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Abstract 

Chemical mechanisms describe how emissions of gases and particles evolve in the atmosphere and are used within chemical 

transport models to evaluate past, current, and future air quality. Thus, a chemical mechanism must provide robust and accurate 20 

predictions of air pollutants if it is to be considered for use by regulatory bodies. In this work, we provide an initial evaluation 

of the Community Regional Atmospheric Chemical Multiphase Mechanism (CRACMMv1.0) by assessing CRACMMv1.0 

predictions of surface ozone (O3) across the Northeast U.S. during the summer of 2018 within the Community Multiscale Air 

Quality (CMAQ) modeling system. CRACMMv1.0 O3 predictions of hourly and maximum daily 8-hour average (MDA8) 

ozone were lower than those estimated by the Regional Atmospheric Chemical Mechanism (RACM2_ae6), which better 25 

matched surface network observations in the Northeast US (RACM2_ae6 mean bias of +4.2 ppb for all hours and +4.3 ppb 

for MDA8; CRACMMv1.0 mean bias of +2.1 ppb for all hours and +2.7 ppb for MDA8). Box model calculations combined 

with results from CMAQ emission reduction simulations indicated high sensitivity of O3 to compounds with biogenic sources. 

In addition, these calculations indicated the differences between CRACMMv1.0 and RACM2_ae6 O3 predictions were largely 

explained by updates to the inorganic rate constants (reflecting the latest assessment values) and by updates to the 30 

representation of monoterpene chemistry. Updates to other reactive organic carbon systems between RACM2_ae6 and 

CRACMMv1.0 also affected ozone predictions and their sensitivity to emissions. Specifically, CRACMMv1.0 benzene, 

toluene, and xylene chemistry led to efficient NOx cycling such that CRACMMv1.0 predicted controlling aromatics reduces 

ozone without rural O3 disbenefits. In contrast, semivolatile to intermediate volatility alkanes introduced in CRACMMv1.0 
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acted to suppress O3 formation across the regional background through the sequestration of nitrogen oxides (NOx) in organic 35 

nitrates. Overall, these analyses showed that the CRACMMv1.0 mechanism within the CMAQ model was able to reasonably 

simulate ozone concentrations in the Northeast US during the summer of 2018 with similar magnitude and diurnal variation 

as the current operational Carbon Bond (CB6r3_ae7) and good model performance compared to recent modelling studies in 

the literature. 

1 Introduction 40 

Both short-term acute and long-term chronic exposure to elevated surface ozone (O3) concentrations can be detrimental to 

human and ecosystem health (Bell et al., 2005; Rich et al., 2006; Larrieu et al., 2007; Iriti and Faoro, 2008; Ghosh et al., 2018; 

U.S. Environmental Protection Agency, 2020). The build-up of O3 in the lower atmosphere also has a noticeable impact on 

Earth’s radiative budget (e.g., Brasseur et al., 1998; Stevenson et al., 2013). As a result, many countries and governments 

across the world have enacted legislation to limit surface ozone pollution. In the United States the current national ambient air 45 

quality standards (NAAQS) for 8-hour daily maximum ozone (MDA8 O3) is set at 70 parts per billion-by volume (ppb) 

(Bachmann, 2007; U.S. Environmental Protection Agency, 2015). Despite reductions in emissions of precursor gases that lead 

to O3 formation, many areas across the U.S. are still in nonattainment of these standards (U.S. Environmental Protection 

Agency, 2022a). Thus, understanding current O3 pollution mitigation strategies and developing new strategies for the future is 

pivotal if air quality standards are to be met. 50 

 

The chemistry of tropospheric O3 formation is complex and involves the non-linear reactions of nitrogen oxides (NOx = NO + 

NO2) with reactive organic carbon (ROC) compounds (Seinfeld and Pandis, 2006; Jacob, 1999; Heald and Kroll, 2020). 

Similarly, formation of secondary fine particle (PM2.5) species such as sulfate, nitrate, and secondary organic aerosol (SOA) 

involves complex chemistry in multiple phases and is dependent on concentrations of numerous precursor species and 55 

atmospheric oxidants. In total, this chemistry can involve thousands of individual chemical compounds and over ten thousand 

chemical reactions (Dodge, 2000; Stockwell et al., 2012; Jenkin et al., 2015). Due to these complex interactions as well as the 

role of meteorological and dry deposition processes on O3 and PM2.5 (Seinfeld and Pandis, 2006), regulatory bodies use 

numerical models to simulate past, current, and future (e.g., under modified emission scenarios) concentrations to inform air 

quality management. Rather than simulating the explicit chemistry of every known atmospheric compound and reaction, these 60 

models usually employ chemical mechanisms which simplify the atmospheric chemistry into a more limited number of species 

and reactions in order to capture the most important pathways for forming O3 and PM2.5 in a computationally efficient manner 

(Gery et al., 1989; Carter, 1990; Stockwell et al., 1997). Typically, the chemistry leading to O3 is represented separately from 

the chemistry leading to PM2.5 and SOA formation in chemical transport models (e.g., Pye et al., 2010; Koo et al., 2014). 

 65 
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The Community Multiscale Air Quality (CMAQ) model is a numerical model developed by the United States Environmental 

Protection Agency (U.S. EPA) to estimate O3, PM2.5, and other pollutants, both regionally in the U.S. and in other parts of the 

world (www.epa.gov/cmaq, U.S. Environmental Protection Agency, 2022b). CMAQ is available online (see code availability) 

and is distributed publicly with three types of chemical mechanisms: the Regional Atmospheric Chemistry Mechanism 

(RACM), Carbon Bond (CB) and SAPRC. These three chemical mechanisms represent ozone chemistry with less than a 70 

thousand reactions and up to ~200 species and have been tested on multiple model domains where they show acceptable 

performance at estimating ambient O3 concentrations (e.g., Sarwar et al., 2008; Yu et al., 2010; Sarwar et al., 2013; Mathur et 

al., 2017; Appel et al., 2021). Currently, Carbon Bond version 6 (CB6r3 as of CMAQv5.3) is the most common mechanism 

used by the US EPA for predicting O3 (Appel et al., 2021).  

 75 

The Community Regional Atmospheric Chemistry Multiphase Mechanism version 1.0 (CRACMMv1.0) (Pye et al., 2022) is 

a next generation chemical mechanism that was distributed for the first time with the release of CMAQv5.4 in October 2022 

(U.S. EPA Office of Research and Development, 2022). CRACMMv1.0 builds on the RACM2 framework (Goliff et al., 2013) 

and includes new representations of several organic systems, most notably monoterpenes and aromatics, and couples gas-phase 

with particle-phase products. In addition, the CRACMMv1.0 mechanism provides a built-in transparent mapping of emissions 80 

to mechanism species and was designed to conserve emitted carbon as well as track carbon in products as gases react and 

evolve. These features were included in CRACMMv1.0 to represent particulate matter formation more accurately while also 

maintaining the ability to predict O3 concentrations. 

 

The goal of this work is to compare CRACMMv1.0 O3 predictions with the previously well-established RACM2 and CB6r3 85 

chemical mechanisms and understand drivers of differences between CRACMMv1.0 and these mechanisms.  Future work will 

present analyses evaluating CRACMMv1.0 PM2.5 predictions.  For the comparison presented here we used the CMAQ model 

and performed simulations at 4 km by 4 km horizontal grid resolution for the Northeast United States (US) domain during 

summer 2018 (Torres-Vazquez et al., 2022). This domain was chosen specifically because areas in the Northeast US frequently 

violate the O3 NAAQS (U.S. Environmental Protection Agency, 2022a). In addition, past field studies such as the Long Island 90 

Sound Tropospheric Ozone Study (LISTOS) and future field studies (e.g., AEROMMA,  Warneke et al., 2022) have been 

designed to specifically address the issue of high O3 events in the New York City metropolitan area. Air Quality Service (AQS) 

observations made during the summer of 2018 were used to aid in the evaluation. Finally, a box model was employed to study 

the different chemical systems and updates that were driving differences in O3 predictions between RACM2 and 

CRACMMv1.0. 95 
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2 Methods 

2.1 CMAQ model  

CMAQ simulations were performed for the Northeast United States (NE U.S.) domain at 4 km by 4 km horizontal grid 

resolution with 35 vertical layers from June 1 through August 31, 2018 with May 2 through May 31 as the simulation spin up 

period. In addition to CRACMMv1.0, simulations were also performed with CB6r3 using the AERO7 aerosol module 100 

(CB6r3_ae7) (Appel et al., 2021) and with RACM2 using the AERO6 aerosol module (RACM2_ae6) (Sarwar et al., 2013), 

both of which are available in standard CMAQv5.3.3 (used here) and v5.4 (latest public release). The major difference between 

AERO6 and AERO7 is in the representation of monoterpene SOA, with AERO7 producing more monoterpene SOA from 

photooxidation (Xu et al., 2018) and organic nitrates (Pye et al., 2015) than AERO6. Chemical initial and boundary conditions 

for the NE US domain were generated from previous nested WRF-CMAQ simulations (12 km) which used CB6r3_ae7 (Torres-105 

Vazquez et al., 2022). The initial and boundary conditions from CB6r3_ae7 were mapped to CRACMMv1.0 and RACM2_ae6. 

See the CMAQv5.4 code repository for mapping of Carbon Bond-based mechanisms to CRACMMv1.0 for boundary and 

initial condition purposes. Meteorological files for the simulation were generated offline using the Weather Research 

Forecasting (WRF version 4.1.2) model as described by Torres-Vazquez et al. (2022) and the files were pre-processed through 

the Meteorology-Chemistry Interface Processor (MCIP) (Otte and Pleim, 2010) for input to the CMAQ simulations.  110 

2.2 Emissions 

Anthropogenic emissions were created following the 2016 Version 7.2 North American Emissions Modeling Platform (Torres-

Vazquez et al., 2022; U.S. Environmental Protection Agency, 2019) with updates described below. The anthropogenic 

emissions for CB6r3_ae7 are the same as those for the 4 km domain in the work by Torres-Vazquez et al. (2022) and include 

year-specific mobile emissions predicted by the Motor Vehicle Emission Simulator (MOVES) model, airport emissions 115 

following the 2017 NEI’s estimates from the Federal Aviation Administration (FAA) airport model, year-specific wildland 

fires, monitored electric generating unit (EGU) emissions, year-specific commercial marine vehicle emissions, and emissions 

from other sectors following the 2016v7.2 modeling platform. Primary organic aerosol in CB6r3_ae7 was considered 

semivolatile and evaporated POA was allowed to undergo gas-phase reaction with OH following the work of Murphy et al. 

(2017). The empirical representation of anthropogenic SOA sources (pcSOA, Murphy et al. (2017)) was turned off in all cases. 120 

For a more complete description of the anthropogenic emissions employed in the CB6r3_ae7 simulations see the work by 

Torres-Vazquez et al. (2022). Biogenic emissions for all mechanism simulations were calculated within CMAQ v5.3.3 using 

the EPA’s Biogenic Emission Inventory System (BEIS v3.6.1) (Bash et al., 2016).  

 

CRACMMv1.0 emission inputs build on the same methods as the CB6r3_ae7 inputs with a few additional updates. The total 125 

mass and speciation of emissions from volatile chemical products were updated to follow VCPy, a model for predicting volatile 

chemical product (VCP) emissions (Seltzer et al., 2021). Individual ROC species were mapped to CRACMMv1.0 species as 
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described by Pye et al. (2022). Primary organic aerosol in CRACMMv1.0 was considered semivolatile with volatility profiles 

of alkane-like emissions for diesel vehicles, gasoline vehicles, and aircraft (Lu et al., 2020) and slightly oxygenated species 

profiles for biomass burning and all other POA sources. For sources without specific volatility profiles, the volatility profile 130 

of meat cooking emissions was used to produce a lower bound on evaporation of semivolatile species (Woody et al., 2016; 

Mohr et al., 2009). Semivolatile POA was implemented using the Detailed Emissions Scaling, Isolation, and Diagnostic 

(DESID) module in all cases (Murphy et al., 2021). The anthropogenic emissions created for CRACMMv1.0 were also used 

with slight adjustments for RACM2_ae6 simulations in CMAQ (See supplementary information Table S1 for mappings). For 

the RACM2_ae6 simulations, primary organic aerosol (POA) was treated as semivolatile with the same volatility profiles as 135 

in the CRACMMv1.0 simulations but with the chemistry of AERO6 (Murphy et al., 2017). Alkane-like semivolatile and 

intermediate volatility organic compounds (S/IVOCs) emitted in the gas-phase were ignored in RACM2_ae6, and the empirical 

representation of anthropogenic SOA sources (pcSOA, Murphy et al. (2017)) was turned off in RACM2_ae6 as in CB6r3_ae7.  

2.3 Air quality network observations 

Surface-level network observations of air pollutants made in the northeast US between June and August 2018 were used to 140 

evaluate CMAQ model outputs. Hourly measurements of O3 and NOx were obtained from the AQS database using the available 

pre-generated files and paired in time and space with model quantities using the Atmospheric Model Evaluation Tool (AMET) 

(Appel et al., 2011). The observations in AQS were quality assured by the reporting agency (e.g., EPA, States, Tribes), and 

therefore no additional quality checks of AQS data were done in AMET. In the case of time periods with missing data, those 

missing periods were removed from the analysis. In cases where multiple observations were reported for a single site using 145 

different parameter occurrence codes (POCs), those observations were treated as individual measurements with the POC 

number used to distinguish between the different measurements for the same site. 

2.4 Box modelling in F0AM 

The Framework for 0-D Atmospheric Modeling (F0AMv4.2) box model was used as a tool to examine differences in chemistry 

between the mechanisms (Wolfe et al., 2016).  Chemical species and reactions from the RACM2 and CRACMMv1.0 150 

mechanisms were ported into F0AM from CMAQ-ready mechanism files using a custom MATLAB script (see Code and Data 

Availability). Photolysis rates in RACM2 and CRACMMv1.0 were matched to existing MCM rates in F0AM and the F0AM 

default example actinic flux rates were prescribed for all simulations. Three chamber experiments were run by initiating 

experiments with 10 ppb of either α-pinene, isoprene or benzene under high (5 ppb) and low (0.5 ppb) NOx conditions at 

standard temperature (T = 298K) and pressure (P = 1013 mb). Hydrogen peroxide, set at 200 ppb, was used as the radical OH 155 

source (~2 x 104 ppb initial OH), and relative humidity was set at 10% across all simulations. After initiation, each chemical 

system was allowed to evolve for 24 hours to reach steady state before the simulation was terminated. In addition, to gain 

insight into the role organic versus inorganic updates played in O3 production in CRACMMv1.0, all three ROC precursors 

were re-run in simulations using a modified RACM2 mechanism (RACM2_mod) where all inorganic rate constants in RACM2 
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were updated to match those in CRACMMv1.0. This was needed because the development of CRACMMv1.0 not only 160 

incorporated updates to various ROC reaction systems in terms of product yields and chemical fates but also included inorganic 

rate constant updates (>20 rate constants) to reflect current literature values, which differ from those prescribed in RACM2.  

3 Ozone predictions  

3.1 Ozone predictions by mechanism 

Figure 1a shows the June through August average surface ozone concentration (averaged for all hours) predicted by the 165 

CRACMMv1.0 chemical mechanism across the Northeast U.S. model domain. CRACMMv1.0 average ozone predictions 

ranged from 16-32 parts per billion-by-volume (ppb) with the highest average ozone predictions occurring over the Great 

Lakes region, Appalachian Mountain region, and the Atlantic coastline. The higher average O3 predictions (28 – 32 ppb) in 

the Great Lakes region and around Chesapeake Bay (Figure 1) have been shown to be driven by water-land circulation due to 

the difference in daytime PBL heights over cool water (typically < 300 m) compared to much higher PBL heights over land 170 

(often 1500-2500 m) (Dye et al., 1995; Lennartson and Schwartz, 2002; Foley et al., 2011; Dreessen et al., 2019; Cleary et al., 

2022). In particular, O3 exceedance events around Lake Michigan have been predominantly attributed to the northeasterly 

transport of O3 and O3 precursors to the lake where photochemical O3 production then becomes intensified under conditions 

of lower vertical mixing and lower dry deposition (Sillman et al., 1993; Dye et al., 1995; Lennartson and Schwartz, 2002; 

Foley et al., 2011; Cleary et al., 2022). These lake effects often lead to regular NAAQS exceedances in the region (Foley et 175 

al., 2011). The elevated O3 concentrations predicted for the Appalachian Mountain region have also been shown to be driven 

primarily from the transport of O3 and other pollutants from nearby urban centers and coal-fired power plants (Aneja et al., 

1991; Neufeld et al., 2019). In addition, O3 losses in the region have been measured to be lower at the higher elevation on the 

mountaintops, which leads to the build-up of O3 during the night (Aneja et al., 1991; Neufeld et al., 2019).  

 180 



7 
 

 
Figure 1. a) Simulated summer (June-August) 2018 surface ozone average (all hours) as predicted by CRACMMv1.0. Simulated 
summer ozone average (all hours) differences between b) CRACMMv1.0 – CB6r3_ae7 and c) CRACMMv1.0 – RACM2_ae6. 

 

 185 

The magnitude of the ozone concentrations predicted by CRACMMv1.0 were in good agreement with O3 predictions from the 

base CB6r3_ae7 simulation, with inland differences typically falling below + 1 ppb across the model domain (Figure 1b). 

These absolute differences corresponded to relative differences of + 5% (Figure S1a). The largest observed spatial 

discrepancies between the two mechanisms occurred near bodies of water, where CRACMMv1.0 estimated average ozone 

was ~2-4 ppb higher than estimates made by the CB6r3_ae7 chemical mechanism. The higher predicted differences near water 190 

are likely explained by intensified chemistry due to the land-water circulation effect described previously, which generally 

drives the higher O3 concentrations in the regions. In addition, Foley et al. (2011) and Vermeuel et al. (2019) found that O3 

production showed greater NOx sensitivity as urban plumes advected across Lake Michigan. Thus, differences in O3 production 

near water bodies between the simulations were influenced by the representation of O3-NOx-ROC chemistry in the two 

mechanisms and their characterization of the chemical regime. Differences in chemical production of O3 between 195 

CRACMMv1.0 and CB6r3_ae7 are discussed and further explored later (Section 4.2). The differences over water between 

CB6r3_ae7 and CRACMMv1.0 were not expected to be driven by dry deposition over the Great Lakes as deposition is largely 

supressed over water (Sillman et al., 1993). 

 

Because different VCP emission inventories were employed between the CRACMMv1.0 and CB6r3_ae7 simulations (See 200 

Sect 2.2), differences in the two inventory methods, in addition to differences in chemistry, could account for a small fraction 

of the differences shown in Figure 1b. This would be expected to have the most pronounced effect over urban areas where 
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VCP emissions are largest.  In a previous model study, simulations showed that a complete removal of VCP emissions led to 

a 1 ppb O3 change in downtown New York over a 24-hour period (Seltzer et al., 2022); thus, the choice of VCP inventory is 

expected to result in differences much less than 1 ppb.  205 

 

In comparison with RACM2_ae6, CRACMMv1.0 estimated a lower average concentration (average O3 difference of 2-4 ppb) 

across the model domain, with the largest differences in predictions occurring near urban centers in the metropolitan Northeast 

in addition to coastal areas along the Great Lakes region and the Atlantic seaboard (Figure 1c). The mechanism-to-mechanism 

average O3 differences presented in Figure 1c corresponded to relative average O3 differences of 0 - 15% between the 210 

mechanisms across the model domain (Figure S1b). The coupling of meteorology and chemistry, similar to the situation 

discussed for Lake Michigan, could again explain the larger relative differences in O3 concentrations near water bodies (Figure 

1c). Since RACM2_ae6 emissions were mapped from CRACMMv1.0 inputs, the differences between these simulations were 

due to chemical differences between the mechanisms alone. Over land, differences in O3 predictions between CRACMMv1.0 

and RACM2_ae6 were smaller (< 2 ppb, < 7%), but were consistently biased in one direction (Figures 1c, S1b). These findings 215 

suggest that updates in chemistry between RACM2_ae6 and CRACMMv1.0 led to a ubiquitous reduction in O3 across the 

model domain. The role of chemistry as a driver in mechanism-to-mechanism ozone differences between RACM2_ae6 and 

CRACMMv1.0 is revisited in Section 4. 

3.2 Evaluation of spatial distribution  

Hourly ozone performance statistics were calculated by pairing CMAQ outputs in space and time with 313 AQS sites that 220 

reported hourly observations between the months of June and August 2018 using AMET (See Sect 2.3). Figures 2a and 2b 

show the spatial distribution in model-observation hourly mean biases and linear correlations (r) between predictions and 

observations for all hourly observations covered by the CRACMMv1.0 simulation. In general, hourly O3 mean biases (MB) 

indicate a high bias across the model domain, with the highest biases (>15 ppb) occurring along the North Carolina/Tennessee 

border (Figure 2a). Model biases were much lower around the metropolitan NE (Washington, D.C., Maryland, New Jersey, 225 

New York City/Long Island regions), where predictions fell within + 4 ppb of the observed average values. Linear correlations 

between hourly O3 estimates and observations at a given AQS site were typically high (r > 0.8) in the Northeast US (Figure 

2b). Correlations between hourly observations and predictions were the weakest at sites located in the Appalachian Mountain 

region (r = 0.4 – 0.6) and were strongest at sites located in the metropolitan Northeast  (r > 0.9). Hourly O3 normalized mean 

biases (NMB) and normalized mean errors (NME) across the domain can be found in the supplement (Figure S2), and values 230 

followed a similar spatial distribution as Figures 2a and 2b with lower NMB (-20% to + 20%) and NME (< 30%) values nearer 

population centers (eg. Washington D. C., Baltimore, Philadelphia, Boston) and higher NMB (+ 20-100%) and NME (> 40%) 

at sites further from city centers (Figure S2).  Even so, hourly ozone predictions had NMB between +20% at 250 out of 313 

sites and NME less than 30% at 227 out of 313 of the reporting sites.  

 235 
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Figure 2. Ozone (a,c) mean biases (in ppb) and (b,d) correlations between predictions and observations for (a-b) all hourly O3 values 
and (c-d) MDA8 O3 values across the NE US for CRACMMv1.0 calculated using AQS observations between June-August 2018.  

 

The bias and correlation for daily maximum 8-hour average ozone concentration (MDA8 O3) were also calculated for 240 

CRACMMv1.0 at each site (Figures 2c and 2d). Predictions of MDA8 O3 are often used by regulating bodies, such as the US 

EPA, to determine whether regions are in attainment or nonattainment of national ozone air quality standards. Predictions of 

MDA8 O3 also reflect a model’s ability to estimate daytime O3 concentrations as O3 concentrations are higher during the day. 

CRACMMv1.0 MDA8 O3 mean biases were similar to the reported hourly O3 biases and ranged from -4 to +16 ppb across the 

model domain, with model/observation biases falling within + 4 ppb at 245 out of 313 sites (Figure 2c). Correlations between 245 

modelled and observed MDA8 O3 were also determined to be high (Figure 2d), and CRACMMv1.0 MDA8 O3 predictions 

showed stronger correlation than hourly O3 predictions at the Appalachian Mountain sites (e.g., Tennessee/North Carolina 

border) but were weaker in Central North Carolina and in Ohio. MDA8 O3 normalized mean biases did not exceed +40% with 

305 sites reporting normalized mean biases within + 20% (Figure S2c). MDA8 O3 normalized mean errors did not exceed 45% 

across the domain, and NME were lower than 20% for the majority (95%) of sites (Figure S2d).  250 
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High-biased hourly and MDA8 O3 predictions were not isolated to the CRACMMv1.0 simulation as both the CB6r3_ae7 and 

RACM2_ae6 hourly and MDA8 O3 estimates showed high biases over the Northeast in summer 2018 (Figures S3 – S6). High 

summer O3 daytime and night-time biases have been noted in previous studies in CMAQ investigating air quality over the 

Northeast U.S. and CONUS using the RACM2 and CB6 mechanisms (Appel et al., 2021; Sarwar et al., 2013; Cheng et al., 255 

2022). Cheng et al. (2022) noted in their study that daytime high O3 biases were reduced by a more accurate representation of 

cloud cover via the assimilation of satellite data. Night-time overestimation of O3 in a previous study using CMAQ, on the 

other hand, was attributed to high O3 coming in from the domain boundaries and low vertical mixing (Li and Rappenglueck, 

2018). The exact drivers of the high summer O3 estimates in CMAQ, however, are still under investigation. The calculated 

hourly and MDA8 ozone statistics for the CB6r3_ae7 and RACM2_ae6 simulations were found to be of very similar spatial 260 

distribution and magnitude to those calculated for CRACMMv1.0 (Figure 2; Figures S2-S6), where both simulations reported 

lower biases in the metropolitan NE and higher in other areas of the domain. Given that all mechanism O3 biases were lowest 

nearer to major cities, this suggests that the CMAQ simulations better estimated O3 concentrations in areas exposed to higher 

levels of anthropogenic pollutants.  

 265 

Table 1 summarizes the domain-wide averages of site-specific ozone performance statistics for all three mechanisms and 

highlights that CRACMMv1.0 performed well when compared with domain-wide hourly and MDA8 O3 estimates from 

RACM2_ae6 and CB6r3_ae7. The lower O3 estimates by CB6r3_ae7 across the domain most closely matched observations 

and showed the lowest domain-wide hourly and MDA8 O3 mean biases (MB), normalized mean biases (NMB), and normalized 

mean errors (NME). CRACMMv1.0 hourly O3 predictions showed a similar MB (+ 2.7 ppb vs. + 2.4 ppb) and NMB (+ 8.8% 270 

vs. +7.9%) to CB6r3_ae7, while CRACMMv1.0 MDA8 O3 MB (+ 2.1ppb vs. +1.5 ppb) and NMB (+7.7% vs. +3.4%) values 

were slightly higher than CB6r3_ae7. While on average, hourly O3 and MDA8 O3 were slightly overestimated by all 

mechanisms, the highest O3 values were generally underestimated by all mechanisms (Table 1). For the subset of conditions 

where observed O3 was above 50 ppb (approximately the highest 10% of concentrations) RACM2_ae6 (MB of -1.7 ppb) 

performed best followed by CRACMMv1.0 (MB of -4.7 ppb) and then CB6r3_ae7 (MB of -6.2 ppb). CRACMMv1.0 with the 275 

AMORE representation of isoprene chemistry (CRACMM1AMORE) is expected to perform even better than CRACMMv1.0 

at high ozone concentrations (Wiser et al., 2022).  

 

 

 280 
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Table 1. Domain-wide site-specific average hourly O3 (number of observations, n=652,476), MDA8 O3 (n=27,037), and hourly O3 285 
above 50 ppb (n=69,103) performance in terms of mean bias (MB), Pearson correlation coefficient (r), normalized mean bias (NMB) 
and normalized mean error (NME) for the CRACMMv1.0, and CB6r3_ae7, and RACM2_ae6 simulations. The last rows reflect 
conditions when observed hourly ozone was above 50 ppb. 

 

Metric 

 

Mechanism 

Domain-wide 

MBa (ppb) 

Domain-wide 

correlation (r) 

Domain-wide 

NMB (%) 

Domain-wide 

NME (%) 

 

Hourly O3 

CRACMMv1.0 +2.7 0.75 +8.8 27.2 

CB6r3_ae7 +2.4 0.75 +7.9 26.8 

RACM2_ae6 +4.3 0.75 +14.0 28.7 

 

MDA8 O3 

CRACMMv1.0 +2.1 0.76 +7.7 15.8 

CB6r3_ae7 +1.5 0.76 +3.4 13.5 

RACM2_ae6 +4.2 0.75 +9.6 15.9 

Hourly O3 

above 50 

ppb 

CRACMMv1.0 -4.7 0.54 -8.0 15.0 

CB6r3_ae7 -6.2 0.53 -10.6 15.2 

RACM2_ae6 -1.7 0.54 -2.8 14.6 
aEquations used for the calculations of MB, r, NMB and NME are reported in the supplement. 

 290 

Emery et al. (2017) characterized NMB and NME model statistics from modelling studies reported in the literature (Simon et 

al., 2012) and found that two thirds of modelling studies reported hourly and MDA8 NMB < 15%, NME < 25% and r > 0.50. 

With the exception of domain-wide hourly O3 NME, all mechanisms examined here had model performance (NMB, NME and 

r) within the range of those reported in the literature. By these metrics, CRACMMv1.0 performs consistently with state-of-

science criteria for predicting O3 in photochemical models while also treating the loss of mass to SOA formation. 295 

3.3 Evaluation of diurnal distribution 

Figure 3a shows the diurnal average hourly ozone surface concentrations (+ 1 standard deviation) estimated by CRACMMv1.0 

(blue trace) compared to average hourly network observations (+ 1 standard deviation) for all AQS sites (black trace) that 

reported measurements during the summer of 2018 within the domain. Figure 3a shows that CRACMMv1.0 captured the 

general diurnal pattern of the observed ozone concentrations across the model domain and predictions fell within the standard 300 

deviation of the observations. CMAQ simulations using CRACMMv1.0 predicted a similar onset in O3 production and an 

earlier and sharper decline in afternoon O3 than what was typically observed at the AQS sites. The model also predicted a 

higher average night-time minimum O3 than what was observed. The average summer diurnal O3 concentrations predicted by 

CMAQ using the CB6r3_ae7 (red dashed trace) and RACM2_ae6 (green dashed trace) mechanisms followed the same diurnal 
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trend, with CRACMMv1.0 and CB6r3_ae7 simulations showing better agreement with hourly observations than the 305 

RACM2_ae6 simulation (Figure 3a). 

 

Because the offset observed in morning growth and late afternoon decline in O3 between CMAQ and the AQS observations 

was predicted by all mechanism simulations, meteorology was likely a driving contributor to the model-observation 

discrepancies during these time periods. For example, a previous study comparing CMAQ O3 predictions across North America 310 

determined that the timing of the diurnal ozone signal was likely driven by boundary layer dynamics in the model over 

emissions or chemistry (Solazzo et al., 2017). As mentioned in Section 3.2 the high night-time biases observed in Figure 3a 

could have also been driven by meteorology or by O3 coming in from the boundaries (Li and Rappenglueck, 2018). However, 

mechanism-to-mechanism differences, and more specifically, predictions of peak O3 during the daytime, are influenced by the 

different treatments of chemistry between the simulations.  315 

 

To further examine how different treatments of chemistry and/or emissions impacted hourly O3 differences between 

mechanisms compared to observations, comparisons at three selected AQS sites (one urban, one suburban and one rural site) 

were also plotted in Figures 3b,c,d. Queens, NY was chosen as a representative urban site (Average hourly [NOx]mod ≈ 12 

ppb), Flax Pond, NY was chosen as a representative suburban site (Average hourly [NOx]mod ≈ 3 ppb), and Garrett, MD as a 320 

representative rural/remote site (Average hourly [NOx]mod < 1 ppb). Similar to Figure 3a, all mechanism predictions fell within 

the standard deviation of the observations at all hours for all three sites (Figures 3b,c,d). The RACM2_ae6 simulation showed 

the greatest diurnal change in hourly O3 concentrations (daytime ozone production) and highest daytime biases while 

CB6r3_ae7 predicted the smallest changes in hourly O3 (daytime ozone production) and showed the lowest daytime biases at 

all three sites. All simulations showed the lowest hourly relative biases (+ 10%) at the urban site (Queens, NY), suggesting 325 

that the model provides reasonable prediction of O3 production under high NOx conditions. This reduced bias in an urban area 

is consistent with the hourly O3 biases shown previously across the Northeast (Figures 2; S2-S6), where spatial biases were 

found to be lowest in the metropolitan NE where local ozone formation is expected to make up a larger fraction of total ozone 

than at more rural locations. Larger differences between hourly mechanism-to-mechanism O3 predictions were observed at the 

more polluted sites. In particular, the daytime O3 estimated by RACM2_ae6 at Queens and Flax Pond (Figures 3b,c) showed 330 

a much larger relative increase to CRACMMv1.0 and CB6r3_ae7 than what was seen at Garrett, MD (Figure 3d). Again, this 

may in part be due to larger relative contribution from boundary conditions and transported ozone at rural locations versus 

urban locations. Modelled NOx concentrations at all the sites were similar between mechanisms (within + 0.05 ppb), and the 

relationship between ozone production and NOx is further explored in the following section. 

 335 
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Figure 3. Average (+ standard deviation) hourly O3 concentrations predicted by CMAQ using CRACMMv1.0 (blue trace) and 
observed (black trace) at (a) all AQS sites within the domain; (b) Queens, NY (AQS site 36-081-0124); (c) Flax Pond, NY (AQS site 
36-103-0044); and (d) Garrett, MD (AQS site 24-023-0002) during June, July, and August 2018. Predicted average hourly O3 values 340 
in the CB6r3_ae7 CMAQ simulation (dashed red trace) and the RACM2_ae6 CMAQ simulation (dashed green trace) are also 
overlaid in each panel. 

4 Drivers of ozone formation  

In this section, CMAQ simulations with emission perturbations are combined with box modelling to understand drivers of 

ozone formation. In addition, mechanism ozone production efficiency is quantified using modelled NOx and O3 concentrations 345 

across the Northeast US. 
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4.1 Sensitivity to specific ROC emissions 

A series of emission sensitivity simulations were performed in CMAQ to gain insight into the precursor ROC systems 

important for O3 formation in CRACMMv1.0 across the NE US summer 2018 model domain. The sensitivity simulations were 

conducted by running a set of zeroed emissions simulations (i.e., setting emissions of a chemical class or emissions sector to 350 

zero) and determining the response in O3 concentrations to the emission perturbation. A list of all the emission zeroed 

emissionssimulations can be found in Table 2. Due to the non-linear response of ozone production to perturbations in NOX 

concentrations the interpretations of zeroed emission simulations can be challenging. Nonetheless, these types of perturbations 

provide an initial assessment of the ozone production response in CRACMMv1.0 and provide insight into how chemical 

systems respond to lower NOX emissions in CRACMMv1.0 versus RACM2_ae6 and CB6r3_ae7. Figure 4 shows domain-355 

wide percent differences in average ozone concentrations (∆O3) between the base CRACMMv1.0 simulation and a series of 

zeroed emissions simulations. The largest ∆O3 response occurred when emissions from biogenic sources were excluded from 

the simulation (Figure 4a). The zeroed biogenic emissions simulation resulted in percent changes in average O3 concentrations 

ranging from -10% to +3%. Spatially, average O3 concentrations decreased by ~5-10% in the metropolitan Northeast and 

increased in the southern part of the model domain in response to the perturbation. Relatively large changes in ∆O3 were also 360 

predicted in the olefin and benzene-toluene-xylene (BTX) zeroed emissions simulations, with average O3 concentration 

changes ranging from -4% to +2% (Figs 4b and 4c). A similar spatial response in ∆O3 was seen between the biogenic and 

anthropogenic olefin zeroed emission simulations (Figs 4a and 4b), while the response of ∆O3 in the BTX zeroed emissions 

simulation was localized to urban areas, particularly in the metropolitan NE and never indicated disbenefits (Fig 4c). The 

chemical formation of O3 in CRACMMv1.0 was less sensitive to large alkanes (HC10) and semivolatile and intermediate 365 

volatility organic compound (SVOC+IVOC) emissions across the model domain as a ∆O3 response of +1% was predicted in 

these simulations (Figures 4d,e). All five sensitivity simulations showed some reduction in O3 in the New York City urban 

core with ROC reductions indicating ROC-sensitive ozone formation. 

 
Table 2: List of emission perturbations relative to the base simulations in CMAQ 370 

Chemical 

mechanism 

Emission perturbation 

CRACMMv1.0 Benzene, toluene, and xylene-like emissions set to zero  

CRACMMv1.0 Biogenic ROC emissions set to zero 

CRACMMv1.0 Anthropogenic olefin emissions set to zero  

CRACMMv1.0 IVOC (C* range 103 - 106 µg/m3) emissions set to zero 

CRACMMv1.0 SVOC (C* range 10-2 - 102 µg/m3) emissions set to zero 
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CRACMMv1.0 HC10 (decane and species of similar reactivity) emissions 

set to zero 

RACM2_ae6 Benzene, toluene, and xylene-like emissions set to zero 

RACM2_ae6 Biogenic ROC emissions set to zero 

CB6r3_ae7 Benzene, toluene, and xylene-like emissions set to zero 
 

 

A ∆O3 response like the one in CRACMMv1.0 was also predicted when biogenic emissions were zeroed in a simulation run 

with RACM2_ae6 (+3% to -10%) (Figure S7), indicating that biogenic emissions were important to O3 formation across 

chemical mechanisms in the Northeast U.S. domain. This strong sensitivity of O3 formation to biogenic ROC emissions in the 375 

Eastern and Northeastern United States has also been noted in previous chemical transport model studies (e.g., Hogrefe et al., 

2004; Fiore et al., 2005).  A slightly higher and more widespread decrease in ∆O3 was seen in the RACM2_ae6 zeroed biogenic 

emissions simulation (Figure S7) than in the CRACMMv1.0 zeroed emissions simulation (Figure 4a), which suggests different 

representations of biogenic ROC chemistry between CRACMMv1.0 and RACM2_ae6 lead to some of the differences in 

modelled O3 concentration shown in Figures 2 and 4. BTX zeroed emissions simulations run using RACM2_ae6 and 380 

CB6r3_ae7 (Figures S8 and S9) resulted in similar ∆O3 responses (-2% to -4%) around urban areas to those that were observed 

in the CRACMMv1.0 BTX zeroed emissions simulation (Figure 4c). Domain-wide BTX emission effects on ozone were lower 

than biogenic emission effects and more pronounced in urban source regions. Unlike CRACMMv1.0, the RACM2_ae6 and 

CB6R3_ae7 simulations predicted slightly higher ozone concentrations (∆O3 = +1%) in non-urban regions in the domain in 

the BTX zeroed emissions simulations compared to the base model run (Figure S8 and S9). Note that the organic nitrate yield 385 

in aromatic systems was reduced from 8.2% to 0.2% based on recent work by Xu et al. (2020) in CRACMMv1.0 (Pye et al., 

2022). This change increases NO to NO2 conversion which indicates BTX oxidation generally leads to ozone production in 

CRACMMv1.0. However, CRACMMv1.0 also removes radicals from the gas phase when autoxidation or phenol chemistry 

leads to SOA thus reducing radical abundances, and Section 4.2 will illustrate CRACMMv1.0 has a different baseline O3 

prediction than RACM2_ae6 for benzene. These results indicate that the differing representation of aromatic chemical systems 390 

within the mechanisms explains some of the differences in modelled O3 concentrations shown in Section 3. 
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 395 
Figure 4. Relative changes in O3 concentrations from the CRACMMv1.0 base simulation (zeroed emissions – base) for the a) zeroed 
biogenic emission scenario, b) olefin zeroed emission scenario, c) BTX zeroed emission scenario, d) HC10 zeroed emission scenario, 
and e) IVOC/SVOC zeroed emission scenario. 

The modelled reductions in O3 seen near urban regions (Figures 4a,b,c) and in the New York City urban core specifically 

(Figures 4a,b,c,d,e) are mechanistically consistent for regions expected to have relatively high emissions of NOx, and thus 400 

reductions in ROC would lead to less ozone production. In these more ROC sensitive regions, ozone production drops due to 

changes in total ROC reactivity. When ROC emission reductions are large enough (such as in the biogenic ROC zeroed 

emissions simulation in Fig 4a), even NOx sensitive locations could transition to a NOx-saturated chemical regime, where ROC 

reductions reduce ozone. The zeroed emissions simulations often showed less sensitivity in the ∆O3 response to emission 

reductions in rural/remote regions (Figures 4a,b,c), and even predicted an increase in O3 formation in rural regions in response 405 

to some emission perturbations (Figures 4a,b,d,e). S/IVOCs and large alkanes (HC10) in particular supressed ozone formation 

in the base simulation as indicated by their zeroed emissions simulations leading to increases in ozone with the exception of 
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the New York City urban core (Figures 4d,e). The ozone formation potential for HC10 compounds across the entire U.S. for 

all of 2017 was high in previous work due to the overall abundance of emissions despite low maximum incremental reactivity 

(MIR) (Pye et al., 2022), however a much smaller change in average O3 concentration (+ 1%) was observed in the HC10 410 

zeroed emissions simulation here compared to the olefin and BTX simulations. This result suggests that the emissions of HC10 

compounds were relatively less important to ozone formation in the NE US domain compared to the entire US for all of 2017. 

Given the low MIR of IVOC and SVOC compounds, zeroing the emissions of these compounds was expected to have mild 

impacts on O3 formation, and Figure 4e showed that O3 concentrations increased by ~0.5% across the full domain. 

 415 

The emission perturbation results suggest that large volatile alkanes (HC10) and SVOC/IVOCs) primarily act to sequester 

oxidants such as OH and NOx thus resulting in increases in O3 for the zeroed emissions simulations. Specifically, S/IVOC 

alkanes as well as HC10 in CRACMMv1.0 sequester NOx with the high efficiency due to a 26-28% yield of alkyl nitrates (Pye 

et al., 2022). This hypothesis is supported by observed domain-wide increases (up to 4%) in NO2 when both HC10 and SVOC 

emissions are removed from the simulations (Figures S10 and S11). In addition, organic nitrates decrease up to 10% near the 420 

urban core when HC10 emissions are omitted from the simulation (Figure S12). Decreases in organic nitrate formation due to 

emission removal could also explain the increases in O3 formation seen in the rural regions of the biogenic and olefin zeroed 

emissions simulations (Figures 4a,b), where O3 formation would increase in response to less NOx loss in a NOx-sensitive 

regime. 

4.2 Ozone production efficiency 425 

Ozone production efficiency (OPE) is defined as the number of molecules of O3 produced per molecule of NOx loss and can 

be viewed as a metric describing chain length in O3 propagation before NOx is chemically removed from the atmosphere 

(Jacob, 1999). Thus, model-constrained OPE estimates can provide mechanistic insight into O3-NOx-ROC cycling within a 

given chemical system or region. Operationally, OPE has been calculated using the slope of the linear regression between O3 

and the sum of all NOx oxidation products (NOz) as O3 and NOz evolve during the photochemically active hours of the day 430 

(e.g., Arnold et al., 2003; Sarwar et al., 2013; Henneman et al., 2017). This OPE proxy (ΔO3/ ΔNOz) provides a good first-

order approximation of OPE but may not sufficiently capture ozone recycling in regions impacted by fresh NOx emissions and 

regions where NOx and NOz losses through deposition are high. Using this proxy (i.e. ΔO3/ ΔNOz) we estimated mechanism 

domain-wide OPE values for the Northeast US (Figure 5). This calculation leveraged the fact that different locations 

experienced air masses of different ages and ΔO3/ ΔNOz can be calculated using the linear relationship between O3 and NOz 435 

concentrations across all grid cells in the model domain for each hour of the day. The OPE proxy showed very strong linear 

correlations between O3 and NOz (r > 0.7) between the hours of 11:00 and 17:00 local time. The ΔO3/ ΔNOz values showed a 

linear increase from the morning to the evening for all three mechanisms and were consistently highest for the RACM2_ae6 

simulation, and consistently lowest for the CB6r3_ae7 mechanism for all hours of the day. The OPE values evolved at similar 
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rates during the day between the three mechanisms and reached a peak between the hours of 16:00 and 17:00 local time (Figure 440 

5). 

 
Figure 5. Average domain-wide hourly ozone production efficiency (OPE) calculated from the slope of the linear regression between 
NOz vs O3 at a given hour between 11:00 and 17:00 local time for the CRACMMv1.0, RACM2_ae6, and CB6r3_ae7 mechanism base 
simulations. 445 

 

Figure 5 indicates that there are either differences in O3 production, or NOx recycling, or a combination of both between 

mechanisms and that these differences persist at all hours during the day. The trend in OPE values (CB6r3_ae7 < 

CRACMMv1.0 < RACM2_ae6) is consistent with the diurnal trends in the modelled O3 concentrations observed in Figure 3. 

This trend in mechanisms was noted in a previous study model where RACM2_ae6 OPE predictions were shown to be 450 

consistently higher than Carbon Bond version 5 (specifically CB05TUCL) OPE predictions leading to a poorer match with 

observations than Carbon Bond in the Southeast US (Sarwar et al., 2013). Figure 5 confirms that updates between RACM2_ae6 

and CRACMMv1.0 led to decreases in OPE and improvement in CRACMM O3 predictions with observations in the Northeast 

(Figure 2; Table 1). In the following section, differences in the representation of chemical systems between RACM2_ae6 and 

CRACMMv1.0 that may have led to differences in ozone production and/or NOx loss between the two mechanisms are further 455 

explored.     

4.3 Box model simulations 

The F0AM box model (Wolfe et al., 2016) was used to further probe the mechanistic drivers of differences between the 

CRACMMv1.0 and RACM2 chemical mechanisms that could be important for photochemical O3 production. Note for this 

study, only the gas-phase aspects of the RACM2 base mechanism from CMAQ were ported and tested in F0AM; thus, RACM2 460 

rather than RACM2_ae6 nomenclature will be used to refer to these results throughout this section. The box model 

investigation focused on RACM2 and CRACMMv1.0 because the definitions of chemical species and ROC families are similar 
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between mechanisms, allowing for a more direct chemical comparison between the mechanisms. In addition, CRACMMv1.0 

was built upon the RACM2 framework and can be more incrementally tested. Differences in chemistry between Carbon Bond- 

and RACM-based mechanisms have been explored previously (Sarwar et al., 2013) and detailed analyses are beyond the scope 465 

of this study.  

 

Box model simulations were initiated in batch mode with 10 ppb of a precursor ROC, 200 ppb of H2O2 (OH source), and either 

5 ppb of NO2 (NOX conditions typically observed at the Queens, NY and Flax pond, NY sites from Figure 3) or 0.5 ppb NO2 

(NOX conditions typically observed at the Garrett, MD site from Figure 3). The chemical systems were allowed to evolve for 470 

24 hours to reach steady state (See Sect. 2.5 for a full description of the model setup). The dominant fate of RO2 in simulations 

under high NOx conditions was confirmed to be RO2 + NO, while simulations initiated with NOx concentrations of 0.5 ppb 

were dominated by RO2 + RO2 reactions. For each simulation, the evolution of O3 was monitored over time. Box model 

simulations were run with α-pinene, isoprene, and benzene as the ROC precursors because the α-pinene and aromatic chemical 

systems underwent major updates in CRACMM compared to RACM2. Additionally, the CRACMMv1.0 and RACM2 475 

biogenic and BTX zerod emissionssimulations (Figures 4, S7-S9) showed substantial impact on ambient O3 concentration 

(anthropogenic olefin chemistry, although important for O3 formation, remained unchanged between RACM2 and 

CRACMMv1.0).  

 

The production of O3 over time predicted by RACM2 and CRACMMv1.0 under both high and low NOx conditions is plotted 480 

in Figure 6 for all three ROC precursor system simulations. The evolution of O3 over time followed similar trends in both 

mechanisms and confirms that updates made to the different ROC systems in CRACMMv1.0 did not lead to massive changes 

in the kinetics of ozone production. For all three high NOx (5 ppb) simulations, RACM2 led to higher O3 predictions than 

CRACMMv1.0. The largest mechanism differences in O3 production occurred in the simulation run with α-pinene under higher 

NOx conditions, where 31.1 ppb of O3 was produced by CRACMMv1.0 versus 35.8 ppb produced by RACM2 by the end of 485 

the simulation (Figure 6a). The absolute difference in O3 production between RACM2 and CRACMMv1.0 (CRACMMv1.0 – 

RACM2, -3.2 ppb) in the α-pinene high NOx simulation corresponded to a relative difference of -13.1% (Table 3). The 

differences in O3 between CRACCMv1.0 and RACM2 for the simulations run with isoprene (36.8 vs 38.9 ppb of O3) and 

benzene (33.3 vs 34.2 ppb of O3) under high NOX conditions were lower than those predicted for α-pinene (Figures 6b,c), but 

still indicated mechanism differences of up to -5.7% (Table 3). The total amount of O3 produced in the three simulations under 490 

low NOx conditions (0.5 ppb) was lower and ranged from 4.7 to 9.9 ppb (Figure 6) with the overall changes in ozone between 

mechanisms very minor for the isoprene and benzene systems (O3 changes within 2.2%). The largest relative changes in O3 

production under lower NOx conditions (-26.3%) between the mechanisms was again observed in the simulation initiated with 

α-pinene.  

 495 
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Figure 6. Evolution of O3 from photochemical oxidation simulations in the F0AM box model using a) α-pinene and b) isoprene and 
c) benzene as ROC precursors under high NOx (5ppb) and low NOx (0.5 ppb) conditions. 
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The absolute and relative differences in O3 production between the two mechanisms were reduced in almost all simulations 500 

when RACM2 inorganic rates were updated (RACM2_mod) to match those in CRACMMv1.0 (Table 3). The relative 

difference in O3 production in the simulations initiated with 5 ppb NO2 and 10 ppb ROC using RACM2_mod decreased from 

-13.1% to -10.4% in the α-pinene simulation, decreased from -5.7% to -2.1% for the isoprene simulation, and decreased from 

-2.6% to -1.8% in the benzene simulation. Further, in the low NOx simulations run with RACM2_mod, O3 differences were 

reduced to within 0.5% of CRACMMv1.0 for the isoprene and benzene systems. The only simulation that showed an increase 505 

in O3 production when RACM2_mod was run in place of RACM2 was the simulation run with α-pinene under low NOx 

conditions, where relative differences in O3 production increased from -26.3% to -28.2%. 

 

Table 3. Absolute and relative differences between CRACMMv1.0 and RACM2 in the amount of ozone produced 

(ppb) in box model simulations run with α-pinene, isoprene and benzene under both low NOx (0.5 ppb) and high NOx 510 

(5 ppb) conditions. All results are reported relative to CRACMMv1.0. 

ROC 

precursor 

Chemical 

mechanism 

difference 

Absolute 

difference in O3  

(high NOx) 

Relative 

difference in O3  

(high NOx) 

Absolute 

difference in O3  

(low NOx) 

Relative 

difference in O3  

(low NOx) 

α-pinene CRACMMv1.0 – 

RACM2 

 

-4.7 ppb 

 

-13.1% 

 

-1.0 ppb 

 

-26.3% 

Isoprene CRACMMv1.0 – 

RACM2 

 

-2.1 ppb 

 

-5.7% 

 

+0.1 ppb 

 

+2.2% 

Benzene CRACMMv1.0 – 

RACM2 

 

-0.9 ppb 

 

-2.6% 

 

+0.1 ppb 

 

+1.0% 

α-pinene CRACMMv1.0 – 

RACM2_mod 

 

-3.6 ppb 

 

-10.4% 

 

-1.1 ppb 

 

-28.2% 

Isoprene CRACMMv1.0 – 

RACM2_mod 

 

-0.8 ppb 

 

-2.1% 

 

<0.1 ppb 

 

<0.5 % 

Benzene CRACMMv1.0 – 

RACM2_mod 

 

-0.6 ppb 

 

-1.8% 

 

<0.1 ppb 

 

<0.5% 

 

The results presented in Table 3 indicate that differences in the representation of organic chemistry in CRACMMv1.0 vs. 

RACM2 do partially explain the differences in O3 concentrations from CMAQ across the Northeast US model domain, given 

that mechanism differences in O3 production still remained in all simulations after inorganic rate constants were matched 515 

between the mechanisms. In particular, a majority of the observed O3 differences in the α-pinene-NOx-O3 system (> 80%) 

under both high and low NOx conditions resulted from changes to the organic reactions alone. A high fraction of the O3 

differences (~70%) in the benzene- NOx-O3 system were also driven by organic reaction updates for the simulations run with 
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higher NOx. As anticipated, organic reaction changes updates played a smaller role in the simulations with isoprene, however 

a difference in O3 production of 2% still remained after running the simulations with RACM2_mod. Since RACM2_ae6 O3 520 

predictions in CMAQ were shown to be generally biased high for the Northeast (Table 1) and biogenic emissions were shown 

to be important for ozone formation (Figure 4a), reductions in O3 production in CRACMMv1.0 contributed to the more 

accurate average O3 predictions across the Northeast US compared to RACM2_ae6. Previous work has found properly 

representing monoterpene chemistry, in particular, is important for accurately predicting organic nitrates and thereby ozone 

across North America (Browne et al., 2014; Fisher et al., 2016; Zare et al., 2018) including in the Northeast US (Schwantes et 525 

al., 2020).  

 

Further investigation into the mechanisms revealed that there were also differences in the predicted loss of NOx between 

RACM2_mod and CRACMMv1.0 (Figure S13), and that the differences in the evolution of NOx with time were highest in the 

experiment run with α-pinene. Thus, the parameterization of monoterpene reactions (which included the addition of 530 

autoxidation and explicit second-generation chemistry of monoterpene nitrates and aldehydes) led to both decreased O3 

production and increased loss of NOx in CRACMMv1.0 vs RACM2. Despite a reduction in organic nitrate yield in the benzene 

system (0.2% in CRACMMv1.0 and 8.2% in RACM2_mod) there was also higher NOx loss observed in the benzene simulation 

run with 5 ppb NO2 (Figure S13). Overall, the mechanism differences in NOx loss, in addition to ozone production, are 

consistent with predicted differences in OPE across the Northeast U.S. in CRACMMv1.0 vs RACM2 (Figure 5).  535 

5 Conclusions  

This study provides the first evaluation of O3 predictions using the newly developed CRACMMv1.0 chemical mechanism in 

the context of other currently available mechanisms and demonstrates CRACMMv1.0 can provide accurate ozone predictions. 

Average O3 predictions across CRACMMv1.0, CB6r3_ae7, and RACM2_ae6 simulations during the summer of 2018 over 

the Northeast US were generally within ± 10% of each other and all had domain-wide mean biases of less than 5 ppb. 540 

Mechanism differences were most pronounced over bodies of water where meteorology amplified differences. Over land, 

domain-wide O3 estimates in CRACMMv1.0 were found to be of similar magnitude to the CMAQv5.3.3.3 operational 

mechanism (CB6r3_ae7) (+ 1 ppb) but were universally lower in the mechanism upon which CRACMMv1.0 was built 

(RACM2_ae6) by 1-3 ppb. The lower O3 concentrations and OPE in the CRACMMv1.0 simulation compared to RACM2_ae6 

resulted in better predictions of all-hour and MDA8 O3 concentrations across the NE region as indicated by reductions in the 545 

mean bias, normalized mean bias, and normalized mean error.  

 

CRACMMv1.0 evaluation against AQS ozone observations indicated it is more skilled at predicting ozone in locations with 

elevated ozone which is important for understanding sources of exposure at concentrations most likely to cause harm. 

CRACMMv1.0 showed improved performance over the current CMAQ operational mechanism (CB6r3_ae7) when hourly 550 
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ozone was elevated above 50 ppb. Spatially, CRACMMv1.0 showed smaller bias in the Northeast U.S. urban corridor and 

higher bias at rural sites, particularly in the Appalachian Mountains. Similar results were found for diurnal predictions at 

individual sites where CRACMM best matched O3 observations at a site that experienced higher NOx concentrations. As 

regional boundary conditions for CRACMMv1.0 were obtained from CB6r3_ae7, the full effects of CRACMMv1.0 on 

regional background air quality and long range transport predictions have yet to be fully examined.  555 

 

Improvements in CRACMMv1.0 compared to RACM2_ae6 O3 predictions were driven by updates to the inorganic reaction 

rate constants as well as updates in the representation of organic chemistry. These updates also caused slight changes in the 

sensitivity of ozone to ROC precursor emissions. Box modelling simulations in F0AM showed lower O3 production and higher 

NOx loss for monoterpene oxidation consistent with the lower overall OPE predicted across the Northeast with CRACMMv1.0 560 

compared to RACM2_ae6. The zeroed emissions simulations revealed that domain wide average O3 estimates slightly 

increased when emissions of S/IVOCs were omitted, suggesting the inclusion of these emissions played a role in O3 formation 

and mainly acted to reduce ozone. As S/IVOCs are not integrated with radical chemistry leading to ozone in RACM2_ae6 or 

CB6r3_ae7, some changes in the sensitivity of ozone to emissions are expected in CRACMMv1.0 compared to current 

mechanisms. As further example, BTX emission zeroed emissions indicated rural ozone is relatively insensitive to aromatic 565 

emissions in CRACMMv1.0 whereas RACM2_ae6 (and CB6r3_ae6) predicted ozone dis-benefits (increases) in the rural 

Northeast when aromatic emissions were removed. 

 

Isoprene and monoterpenes, largely from biogenic sources, are examples of chemical systems where accurate representation 

of their chemistry across phases is critical to improve prediction of both ozone and fine particle endpoints. As with 570 

RACM2_ae6, CRACMMv1.0 O3 concentrations showed great sensitivity to biogenic emissions emphasizing the need to 

represent their NOX cycling and radical chemistry well. In addition, autoxidation products with low volatility that sequester 

radicals are abundant from monoterpenes and critical for SOA formation (Pye et al., 2019). Separate work building on 

CRACMMv1.0, demonstrated that updated isoprene chemistry led to improved ozone predictions at high (>50 ppb) 

concentrations as well as predictions of isoprene epoxydiol SOA precursors (Wiser et al., 2022). This need to have gas-phase 575 

mechanisms predict intermediates leading to SOA and have SOA products removed from the gas-phase was a major motivation 

behind the development of CRACMM. Future evaluation of the fine particle predictions of CRACMMv1.0 will provide even 

further constraints on the radical chemistry leading to ozone explored here. 

Code and data availability 

The implementation of RACM2_ae6 and CB6r3_ae7 used here are available in CMAQ v5.3.3 (U.S. Environmental Protection 580 

Agency Office of Research and Development, 2019). CRACMMv1 is available in CMAQ v5.4 (U.S. EPA Office of Research 

and Development, 2022). Supporting data for CRACMM including guidance on emission preparation and species metadata 
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(including SMILES identifiers) is available at https://github.com/USEPA/CRACMM (U.S. Environmental Protection Agency, 

2022c). AMET is available at https://github.com/USEPA/AMET (U.S. Environmental Protection Agency, 2022d). F0AM is 

available at https://github.com/AirChem/F0AM (Wolfe, 2022). Specific analyses and scripts used in this manuscript, such as 585 

the modelled and observed ozone concentrations, F0AM box model inputs, and exact CMAQ code used, will be archived are 

archived at: https://doi.org/10.23719/1528552..  
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