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Abstract. Insoluble particles affectinfluence weather and climate indirectly by heterogeneous freezing process. Current 12 

weather and climate models have large uncertaintyface considerable uncertainties in freezing processes simulation due to 13 

littlelimited information regarding species and number concentration of heterogeneous ice-nucleating particles, 14 

mainlyparticularly insoluble particles. Here, for the first time, size distribution and species of insoluble particles are analyzed 15 

in 30 shells of 12 hailstones incollected from China, using scanning electron microscopy and energy dispersive X-ray 16 

spectrometry. TotalA total of 289,461 insoluble particles awere detected and groupedidentified into 3 species: organics, dust, 17 

and bioprotein by, utilizing machine learning methods. The size distribution of insoluble particles of each species varyies 18 

greatly inamong the different hailstormnes but little in their shells. Further, classic size distribution modes of organics and dust 19 

were performed asfollowed logarithmic normal distributions, which maycould potentially be adapted in future weather and 20 

climate models though uncertainty still exists., despite the existence of uncertainties. Our finding suggests that physical 21 

properties of aerosolsthe aerosol species and number concentration variance in  different storms should be considered in 22 

model simulation onof the ice freezing process.  23 

1 Introduction 24 

Insoluble particles, acting as main heterogeneous ice-nucleating particles in the atmosphere(Lamb and Verlinde, 2011), 25 

may indirectly impactinfluence precipitation formation and radiative forcing (Hoose and Möhler, 2012; DeMott et al., 2015), 26 

and further impact weather and climate (Vergara-Temprado et al., 2018). Temperature and vapor supersaturation are used to 27 

calculate the number concentration of ice crystal particles in microphysics parameterization rather than considering the 28 

physical properties of ice-nucleating particles in weather and climate models (DeMott et al., 2010). Only fewFew models 29 

calculateused the freezing parameterization,  which establishes a direct connection between the number concentration of ice-30 

nucleating particles and the number concentration of ice crystals. The absence of description regarding the number 31 

concentration of ice-nucleating particles in clouds, that leadsmodels can result in an incorrect estimation of ice crystals and 32 

lead to a misestimation about number concentration of ice particles and large errors in simulationsignificant bias in radiative 33 

simulations (Vergara-Temprado et al., 2018).  34 

An improved description forof the number concentrations of ice-nucleating particles is needed, while obstructed by a lack 35 

of complete microphysical observation in clouds about ice-nucleating particles (DeMott et al., 2010). Measurements of the 36 

number concentration and species of ice-nucleating particles, mainly insoluble particles(Lamb and Verlinde, 2011), were 37 

conducted by an airborne equipment or laboratory instrument with air parcels, to understand the process of ice nucleation in 38 

clouds(DeMott et al., 2010; Prenni et al., 2009; Hoose et al., 2010; Rogers et al., 2001). Most field projects sampled air parcels 39 

in anvils of convective clouds, cirrus and winter mixed-phase stratiform clouds, keeping airborne equipment in good working 40 

condition. However, few projects sampled air parcels through cores in convection. Thus, current observation is insufficient for 41 
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describing the whole convective cloud, especially the deep convection in severe storms. Absence about microphysical 42 

observations of ice-nucleating particles within severe storms leads to uncertainty in understanding cold cloud process, e.g., 43 

hailstone formation, while obstructed by a lack of complete microphysical observation in clouds about ice-nucleating particles. 44 

There are two ways to sample ice-nucleating particles: The first involves an airborne instrument, named continuous flow 45 

thermal gradient diffusion chamber (Rogers et al., 2001; Prenni et al., 2009; DeMott et al., 2010). The second is done in the 46 

laboratory, where scientists conduct freezing experiments (Hoose and Möhler, 2012). In most cases, it is necessary for an 47 

aircraft to collect air parcels for measurement of the physical properties of ice-nucleating particles in the air. However, former 48 

field projects sampled air parcels in anvils of convective clouds, cirrus and winter mixed-phase stratiform clouds. No flight 49 

report or article has reported that they sampled air parcels through cores in deep convection. This phenomenon is consistent 50 

with consideration for flight security. Thus, current observation is insufficient for describing the whole convective cloud, 51 

especially the deep convection in severe storms. Absence about microphysical observations of ice-nucleating particles within 52 

severe storms leads to uncertainty in understanding cold cloud process. 53 

Hailstones, as a product of deep convective clouds, serves as a carrier of information within these clouds. Recently,(Li et 54 

al., 2020).  55 

Recently, detection for soluble ions along with isotopic analysis of a huge hailstone revealed an up-and-down hailstone 56 

growth trajectory, which demonstrated that the different shells were formed at different heights (Li et al., 2020). Further 57 

analysis revealed large diversity in number concentration of soluble ions among hailstones from different hailstorms (Li et al., 58 

2018). Further, the detection of soluble ions along with isotopic analysis of a huge hailstone revealed an up-and-down hailstone 59 

growth trajectory, which demonstrated that the different shells were formed at different heights (Li et al., 2020). These studies 60 

have proved aerosol information in convective cloud may be recorded in soluble particles within hailstones(Li et al., 2020, 61 

2018; Knight, 1981; Jouzel et al., 1975).These studies have proved that aerosol information in convective cloud may be 62 

recorded in soluble particles within hailstones (Li et al., 2018, 2020). Similarly, insoluble particles in hailstones can also record 63 

aerosol information in severe storms. 64 

Former studies showed that species and number concentration of insoluble particles in hailstones (Vali, 1968; Rosinski, 65 

1966; Michaud et al., 2014) would influence heterogeneous nucleation process (Hoose and Möhler, 2012) and further hailstone 66 

formation (Knight, 1981). Information on the species of insoluble particles can determine the freezing temperature when these 67 

particles participate in the initiation of ice crystal formation and subsequently impact hailstone embryo growth. Biological 68 

particles in hailstones, such as pollen and bacteria, are more efficient ice-nucleating particles than dust within the ice nucleation 69 

region of storm clouds (Michaud et al., 2014). They can raise the freezing threshold temperature above −15 °C , while dust 70 

particles are activated to form ice crystals at temperatures below −15 °C (Michaud et al., 2014). In addition to species, number 71 

concentration of insoluble particles can also influence the hailstone formation. When more dust particles were considered , a 72 

model simulation resulted in larger number concentration of ice crystals, smaller graupels (one type of hailstone embryos) size, 73 
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and suppression inof the hailstone growth (Chen et al., 2019). Nonetheless, previous studies involving analysis of insoluble 74 

particles in hailstones mainly focused on substances analysis or total number concentration statistics. A size distribution of 75 

insoluble particles in hailstones with species information, which is beneficial for completing microphysical observation in 76 

severe storms, has not been given so far. 77 

This study identifiedanalyzed insoluble particles present in hailstones, which were collected from 8 hailstorms that 78 

occurred in China between 2016 and 2021, by scanning electron microscopy. The identification of insoluble particles in 79 

hailstones was conducted using Scanning Electron Microscopy (SEM) and energy dispersiveEnergy Dispersive X-ray 80 

spectrometry (EDX). These insoluble particles were groupedidentified into three species by self-organized maps (SOMusing 81 

Self-Organized Maps (SOMs) and the random forest method. Variation ofThe variation in size distribution of insoluble 82 

particles in embryos and different shells was explored. Based on these analysis datathe size distributions, logarithmic normal 83 

distributions were fitted to describe different speciesthe concentration of insoluble particleorganics and dust in deep convection. 84 

2 Methods 85 

2.1 Sample information and experimental design 86 

Hailstones were collected from eight hailstorms occurringthat occurred in six provinces of China during warm seasons 87 

from 2016 to 2021, and  (Table 1, Fig. 1). Volunteers stored the hailstones in clean containers, such asincluding plastic bags, 88 

glass containers, and tinfoil, by volunteerseither during or justimmediately after the hail (Table. 1, Fig. 1).events. All hailstone 89 

samples were transported to a laboratory at Peking University in Beijing and storedkept at temperatures between −ranging 90 

from -18 °C and −to -4 °C. The hailstones were then transferred into vacuum-sealed plastic pockets and keptpreserved in a 91 

freezer, with the maintaining an internal temperature maintained between −ranging from -29°C and −to -23°C, until they 92 

underwent further processing and analysis.  93 

 94 

 95 
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 96 

  97 

Fig. 1: Geographical distribution of hailstone-collected provinces. Black dots are hailstones. The collecting locations of hailstones. 98 

are indicated by black dots. Provinces of China from which the hailstones were collected are shown inrepresented by six different 99 

colors. The sample abbreviations are marked in the figure withThe number of hailstones sampledwe analyzed was indicated in 100 
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parentheses. Abbreviations (corresponding to Table. 1): BJ, Beijing City; GY, Guyuan City - BeiJing; BS, Baise City - BaiSe; FS, 101 

Fushun City; YT, Yantai City - FuShun; GY - GuYuan; GYA, Guiyang City - GuiYAng; YT - YanTai. 102 
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Table. 1: Information about collected hailstones. 103 

 104 

Date & Beijing  

Local Solar 

Timea 

LocationbLat

itude & 

Longitudec 

Total column 

water vapord 

(kg / m2) 

Freezing level 

height – 

orography 

altitudee (m) 

CityLocation & 

Sample 

abbreviationf 

Samplesg 

Diameterh 

(mm) 

Particle 

numberi 

19 June 2018, 

18:30 

41.82° N, 

123.85° E 

26.359[18] 3241.66[18] 

Fushun CityFuShun 

(FS) 

1 13.80 13, 648 

10 June 2016, 

14:3015:00 

40.00° N, 

116.32° E 

36.86[14] 3780.52[14] 

Beijing CityBeiJing 

(BJ1) 

1 ——— 

123, 

14535,291 

30 June 2021, 

19:0020:18 

39.95° N, 

116.30° E 

31.73[1884[20] 

3854.52[183852.76[2

0] 

Beijing CityBeiJing 

(BJ2) 

5 

25.38 

14,865 

Beijing CityBeiJing 

(BJ3) 

24.11 

20,233 

Beijing CityBeiJing 

(BJ4) 

16.30 

20,350 

Beijing CityBeiJing 

(BJ5) 

14.86 

14,350 

Beijing CityBeiJing 

(BJ6) 

22.80 

18,056 

01 Oct 2021, 

14:02 

37.49° N, 

121.44° E 

32.81[13] 3642.42[13] 

Yantai CityYanTai 

(YT) 

1 45.00 32, 137 

25 Aug 2020, 

1718:00 

35.53° N, 

106.32° E 

17.83[1617] 422.58[1617] 

Guyuan CityGuYuan 

(GY1) 

1 15.00 

61, 

48829,341 

26 Aug 2022, 

152020, 16:00 

35.58° N, 

105.93° E 

17.01[1415] 835.04[1415] 

Guyuan CityGuYuan 

(GY2) 

1 18.50 32,107 

14 Apr 2016, 

1920:00 

26.60° N, 

106.72° E 

31.62[1819] 2147.58[1819] 

Guiyang 

CityGuiYAng (GYA) 

1 26.20 20, 690 

09 May 2016, 

1718:51 

23.90° N, 

106.60° E 

47.45[1718] 4572.70[1718] 

Baise CityBaiSe 

(BS) 

1 ——— 38, 353 
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a Date and Beijing local solar time of hailstorms occurrences. Hailstones were collected within 30 min during hail. 
b Hailstone collecting location. 
c Latitude and longitude where the hailstone were collected. 
d The totalTotal column water vapor values (Beijing local solar time of ERA5 reanalysis data in square brackets (Hersbach et al., 
2018)). 
e Depth between freezing level height and orography (Beijing local solar time of ERA5 reanalysis data in square brackets(Hersbach 
et al., 2018)). 
f SampleLocation and sample abbreviations. 
g Numbers of hailstones used in the experiments. 
h Diameter of hailstone (——— means no record). 
i Insoluble particle number in hailstones from the same province. 
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Insoluble particles were extracted in the experiments (Fig. 2). The surface of theeach hailstone was polished to remove 105 

any attached grass or soil. Then,Subsequently, the hailstones were sliced into cross-sections along the major axis, 106 

corresponding to the size of the hailstone embryo. The cross-sections were further sliced into several shells using heated Fe-107 

Cr alloy wire at an air temperature below −8°C. The shells within a hailstone were distinguished based on their natural 108 

transparency or opacity. HailstonesHowever, hailstones with a major axis <  7 mm could not be sliced because ofdue to the 109 

mass loss withresulting from heating using our experimental apparatus. 110 

 111 
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 112 

Fig. 2: Schematic diagram showingillustrating the experimental framework. [1-2] The surface of theeach hailstone was polished to 113 

remove any attached grass or soil and . [3] Subsequently, the hailstones were sliced into cross-sections along the major axis. The 114 

shells within a , corresponding to the size of the hailstone embryo. [4-7] After photographing the hailstone cross-sections, they were 115 

further subdivided into shells using heated Fe-Cr alloy wire at an air temperature below −8°C. The shells were distinguished based 116 

on their natural transparency or opacity. Solution[8] The solution of melting shell samples runwas then passed through a filter 117 

membrane to obtainisolate the insoluble particles. [9] Each shell sample was analyzed within about 4 hours byunderwent analysis 118 

using scanning electron microscopy and energy -dispersive X-ray spectrometry forto determine the elemental weight ratios of the 119 

insoluble particles within approximately 4 hours. [11] Finally, the elemental weight ratio information of hailstones was obtained. 120 

 121 

The shells were sequentially labeled with capital letters in alphabetical order, starting from the inner shell to the crust. 122 

For example, the embryo of a hailstone was embryo (designated as shell A. To obtain insoluble particles,) and progressing 123 

toward the crust. After the ice shells were meltedmelting into a solution, and runthe solution was filtered through a filter 124 

membrane (VSWP01300, Merck KGaA, Germany) with a pore size of 30 nm. The filter membrane was flushed five times 125 

with The 1 mL (a total of 5 mL) of distilled water underwent five passes through the filter membrane to ensure as 126 

manymaximum retention of insoluble particles as possible stuck on the filter membrane. TheSubsequently, the filter membrane 127 

was dried under an air temperature of aboutapproximately 40°C for electron microscopyto satisfy the dry-environment 128 

requirements of SEM. 129 

The number of insoluble particles in each shell was determined byusing scanning electron microscopy (SEM), 130 

focusingwith a focus on particles > larger than 0.16 μm. The length along the major axis of the particles was measured using 131 
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Aztec software (Aztec software, Oxford Instruments plc, UK) on SEM images. Energy The software was able to randomly 132 

capture electron microscopy photos of the membrane (Aztec User Manual). No particle will be counted repeatedly. Energy-133 

dispersive X-ray spectrometry (EDX) was usedutilized to determine the elemental weight ratios of the particles. Only elements 134 

with an atomic number > greater than 4 could be detected becausedue to the X-ray input window wasbeing made of beryllium. 135 

Each shell sample was analyzed within aboutapproximately 4 hours by SEM and EDX. The scanning mode of SEM was set 136 

in a random order to reduce the errorerrors caused by bias in the detection area. 137 

2.2 Clustering and classification  138 

The number of insoluble particles was measured using Aztec on SEM images, but the species could not be determined 139 

directly and were identified by machine learning method. The criteria of species classification were established by the self-140 

organized mapsSOMs method to determine the species of unclassified particles. These labeled particles were then regarded as 141 

true species and used to train atrainning set in random forest classifier. Details are presented in Fig. 3. 142 

 143 
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 144 

Fig. 3: Schematic diagram showingillustrating the methodological framework of the methods used for particle identification in this 145 

study. TheA total of 100 matrices 𝐌𝐢, with 𝒊 ranging from 1 to 100, were usedutilized in self-organized maps clustering analyses, 146 

and each of them included containing 81,888 unidentified 81,888 particles with 19 elemental features (N, Na, Mg, Al, Si, P, S, Cl, K, 147 

Ca, Ti, Cr, Mn, Fe, Ni, Cu, Br, Ba, and Pb). CentroidThe centroid matrix 𝐂𝐤,𝐢,𝐣 was represents the clustering results by obtained 148 

through the self-organized maps method with chosena given cluster number 𝒌. The operation of self-organized maps operation with 149 

the same 𝒌 was repeated 100 times to ensure theresult robustness of results. The , where 𝒋 isdenotes the number of repeating 150 

time,repetitions ranging from 1 to 100. Four indexes, i.e.,indices, Silhouette index (Sil), Calinski–Harabasz index (CH), modified 151 

Hartigan index (Hart), and Davies–Bouldin index (DB)), were usedemployed to determine best centroid numberthe optimal 152 

parameters 𝒌, 𝒊, and 𝒋. The matrix 𝐌𝐢 containing identified 81,888 particles, was separated asrandomly divided into a training 153 

set (80 %) and a test set in(20 %) for random forest classification with. The 10-fold cross -validation. The best classifier was 154 

usedutilized to classify remain particlesdetermine the best tree. Abbreviations (corresponding to Table 1): BJ - BeiJing; BS - BaiSe; 155 

FS - FuShun; GY - GuYuan; GYA - GuiYAng; YT - YanTai. 156 

 157 

With reference to the studies of Ault et al. in 2012 and Kirpes et al. in 2018 and considering the results of elemental 158 

weight ratios determined by EDX analysis (Ault et al., 2012; Kirpes et al., 2018), 19 elements (N, Na, Mg, Al, Si, P, S, Cl, K, 159 

Ca, Ti, Cr, Mn, Fe, Ni, Cu, Br, Ba, and Pb) were selected to confirm the species of particles. C and O were not taken in account 160 

when clustering or classifying particles as the membrane filters were made from cellulose acetate and cellulose nitrate, which 161 

contain C, H, N, and O. We could not detect H because the ray-input window was made of beryllium. All particles showed 162 

high contents of C and O but different contents of N, so N was retained as a feature of classification. 163 
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 164 

With reference to the studies of Ault et al. (2012) and Kirpes et al. (2018) and considering the results of elemental weight 165 

ratios determined by EDX analysis, 19 elements (N, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Br, Ba, and Pb) 166 

were selected to confirm the species of particles. C and O were not taken in account when clustering or classifying particles as 167 

the membrane filters were made from cellulose acetate and cellulose nitrate, which contain C, H, N, and O. We could not detect 168 

H because the ray-input window was made of beryllium. All particles showed high contents of C and O but different contents 169 

of N, so N was retained as a feature of classification. 170 

Species of aerosol particles vary regionallywith sampling location (Tao et al., 2017). Therefore, when establishing the 171 

matrices of elemental weight ratios for clustering, equal amounts of data were randomly extracted from the sample data from 172 

each province to ensure the inclusion of a consistent proportion of samples from each region in the training process. A hailstone 173 

FS collected from Fushun City, Liaoning Province was shown to contain 13,648 insoluble particles, which was the smallest 174 

among all samples from six provinces (Fig. 1). With random sampling of 13,648 particles from each province, the matrix used 175 

in clustering analyses included 81,888 particles. This operation was repeated 100 times to obtain 100 matrices 𝐌𝐢 with 𝑖 176 

ranging from 1 to 100. 177 

Each matrix 𝐌𝐢  was clustered using the SOM method, which is an unsupervised machine learning method that 178 

represents high-dimensional data in low-dimensional space while preserving the topological structure of the data. The neuronal 179 

network was set to 𝑘 neurons in a layer, where 𝑘 is the given clustering center number from 2 to 10. Each SOM operation 180 

produces a centroid matrix Ck, i, j, where 𝑖 is the number of particle sample replicates, as mentioned above, and 𝑗 is the 181 

number of rounds of SOM operation. Weights of a neuron describe its position in multivariate space and can be taken as a 182 

cluster center. The operation of SOM with the same neuronal network setting was repeated 100 times to ensure the robustness 183 

of the centroid matrix Ck, i, j. Four indexes, i.e., Silhouette indexSOMs method. SOMs belong to the category of competitive 184 

learning algorithms and are a type of artificial neural network (Kohonen, 1990). A basic SOMs network consists of an input 185 

layer, weight vectors, and an output layer. Each neuron in the output layer possesses a set of weight vectors, which represent 186 

the topological structure of the neurons in the output layer, associated with the inputs. SOMs are commonly used as 187 

dimensionality reduction algorithms, enabling the representation of high-dimensional data in a lower-dimensional structure 188 

while preserving the original topology. When SOMs are trained on unlabeled data for clustering purpose, it proves highly 189 

beneficial in clustering unlabeled and high-dimensional inputs into visualized two-dimensional outputs.  190 

We utilized the SOMs code from MATLAB’s deep learning toolbox. The input of SOMs is 𝐌𝐢. At begin, the neural 191 

network in the output layer was initialized as 1-D dimension with 𝑘 neurons. The number of neurons in the output layer 192 

matches 𝑘 ranging from 2 to 10. The operation of SOMs with the same initialized 𝑘 neurons and input matrix 𝐌𝐢 was 193 

repeated 100 times to ensure result robustness. The clustering result was stored in matrix 𝐂𝐤,𝐢,𝐣, which corresponded to the 194 
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given 𝑘 centroids in 𝐌𝐢 with 𝑗  SOMs operation. Each 𝐂𝐤,𝐢,𝐣 matrix consists of 𝑘 rows and 19 columns (corresponding 195 

to the number of elemental features). Four indices, namely, the Silhouette index (Rousseeuw, 1987), the Calinski–Harabasz 196 

index (Calinski and Harabasz, 1974), the modified Hartigan index (Sibson and Hartigan, 1976), and the Davies–Bouldin index 197 

(Davies and Bouldin, 1979), were selected as evaluation indicators to determine the parameters 𝑘, 𝑖 and 𝑗. The best 𝑘, 𝑖 198 

and 𝑗 was chosen by combining the evaluation of the four indexes (Fig. 4) and elemental weight ratios of each centroidThe 199 

Silhouette index, Davies–Bouldin index, and Calinski–Harabasz index assess the similarity between a particle and others 200 

within the same cluster, as well as the dissimilarity across different clusters for a given 𝑘. Hartigan index evaluates whether it 201 

is worthy to increase the 𝑘. Notably, Hartigan index has undergone modifications that preserve its statistical meaning while 202 

conserving computational resources. 203 

Hartigan index (Sibson and Hartigan, 1976) is defined as: 204 

𝐻 𝑘 𝑁 𝑘 1  
𝑒𝑟𝑟 𝑘

𝑒𝑟𝑟 𝑘 1
  1 , 𝑘 2~10 1  205 

𝑒𝑟𝑟 𝑘 𝑥 𝐶
∈  

2  206 

 207 

𝑘 : the number of clusters. 208 

𝐶 : the centroid of all data 209 

𝑁 : the number of observations in data  210 

𝐶  : the centroid of cluster g 211 

𝑥  : the observation of cluster g 212 

𝑥  : the observation of data 213 

The calculation of 𝐻 𝑘  requires clustering for values of 𝑘 ranging from 2 to 11 in order to obtain 𝐻 2 , 𝐻 3 , …, 214 

𝐻 10 . Clustering particles into 11 clusters would require performing an additional 10,000 iterations of the SOMs, with 100 215 

iterations of extracting 𝐌𝐢 and 100 iterations of SOMs for each 𝐌𝐢. Additionally, we observed that the SOMs did not perform 216 

well in the Silhouette index (Sil), the Calinski–Harabasz index (CH), and the Davies–Bouldin index (DB) when k = 2. As a 217 

result, we introduced modifications to the Hartigan index. 218 

𝐻𝑎𝑟𝑡 𝑘 𝑁 𝑘 1 1  
𝑒𝑟𝑟 𝑘 1
𝑒𝑟𝑟 𝑘

  1 ,𝑘 2~10 3  219 

𝑒𝑟𝑟 𝑘 𝑥 𝐶
∈  

, 𝑘 2 4  220 

 221 

When 𝑘  1, it indicates that all particles are belong to one cluster. 222 
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𝑒𝑟𝑟 1 𝑥 𝐶
  

5  223 

In clustering with a specific value of 𝑘, our objective is to have particles tightly grouped together in feature space while 224 

ensuring that the centroids exhibit a significant dispersion compared to 𝑘  1. A higher value of 𝐻𝑎𝑟𝑡 𝑘  for a given 𝑘 225 

indicates improved clustering performance. The best 𝑘, 𝑖 and 𝑗 was chosen by combining the evaluation of the four indices 226 

(Fig. 4). We applied max normalization to rescale the four indices, 𝑆𝑖𝑙 𝑘 , 𝐶𝐻 𝑘 , 𝐷𝐵 𝑘 , and 𝐻𝑎𝑟𝑡 𝑘 . Subsequently, the 227 

best combination of 𝑘 , 𝑖  and 𝑗  was determined, resulting in 𝑆𝑖𝑙 𝑘, 𝑖, 𝑗   𝐶𝐻 𝑘, 𝑖, 𝑗   𝐻𝑎𝑟𝑡 𝑘, 𝑖, 𝑗   𝐷𝐵 𝑘, 𝑖, 𝑗  228 

reaching its maximum. 229 

 230 

 231 

Fig. 4: Evaluation of self-organized maps clustering results. EvaluationThe clustering results of self-organized maps clustering 232 

results bywere evaluated using (a) Silhouette index, (b) Davies–Bouldin index, (c) Calinski–Harabasz index, and (d) Hartigan index. 233 

SelfThe self-organized maps operation was repeated 100 times to obtain each randomly sampled matrix 𝐌𝐢.ensure result robustness. 234 

The solid lines and shading represent the average and spread of 100 repetitions, respectively. 235 

 236 

The centroid matrix Ck, i, j𝐂𝐤,𝐢,𝐣 with best 𝑘, 𝑖 and 𝑗 was treated as a training set for random forest classification. The 237 

chosen centroid matrix Ck, i, j𝐂𝐤,𝐢,𝐣 with the top four elements is shown in Fig. 5 with k = 6. The first species with low elemental 238 

weight ratio except C and O contents was considered to be organics. The second species with high Fe content and low Cr 239 
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content was introduced by the material of the slicer used in the experiment. The third species had a high Al content representing 240 

oxides or carbonates of aluminum. The fourth and fifth species were mineral silicates. So that, the third, fourth, and fifth 241 

species were referred to as “dust”. The last species with high N content was protein-containing biological aerosol. 242 

 243 
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 244 

Fig. 5: Centroids of clustering with six clusters from self-organized maps results and each species portion. Colored bars show the 245 

top four elements of each species. The stem bars show the portion of each species. The average contents of C and O of each species 246 

are marked at the end of the stem bars. 247 

 248 

The random forest method was applied in classifying insoluble particles, which involves randomly growing 100 249 

classification trees. The training set consisted of 80 % of 𝐌𝐢 and 10-fold stratified cross-validation was applied during the 250 

training process to find the best tree among the 100 random trees. The remaining 20% % particles of 𝐌𝐢 was used as the test 251 

set to evaluate the classifier. The best classification tree and the. The confusion matrix of the evaluation of testingclassification 252 

results are shown in Fig. 6. All remaining insoluble particles were classified by this tree. Finally, resultswe identified three 253 

species: organics, dust, and bioprotein aerosols. 254 
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 255 

 256 

Fig. 6: Confusion matrix of the best random forest classifier tree. The numbers on the diagonal are accurately predicted insoluble 257 

particles. Numbers in bold indicate the accuracy of prediction of each type. 258 

 259 
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2.3 CalculationConversion of insoluble particles number concentration 260 

Particle number was converted to a number concentration as followsper cubic centimeter volume water (hereinafter 261 

referred to as number concentration) using the following formula: 262 

𝑛 ∙ 𝑉   𝑁   𝑁   𝑛 ∙ 𝑉 1  263 

Part of the solution was not consumed in these experiments and was retained as a backup. During several experiments, 264 

the melted shell solution was diluted. 265 

𝑛   𝑛   
𝑁
𝑉

  
𝑁
𝑉

2  266 

SEM can provide the number of particles on a filter, but the whole area of the filter cannot be scanned. We assumed 267 

𝑛 ∙ 𝑉   𝑁   𝑁   𝑛 ∙ 𝑉 6  268 

The number of insoluble particles in the melted shell solution (𝑁 ) can be calculated by multiplying their number 269 

concentration (𝑛 ) with the volume of the shell solution (𝑉 ). Part of the solution was not used up in the experiments 270 

and was kept as a backup. Therefore, the shell solution was diluted in some experiments and part of the solution was consumed 271 

in the experiments. As in the melting solution, the number of insoluble particles in the diluted solution (𝑁 ) can be 272 

calculated by multiplying their number concentration (𝑛 ) with the volume of the diluted solution(𝑉 ). The total 273 

particle number in the melted shell (𝑁 ) remains unchanged during the dilution process (𝑁 ). 274 

𝑛   𝑛   
𝑁
𝑉

7  275 

The number concentration of the diluted solution (𝑛 ) is equal to that the of the consuming part (𝑛 ). Assuming 276 

the rinsing operation ensures all insoluble particles in the shell were uniformly distributed on the filter and the scanning mode 277 

of SEM was set as “random scanning”. A such relastionship betweenmembrane, the number of scannedinsoluble particles and 278 

the number of particles on the filter: 279 

𝑆
𝑆

  
𝑁
𝑁

3  280 

In the above formulas, 𝑛 is the number concentration of insoluble particles; 𝑁in the consumed solution (𝑁 ) is the 281 

number of insoluble particles; 𝑉 is the volume of the solution; 𝑆 is the area of the filter; subscript liquid refers to the melted 282 

shell; subscript diluted refers to the diluted solution; subscript used refersequal to the consumed diluting solution; subscript 283 

filter refers to the filter membrane; 𝑁  is the number of number of insoluble particles counted on the filter; and 𝑆  284 

is the area of the microscopic image.membrane (𝑁 ).  285 

We use SEM to capture electron microscopy images of the membrane. Assuming a uniform distribution of insoluble 286 

particles on the filter membrane, a software randomly capture electron microscopy photos of the membrane and count the 287 

visible insoluble particles in those images. The relationship between total number of visible insoluble particles counted in the 288 

images (𝑁 ) and 𝑁  is: 289 
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𝑆
𝑆

  
𝑁
𝑁

8  290 

That is, N  is determined by multiplying N  by the ratio of the areas between the entire filter membrane (S ) 291 

and the electron microscopy images (S ). These three formulas Eq. (6-8) were reduced to Eq. (49): 292 

𝑛   
1

𝑉
∙
𝑆 

𝑆
∙
𝑉
𝑉

∙ 𝑁 4  293 

where294 

𝑛   ∙  ∙ ∙ 𝑁 9  295 

Here, 𝑆 , 𝑆 , 𝑁 , 𝑉 , and 𝑉  can be measured. The liquid volume (𝑉 ) was determined as the 296 

meanaverage of readings obtained by two experimenters from the test tube calibration. From Eq. (4), a tiny change in 𝑛  297 

can be expressed as 𝑑𝑛 :. Take the logarithm on both sides: 298 

𝑑𝑛   𝑛 ∙
𝑑𝑉
𝑉

𝑑𝑉
𝑉

𝑑𝑉
𝑉

𝑑𝑁
𝑁

5  299 

𝑙𝑛 𝑛   𝑙𝑛 𝑉 𝑙𝑛 𝑆 𝑙𝑛 𝑆 𝑙𝑛 𝑉 𝑙𝑛 𝑉 𝑙𝑛𝑁 10  300 

Based on Eq. (10), a tiny change in 𝑛  can be represented as 𝑑𝑛 :  301 

𝑑𝑛   𝑛 ∙
𝑑𝑉
𝑉

𝑑𝑉
𝑉

𝑑𝑉
𝑉

𝑑𝑁
𝑁

11  302 

As, 303 

𝑑𝑆   𝑑𝑆   0 6  304 

The uncertainty comes from the measurement error of the experimental instruments. 305 

∆  𝑑𝑛   𝑛 ∙
𝑑𝑉
𝑉

𝑑𝑉
𝑉

𝑑𝑉
𝑉

𝑑𝑁
𝑁

7  306 

So, 307 

∆   𝑛 ∙
𝑑𝑉
𝑉

𝑑𝑉
𝑉

𝑑𝑉
𝑉

𝑑𝑃𝑠
𝑃𝑠

8  308 

𝑑𝑆   𝑑𝑆   0 12  309 

The uncertainty (∆) of 𝑛  comes from the measurement error of the experimental instruments, following below 310 

(Taylor, 1997): 311 

∆  𝑛 ∙
𝑑𝑉
𝑉

𝑑𝑉
𝑉

𝑑𝑉
𝑉

𝑑𝑁
𝑁

13  312 

Here, the minimum scaleaccuracy of the test tube containing melting solution is 0.1 mL and. The term 𝑑𝑉 isrepresents 313 

the greatest reading error caused by human and was set to 0.05 mL. The quantity   representscorresponds to the 314 

uncertainty of detectingassociated with size of insoluble particles, which is related to and the scan settings. 315 

𝑑𝑁
𝑁

  
𝑑𝑃𝑠
𝑃𝑠

  
3

6,340,608
9  316 
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𝑑𝑁
𝑁

  
𝑑𝑃𝑠
𝑃𝑠

  
3

6,340,608
14  317 

The term 𝑑𝑃𝑠 isrepresents the minimum number of pixels that can be detected in an image. 𝑃𝑠 isdenotes the total 318 

number of pixels in the micrograph.  319 

2.4 Curves fitting 320 

We aggregated our datainsoluble particles into 0.2-μm intervals (e.g., particle number concentration at 𝐷 = 0.3 μm, 321 

corresponding to the sum of particles of diameter 0.2–0.4 μm0.2 μm bin interval in Fig. 7 and Fig. 10, and 2 μm bin interval 322 

in Fig. 8 and Fig. 9) to fit the logarithmic normal distribution: 323 

𝑛 ln𝐷   
𝑁

√2𝜋 ln𝜎
exp

ln𝐷 ln 𝑟
2 ln 𝜎

10  324 

 325 

𝑛 𝐷   
1
𝐷

𝑛 𝑙𝑛 𝐷 11  326 

Here,327 

𝑛 ln𝐷   
√

𝑒𝑥𝑝 15  328 

𝑁 denotes the total number concentration of particles. Both 𝑛 ln𝐷  and 𝑛 𝐷  arerepresent the size distributions of 329 

particles, where 𝐷 is the diameter of insoluble particles, and 𝑁 is the total number concentration of particles. According to 330 

the above, when. 𝑛 ln𝐷  and 𝑛 𝐷  can be converted to each other by 𝐷.  331 

𝑛 𝐷   
1
𝐷

𝑛 𝑙𝑛 𝐷 16  332 

 333 

When the 𝑁  in an interval equals 1, the number concentration will showexhibit a flat tail because ofdue to the 334 

conversion to obtain 𝑛 . The fitting data were selected with intervals equals to 0.2 μm0.2 μm. The least squares method 335 

was applied to determine the fitting parameters and R2 was used to estimate fitting parameters.the goodness of fit. The two 336 

centroids of fitting parameters of organics and dust were determined by K-means method. 337 

3 Results 338 

TotalA total of 289,461 insoluble particles were detected from 30 shells of 12 hailstones were detected by scanning 339 

electron microscopy. Elemental weight ratios of each particle were determined using energy dispersive X-ray spectrometry. 340 

More details regarding calculating number concentrationSEM. The identification of insoluble particles per cubic centimeter 341 

volume water (hereinafter referred to as number concentration) from number of insoluble particles were showed in method 342 

description. Identification of insoluble particles used self-organized mapsemployed SOMs for clustering and random forest for 343 
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classification. Four indicexes were selectedutilized to determine the appropriate parameters ofin clustering. The clustering 344 

results (𝐂𝐤,𝐢,𝐣) were set asdivided into a training and a testing set offor classification. AThe confusion matrix of the best classifier 345 

showed that thean accuracy, precision, and recall wereof 99.7 %, 99.4 %, and 99.5 %, respectively. All particles were 346 

identifiedclassified as organics, dust, and bioprotein aerosols (i.e., the fraction of biological aerosols with protein content).  347 

3.1 Sample representativenesssimilarity 348 

Five of the 12 hailstones (BJ2–BJ6) were from the same hailstorm that occurred in Beijing on June 30, 2021. The insoluble 349 

particles present in these hailstones BJ2–BJ6 showed similarity in the size distribution of organics, dust, and bioprotein aerosols 350 

but differed, while those from other 78 hailstones that from other hailstorms(BJ1, BJ2, BS, FS,GY1, GY2, YT and GYA) 351 

exhibited a wider dispersion (Fig. 7). The results were similar to those of Li et al., who reported that the number concentrations 352 

of water-soluble ions varied among hailstorm events but showed similarity in the same storm (Li et al., 2018). These analyses 353 

suggested that insoluble particles in the hailstorm may come from local natural or anthropogenic emissions (e.g., soil dust, 354 

aerosols from biomass and fossil fuel combustion, products of the conversion of gaseous precursors), which is also suggested 355 

by the results on water-soluble ions (Beal et al., 2022). The updraft within the hailstorm is likely to bring insoluble particles 356 

from local surfaces or boundary layers into deep convective clouds, as hailstorms are among the most severe storms with 357 

strong updrafts (Battaglia et al., 2022). BJ2 was selected to represent five hailstones from the same hailstorm in further analysis 358 

to simplify comparison. 359 

 360 
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 361 

Fig. 7: Size distribution of organics, dust, and bioprotein aerosols of insoluble particles in 12 hailstones. Each number concentration 362 

at diameter 𝑫 total number concentration of insoluble particles with diameter rangingThe colored dots represent data from D − 363 

0.1 μm to D + 0.1 μm. Colored dots refer to seven7 hailstones (BJ1, BS, FS, BJ-1GY1, GY2, YT, NX-1, NX-2, GY, and BS)GYA 364 

which were from seven different hailstorms. BlackThe black and gray dots refercorrespond to fivedata from hailstones (BJ-2–BJ-365 

6)BJ2 to BJ6) that were from the same hailstorm that occurredoccurring in Beijing on June 30, 2021. BlueThe blue and gray bars 366 
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showindicate the standard deviation of number concentration of insoluble particles from seven hailstorms and one hailstorm8 367 

hailstones (BJ1, BJ2, BS, FS,GY1, GY2, YT and GYA) from 8 cases and 5 hailstones (BJ2 to BJ6) from one case, respectively. 368 

Abbreviations (corresponding to Table. 1): BJ, Beijing City; GY, Guyuan City - BeiJing; BS, Baise City - BaiSe; FS, Fushun City; 369 

YT, Yantai City - FuShun; GY - GuYuan; GYA, Guiyang City - GuiYAng; YT - YanTai. 370 

 371 

3.2 Size distribution in embryos 372 

All hailstone embryos analyzed in this study were graupelsare graupel particles, which grows from the initial ice particles 373 

through accretion of supercooled droplets (Knight, 1981). These initial ice particles are formed through nucleation of insoluble 374 

particles where heterogeneous nucleation take place (Lamb and Verlinde, 2011). In other words, insoluble particles in graupels 375 

influence the formation of ice crystals and subsequently affect the formation of hailstone embryos.  376 

 377 

Fig. 8: Size distribution of insoluble particles in hailstone embryos. Different colors represent the provinces in China from which 378 

the hailstones were collected. Black triangles indicate the locations of hailstone sample collection. The white dashed circle highlights 379 

part of the hailstone embryo. Abbreviations (corresponding to Table 1): BJ - BeiJing; BS - BaiSe; FS - FuShun; GY - GuYuan; GYA 380 

- GuiYAng; YT - YanTai. 381 

 382 

The variations in number concentrations of dust and bioprotein insoluble particles indicate that particle number 383 

concentrations decrease exponentially with particle diameter, with markble variation observed among hailstorms (Fig. 8). BJ2 384 

was selected to represent five hailstones from the same storm to simplify comparison. The size distribution distinguishes 385 

organics from dust and bioprotein aerosols. The number concentrations of organics from all samples decrease with particle 386 
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diameter less than 8 μm, while those of GY1 and GY2 fluctuate starting at diameters of 8 μm and 12 μm, respectively. 387 

Compared to other hailstones, GY1 and GY2 were collected in remote areas, where is fields of rural areas dedicated to growing 388 

crops near the south of the Gobi Desert. Therefore, GY1 and GY2 have a coarse mode of organics with particle diameters 389 

larger than 12 μm, possibly might due to the emission of spring-wheat straw burning and unrestricted diesel engine vehicles. 390 

The transport of coal combustion in surrounding cities may also contribute to the coarse mode organics. Among all cases, there 391 

is a significant variance in the size distribution of both organics and dust. The number concentration of organics from a 392 

hailstone embryo varied from 1 to 390 times, compared to those at the same particle diameter in hailstone embryos from 393 

different cases. The number concentration of dust from a hailstone embryo varied from 1 to 527 times, compared to those at 394 

the same particle diameter in hailstone embryos from different cases. The number concentrations of dust from BJ1, BJ2, and 395 

GY1 are at least 3 times higher than organics in particles of the same diameter in the range of 2–24 μm. 396 

Moreover, dust showed a wider size distribution than organics and bioproteins among all samples. Dust from GY1 had a 397 

higher number concentration and larger maximum size (42 μm) compared to other hailstone embryos. Hailstone samples with 398 

high insoluble particle content, i.e., GY1 and GY2, showed significantly lower total column water vapor values and smaller 399 

depth between freezing level height and orography within one hour before hailstorm occurrence, compared to other hailstones 400 

(Table 1). The competition of condensation and relative shorter updraft pathway might be responsible for the high number 401 

concentrations of organics, dust, and bioproteins in GY1 and GY2, as compared with other haistones. Bioprotein aerosols, 402 

with high freezing efficiency, may have formed initial ice particles in GY1, GY2, and YT, while dust or organics formed initial 403 

ice particle in hailstorms in the other five cases. All hailstone embryos contained organics and dust, but not all hailstone 404 

embryos contained a significant amount of bioprotein aerosols. Due to limited comprehension of the transportation and 405 

transformation processes of biological materials, it is challenging that to establish a definitive relationship between biological 406 

protein particles and biological aerosols (Fröhlich-Nowoisky et al., 2016). 407 

3.3 Size distribution in shells 408 

Size distribution of each species varieded little in characteristics between outer shells with the embryos (Fig. 9). In a four-409 

shell hailstone, the number concentrations of insoluble particles exhibited V-shaped distributions (BS and YT) or inverse V-410 

shaped distributions (BJ1) from embryo to crust. Five of nine two-shell hailstones showed higher number concentrations of 411 

dust in crusts than embryos, while seven of them showed higher number concentrations of organics in embryos than crusts. 412 

These initial ice particles are likely formed by insoluble particles where heterogeneous nucleation processesMoreover, the 413 

quantification of differences in number concentration varied little among shells. The 90.5 % points showed that differences in 414 

number concentration of the same kind particles in a shell compared to the previous shell at the same diameter was within 415 

twice (294 data points in Fig. 9). This observation is attributed to the fact that the growth of hailstones beyond the embryo 416 

stage relies on the accretion of supercooled water rather than ice crystals (Lamb and Verlinde, 2011). That is,Consequently, 417 
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the hailstone recorded not only insoluble particles in graupels possibly affectedduring the embryo formation of ice crystals and 418 

subsequently affected, but also insoluble particle in the formation of hailstone embryos. Thegrowth zone throughout the 419 

hailstorm. As a result, the size distributionsdistribution of particles within the entire hailstones may represent the distribution 420 

of insoluble particles in eight hailstone embryos (BJ1, BJ2, GY1, GY2, BS, FS, YT, and GYA) were shown in Fig. 8. deep 421 

convection regions where the hailstones went through. 422 

 423 
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 424 

Fig. 8:9a. Size distribution of insoluble particles in hailstone embryos. Provinces of China, from which the hailstones were collected, 425 

are shown in different colors. Black triangles indicate the locations of hailstone sample collection. The white dashed circle shows 426 

part of the hailstone embryo. Abbreviations (corresponding to Table. 1): BJ, Beijing City; GY, Guyuan City; BS, Baise City; FS, 427 

Fushun City; YT, Yantai City; GYA, Guiyang City.  428 

 429 

As mentioned above, BJ2 represented BJ2–BJ6. The variations in number concentrations of dust and bioprotein insoluble 430 
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particles indicated that particle number concentrations decreased exponentially with particle diameter, with marked variation 431 

observed among hailstorms. The distribution distinguished organics from dust and bioprotein aerosols as the number 432 

concentrations of organics from all samples decreased with particle diameter before 8 μm, while those of GY1 and GY2 433 

fluctuated starting at diameters of 8 μm and 12 μm, respectively. This was likely due to some uncontrolled residential and 434 

industrial coal burning in GY (Guyuan City). A great variance existed in size distribution of both organics and dust. The number 435 

concentrations of organics from a hailstone embryo were 1 to 390 times to those from different hailstone embryos at the same 436 

diameter. The number concentrations of dust from a hailstone embryo were 1 to 527 times to those from different hailstone 437 

embryos at the same diameter. The number concentrations of dust from BJ1, BJ2, and GY1 were at least 3 times higher than 438 

organics in particles of the same diameter in the range of 2–24 μm. Moreover, dust showed a wider size distribution than 439 

organics and bioproteins among all samples, since dust from GY1 had a higher number concentration and larger maximum 440 

size (42 μm) than from other hailstone embryos. Bioprotein aerosols, with high freezing efficiency, may have formed initial 441 

ice particles in GY1, GY2, and YT, while dust or organics caused initial ice particle formation in hailstorms in cases lacking 442 

bioprotein aerosols. All hailstone embryos contained organics and dust, but not all hailstone embryos contained a significant 443 

amount of bioprotein aerosols. There were uncertainties in quantification of biological aerosols, due to poor understanding of 444 

biological transport and transformation processes (Fröhlich-Nowoisky et al., 2016).  445 

3.3 Variation in hailstone shells 446 

Size distribution of each species differed little in characteristics in outer shells with the embryos (Fig. 9). For a four-shell 447 

hailstone, the number concentrations of insoluble particles showed V-shaped (BS and YT) or inverse V-shaped (BJ1) 448 

distributions from embryo to crust. Five of nine two-shell hailstones showed higher number concentrations of dust in crusts 449 

than embryos, while seven of them showed higher number concentrations of organics in embryos than crusts. However, 450 

quantification of the differences in number concentration varied little among shells. The 90.5% points showed that differences 451 

in number concentration of the same kind particles in a shell compared to the previous shell at the same diameter was within 452 

twice, and the maximum differences was up to 9 times (294 data points in Fig. 9). This was because the growth of hailstones 453 

beyond the embryo stage depends on the accretion of supercooled water rather than ice crystalsthe  (Lamb and Verlinde, 454 

2011). The hailstone recorded not only insoluble particles when the embryo formed, but also insoluble particle in the hailstone 455 

growth zone throughout the hailstorm. Thus, the size distribution of particles within the whole hailstones may represent the 456 

distribution of insoluble particles in deep convection where the hailstones pass through. 457 
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 458 

Fig. 9: Size distribution of insoluble particles present in natural shells of 12 hailstones. The diameter interval on the x-axis is 2 μm. 459 

The y-axis shows the particle number concentration from 𝑫  – 1 µm to 𝑫  + 1 μm.represented. Blue triangles, orange 460 

rectanglessquares, and purple diamonds are used to indicate dust, organics, and bioprotein aerosols, respectively. The natural shells 461 

were namedare denoted alphabetically with capital letters (shell A refers to embryos, and shell B/D refers to the crust of hailstones). 462 

The arrow direction indicatesillustrates the trendency of particle number concentration in thiseach layer with regardcompared to 463 

the previous layer. Uncertaintyshell. Shading is indicated by shading. Calculations are described in detail in employed to indicate 464 

uncertainty. Detailed calculations are provided in the supplementary information. Abbreviations (corresponding to Table. 1): BJ, 465 

Beijing City; GY, Guyuan City - BeiJing; BS, Baise City - BaiSe; FS, Fushun City; YT, Yantai City - FuShun; GY - GuYuan; GYA, 466 

Guiyang City - GuiYAng; YT - YanTai. 467 

 468 
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 469 

Fig. 9b is a continuation of Fig. 9a. 470 
 471 

3.4 Logarithmic normal distribution of dust and organics 472 

The size distributions of dust and organics in the whole hailstone can be described by a logarithmic normal distribution 473 

(Fig. 10a) (Lamb and Verlinde, 2011): 474 

𝑛 𝑙𝑛𝐷   
𝑁

√2𝜋 𝑙𝑛𝜎𝑔
𝑒𝑥𝑝

𝑙𝑛𝐷 𝑙𝑛 𝑟𝑔
2

2 𝑙𝑛2 𝜎𝑔
, 𝐷 0.2 𝜇𝑚 12  475 

𝑛 𝑙𝑛𝐷   
𝑁

√2𝜋 𝑙𝑛𝜎𝑔
𝑒𝑥𝑝

𝑙𝑛𝐷 𝑙𝑛𝐷𝑔
2

2 𝑙𝑛2 𝜎𝑔
, 𝐷 0.2 𝜇𝑚 17  476 

Where 𝑛 ln𝐷  is the number concentration of insoluble particles per cubic centimeter volume water ranging from 477 

ln𝐷 d ln𝐷  to ln𝐷 d ln𝐷 . Here, 𝐷  represents the diameter of particles (in micrometers), ln 𝑟 𝑙𝑛 𝐷  is the 478 

geometric mean diameter, and ln𝜎  is the geometric standard deviation (Lamb and Verlinde, 2011). The number of bioprotein 479 

aerosols was below the limit of detection in some samples, so that, only the curves of organics and dust were fitted. The fitting 480 

parameters of the same species were aggregated in parameter space, and were suspected to be related to the physical properties 481 

of each species, requiring further studies for confirmation. Moreover, the fitting parameters of organics and dust particles were 482 
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clustered into two centroids (Fig. 10b) by the K-means method, which indicated that organics and dust have two classic modes 483 

(classic mode of organics: ln 𝑟 ln𝐷  = -0.70 μm, ln𝜎  = 0.91 μm, and 𝑁  = 9.19 × 105 cm−3; classic mode of dust: 484 

ln 𝑟 ln𝐷  = 0.11 μm, ln𝜎  = 1.07 μm, and 𝑁  = 1.5859 × 106 cm−3). That is, insoluble organics in hailstones are usually 485 

smaller in diameter and present in lower amounts than dust. Regardless of fine or coarse particles (𝐷 < 0.5 μm in diameter 486 

were not considered in reference to DeMott et al. (DeMott et al., 2010)), the number concentration of dust was up to 2 orders 487 

of magnitude higher than the number concentration of organics. These observations indicated that dust accounted for the major 488 

portion of particles in eight hailstorms (no considering about bioprotein), which was consistent with the observations of 489 

embryos described above. 490 
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 491 

Fig. 10: Fitting size distribution functions of organics and dust contained in the whole hailstone. (a) Fitting parameters of logarithmic 492 

normal distributions of BJ1, BJ2, BS, FS, GY1, GY2, YT, GYA. (b) Classic modes of dust and organics (interval of data is 0.2 μm 493 

and fitting curves painted with interval of 0.02 μm). The fitting range of (a) is shown with a green rectangle. The centroid of the 494 

organics fitting parameter (orange line) is 𝐥𝐧 𝝈𝒐 = 0.91 μm, 𝐥𝐧 𝒓𝒐, 𝒍𝒏𝑫𝒐 = −0.70 μm, and 𝑵𝒐 = 9.19 × 105 cm−3. The centroid of the 495 

dust fitting parameter (blue line) is 𝐥𝐧𝝈𝒅 = 1.07 μm, 𝐥𝐧 𝒓𝒅 𝐥𝐧𝑫𝒅 = 0.11 μm, and 𝑵𝒅 = 1.59 × 106 cm−3. Shading showed uncertainty 496 

of organics and dust. Abbreviations (corresponding to Table. 1): BJ, Beijing City; GY, Guyuan City - BeiJing; BS, Baise City - BaiSe; 497 

FS, Fushun City; YT, Yantai City - FuShun; GY - GuYuan; GYA, Guiyang City.498 
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 - GuiYAng; YT - YanTai. 499 

4 Conclusions 500 

This was the first study to simultaneously analyze both the number concentrations and species (organics, dust and 501 

bioproteins) of insoluble particles in hailstones. Analysis of insoluble particles present in hailstones, which participate in 502 

heterogeneous nucleating process as ice-nucleating particles in a deep convection(Lamb and Verlinde, 2011), provides a new 503 

approach for refinement of particle observation in severe storms and the understanding of hailstone formation.including 504 

organics, dust and bioproteins) of insoluble particles in hailstones. The findings from this analysis offer valuable insights into 505 

particle observations within severe storms. Understanding the number concentration and composition of these insoluble 506 

particles is crucial, as they play a significant role as ice-nucleating particles during the heterogeneous nucleation process in 507 

deep convection.  508 

The size distribution of insoluble particles in hailstones from the same hailstorm showed less variation than those from 509 

different hailstorms. One possible reason is that updrafts of hailstorms brought insoluble particles from local surfaces or 510 

boundary layers into deep convective clouds. Moreover, part of these insoluble particles participate in freezing initial ice 511 

particles to form one type of hailstone embryos. Almost all insoluble particles in hailstone embryos analyzed in this study 512 

showed an exponential size distribution, which was consistent with the effects of gravity. The number concentrations of 513 

organics and dust from different hailstone embryos differed up to 389 times and 526 times at the same diameter, respectively. 514 

Moreover, almost all insoluble particles in hailstone embryos analyzed in this study showed an exponential size distribution, 515 

which was consistent with the effects of gravity. The number concentrations of organics and dust from different hailstone 516 

embryos differed up to 389 times and 526 times at the same diameter, respectively. The changes in paticle concentration may 517 

lead to at leat one-order-of-magnitude viarance in ice-nucleating particle (DeMott et al., 2010). Additionally, size distribution 518 

of insoluble particles varied in shells up to 27Hailstone samples with high insoluble particle content, i.e., GY1 and GY2, 519 

showed significantly lower total column water vapor values and smaller depth between freezing level height and orography 520 

within one hour before hailstorm occurrence, compared to other samples (Hersbach et al., 2018). The competition of 521 

condensation and shorter updraft pathway might be responsible for the high number concentrations of organics, dust, and 522 

bioproteins in GY1 and GY2. Size distribution of insoluble particles varied in shells up to 9 times, which was much small than 523 

differences with different hailstorms.  524 

Two classic logarithmic normal distribution models were applied to fit the size distribution modes of organics and dust 525 

within hailstones were fitted as logarithmic normal distribution for, providing a description of insoluble particles in the deep 526 

convection where the hailstones grew up. Theduring hailstone formation. The analysis of the two classic size distribution 527 

modes of insoluble particles suggested thatindicated a significant presence of dust occupied the major fraction, without 528 
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takingconsidering bioprotein into account. Besides, there is. Furthermore, a positive correlation exists between the number 529 

concentrations of insoluble particles and that of ice-nucleating particles in hailstones, specifically for corresponding species 530 

(Ren et al., 2023, submitted, figure not shown). FurtherA further measurement of ice-nucleating particles by drop-freezing 531 

experiments will establish the relationship between insoluble particles and immersion ice-nucleating particles. Combination 532 

of these results with future experiments to determine the number concentrations and species of particles from local observations 533 

will establish the relationship between surface observation and ice-nucleating particles in deep convective clouds, which will 534 

lead to improvement of the parameterization of ice-nucleating particles in both weather and climate models.  535 

HoweverNonetheless, two kinds of classic size distribution modes of organics and dust in hailstones were performed, but 536 

a more robust classic mode required a larger number of samples. In future, for any climate or weather models, the classic mode 537 

can be assumed as the mean state to describe the characteristics of insoluble particles in supercooling water. In addition, this 538 

study did not attempt to parameterize bioprotein aerosols, because there was a great uncertainty in quantification due to poor 539 

understanding of biological processes (Fröhlich-Nowoisky et al., 2016). Further collaborative studies are required to gain a 540 

better understanding of biological processes to establish the classic bioprotein mode.  541 

Code availability 542 

Self-organized maps algorithm is functions on MATLAB  543 

https://ww2.mathworks.cn/help/deeplearning/ref/selforgmap.html 544 

Random forest algorithm is functions on MATLAB  545 
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The 10-fold stratified cross-validation algorithm is functions on MATLAB 547 
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