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Abstract. Most climate models do not reproduce the 1979-2014 increase in Antarctic sea ice cover. This was a contributing 11 

factor in successive Intergovernmental Panel on Climate Change (IPCC) reports allocating low confidence to model 12 

projections of sea ice over the 21st century. We show that recent rapid declines bring observed sea ice area trends back into 13 

line with the models, andbut confirm that discrepancies exist for earlier periods. This implies that projections of substantial 14 

future Antarctic sea ice loss may be more reliable than previously thought, with wide-ranging implications for the evolution 15 

of the Southern Hemisphere climate This demonstrates that models exhibit different skill on different timescales. We discuss 16 

possible interpretations of thisthe changing linear trend assessment given the abrupt nature of recent changes, and the 17 

implications for future research.judgement,specifically whetherwe can now have . 18 

1 Introduction 19 

The early years of the twenty-first century revealed a puzzling conundrum in Antarctic sea ice (Turner and Comiso, 2017; 20 

National Academies of Sciences and Medicine, 2017). Observations of Antarctic sea ice extent (SIE) showed a small increase 21 

during the satellite era (which began in late 1978), with annual mean values reaching a maximum in 2014, but most climate 22 

models simulated SIE declines over the same period. Various studies examined possible reasons for this discrepancy (Turner 23 

and Comiso, 2017). Specifically, the community discussed whether it could be explained by internal variability masking the 24 

anthropogenic forced signal in observations (Gagné et al., 2015; Rosenblum and Eisenman, 2017; Roach et al., 2020) and the 25 

extent to which it revealed model deficiencies in sea ice processes (Fox-Kemper, 2021). Some studies found that the observed 26 

pan-Antarctic trends lay within the distribution of modelled trends (Polvani and Smith, 2013; Zunz et al., 2013) and that only 27 

regional trends could robustly be deemed inaccurate in the models (Hobbs et al., 2015). However, these studies considered 28 
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trends to 2005 only, and over this 27-year period the role of internal variability is larger than it is for longer periods with more 29 

recent end dates. Others suggested that trends in sea ice, particularly SIE, may not be a robust metric of model performance, 30 

particularly when the observational time series is too short to separate internal variability from anthropogenic forcing (Notz, 31 

2014). Even so, the poorly understood discrepancy between models and observations has been a contributing factor in a 32 

widespread lack of confidence in projections of 21st century Antarctic sea ice decline, and consequently in many aspects of 33 

projected climate change around Antarctica, which are underpinned by projections of substantial sea ice decline (Bracegirdle 34 

et al., 2015; Bracegirdle et al., 2018). 35 

 36 

Recently, Antarctic sea ice has exhibited a starkly different pattern of behaviour. Following the pre-2015 era of slightly 37 

increasing ice extent, rapid ice loss beginning in early 2015 culminated in a dramatic drop in spring 2016-17 (Turner et al., 38 

2017). This led to several years of record low SIE, which has been framed as a ‘new sea ice state’ (Purich and Doddridge, 39 

2023; Hobbs et al, 2024). This situation shows no sign of abating, with further declines since 2021 leading to monthly-mean 40 

SIE records being broken in eight months of 2023 (Fetterer, 2017; Siegert et al., 2023). The initial decline showed strong 41 

linkages to patterns of intrinsic atmospheric variability (Turner et al., 2017; Schlosser et al., 2018; Zhang et al., 2022) which 42 

have high internal variability on short (sub-annual) timescales. However, growing evidence of the contribution of warming in 43 

the subsurface ocean (Zhang et al., 2022; Purich and Doddridge, 2023), and the magnitude and spatial homogeneity of the sea 44 

ice reductions since 2016/17, point to more sustained declines. 45 

 46 

We are therefore interested in the fundamental question as to whether this new data showing rapid decline should change our 47 

judgement of the models’ skill. In light of this sea ice loss, To do so, in the context of previous assessments and based on the 48 

approximate linearity of the modelled time series, we assess linear trends. Specifically, we re-consider whether the distribution 49 

of linear trends simulated by the current generation of climate models, from the Coupled Model Intercomparison Project Phase 50 

6 (CMIP6; Eyring et al., 2016) dataset, allows for a trend of the observed magnitude and thus whether observed trends are 51 

consistent with the multi-model ensemble. Key previous studies have considered trends to 2005 (Hobbs et al., 2015; Polvani 52 

and Smith, 2013; Zunz et al., 2013) or 2013 (Rosenblum and Eisenman, 2017) based on CMIP5 models and to 2018 based on 53 

CMIP6 (Roach et al., 2020). We might expect the situation to have changed, for two reasons. First, being able to assess trends 54 

in longer timeseries (due to the longer observational record) potentially reduces the impact of short-term internal variability 55 

on trend calculations (Notz, 2014). Second, and more specifically, these data now include the recent years of observed rapid 56 

decline of sea ice, decreasing long-term trends. Therefore we perform an analysis of all trends with end dates between 2005 57 

and 2023, to place our results in the context of previous studies and show how the results change over time due to these two 58 

factors, while using a consistent set of CMIP6 model data (such that the changes are not attributable to changes in model 59 

components or resolution). Our discussion of these results focusses on the changing assessment of skill depending on the 60 

timescale considered, the implications for our confidence in the models, and the interpretation of linear trend assessments 61 

considering the abrupt nature of recent changes. 62 
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2. Data and Methods 63 

2.1 Sea Ice Metric 64 

Sea ice cover is calculated as either sea ice extent, SIE (the total area of all gridboxes where sea ice concentration SIC exceeds 65 

a 15% threshold), or sea ice area, SIA (the sum of gridbox areas multiplied by gridbox SIC). SIA has larger observational 66 

uncertainties, as it is more sensitive to differences in SIC. However, SIE is a non-linear measure and so can give misleading 67 

results when comparing models and observations or when calculating trends (Notz, 2014). Therefore, in contrast to some 68 

previous assessments, but following community precedent (Roach et al., 2020), we assess SIA. SIA and SIE have similar 69 

trends (Fig. A1).  70 

2.2 Model Data 71 

We use data from 39 CMIP6 models, from multiple modelling centres. Across the ensemble, there are multiple different model 72 

components and resolutions of each component. Monthly SIA is obtained from the University of Hamburg (UHH) CMIP6 Sea 73 

Ice Area directory (https://www.cen.uni-hamburg.de/en/icdc/data/cryosphere/cmip6-sea-ice-area.html, accessed 2023-08-17) 74 

and aggregated into weighted annual means. This is supplemented by SIA for the two NorESM models, which are not available 75 

in the UHH dataset due to a bug in an earlier version of NorESM released SIA data. We merge historical simulations ending 76 

in December 2014 with the ssp585 forcing scenario run for 2015 to 2023. ssp585 indicates a global average radiative forcing 77 

of 8.5 W m-2 by 2100 (O'Neill et al., 2016). This is a high-emissions forcing scenario; however, emissions scenarios have little 78 

bearing on results for the time period considered here. The resulting historical-ssp585 merger constitutes 188 ensemble 79 

members from 39 models (Table A1), each contributing between 1 and 57 members of an initial condition ensemble.  80 

 81 

By using a large number of ensemble members of the historical multi-model ensemble, we sample internal variability under 82 

historical anthropogenic forcing.  However, since only four models contain more than six members, we use a maximum of six 83 

members from each model to avoid weighting the results too heavily towards models with large ensembles. Thus the final 84 

ensemble analyzed has 98 members (Fig. B1) from 39 models (Table B1). The sensitivity of our results to this treatment of 85 

model ensembles and to the emission scenario is discussed in Appendix C.  86 

 87 

Since many models have drifts in their pre-industrial runs, we calculated linear trends over the full pre-industrial period 88 

available (in the range 150 to 500 years across the 32 models with data available in the UHH dataset; Table B1), henceforward 89 

referred to as ‘drift’. In all cases, drifts are an order of magnitude smaller than the trends for years 1979-2023, and there is no 90 

significant inter-model relationship between the drift in a model’s pre-industrial simulation and the ensemble mean of linear 91 

trends in that model (p=0.48). This implies drifts are negligible in the context of historical trends, consistent with results for 92 

CMIP5 (Gupta et al., 2013), and so they are not considered further.  93 

https://www.cen.uni-hamburg.de/en/icdc/data/cryosphere/cmip6-sea-ice-area.html
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2.3 Observational Data 94 

For an estimate of observed sea ice cover, NSIDC Sea Ice Index v3.0 SIA (Fetterer, 2017) is used, available from January 95 

1979-September 2023. We investigate the role of observational uncertainty by also using other observational estimates for 96 

1979-2019 from the UHH SIA dataset (Dörr, 2021). Data for missing months (December 1987-January 1988 for the Sea Ice 97 

Index v3.0) are infilled by interpolating between the same month in the previous and following year (Rosenblum and Eisenman, 98 

2017).       99 

2.4 Trend evaluation methodology 100 

Our evaluation methodology is an extension of that previously used for CMIP5 (Rosenblum and Eisenman, 2017). Linear 101 

trends are calculated for all periods of at least 35 years overlapping with the satellite record (January 1979-September 2023) 102 

using the OLS method of the Python package statsmodels.api. For comparison with the earlier studies mentioned in the 103 

Introduction, we additionally calculate trends for periods 1979–y2 where y2 is between 2005 and 2012. We calculate the mean 104 

and standard deviation of the trends from the model ensemble and use these to fit a Gaussian distribution, with cumulative 105 

distribution function F(X), to the distribution of modelled these trends. To estimate the probability that a trend at least as large 106 

as observed would occur in the climate model population, we calculate the p-value for a one-tailed test as 1-F(x), where x is 107 

the observed trend. The extent to which a linear trend is an appropriate metric for evaluating SIA, given the evidence for a 108 

recent regime change, is considered in the Discussion below. 109 

3 Results 110 

3.1 Trend evaluation 111 

The recent decade of data has reduced the significant positive trend (Parkinson, 2019) in observed annual-mean and monthly 112 

SIA, which peaked in the period ending 2015, to near-zero (Fig. 1a)-c), red lines; Fig. C1a, A1). For some months and in the 113 

annual mean, the trend since 1979 is now weakly negative, and trends are statistically insignificant in all months (Fig. A1). 114 

Meanwhile, adding the extra years of data hardly changed the multi-model mean trend at all (Fig. 1a)-c), blue lines). The mean 115 

trend remains strongly negative, although a few simulations have weakly positive trends. The simulated trends are less 116 

influenced by internal climate variability as more years are added, and therefore the standard deviation of the modelled trends 117 

for a fixed start year of 1979 decreases over time (Fig. C1c).  118 

 119 

In light of these findings, we test the null hypothesis that observed sea ice trends are consistent with trends simulated across 120 

the CMIP6 multi-model ensemble, and consider how additional years of data affect the outcome of this test. We consider 121 

trends calculated with both a fixed start date (1979) and fixed duration (35 years) to aid our interpretation. Until 2010 inclusive, 122 

the probability of a CMIP6 model trend matching or exceeding the observed trend exceeds 0.05, so we would accept not reject 123 

the null hypothesis that modelled and observed trends are consistent (as concluded in Zunz et al., 2013; Hobbs et al., 2015; 124 
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Polvani and Smith, 2013)).   However, in the period 2005 through 2015, the multi-model mean trend and observed trend 125 

diverge while the modelled trend distribution narrows (Fig. C1), reducing the likelihood that the observed trend falls within 126 

the modelled distribution. As a result, between 2011 and 2018, the probability of a CMIP6 model trend matching or exceeding 127 

the observed trend is very low (p<0.05; Fig. 1d), so the null hypothesis is rejected and the model trends may be deemed 128 

inconsistent with observations. This test provides a clear result; the short time period of under forty years should allow for a 129 

generous range of modelled trends due to internal variability, but this range still fails to accommodate the observations.  130 

 131 

From 2015, the probability of CMIP6 trends matching or exceeding the observed trend starts to increase, as the ice loss brings 132 

observations into line with the models (Fig. 1d). However, if trends are calculated with a fixed 1979 start date, progressively 133 

lengthening the trend under consideration decreases the modelled trend standard deviation while hardly affecting the model 134 

mean trend (Fig. C1). This makes it less likely that the observed trends will fall within the distribution of modelled trends.  135 
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Only in 2022 does the recent rapid decline in observations counteract this effect and finally bring observed trends into line 136 

with the models (null hypothesis not rejected at p=0.05; Fig. 1d). In contrast, for ‘fixed duration’ trends, the standard deviation 137 

of modelled trends remains large, while the observed trend more rapidly declines and becomes negative due to the neglect of 138 

early low SIA years (Gagné et al., 2015; Schroeter et al., 2023) in addition to the inclusion of the recent low SIA years. 139 

Therefore, the null hypothesis is no longer rejected at p=0.05 as early as 2019 under this measure.  140 

 141 

3.2 Relationship of trends with mean state 142 

It is known that, seasonally and especially in summer, there is a relationship between sea ice area climatology and future trends, 143 

which is to be expected as, for example, very low sea ice constrains trends (Holmes et al, 2022). Therefore, we investigated 144 

the relevance of this for our trend assessment. The relationship between both summer and annual mean climatology and the 145 

annual mean trends is highly statistically significant, but has a very weak slope (Fig C2a,b). Since there are two models (from 146 

the MIROC family) which are clear outliers, having far too little sea ice in the annual mean (Fig C2b; Shu et al, 2020), we test 147 

the sensitivity to removing these models. This does not change our conclusion that trends are consistent for an end date of 148 

2023 (Fig. C2c). Therefore, while there is some evidence that the models with trends closest to observations tend to be biased 149 

low (Fig. C2a,b), this does not appear to dominate our conclusion that observed and modelled trends are now consistent.  150 

 151 

4 Discussion and Conclusions 152 

we have, the more Our results show that, if we consider linear trends in models and observations, then we find that the level 153 

of agreement varies over time. that the consistency between observed and modelled trends changes over time. Firstly, for early 154 

end dates (prior to 2011) there is no evidence of inconsistency between observed and modelled trends, as noted by earlier 155 

studies (Hobbs et al., 2015; Zunz et al., 2013; Polvani and Smith, 2013). Secondly, there is a mismatch between observed and 156 

modelled trends for the period up to around 2018, as discussed in the Introduction., s This suggestsing that modelled 157 

anthropogenic trends are too strong relative to modelled variability during that period. Finally, our study shows the novel result 158 

that the persistent low Antarctic SIA of 2022 and 2023 brings observed trends back into line with the ensemble of modelled 159 

trends. Moreover, trends on the shorter 35-year timescale also fall within the model ensemble for the five most recent 35-year 160 

periods (Fig. 1d)., permitting the interpretation that modelled forced trends and variability are realistic on 45-year timescales 161 

(the full length of the modern satellite record). This is an important conclusion, since these longer timescales are of greatest 162 

Figure 1 (a-c) Linear trends in annual mean SIA in satellite observations (red) and CMIP6 models (blue histogram) and Gaussian 

fit to CMIP6 distribution (black) for the periods (a) 1979-2005, (b) 1979-2013 and (c) 1979-2023. The dashed vertical line indicates 

zero trend and the blue line indicates the multi-model mean. (d) the probability of observing a trend at least as large as observed (a 

one-tailed test) under the null hypothesis that observations are taken from the same population as the CMIP6 multi-model 

ensemble, for varying end dates and either a fixed start date of 1979 as in panels a) and b) (crosses) or fixed trend length of 35 years 

(dots).       
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relevance to centennial projections of climate change, and to the attribution of anthropogenically forced change. Moreover, 163 

even trends on the shorter 35-year timescale fall within the model ensemble for the five most recent 35-year periods (Fig. 1d).   164 

Focussing on trends with a fixed start date, the changing assessment of skill with increasing years of data could be explained 165 

in several ways.We approach our interpretation of the changing assessment of skill as follows: cConceptually, for any time 166 

period there is a distribution of model trends and also a distribution of possible real trends that could have occurred (depending 167 

upon the evolution of internal climate variability). The observed trend is a single realisation of the distribution of possible real 168 

trends. The observed trends with end dates between 2011 and 2021 were outside the model trend distribution. Now, the latest 169 

observed trends fall within with the distribution of modelled trends, as do observed trends for periods ending before 2011. In 170 

other words, the observed trends over the middle period lay in the region where the modelled and real trend distributions did 171 

not overlap, and observed trends in the earlier and most recent periods lie in the region where they do overlap. 172 

 173 

The non-overlapping region could arise from a difference in the spread of the The modelled and real trend distributions (due 174 

to will differ in their spread if the models have inaccurate modelled variability) or, and in their mean (due to a too-strongif the 175 

models have an inaccurate modelled anthropogenic forced trend). Therefore, inaccurate variability, particularly on 176 

multidecadal timescales, could explain the changing assessment of skill. Indeed, modelled variability exceeds observed 177 

variability and varies greatly between models (Zunz et al., 2013, Roach et al., 2020, Diamond et al., 2024), with some models 178 

containing large centennial variability (Zhang et al., 2019). Alternatively, it could be that the modelled anthropogenic trends 179 

are too strong (Schneider and Deser, 2018), or emerge too early. For example, this is consistent with the hypothesis that models 180 

under-estimate the timescale or magnitude of the cooling phase of the ‘two-timescale’ response to stratospheric ozone forcing, 181 

whereby increasing westerlies cause a cooling (sea ice increase) on ‘short’ timescales and warming (decline) on ‘long’ 182 

timescales (Ferreira et al., 2015; Kostov et al., 2017). However, other evidence from models suggests this mechanism is 183 

unlikely to be a primary driver of the model-observation mismatch (Seviour et al., 2019).  184 

 185 

We can then consider what our results imply for our question as posed in the Introduction, namely whether recent rapid declines 186 

observed in satellite data change our judgement of model skill, and ultimately our confidence in the models. This paragraph 187 

considers the answer to this question based on the linear trend assessment, and the following paragraphs take the broader view 188 

of how a linear trend assessment should be interpreted in the light of the possible step change nature of recent decline. Our 189 

results permitting the interpretation that modelled forced trends and variability are realistic on 45-year timescales (the full 190 

length of the modern satellite record). This is an important conclusion, since these longer timescales are of greatest relevance 191 

to centennial projections of climate change, and to the attribution of anthropogenically forced change.However, the existing 192 

discrepancy on shorter time scales points to fundamental issues remaining. If this discrepancy is, as discussed above, linked to 193 

multidecadal variability or to ozone forcing, then one interpretation may be that we can have some level of greater confidence 194 

in projections of substantial centennial decline (Roach et al., 2020, Holmes et al, 2022) under strong forcing, since model 195 
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performance on longer (45-year) timescales is of greatest relevance to centennial projections of climate change. However, our 196 

confidence would remain low under weak forcings or in the near term, where multidecadal variability and ozone forcing retain 197 

relative importance. If, however, the discrepancy is because the forced greenhouse gas response is too strong, models will 198 

produce too-strong ice loss even on centennial timescales. Confidence in which of these interpretations is most appropriate 199 

will require both more years of data and further analysis. Further, processes lacking from models, such as increasing freshwater 200 

input from accelerating ice sheet melt (Swart et al., 2023), may provide further complications in the relative evolution of 201 

modelled and observed sea ice over the 21st century. 202 

 203 

This study uses linear trend analysis as a metric for evaluation. The importance of our results is in showing that we can no 204 

longer rule out climate model simulations of Antarctic sea ice based on linear trends alone.L inear trends are a limited 205 

parametric assessment and the observed time series when the years 2017-2023 are included arguably looks strikingly nonlinear 206 

in time (Fig B1). Indeed, the recent abrupt change has been interpreted by some as a regime shift (Purich and Doddridge, 2023; 207 

Hobbs et al, 2024), which points to limitations of applying a linear trend evaluation.  Nevertheless, an update to the linear trend 208 

evaluation has significant value. Firstly, the use of linear trends in many previous assessments (as cited in the introduction) 209 

merits a careful examination of whether the conclusions of those studies still hold. Secondly, many models have approximately 210 

linear evolution in time (Fig B1), which justifies a comparison of linear trends, although the time evolution of SIA in many 211 

models also exhibits nonlinear features so that the apparent observed nonlinearity itself is not a reason to conclude a 212 

discrepancy between models and observations. Thirdly, a regime shift is not the only interpretation of observations, and 213 

multidecadal variability superimposed on a forced linear trend (e.g. Zhang et al, 2019) could cause abrupt change as seen since 214 

2016. This interpretation is consistent with evidence of steady sea ice decline in the 20th century before the satellite era (Fogt 215 

et al., 2022), and with early satellite data which suggest that the ice area was more variable in the 1960s (Meier et al., 2013; 216 

Gallaher et al., 2013) and dropped rapidly immediately before the onset of continuous coverage in 1979 (Cavalieri et al., 2003). 217 

In this case, evaluating linear trends on increasingly long timescales would capture more of the underlying forced trend.  In 218 

this context, it is a key novel result that our results show that models no longer fail the fundamental test of being able to 219 

simulate observed linear trends over the full 45-year modern satellite era.  220 

 221 

However, we must interpret the results of the linear evaluation in the light of the recently observed abrupt decline, whereby 222 

the linear model looks increasingly less valid for observations. This again implies the emerging agreement on linear trends 223 

should not necessarily imply more confidence in model projections. From this perspective, the rapid decline provides a new 224 

context for comparing observations and models (Diamond et al., 2024) and adds evidence for which characteristics of sea ice 225 

variability the models are unable to simulate and should therefore be a focus of future studies. Therefore, while it is a tenable 226 

view that the observed rapid decline could be the first indication that the declines projected in the models could occur, there is 227 

now a need to probe the nature of this recent change, specifically the contribution of multiple timescales, and its representation 228 

in models. This will be challenging, since extremes andFuture studies can therefore move on to more detailed model 229 
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assessments, including of multidecadal variability are nd rapid changes; although both are challengingdifficult to assess duein 230 

the light of to limited observational data. The rapid decline is as yet short-lived, so an improved understanding of multi-decadal 231 

sea ice variability and its representation in climate models is critical for further interpreting these results. Moreover, the recent 232 

declines are still short-lived, so further years of data will add clarity to the nature of recent change. More broadly, Further, 233 

processes lacking from models, such as increasing freshwater input from accelerating ice sheet melt (Swart et al., 2023), may 234 

provide further complications in the relative evolution of modelled and observed sea ice over the 21st century.Tthere are of 235 

course many further measures by which modelled sea ice may be assessed and found to have deficiencies, including seasonal 236 

and interannual variability (Zunz et al., 2013), spatial patterns (Hobbs et al., 2015), physical processes (Holmes et al., 2019), 237 

,and relationships between trends and other variables (e.g. global warming; Rosenblum and Eisenman, 2017 or mean state, as 238 

discussed in Section 3.2above).  Moreover, linear trends are a limited parametric assessment of a timeseries and one could 239 

argue that the observed time series appears to display more complexity than a linear trend with noise imposed (Fig B1). 240 

However, complex behaviours, revealing the interplay of trends and variability including on long timescales, are also apparent 241 

in individual model ensemble members (Fig B1). Therefore, our argument is simply that being able to simulate linear trends 242 

is a fundamental test, and models no longer fail this fundamental test, at least over the 45-year modern satellite era. Future 243 

studies can therefore move on to more detailed model assessments, including of multidecadal variability and rapid changes; 244 

although both are challenging in the light of limited observational data. The rapid decline is as yet short-lived, so an improved 245 

understanding of multi-decadal sea ice variability and its representation in climate models is critical for further interpreting 246 

these results. Further, processes lacking from models, such as increasing freshwater input from accelerating ice sheet melt 247 

(Swart et al., 2023), may provide further complications in the relative evolution of modelled and observed sea ice over the 21st 248 

century. 249 

 250 

 251 

 on multiple timescales and its representation in models. , in order to critique this interpretation and ultimately assess how best 252 

to evaluate CMIP6 models. Our results have broad ramifications for future assessments of CMIP6 outputs. First, revising our 253 

confidence in the climate models has consequences for the attribution of historical climate changes. Secondly, we should now 254 

have some level of greater confidence in the strong projected declines in Antarctic sea ice under anthropogenic forcing (Roach 255 

et al., 2020), whereby ice becomes near-absent in summer (Holmes et al., 2022). This in turn will influence our understanding 256 

of the future evolution of all aspects of theImproving knowledge on the strengths and weaknesses of climate models in 257 

representing sea ice is important for understanding wider implications for Southern Hemisphere climate - including Southern 258 

Ocean heat and carbon uptake, circumpolar winds (Bracegirdle et al., 2018), and melting of the Antarctic Ice Sheet – and of 259 

marine ecosystem function; all of which underpins decisions about the mitigation of future greenhouse gas emissions and about 260 

ecosystem management. 261 

Appendix A: Monthly trends 262 
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263 

 264 

Figure A1: Observed sea ice trends in individual months for (squares) 1979-2014, (crosses) full 45-year trend 1979-265 

2023, and (circles) 35-year trend to 2023. 1979-2023 trends are highlighted in shades of red as this period is the focus 266 

of the paper. a) Sea Ice Area, b) Sea Ice Extent. 5th-95th percentile uncertainties are indicated by vertical lines. Data 267 

are from the Sea Ice Index (see Methods). 268 

  269 
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Appendix B: CMIP6 models 270 

 Mean Trend Climatology 
Trend  
piControl 

n members 
used 
(available) 

Model 1979-2013  1979-2023  1989-2023  
February 
1979-2023 

Annual 
1979-2023 

  

ACCESS_CM2 -0.049 -0.173 -0.265 0.532 7.435 -0.021 1 

ACCESS_ESM1 -0.151 -0.099 -0.104 2.120 8.238 N/A 3 

AWICM1 -0.405 -0.473 -0.420 1.171 9.802 0.004 1 

BCC_CSM2 0.194 -0.443 -0.803 0.294 6.644 -0.027 1 

CAMS_CSM1 -0.067 -0.096 -0.230 0.012 5.846 -0.023 2 

CESM2 -0.369 -0.382 -0.388 1.602 8.960 -0.007 3 

CESM2_WACCM -0.474 -0.447 -0.446 1.760 9.181 -0.012 3 

CIESM -0.251 -0.261 -0.261 0.079 5.487 -0.019 1 

CMCC_CM2_SR5 -0.356 -0.330 -0.328 0.679 7.568 -0.040 1 

CMCC_ESM2 -0.297 -0.247 -0.254 0.719 7.699 -0.045 1 

CNRM_CM6 -0.362 -0.379 -0.376 0.940 9.192 -0.018 6 

CNRM_CM6_1_HR -0.443 -0.583 -0.950 0.499 8.065 -0.065 1 

CanESM5 -0.386 -0.356 -0.373 4.014 11.841 0.005 6 (19) 

E3SM_1_1 -0.323 -0.360 -0.422 1.320 9.166 0.003 1 

ECEarth3 -0.267 -0.222 -0.236 0.263 4.654 -0.009 6 (57) 

ECEarth3_CC -0.231 -0.126 -0.147 0.056 3.187 -0.013 1 

ECEarth3_Veg -0.149 -0.196 -0.276 0.298 4.816 -0.008 5 

ECEarth3_Veg_LR -0.325 -0.280 -0.293 0.182 4.819 -0.005 1 

FGOALS_f3L -0.122 -0.159 -0.109 0.277 6.360 N/A 1 

FGOALS_g3 -0.279 -0.226 -0.135 2.214 10.813 0.000 4 

FIO_ESM -0.316 -0.342 -0.339 2.035 9.448 -0.001 3 

GFDL_CM4 -0.223 -0.193 -0.159 0.529 9.791 -0.019 1 

GFDL_ESM4 -0.039 -0.111 -0.075 0.641 8.455 -0.019 1 

GISS_E2_1_G -0.135 0.008 0.062 0.731 8.049 N/A 1 

HadGEM3_GC31_LL -0.514 -0.607 -0.674 1.957 8.692 N/A 3 

HadGEM3_GC31_MM -0.312 -0.313 -0.362 1.482 6.144 -0.047 4 

INM_CM4_8 -0.193 -0.210 -0.228 0.242 4.386 -0.012 1 

INM_CM5_0 -0.238 -0.232 -0.200 0.904 6.231 0.021 1 

IPSL_CM6A_LR -0.363 -0.384 -0.414 1.616 10.606 0.006 6 

KIOST_ESM -0.259 -0.215 -0.156 0.725 6.252 N/A 1 

MIROC6 -0.014 -0.015 -0.006 0.017 1.505 -0.001 3 

MIROC_ES2L -0.072 -0.084 -0.108 0.019 1.398 0.002 6 (8) 
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MPI_ESM1_2_HR -0.277 -0.274 -0.356 0.298 5.833 -0.004 2 

MPI_ESM1_2_LR -0.108 -0.078 0.019 0.259 4.325 0.000 6 (30) 

MRI_ESM2 -0.325 -0.377 -0.436 2.537 11.964 -0.009 1 

NESM3 -0.202 -0.283 -0.374 0.485 7.746 -0.010 2 

NorESM2_LM -0.096 -0.082 -0.102 1.385 6.238 N/A 1 

NorESM2_MM -0.014 -0.077 -0.041 1.402 6.543 N/A 1 

UKESM1_0_LL -0.721 -0.666 -0.652 2.947 9.954 0.005 5 

 271 

Table B1: The models available for the study and summary values:      the number of ensemble members      number used (and 272 

the number available where this differs);      the ensemble mean trend (Mkm2/decade)      and      the climatology (Mkm2) across 273 

the ensemble members used only for the period specified; and the trend in the pre-industrial simulation (Mkm2/decade) . 274 

NorESM values were calculated by the authors from SIC data; all other values were obtained from the CMIP6 SIA Directory 275 

made available by the University of Hamburg and methods are fully detailed there.  276 
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 277 

 
Figure B1: 1979-2023 annual mean sea ice area in observations (Sea Ice Index v3, top left) and in all CMIP6 model 

ensemble members considered in the analysis. Panels are sorted by their linear trend over 1979-2023. Linear trends 

are shown and indicated in red (statistically significant at p<0.05) or grey (statistically insignificant). Each panel 

includes annotation showing the simulation’s 1979-2023 climatology and trend. Y-axis shows SIA anomaly from 1979-

2023 climatology (Mkm2). 
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 278 

Appendix C: Sensitivity Tests     279 

 280 

Figure C1: Contributions to the p-value shown in Figure 1d). a) observed trend; Sea Ice Index in black as in main text, 281 

other datasets as indicated. b) mean of modelled trends, c) standard deviation of modelled trends, d) p-value (as main 282 

text Figure 1d but with alternative observational estimates (Dörr, 2021)).  283 
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Figure C2: The role of ice-free conditions in explaining model spread, and result sensitivity to ensemble 

treatment. a) Scatter plot of summer (February) sea ice climatology for 1979-2023 against the annual-mean 

trend over 1979-2023. Maximum 6 ensemble members per model shown. b) as a) but for annual mean 

climatology against trend, with cutoff threshold (observed climatology/4) to exclude MIROC models indicated 

in grey dashed line. c) As figure 1d) but excluding MIROC models. d) As figure 1d) but using 1 random 

ensemble member from each model, resampled 10000 times; mean of p-values.  

Sensitivity to Observational Dataset 284 

Observational uncertainty in SIA is particularly high prior to winter 1987 (not shown) due to missing SIC data. Trends in the 285 

other datasets, in particular OSI-SAF (Figure C1, green), are in general more strongly positive than those in the Sea Ice Index 286 

(Figure C1a). Therefore, for the ‘1979 start date’ trends, these might exhibit consistency with model-simulated trends at later 287 

end dates than 2022 (Figure C1d, crosses); note that all datasets already display consistency for the 35-year trends ending in 288 

2019 onwards (Figure C1d, dots).  289 

Sensitivity to treatment of CMIP6 models 290 

We also tested the sensitivity of our conclusions to our treatment of CMIP6 models. First, we tested the sensitivity to treatment 291 

of individual model ensembles. As stated in the main text, the choice of using a maximum of six ensemble members per model 292 

was to sample internal variability adequately without weighting towards models with large ensembles. By including all 293 

ensemble members (instead of a maximum of six per model), we largely add simulations from models with weak negative 294 
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average trends (Table B1) and so increase consistency with observations (not shown). However, the evolution with end year 295 

of the model-observation comparison (Fig. 1d) and the broad timings of threshold crossings are unchanged.  On the other hand, 296 

since curtailment to a maximum six members per model still constitutes uneven sampling across models which have different 297 

internal variabilities, we also verified that when using one ensemble member per model, results remain on average the same 298 

for 2023 end dates (Fig. C2d).      299 

 300 

Second, we tested sensitivity to using the weaker forcing scenario ssp245 instead of ssp585 for the extension of modelled 301 

trends after 2014. The effect of forcing scenario is small early in the 21st century (Hawkins and Sutton, 2012), so that any 302 

difference arising is due to internal variability or structural differences between the models with simulations available. For the 303 

overlapping subset of 147 model-realisation combinations, ssp245 has marginally stronger trends and so is slightly less 304 

consistent with observations. In contrast, using the full ssp245 ensemble (with all available members) means including a larger 305 

ensemble of MIROC6 than in the overlapping subset or in the ssp585 ensemble; MIROC6 implausibly has virtually no sea ice 306 

year-round (Shu et al., 2020) and therefore zero trends (Holmes et al., 2022) leading to weaker mean trends and slightly greater 307 

consistency with observations. In summary, these effects are small, and so our conclusions are robust to these sensitivity tests.      308 

 309 

Code Availability 310 

The code for calculating trends, performing the evaluation and preparing figures is available from the corresponding author on 311 

request. 312 

Data Availability 313 

Sea Ice Area from the CMIP6 models is available from the University of Hamburg (UHH) CMIP6 Sea Ice Area directory 314 

(https://www.cen.uni-hamburg.de/en/icdc/data/cryosphere/cmip6-sea-ice-area.html, accessed 2023-08-17). The NSIDC Sea 315 

Ice Index v3.0 SIA (Fetterer, 2017) is available from https://nsidc.org/arcticseaicenews/sea-ice-tools/. Other observational 316 

estimates of sea ice area (Dörr, 2021) are available from https://doi.org/10.25592/uhhfdm.8559.  317 

Author Contributions 318 

CRH, TJB and PRH conceived the study. CRH conducted the analysis and prepared the figures. All authors discussed the 319 

results and reviewed the manuscript.  320 

Competing Interests 321 

The authors declare they have no conflicts of interest. 322 

Acknowledgements 323 

All authors received funding from NERC grant DEFIANT (NE/W004739/1); JS also received funding from Canada 150 324 

Research Chairs program (C150 grant no. 50296). The World Climate Research Programme's (WCRP) Working Group on 325 

Coupled Modelling, which is responsible for CMIP, and the climate modelling groups, are thanked for producing and making 326 

available their model output. 327 

https://www.cen.uni-hamburg.de/en/icdc/data/cryosphere/cmip6-sea-ice-area.html
https://nsidc.org/arcticseaicenews/sea-ice-tools/
https://doi.org/10.25592/uhhfdm.8559


17 

 

References 328 

Bracegirdle, T. J., Hyder, P., and Holmes, C. R.: CMIP5 diversity in southern westerly jet projections related to historical sea 329 

ice area: Strong link to strengthening and weak link to shift, J. Climate, 31, 195-211, 2018. 330 

Bracegirdle, T. J., Stephenson, D. B., Turner, J., and Phillips, T.: The importance of sea ice area biases in 21st century 331 

multimodel projections of Antarctic temperature and precipitation, Geophys. Res. Lett., 42, 10,832-810,839, 2015. 332 

Cavalieri, D., Parkinson, C., and Vinnikov, K. Y.: 30‐Year satellite record reveals contrasting Arctic and Antarctic decadal sea 333 

ice variability, Geophys. Res. Lett., 30, 2003. 334 

Diamond, R., Sime, L.C., Schroeder, D., and Holmes, C.R.: CMIP6 models rarely simulate Antarctic winter sea-ice anomalies 335 

as large as observed in 2023, Geophys. Res. Lett.,(accepted) (2024) 336 

Dörr, J. N., Dirk; Kern, Stefan: UHH sea-ice area product, 1850-2019 (v2019_fv0.01) [dataset], 337 

https://doi.org/10.25592/uhhfdm.8559, , 2021. 338 

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled 339 

Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937-1958, 340 

2016. 341 

Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S., and Plumb, A.: Antarctic Ocean and sea ice response to ozone depletion: 342 

A two-time-scale problem, J. Climate, 28, 1206-1226, 2015. 343 

Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel.: Sea Ice Index, Version 3 Boulder, Colorado USA. 344 

National Snow and Ice Data Center. [dataset], https://doi.org/10.7265/N5K072F8, 2017. 345 

Fogt, R. L., Sleinkofer, A. M., Raphael, M. N., and Handcock, M. S.: A regime shift in seasonal total Antarctic sea ice extent 346 

in the twentieth century, Nat. Clim. Change, 12, 54-62, 2022. 347 

Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. 348 

Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen Y. Yu: Ocean, Cryosphere 349 

and Sea Level Change, 1211-1362, 10.1017/9781009157896.011., 2021. 350 

Gagné, M. È., Gillett, N., and Fyfe, J.: Observed and simulated changes in Antarctic sea ice extent over the past 50 years, 351 

Geophys. Res. Lett., 42, 90-95, 2015. 352 

Gallaher, D. W., Campbell, G. G., and Meier, W. N.: Anomalous variability in Antarctic sea ice extents during the 1960s with 353 

the use of Nimbus data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 881-887, 354 

2013. 355 

Gupta, A. S., Jourdain, N. C., Brown, J. N., and Monselesan, D.: Climate Drift in the CMIP5 Models, J. Climate, 26, 8597-356 

8615, https://doi.org/10.1175/JCLI-D-12-00521.1, 2013. 357 

Hawkins, E. and Sutton, R.: Time of emergence of climate signals, Geophys. Res. Lett., 39, 2012. 358 

Hobbs, W. R., Bindoff, N. L., and Raphael, M. N.: New Perspectives on Observed and Simulated Antarctic Sea Ice Extent 359 

Trends Using Optimal Fingerprinting Techniques, J. Climate, 28, 1543-1560, https://doi.org/10.1175/JCLI-D-14-00367.1, 360 

2015. 361 

Holmes, C., Bracegirdle, T., and Holland, P.: Antarctic sea ice projections constrained by historical ice cover and future global 362 

temperature change, Geophys. Res. Lett., 49, e2021GL097413, 2022. 363 

Holmes, C. R., Holland, P. R., and Bracegirdle, T. J.: Compensating biases and a noteworthy success in the CMIP5 364 

representation of Antarctic sea ice processes, Geophys. Res. Lett., 46, 4299-4307, 2019. 365 

Kostov, Y., Marshall, J., Hausmann, U., Armour, K. C., Ferreira, D., and Holland, M. M.: Fast and slow responses of Southern 366 

Ocean sea surface temperature to SAM in coupled climate models, Clim. Dynam., 48, 1595-1609, 2017. 367 

National Academies of Sciences, E. and Medicine: Antarctic sea ice variability in the southern ocean-climate system: 368 

Proceedings of a workshop, 2017. 369 

Meier, W. N., Gallaher, D., and Campbell, G. G.: New estimates of Arctic and Antarctic sea ice extent during September 1964 370 

from recovered Nimbus I satellite imagery, Cryosphere, 7, 699-705, 10.5194/tc-7-699-2013, 2013. 371 

Notz, D.: Sea-ice extent and its trend provide limited metrics of model performance, Cryosphere, 8, 229-243, 2014. 372 

O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-373 

F., and Lowe, J.: The scenario model intercomparison project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461-3482, 374 

2016. 375 

https://doi.org/10.25592/uhhfdm.8559
https://doi.org/10.7265/N5K072F8
https://doi.org/10.1175/JCLI-D-12-00521.1
https://doi.org/10.1175/JCLI-D-14-00367.1


18 

 

Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the 376 

rates seen in the Arctic, Proceedings of the National Academy of Sciences, 116, 14414-14423, 2019. 377 

Polvani, L. M. and Smith, K. L.: Can natural variability explain observed Antarctic sea ice trends? New modeling evidence 378 

from CMIP5, Geophys. Res. Lett., 40, 3195-3199, https://doi.org/10.1002/grl.50578, 2013. 379 

Purich, A. and Doddridge, E. W.: Record low Antarctic sea ice coverage indicates a new sea ice state, Communications Earth 380 

& Environment, 4, 314, 2023. 381 

Roach, L. A., Dörr, J., Holmes, C. R., Massonnet, F., Blockley, E. W., Notz, D., Rackow, T., Raphael, M. N., O'Farrell, S. P., 382 

Bailey, D. A., and Bitz, C. M.: Antarctic Sea Ice Area in CMIP6, Geophys. Res. Lett., 47, e2019GL086729, 383 

https://doi.org/10.1029/2019GL086729, 2020. 384 

Rosenblum, E. and Eisenman, I.: Sea ice trends in climate models only accurate in runs with biased global warming, J. Climate, 385 

30, 6265-6278, 2017. 386 

Schlosser, E., Haumann, F. A., and Raphael, M. N.: Atmospheric influences on the anomalous 2016 Antarctic sea ice decay, 387 

Cryosphere, 12, 1103-1119, 2018. 388 

Schneider, D. P. and Deser, C.: Tropically driven and externally forced patterns of Antarctic sea ice change: Reconciling 389 

observed and modeled trends, Clim. Dynam., 50, 4599-4618, 2018. 390 

Schroeter, S., O'Kane, T. J., and Sandery, P. A.: Antarctic sea ice regime shift associated with decreasing zonal symmetry in 391 

the Southern Annular Mode, Cryosphere, 17, 701-717, 2023. 392 

Seviour, W., Codron, F., Doddridge, E. W., Ferreira, D., Gnanadesikan, A., Kelley, M., Kostov, Y., Marshall, J., Polvani, L., 393 

and Thomas, J.: The Southern Ocean sea surface temperature response to ozone depletion: A multimodel comparison, J. 394 

Climate, 32, 5107-5121, 2019. 395 

Shu, Q., Wang, Q., Song, Z., Qiao, F., Zhao, J., Chu, M., and Li, X.: Assessment of sea ice extent in CMIP6 with comparison 396 

to observations and CMIP5, Geophys. Res. Lett., 47, e2020GL087965, 2020. 397 

Siegert, M. J., Bentley, M. J., Atkinson, A., Bracegirdle, T. J., Convey, P., Davies, B., Downie, R., Hogg, A. E., Holmes, C., 398 

and Hughes, K. A.: Antarctic extreme events, Frontiers in Environmental Science, 11, 1229283, 2023. 399 

Swart, N., Martin, T., Beadling, R., Chen, J.-J., England, M. H., Farneti, R., Griffies, S. M., Hatterman, T., Haumann, F. A., 400 

and Li, Q.: The Southern Ocean Freshwater release model experiments Initiative (SOFIA): Scientific objectives and 401 

experimental design, EGUsphere, 2023, 1-30, 2023. 402 

Turner, J. and Comiso, J.: Solve Antarctica’s sea-ice puzzle, Nature, 547, 275-277, 2017. 403 

Turner, J., Phillips, T., Marshall, G. J., Hosking, J. S., Pope, J. O., Bracegirdle, T. J., and Deb, P.: Unprecedented springtime 404 

retreat of Antarctic sea ice in 2016, Geophys. Res. Lett., 44, 6868-6875, 2017. 405 

Zhang, L., Delworth, T. L., Cooke, W., and Yang, X.: Natural variability of Southern Ocean convection as a driver of observed 406 

climate trends, Nat. Clim. Change, 9, 59-65, 2019. 407 

Zhang, L., Delworth, T. L., Yang, X., Zeng, F., Lu, F., Morioka, Y., and Bushuk, M.: The relative role of the subsurface 408 

Southern Ocean in driving negative Antarctic Sea ice extent anomalies in 2016–2021, Communications Earth & Environment, 409 

3, 302, 2022. 410 

Zunz, V., Goosse, H., and Massonnet, F.: How does internal variability influence the ability of CMIP5 models to reproduce 411 

the recent trend in Southern Ocean sea ice extent?, Cryosphere, 7, 451-468, 2013.  412 

 413 

https://doi.org/10.1002/grl.50578
https://doi.org/10.1029/2019GL086729

