௜ௗ) can be calculated by multiplying their number 224 

concentration (𝑛௟௜௤௨௜ௗ) with the volume of the shell solution (𝑉௟௜௤௨௜ௗ). Part of the solution was not used up in the experiments 225 

and was kept as a backup. Therefore, the shell solution was diluted in some experiments and part of the solution was consumed 226 

in the experiments. As in the melting solution, the number of insoluble particles in the diluted solution (𝑁ௗ௜௟௨௧௘ୢ ) can be 227 

calculated by multiplying their number concentration (𝑛ௗ௜௟௨௧௘ୢ) with the volume of the diluted solution(𝑉ௗ௜௟௨௧௘ୢ). The total 228 

particle number in the melted shell (𝑁௟௜௤௨௜ௗ) remains unchanged during the dilution process (𝑁ௗ௜௟௨௧௘ୢ). 229 

𝑛ௗ௜௟௨௧௘ௗ  ൌ  𝑛௨௦௘ௗ  ൌ  
𝑁௨௦௘ௗ
𝑉௨௦௘ௗ

ሺ7ሻ 230 
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The number concentration of the diluted solution (𝑛ௗ௜௟௨௧௘ௗ) is equal to that of the consuming part (𝑛௨௦௘ௗ). Assuming the 231 

rinsing operation ensures all insoluble particles in the shell were on the membrane, the number of insoluble particles in the 232 

consumed solution (𝑁௨௦௘ௗ) is equal to the number of insoluble particles counted on the membrane (𝑁௙௜௟௧௘௥).  233 

We use SEM to capture electron microscopy images of the membrane. Assuming a uniform distribution of insoluble 234 

particles on the filter membrane, a software randomly capture electron microscopy photos of the membrane and count the 235 

visible insoluble particles in those images. The relationship between total number of visible insoluble particles counted in the 236 

images (𝑁௖௢௨௡௧) and 𝑁௙௜௟௧௘௥ is: 237 

𝑆௜௠௔௚௘௦
𝑆௙௜௟௧௘௥

 ൌ  
𝑁௖௢௨௡௧
𝑁௙௜௟௧௘௥

ሺ8ሻ 238 

That is, N୤୧୪୲ୣ୰ is determined by multiplying Nୡ୭୳୬୲ by the ratio of the areas between the entire filter membrane (S୤୧୪୲ୣ୰) 239 

and the electron microscopy images (S୧୫ୟ୥ୣୱ). These three formulas Eq. (6-8) were reduced to Eq. (9): 240 

𝑛௟௜௤௨௜ௗ  ൌ  
1

𝑉௟௜௤௨௜ௗ
∙
𝑆 ௙௜௟௧௘௥

𝑆௜௠௔௚௘௦
∙
𝑉ௗ௜௟௨௧௘ௗ
𝑉௨௦௘ௗ

∙ 𝑁௖௢௨௡௧ ሺ9ሻ 241 

Here, 𝑆௙௜௟௧௘௥, 𝑆௜௠௔௚௘௦, 𝑁௖௢௨௡௧, 𝑉ௗ௜௟௨௧௘ௗ , and 𝑉௨௦௘ௗ can be measured. The liquid volume (𝑉௟௜௤௨௜ௗ) was determined as the 242 

average of readings obtained by two experimenters from the test tube. Take the logarithm on both sides: 243 

𝑙𝑛 𝑛௟௜௤௨௜ௗ  ൌ  െ 𝑙𝑛 𝑉௟௜௤௨௜ௗ ൅ 𝑙𝑛 𝑆 ௙௜௟௧௘௥ െ 𝑙𝑛 𝑆௜௠௔௚௘௦ ൅ 𝑙𝑛 𝑉ௗ௜௟௨௧௘ௗ െ 𝑙𝑛 𝑉௨௦௘ௗ ൅ 𝑙𝑛𝑁௖௢௨௡௧ ሺ10ሻ 244 

Based on Eq. (10), a tiny change in 𝑛௟௜௤௨௜ௗ can be represented as 𝑑𝑛௟௜௤௨௜ௗ:  245 

𝑑𝑛௟௜௤௨௜ௗ  ൌ  𝑛௟௜௤௨௜ௗ ∙ ቆെ
𝑑𝑉௟௜௤௨௜ௗ
𝑉௟௜௤௨௜ௗ

൅
𝑑𝑉ௗ௜௟௨௧௘ௗ
𝑉ௗ௜௟௨௧௘ௗ

െ
𝑑𝑉௨௦௘ௗ
𝑉௨௦௘ௗ

൅
𝑑𝑁௖௢௨௡௧
𝑁௖௢௨௡௧

ቇ ሺ11ሻ 246 

As, 247 

𝑑𝑆 ௙௜௟௧௘௥  ൌ  𝑑𝑆௜௠௔௚௘௦  ൌ  0 ሺ12ሻ 248 

The uncertainty (∆) of 𝑛௟௜௤௨௜ௗ comes from the measurement error of the experimental instruments, following below 249 

(Taylor, 1997): 250 

∆ ൌ  𝑛௟௜௤௨௜ௗ ∙ ඨቆ
𝑑𝑉௟௜௤௨௜ௗ
𝑉௟௜௤௨௜ௗ

ቇ
ଶ

൅ ൬
𝑑𝑉ௗ௜௟௨௧௘ௗ
𝑉ௗ௜௟௨௧௘ௗ

൰
ଶ

൅ ൬
𝑑𝑉௨௦௘ௗ
𝑉௨௦௘ௗ

൰
ଶ

൅ ൬
𝑑𝑁௖௢௨௡௧
𝑁௖௢௨௡௧

൰
ଶ

ሺ13ሻ 251 

Here, the accuracy of the test tube is 0.1 mL. The term 𝑑𝑉 represents the greatest reading error caused by human and 252 

was set to 0.05 mL. The quantity 
ௗே೎೚ೠ೙೟
ே೎೚ೠ೙೟

 corresponds to the uncertainty associated with size of insoluble particles and the 253 

scan settings. 254 

𝑑𝑁௖௢௨௡௧
𝑁௖௢௨௡௧

 ൌ  
𝑑𝑃𝑠
𝑃𝑠

 ൌ  
3

6,340,608
ሺ14ሻ 255 

The term 𝑑𝑃𝑠 represents the minimum number of pixels that can be detected in an image. 𝑃𝑠 denotes the total number 256 

of pixels in the micrograph.  257 

2.4 Curves fitting 258 
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We aggregated insoluble particles into 0.2-μm intervals (0.2 μm bin interval in Fig. 7 and Fig. 10, and 2 μm bin interval 259 

in Fig. 8 and Fig. 9) to fit the logarithmic normal distribution: 260 

𝑛ሺln𝐷ሻ  ൌ  
𝑁

√2𝜋 𝑙𝑛 𝜎௚
൉ 𝑒𝑥𝑝 ൥െ

൫𝑙𝑛 𝐷 െ 𝑙𝑛 𝐷௚൯
ଶ

2 𝑙𝑛ଶ 𝜎௚
൩ ሺ15ሻ 261 

𝑁  denotes the total number concentration of particles. Both 𝑛ሺln𝐷ሻ  and 𝑛ሺ𝐷ሻ  represent the size distributions of 262 

particles, where 𝐷 is the diameter of insoluble particles. 𝑛ሺln𝐷ሻ and 𝑛ሺ𝐷ሻ can be converted to each other by 𝐷.  263 

𝑛ሺ𝐷ሻ  ൌ  
1
𝐷
൉ 𝑛ሺ𝑙𝑛 𝐷ሻ ሺ16ሻ 264 

 265 

When the 𝑁௖௢௨௡௧ in an interval equals 1, the number concentration will exhibit a flat tail due to the conversion to obtain 266 

𝑛௟௜௤௨௜ௗ. The fitting data were selected with intervals equals to 0.2 μm. The least squares method was applied to determine the 267 

fitting parameters and R2 was used to estimate the goodness of fit. The two centroids of fitting parameters of organics and dust 268 

were determined by K-means method. 269 

3 Results 270 

A total of 289,461 insoluble particles were detected from 30 shells of 12 hailstones using SEM. The identification of 271 

insoluble particles employed SOMs for clustering and random forest for classification. Four indices were utilized to determine 272 

the appropriate parameters in clustering. The clustering results (𝐂𝐤,𝐢,𝐣 ) were divided into a training and a testing set for 273 

classification. The confusion matrix of the best classifier showed an accuracy, precision, and recall of 99.7 %, 99.4 3 %, and 274 

99.25 %, respectively. All particles were classified as organics, dust, and bioprotein aerosols (i.e., the fraction of biological 275 

aerosols with protein content). 276 

3.1 Sample similarity 277 

Five of the 12 hailstones (BJ2–BJ6) were from the same hailstorm that occurred in Beijing on June 30, 2021. The insoluble 278 

particles present in BJ2–BJ6 showed similarity in the size distribution of organics, dust, and bioprotein aerosols, while those 279 

from 8 hailstones (BJ1, BJ2, BS, FS,GY1, GY2, YT and GYA) exhibited a wider dispersion (Fig. 7). The results were similar 280 

to those of Li et al., who reported that the number concentrations of water-soluble ions varied among hailstorm events but 281 

showed similarity in the same storm (Li et al., 2018). These analyses suggested that insoluble particles in the hailstorm may 282 

come from local natural or anthropogenic emissions (e.g., soil dust, aerosols from biomass and fossil fuel combustion, products 283 

of the conversion of gaseous precursors), which is also suggested by the results on water-soluble ions (Beal et al., 2022). The 284 

updraft within the hailstorm is likely to bring insoluble particles from local surfaces or boundary layers into deep convective 285 

clouds, as hailstorms are among the most severe storms with strong updrafts (Battaglia et al., 2022). 286 
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 288 

Fig. 7: Size distribution of (a) organics, (b) dust, and (c) bioprotein aerosols of insoluble particles in 12 hailstones. The colored dots 289 

represent data from 7 hailstones BJ1, BS, FS,GY1, GY2, YT and GYA which were from different hailstorms. The black and gray 290 

dots correspond to data from hailstones (BJ2 to BJ6) that were from the same hailstorm occurring in Beijing on June 30, 2021. The 291 

blue and gray bars indicate the standard deviation of number concentration of insoluble particles from 8 hailstones (BJ1, BJ2, BS, 292 

FS,GY1, GY2, YT and GYA) from 8 cases and 5 hailstones (BJ2 to BJ6) from one case, respectively. Abbreviations (corresponding 293 

to Table 1): BJ - BeiJing; BS - BaiSe; FS - FuShun; GY - GuYuan; GYA - GuiYAng; YT - YanTai. 294 
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3.2 Size distribution in embryos 295 

All hailstone embryos analyzed in this study are graupel particles, which grows from the initial ice particles through 296 

accretion of supercooled droplets (Knight, 1981). These initial ice particles are formed through nucleation of insoluble particles 297 

where heterogeneous nucleation take place (Lamb and Verlinde, 2011). In other words, insoluble particles in graupels influence 298 

the formation of ice crystals and subsequently affect the formation of hailstone embryos.  299 

300 
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 301 

Fig. 8: Size distribution of (a) organics, (b) dust, and (c) bioprotein aerosols  insoluble particles in hailstone embryos. Colors 302 

represent different hailstones.Different colors represent the provinces in China from which the hailstones were collected. Black 303 

triangles indicate the locations of hailstone sample collection. The white dashed circle highlights part of the hailstone embryo. 304 

Abbreviations (corresponding to Table 1): BJ - BeiJing; BS - BaiSe; FS - FuShun; GY - GuYuan; GYA - GuiYAng; YT - YanTai. 305 

 306 

The variations in number concentrations of dust and bioprotein insoluble particles indicate that particle number 307 

concentrations decrease exponentially with particle diameter, with markble variation observed among hailstorms (Fig. 8). BJ2 308 

was selected to represent five hailstones from the same storm to simplify comparison. The size distribution distinguishes 309 

organics from dust and bioprotein aerosols. The number concentrations of organics from all samples decrease with particle 310 

diameter less than 8 μm, while those of GY1 and GY2 fluctuate starting at diameters of 8 μm and 12 μm, respectively. 311 

Compared to other hailstones, GY1 and GY2 were collected in remote areas, where is fields of rural areas dedicated to growing 312 

crops near the south of the Gobi Desert. Therefore, GY1 and GY2 have a coarse mode of organics with particle diameters 313 

larger than 12 μm, possibly might due to the emission of spring-wheat straw burning and unrestricted diesel engine vehicles. 314 

The transport of coal combustion in surrounding cities may also contribute to the coarse mode organics. Among all cases, there 315 

is a significant variance in the size distribution of both organics and dust. The number concentration of organics from a 316 

hailstone embryo varied from 1 to 390 times, compared to those at the same particle diameter in hailstone embryos from 317 

Formatted: Left



22 
 

different cases. The number concentration of dust from a hailstone embryo varied from 1 to 527 times, compared to those at 318 

the same particle diameter in hailstone embryos from different cases. The number concentrations of dust from BJ1, BJ2, and 319 

GY1 are at least 3 times higher than organics in particles of the same diameter in the range of 2–24 μm. 320 

Moreover, dust showed a wider size distribution than organics and bioproteins among all samples. Dust from GY1 had a 321 

higher number concentration and larger maximum size (42 μm) compared to other hailstone embryos. Hailstone samples with 322 

high insoluble particle content, i.e., GY1 and GY2, showed significantly lower total column water vapor values and smaller 323 

depth between freezing level height and orography within one hour before hailstorm occurrence, compared to other hailstones 324 

(Table 1). The competition of condensation and relative shorter updraft pathway might be responsible for the high number 325 

concentrations of organics, dust, and bioproteins in GY1 and GY2, as compared with other haistones. Bioprotein aerosols, 326 

with high freezing efficiency, may have formed initial ice particles in GY1, GY2, and YT, while dust or organics formed initial 327 

ice particle in hailstorms in the other five cases. All hailstone embryos contained organics and dust, but not all hailstone 328 

embryos contained a significant amount of bioprotein aerosols. Due to limited comprehension of the transportation and 329 

transformation processes of biological materials, it is challenging that to establish a definitive relationship between biological 330 

protein particles and biological aerosols (Fröhlich-Nowoisky et al., 2016). 331 

3.3 Size distribution in shells 332 

Size distribution of each species varieded little in characteristics between outer shells with the embryos (Fig. 9). In a four-333 

shell hailstone, the number concentrations of insoluble particles exhibited V-shaped distributions (BS and YT) or inverse V-334 

shaped distributions (BJ1) from embryo to crust. Five of nine two-shell hailstones showed higher number concentrations of 335 

dust in crusts than embryos, while seven of them showed higher number concentrations of organics in embryos than crusts. 336 

Moreover, the quantification of differences in number concentration varied little among shells. The 90.5 % points showed that 337 

differences in number concentration of the same kind particles in a shell compared to the previous shell at the same diameter 338 

was within twice (294 data points in Fig. 9). This observation is attributed to the fact that the growth of hailstones beyond the 339 

embryo stage relies on the accretion of supercooled water rather than ice crystals (Lamb and Verlinde, 2011). Consequently, 340 

the hailstone recorded not only insoluble particles during the embryo formation, but also insoluble particle in the hailstone 341 

growth zone throughout the hailstorm. As a result, the size distribution of particles within the entire hailstones may represent 342 

the distribution of insoluble particles in deep convection regions where the hailstones went through. 343 
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 345 

Fig. 9a.: Size distribution of insoluble particles within the natural shells of 12 hailstones is represented. Blue triangles, orange squares, 346 

and purple diamonds are used to indicate dust, organics, and bioprotein aerosols, respectively. The natural shells are denoted 347 

alphabetically with capital letters (shell A refers to embryos, and shell B/D refers to the crust of hailstones). The arrow direction 348 

illustrates the tendency of particle number concentration in each layer compared to the previous shell. Shading is employed to 349 
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indicate uncertainty. Detailed calculations are provided in the supplementary information. Abbreviations (corresponding to Table 350 

1): BJ - BeiJing; BS - BaiSe; FS - FuShun; GY - GuYuan; GYA - GuiYAng; YT - YanTai. 351 

 352 

353 
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 354 

Fig. 9 b is a continuation of Fig. 9acontinued. 355 
 356 

3.4 Logarithmic normal distribution of dust and organics 357 

The size distributions of dust and organics in the whole hailstone can be described by a logarithmic normal distribution 358 

(Fig. 10a) (Lamb and Verlinde, 2011): 359 

𝑛ሺ𝑙𝑛𝐷ሻ  ൌ  
𝑁

√2𝜋 𝑙𝑛𝜎𝑔
൉ 𝑒𝑥𝑝 ቎െ

൫𝑙𝑛𝐷 െ 𝑙𝑛𝐷𝑔൯
2

2 𝑙𝑛2 𝜎𝑔
቏ , ሺ𝐷 ൐ 0.2 𝜇𝑚ሻ ሺ17ሻ 360 

Where 𝑛ሺln𝐷ሻ is the number concentration of insoluble particles per cubic centimeter volume water ranging from 361 

ln𝐷 െ ଵ

ଶ
d ln𝐷 to ln𝐷 ൅ ଵ

ଶ
d ln𝐷. Here, 𝐷 represents the diameter of particles (in micrometers), 𝑙𝑛 𝐷௚  is the geometric 362 

mean diameter, and ln𝜎௚ is the geometric standard deviation (Lamb and Verlinde, 2011). The number of bioprotein aerosols 363 

was below the limit of detection in some samples, so that, only the curves of organics and dust were fitted. The fitting 364 

parameters of the same species were aggregated in parameter space, and were suspected to be related to the physical properties 365 

of each species, requiring further studies for confirmation. Moreover, the fitting parameters of organics and dust particles were 366 

clustered into two centroids (Fig. 10b) by the K-means method, which indicated that organics and dust have two classic modes 367 
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(classic mode of organics: ln𝐷௢ = -0.70, ln𝜎௢ = 0.91, and 𝑁௢ = 9.19 × 105 cm−3; classic mode of dust: ln𝐷ௗ = 0.11, ln𝜎ௗ 368 

= 1.07, and 𝑁௢ = 1.59 × 106 cm−3). That is, insoluble organics in hailstones are usually smaller in diameter and present in lower 369 

amounts than dust. Regardless of fine or coarse particles (𝐷 < 0.5 μm in diameter were not considered in reference to DeMott 370 

et al. (DeMott et al., 2010)), the number concentration of dust was up to 2 orders of magnitude higher than the number 371 

concentration of organics. These observations indicated that dust accounted for the major portion of particles in eight 372 

hailstorms (no considering about bioprotein), which was consistent with the observations of embryos described above. 373 

374 
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 375 

 376 

Fig. 10: Fitting size distribution functions of organics and dust contained in the whole hailstone. (a)-(h) Fitting parameters of 377 

logarithmic normal distributions of BJ1, BJ2, BS, FS, GY1, GY2, YT, GYA. (bi) Classic modes of dust and organics (interval of data 378 

is 0.2 μm and fitting curves painted with interval of 0.02 μm). The fitting parameters for subfigures (a)-(h) are listed in Table 2. The 379 

fitting range of (a)-(h) is shown with a green rectangle in (i). The centroid of the organics fitting parameter (orange line) is 𝐥𝐧 𝝈𝒐 = 380 

0.91, 𝒍𝒏𝑫𝒐 = −0.70, and 𝑵𝒐 = 9.19 × 105 cm−3. The centroid of the dust fitting parameter (blue line) is 𝐥𝐧𝝈𝒅 = 1.07, 𝐥𝐧𝑫𝒅 = 0.11, 381 

and 𝑵𝒅 = 1.59 × 106 cm−3. Shading showed uncertainty of organics and dust. Abbreviations (corresponding to Table 1): BJ - BeiJing; 382 

BS - BaiSe; FS - FuShun; GY - GuYuan; GYA - GuiYAng; YT - YanTai. 383 

 384 
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Table 2:The fitting parameters of dust and organics size distribution in Fig. 10 (a)-(h). 385 

Sample 𝑁௢ ሺ𝑐𝑚ିଷሻ 𝑙𝑛 𝐷௢ ln𝜎௢ 𝑅௢ଶ 𝑁ௗ  ሺ𝑐𝑚ିଷሻ 𝑙𝑛 𝐷ௗ  ln𝜎ௗ 𝑅ௗ
ଶ 

BJ1 4.57 × 105 -0.98  0.90  0.97  7.11 × 105 0.20  1.06  0.93  

BJ2 9.32 × 104 -0.90  0.88  0.98  2.55 × 105 0.02  1.01  0.89  

BS 6.65 × 105 -0.75  0.98  0.97  4.12 × 105 0.40  0.84  0.91  

FS 4.13 × 105 -1.12  0.93  0.89  2.35 × 105 -0.05  1.15  0.87  

GY1 2.66 × 106 -0.05  0.69  0.97  8.15 × 106 0.57  0.96  0.98  

GY2 1.60 × 106 0.10  0.79  0.98  1.25 × 106 0.37  1.06  0.95  

YT 1.21 × 106 -0.90  0.87  0.98  1.16 × 106 0.20  0.92  0.94  

GYA 2.51 × 105 -0.99  1.21  0.84  5.06 × 105 -0.87  1.57  0.79  

 386 

4 Conclusions 387 

This was the first study to simultaneously analyze both the number concentrations and species (including organics, dust 388 

and bioproteins) of insoluble particles in hailstones. The findings from this analysis offer valuable insights into particle 389 

observations within severe storms. Understanding the number concentration and composition of these insoluble particles is 390 

crucial, as they play a significant role as ice-nucleating particles during the heterogeneous nucleation process in deep 391 

convection.  392 

The size distribution of insoluble particles in hailstones from the same hailstorm showed less variation than those from 393 

different hailstorms. One possible reason is that updrafts of hailstorms brought insoluble particles from local surfaces or 394 

boundary layers into deep convective clouds. Moreover, almost all insoluble particles in hailstone embryos analyzed in this 395 

study showed an exponential size distribution, which was consistent with the effects of gravity. The number concentrations of 396 

organics and dust from different hailstone embryos differed up to 389 times and 526 times at the same diameter, respectively. 397 

The changes in paticle concentration may lead to at leat one-order-of-magnitude viarance in ice-nucleating particle (DeMott 398 

et al., 2010). Additionally, size distribution of insoluble particles varied in shells up to 27 times, which was much small than 399 

differences with different hailstorms.  400 

Two logarithmic normal distribution models were applied to fit the size distribution of organics and dust within hailstones, 401 

providing a description of insoluble particles in the deep convection during hailstone formation. The analysis of the two classic 402 

size distribution modes of insoluble particles indicated a significant presence of dust, without considering bioprotein. 403 

Furthermore, a positive correlation exists between the number concentrations of insoluble particles and that of ice-nucleating 404 

particles in hailstones, specifically for corresponding species (Ren et al., 2023, submitted, figure not shown). A further 405 
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measurement of ice-nucleating particles by drop-freezing experiments will establish the relationship between insoluble 406 

particles and immersion ice-nucleating particles. Combination of these results with future experiments to determine the number 407 

concentrations and species of particles from local observations will establish the relationship between surface observation and 408 

ice-nucleating particles in deep convective clouds, which will lead to improvement of the parameterization of ice-nucleating 409 

particles in both weather and climate models.  410 

Nonetheless, two kinds of classic size distribution modes of organics and dust in hailstones were performed, but a more 411 

robust classic mode required a larger number of samples. In future, for climate or weather models, the classic mode can be 412 

assumed as the mean state to describe the characteristics of insoluble particles in supercooling water. In addition, this study 413 

did not attempt to parameterize bioprotein aerosols, because there was a great uncertainty in quantification due to poor 414 

understanding of biological processes (Fröhlich-Nowoisky et al., 2016). Further collaborative studies are required to gain a 415 

better understanding of biological processes to establish the classic bioprotein mode.  416 
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