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Abstract. Despite a growing interest in extreme event attribution, attributing individual weather events remains difficult and

uncertain. We have explored extreme event attribution by comparing the method for probabilistic extreme event attribution

employed at World Weather Attribution1 (WWA-method), to an approach solely using pre-industrial and current observations

(PI-method), utilising the extensive, and long-running, network of meteorological observations available in Sweden. With

the long observational records, the PI-method is used to calculate the change in probability for two recent extreme events in5

Sweden without relying on the correlation to the global mean surface temperature (GMST). Our results indicate that the two

methods generally agree for an event based on daily maximum temperatures. However, the WWA-method results in a weaker

indication of attribution compared to the PI-method, where 12 out of 15 stations indicate a stronger attribution than found by the

WWA-method. On the other hand, for a recent extreme precipitation event, the WWA-method results in a stronger indication of

attribution compared to the PI-method. For this event, only two out of ten stations assessed in the PI-method exhibited results10

similar to the WWA-method. Based on the results, we conclude that at least 1 out of 2 of every heat wave similar to the summer

of 2018 can be attributed to climate change. For the extreme precipitation event in Gävle in 2021, the large variations within,

and between, the two methods make it difficult to draw any conclusions regarding the attribution of the event.

1 Introduction

Anthropogenic greenhouse gases are the main drivers of the observed increases in global temperatures during the 20th century15

(Eyring et al., 2021). Even though the global warming is accompanied by a notable increase in the intensity, and frequency,

of local extreme temperature and precipitation events (Trenberth, 2011; Seneviratne et al., 2021), linking individual extreme

weather events to anthropogenic emissions remains a challenge.

Extreme weather events typically display unusual meteorological properties, cause severe effects on society, or occur rela-

tively infrequently. However, the frequency and intensity of many of today’s extreme events are expected to change with the20

1https://www.worldweatherattribution.org
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ongoing changes of the global climate. For extreme events such as hurricanes (Holland and Bruyère, 2014) and heat waves

(Wilcke et al., 2020), changes in their climatology have already been observed. Furthermore, extreme weather, and its conse-

quences, have often already been experienced, which makes it particularly interesting to scientists and the public alike. Hence,

a question often asked is if any specific, especially intense, weather event was caused by anthropogenic changes to the climate.

The relatively novel field of extreme event attribution (EEA) arose out of the need to try to answer questions like this. EEA25

is a collection of methods used to investigate if an extreme event can be attributed to any one forcing, such as anthropogenic

climate change (e.g. Stott et al., 2016; van Oldenborgh et al., 2021). The last decade has seen a rapid increase in both the

number of publications and general interest of EEA studies. A notable example is the BAMS special issue Explaining Extreme

Events (e.g. Herring et al., 2022), which has been published annually since 2011. Olsson et al. (2022) argues that the increasing

interest in EEA is connected to the ongoing development of the framework for Loss and Damages (L&D), where the attribution30

of single events could become a useful tool (Parker et al., 2015). The possible use of EEA in future L&D programs, combined

with the increasing societal interest in extreme weather events, makes the exploration and evaluation of the suggested methods

both compelling and important.

There are several approaches to EEA, where two of the more common ones are the risk-based approach and the storyline

approach. In the risk-based approach, as described in e.g. Stott et al. (2016), the question of attribution is framed as probabilis-35

tic: How has forcing x changed the likelihood of event y? Here, it is the change in risk that an event occurs that is attributed to

the changed forcing, rather than the event itself. This circumvents the otherwise difficult question of investigating the causal

relationships of an extreme weather event. The storyline approach (e.g. Hoerling et al., 2013) instead focuses on the underlying

physical processes in combination with the stochastic nature of an event. It tries to quantify the effects of natural variability

and forcings, such as increased greenhouse gases, sea surface temperature (SST) and soil moisture, on the event. Due to these40

differences, EEA studies conducted on the same event, e.g. the Russian Heatwave in 2010, employing different methods, can

appear to have reached contrasting conclusions (e.g. Dole et al., 2011; Rahmstorf and Coumou, 2011), even if both studies

turned out to be compatible (Otto et al., 2012). Similarly, the use of different datasets can affect the outcome of an attribution

study.

To represent a climate that is not influenced by anthropogenic activities, the pre-industrial climate can be used as a proxy.45

However, data representing the pre-industrial reference period is scarce and often not available. Instead, it is possible to build a

statistical model in which the distribution of the variable(s) describing the event changes with global mean surface temperature

(GMST), and to use this to estimate the magnitude of events in the pre-industrial climate (Philip et al. 2020, See 2.2) This will

be referred to as the WWA-method.

One particularly interesting aspect of the WWA-method is the assumption of a linear relationship between GMST and the50

variable describing the event, and how this is used to represent the pre-industrial climate. These relationships are generally well-

defined at global scales. However, regionally, there are many factors influencing how changes in the global climate propagate

and affect the local climate (Doblas-Reyes et al., 2021), and the global linear relationship to GMST may not adequately capture

these. Hence, any local effects will likely be missing from the representation of the pre-industrial period. In turn, this could
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affect the outcome of an attribution study, where results stem from the difference in probability during the pre-industrial period55

and the recent past.

We aim to explore the proficiency of adjusting the climate by GMST in the context of extreme event attribution in the

simplest way possible: by comparing the results of the WWA-method to the results of a comparison between pre-industrial

and current conditions based on observations. To achieve this, we will investigate two of the most notable extreme events in

Sweden during the recent years: the particularly warm summer of 2018, in this study focused on southern Sweden, and the60

heavy precipitation event impacting the Swedish city Gävle in August 2021. The heatwaves during the summer of 2018 have

been featured in multiple recent studies (Leach et al., 2020; Yiou et al., 2020; Wilcke et al., 2020). Contrastingly, while the

precipitation event in Gävle was heavily featured in the media and has been examined by the Swedish meteorological and

hydrological institute (SMHI), studies focusing on the attribution of the event are lacking.

For these events, we will employ two different methods for EEA. The first analysis is using the method from the rapid65

attribution framework from (Philip et al., 2020), while the second analysis will instead directly compare the pre-industrial and

current period using data from several stations with long observational records, thus not adding the dependency on the GMST

(referred to as the PI-method).

2 Data and Methods

In this study, we will employ parts of the rapid attribution framework from (Philip et al., 2020) to investigate the possible70

attribution of two recent events in Sweden: The warm summer of 2018 and the heavy precipitation event in Gävle on the

17-18th of August 2021. Alongside this more commonly used attribution method, we will perform an analysis based on long-

running series of meteorological observations (PI-method).

2.1 Gridded datasets and event definitions

We defined two different domains to represent the events: one for the heat wave in the summer of 2018 and one for the heavy75

precipitation event in Gävle 2021 (Fig. 1). The domain for the summer of 2018 covers the mainland of Sweden south of 60◦N,

whereas the domain for the Gävle event covers between 59◦N and 63◦N, and east of 13.5◦E.

We used the following gridded datasets: GridClim (Andersson et al., 2021), PTHBV (Gävle only, Johansson and Chen, 2005;

Alexandersson, 2003; Johansson, 2000; Johansson and Chen, 2003), E-OBS (Cornes et al., 2018), and ERA5 (Hersbach et al.,

2020). Additionally, we also used a bias adjusted (Berg et al., 2022), 66-member, version of the Euro-CORDEX ensemble80

(Coppola et al., 2021; Jacob et al., 2014), as described in Kjellström et al. (2022). GridClim, E-OBS, ERA5, and the CORDEX

ensemble all provided data until the end of 2018, while PTHBV covered up until the end of 2021. To assess how well the

individual members of the CORDEX ensemble represented observations, we computed four metrics, all total deviations of, the

annual average, the monthly averages, the seasonal cycle, and the spatial patterns in the annual averages, between 1989 and

2018 for the respective domains, using GridClim as the reference dataset. For definitions of the metrics, we refer to the report85
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on the Bavarian climate projection ensemble (Bayerisches Landesamt für Umwelt, 2020). For all datasets, grid points outside

the Swedish mainland were masked.

For each dataset, we used 30 years of daily data to define the period representing the recent past. In the context of analysing

return times of extreme events, 30 years is a rather short period, and using a longer time series is generally desirable, and the

WWA-method advises using as much data as possible. However, for this study, we chose a shorter period for two reasons.90

Firstly, we wanted to keep the period defining the climate of the recent past the same for both methods. Secondly, we wanted

the period defining the current climate to be relatively stationary, limiting the climate signal from local changes in e.g. aerosol

emissions.

The summer 2018 in Sweden was characterized by several long-lasting high-pressure weather situations. This led to a record

number of warm days, which was one of the unique features of that summer (Wilcke et al., 2020). Consequently, we define the95

summer of 2018 event by using the txge25 index (the number of days with maximum temperature ≥ 25◦C) since that better

reflects the longevity of the event rather than capturing the intensity in any single day or short period. To compute txge25, we

used daily maximum temperatures between 1989 and 2018. The txge25 index is similar to the more common indicator su (often

referred to as summer days), defined as the number of days when Tmax > 25◦C. For model data, where the number of reported

decimals are plenty, this choice has little to no consequence. For observations, however, and specifically from manual historical100

records, there is a notable difference between counting days when tasmax> 25◦C and where tasmax≥ 25◦C. The reason is

that decimal points were not prioritised in early observational practices, e.g. a thermometer displaying 25.4◦C may have been

recorded as 25◦C. In our case, the average median FAR for the summer of 2018 event using the PI-method decreased from

∼ 0.65 for the su index to ∼ 0.48 for the txge25 index, an indication that using the former index results in an underestimation

of warm days in the pre-industrial period.105

August 2021 came with large amounts of precipitation in southern Sweden. The most intense event resulted in more than 100

mm in 24 hours between the 17th and 18th of August for a large area close to the city of Gävle, which was highly impacted by

the resulting flooding. For a relatively short-lived event like this, we chose to define the Gävle 2021 event by using the rx1day

index (the maximum 1-day precipitation). Thus, for the Gävle event, we used the daily precipitation flux between 1991 and

2021. For both the events, we chose to include the events under investigation in the time series used in the following analysis.110

We calculated the indicators using the software Climix (Zimmermann et al., 2023). For the summer 2018 event, only days

within the period from May to August (MJJA) were used to calculate txge25, while rx1day was calculated over the entire year.

Furthermore, for the index describing the summer 2018 event, we calculated the domain average for each year. Since heavy

precipitation events are generally more localised compared to heat waves, we instead opted to calculate the annual domain

maxima for the index describing the Gävle 2021 event.115

2.2 Attribution using the WWA-method

The rapid attribution framework from Philip et al. (2020) is a risk-based approach to attribution. It consists of steps outlining

the preparations, analysis, and communication of an attribution study. In the following section, we will describe parts of the

statistical method outlined in the framework.
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Figure 1. Domain outlines and the locations of stations used in the study. Purple dots visualise stations used only for precipitation data, the

orange plus are used for temperature data, and green stars show stations used for both precipitation and temperature. Coloured boxes show

the outlines for the regions used in selection of the gridded data.
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The final result of a probabilistic attribution study is the probability ratio (PR)120

PR=
p1
p0

, (1)

or fraction of attributable risk (FAR)

FAR= 1− p0
p1

= 1− 1

PR
, (2)

where p1 and p0 are the probabilities of observing an event of an equal, or greater, magnitude than the event threshold (ex-

ceedance probability) in the factual (current climate) and counterfactual (pre-industrial climate) worlds (see Fig. 2). PR and125

FAR are interchangeable, and which one to use depends on how the results will be presented. PR is interpreted as how many

times more likely (or unlikely if <1) an event with the same magnitude has become. FAR instead describes the proportion of

events of the same, or greater, magnitude that can be attributed to the changed forcing. For instance, if the PR of an event is

2, the interpretation would be that it has become twice as likely. On the other hand, the interpretation of the corresponding

FAR= 0.5 is that half of the occurrences of similar events can be attributed to the changed forcing.130

To calculate p1 and p0, ideally long observational datasets and climate model output, which contain periods that represent

both the current and pre-industrial climate, should be used. The exceedance probability of a class of events, in either of the two

periods, can then be sampled from the continuous density function (CDF) of a theoretical distribution fit to data representing the

period (see Fig. 2). In most cases, data describing the current climate is readily available, either from observations, reanalysis

products, or models, and retrieving p1 is relatively trivial.135

Computing p0 requires data covering the pre-industrial period. Unfortunately, continuous observations with good spatial

coverage from pre-industrial times are rare. Instead, one option is to use the output of climate models. For instance, General Cir-

culation Models (GCMs) part of the Coupled Model Intercomparison Project (CMIP, Eyring et al. 2016) have a pre-industrial

control run which could be used to represent the pre-industrial climate in attribution studies. A drawback of the GCMs is that

their resolution is generally too low to properly represent many extreme weather events. The increased resolution of regional140

climate models (RCMs), for instance members of the Coordinated Regional Climate Downscaling Experiment (CORDEX,

Jones et al. 2011) ensemble, enables better representation of extreme weather events. However, the high resolution runs com-

pleted in CORDEX traditionally do not include the pre-industrial control period, and thus only cover a period from the middle

of the 20th century and forward.

A third option used to represent the pre-industrial climate, and what is used in this and many other attribution studies, is145

to shift, or scale, the distribution that represents the current climate. This relies on the assumption that the variable used to

describe the event shifts or scales with a forcing that has a known climate change signal and historical record. An example of

this is the global mean surface temperature (GMST), commonly used as a key indicator of climate change (e.g. Gulev et al.,

2021).

The location µ of a distribution is shifted following150

µ= µ0 +β∆T. (3)
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Figure 2. Conceptual image describing the relationship between CDF and probability. Here, the two CDFs describe the distributions of the

annual number of days with Tmax ≥ 25◦C in a factual and counterfactual world. An event threshold of 20 days is indicated by the grey

vertical line. The corresponding event probabilities p1 and p0 are visualised as square brackets. p1 is in this case larger than p0, which

indicates that a summer with 20 days or more with a daily maximum temperature ≥ 25◦C is more likely in the factual world.

Here µ0 is the initial location, β is the coefficient of the linear regression between the variable and GMST, and ∆T is the

change in GMST between the current and pre-industrial period. If the variable is instead assumed to scale with GMST, which

is the case for precipitation, µ and the standard deviation σ are changed following

µ= µ0exp(β∆T/µ0) (4)155

and

σ = σ0exp(β∆T/σ0). (5)

Either of these approaches will result in a distribution that represents the pre-industrial climate, where the CDF can be sampled

to retrieve p0 (see Fig. 2).

We computed the linear regression between the 4-year rolling mean GMST (Hansen et al., 2010) and the 30-year annual160

time series of each index. For all datasets, we used the regression coefficients to detrend the index-series of the current climate.

For each index series, we then fit and evaluated a number of common extreme value distributions and selected one for further
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analysis (see sec. 2.4). We then used the regression coefficients (β) to respectively shift and scale the index distributions

describing the summer of 2018 and Gävle 2021 events according to eq. 3, 4 and 5. This differs slightly from (Philip et al.,

2020), where they estimate β, µ, and σ, along with any other model parameters, directly from eq. 3, 4 and 5, using the longest165

time series available as compared to a subset as used here. However, since the distributions used in this analysis were found to

be invariant to linear transformations (not shown), this does not affect the outcome. For the CORDEX ensemble, the regression

coefficient of each ensemble member was used as an additional quality control, where we removed any ensemble member

where the regression coefficient exceeded the 95% confidence interval of the regression in the reference dataset (GridClim).

For each dataset, the distribution of the current climate and the pre-industrial (shifted/scaled) distribution formed a pair from170

which p1 and p0 could be retrieved and used to calculate FAR/PR (Eq. 1 & 2). The threshold used for the summer of 2018

event was based on the 2018 domain average txge25 in the GridClim product, whereas we used the 2021 domain maximum

rx1day in PTHBV for the Gävle 2021 event. For the gridded observations (GridClim, PTHBV, E-OBS, ERA5) we calculated

confidence intervals with a bootstrap of randomly re-sampling the 30-year index-series and performing the previous steps 1000

times. For the CORDEX data, instead of bootstrapping the confidence intervals, FAR from each ensemble member was used175

to form the distribution from which the confidence intervals could be retrieved.

2.3 Attribution using the PI-method

As an alternative to the WWA-method, we performed an attribution analysis employing several stations with long observational

records of daily data. First, we employed a set of station merges commonly used at SMHI to extend and fill the gaps in the

observational records for temperature and precipitation (e.g. Joelsson et al., 2022). This merges nearby stations which are180

assumed to be representative of the same geographic location but have different temporal coverage. The observational records

were checked for missing values and any stations missing ≥ 15% of the days in the investigated period, during at least one

year, were flagged in the subsequent analysis.

For each event, we selected all stations located inside the domain on the Swedish mainland and the island Gotland (Fig.

1). For both events, the pre-industrial period was defined as 1882 to 1911. This represents a period largely unaffected by185

anthropogenic climate change, yet it is relatively well covered in the observational records. The current climate period for the

summer of 2018 was defined as 1989 to 2018, and 1992 to 2021 for the Gävle 2021 event. We calculated the same climate

indices as for the gridded datasets (see 2.1) for each station. Following the index calculations, we further refined the station

selection by requiring each station to provide a continuous 30-year period for both the pre-industrial and current period. The

selection procedure resulted in 15 stations for the 2018 event and 10 stations for the 2021 event. The locations and names190

of these stations are shown in Figure 1. We checked the two separate periods of each station data for stationarity using the

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Augmented Dickey-Fuller (ADF) tests (See Appendix A).

The two periods representing the pre-industrial climate and that of the recent past were then used to calculate PR and FAR

following eq. 1 and 2, in the same way as done in the probabilistic event attribution (Section 2.2). Here, the threshold for the

summer of 2018 was set to the 2018 station averaged txge25, while the value of rx1day for Gävle-Åbyggeby in 2021 was used195

as a threshold for the Gävle event. Furthermore, we also computed FAR for each station using the WWA-method.
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2.4 A note on distributions

In this study, we used the python package SciPy (Virtanen et al., 2020) to fit, evaluate and sample the distributions used to

represent the data. There are multiple distributions suitable to represent extreme distributions, for instance GEV, Gaussian, GPD

or Gumbel, and we refer to Philip et al. (2020) for further details on the selection of distributions. It is common practice to use200

a goodness of fit test, such as the Kolmogorov-Smirnov test (KS-test), to evaluate the suitability of the different distributions

to represent the data. However, we have found that relying solely on the KS-test for selecting the appropriate distribution

insufficient. Most notably, while the GEV distribution tends to show the highest performance in the KS-test, it often results

in division by zero errors in Eq. 1 for very high quantiles. The right-skewed Gumbel distribution does not lead to the same

division by zero errors, while it still shows good performance in the KS-test. A theoretical explanation for this is that the GEV205

distribution has a finite upper bound when the shape parameter is negative, which can result in events becoming theoretically

impossible. The Gumbel distribution, on the other hand, has no upper bound since its shape parameter is fixed at zero, and events

are never theoretically impossible. Because of this, we opted to use the right-skewed Gumbel distribution for all probability

estimations in this analysis. It is worth noting that neither the Gumbel nor the GEV distribution are theoretically justified for

count data, as is given by the txge25 index. However, the results of the KS-test indicated that both the GEV and Gumbel210

distributions were able to represent the txge25 data.

3 Results and Discussion

3.1 Summer of 2018

Almost all the stations employed in the analysis (Fig. 1) recorded ≥ 50 days with daily maximum temperatures ≥ 25◦C

(summer days) during the summer of 2018 (Fig A2), here defined as May to August (MJJA). There are only a few stations215

where this is not, by some margin, the highest number of summer days recorded between 1989-2018. Between 1882-1911,

there are no years that equals the number of summer days in 2018 among any of the stations (Fig. A3).

Histograms, along with the distributions, generally show a positive difference between the distributions of the current and the

pre-industrial climate for txge25 (Fig. 3). Consequently, the PI-method generally yields positive values for FAR, with medians

> 0.8 for most of the stations (Fig. 3). It is only Kristianstad, Karlshamn and Linköping-Malmslätt (LM) that exhibit FAR220

medians < 0. Here, a FAR ≤ 0 implies that no occurrences of an event of similar, or greater, magnitude can be attributed to the

changed forcing. Furthermore, there are no spatial patterns over southernmost Sweden that could explain the negative FAR of

LM and Karlshamn (Fig. 4).

Taking the average of the stations included in the PI-method for the summer of 2018 event gives a median FAR ∼ 0.50

with the 5th percentile (Q5) ∼ -0.78 (Fig. 5). The FAR distributions (Fig. 5) further highlight the anomalous behaviour of LM,225

where neighbouring stations Skara, Gladhammar A and Örebro Flygplats (see Fig. 1 & 4) display FAR distributions centred

≥ 0.75. For an adjusted average of the PI-method (Fig. 5), where Karlshamn, Kristianstad and LM are excluded, the median

FAR ∼ 0.78, and Q5 > 0.1.

9



0

0.05

0.1

 

FAR: 0.988 (0.90-1.00)

Halmstad flygplats
FAR: -0.005 (-0.04-0.12)

Kristianstad 
FAR: -0.642 (-5.32-0.73)

Karlshamn

0

0.05

0.1

 
FAR: 0.874 (-0.12-0.99)

Växjö A
FAR: 0.967 (0.67-1.00)

Kalmar flygplats 
FAR: 0.973 (0.77-1.00)

Göteborg A

0

0.05

0.1

 

FAR: 0.992 (0.87-1.00)

Jönköping-Axamos Flygplats
FAR: 0.926 (0.58-0.99)

Gladhammar A 
FAR: 0.983 (0.62-1.00)

Visby Flygplats 

0

0.05

0.1

 

FAR: 0.995 (0.91-1.00)

Vänersborg
FAR: 0.949 (0.20-1.00)

Skara
FAR: -3.414 (-14.29-0.37)

Linköping-Malmslätt

0 20 40 60
 

0

0.05

0.1

 

FAR: 0.994 (0.88-1.00)

Örebro Flygplats

0 20 40 60
 

FAR: 0.934 (0.53-1.00)

Uppsala Aut

0 20 40 60
 

FAR: 0.990 (0.89-1.00)

Stockholm-Observatoriekullen A

1882-1911 1989-2018 Med. (5-95)

Station distributions | Index: txge25 | Event threshold: Summer 2018

Number of days with Tmax >= 25C

D
en

si
ty
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fit to each period. † indicate that at least one year miss 15% of the days in the pre-industrial period. ‡ is the equivalent for the current period.

The deviating results of these two stations are likely not the result of a local response to changes in climate. Instead, it is

more likely a result of the station merging. In some cases, merging implies that the station is moved to a new location. For LM,230

the station was moved a few kilometres west from central Linköping to the airfield at Malmslätt in 1943. Since temperatures

are generally higher in urbanised areas due to the urban heat island (Rizwan et al., 2008), moving the station to a more rural
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Figure 4. FAR for the summer of 2018 at the stations used in the study. The marker colour represents the median FAR, while the marker size

shows the uncertainty range in FAR as the range between the 95th and 5th percentile.

area could introduce erroneous trends to the series (e.g. Tuomenvirta, 2001; Dienst et al., 2017). On the other hand, Karlshamn

is an example of stations that provides a continuous observational record without merges or changes in location. Here, the

implementation of thermometer screens during the 20th century, which generally results in reduced recorded temperatures,235

could be a part of the explanation.

These are examples of inhomogeneities in the observational record that makes the investigation of trends and climate change

difficult. Ideally, when working with signals of climate change in observational data, the data should first be homogenised,

however, for daily data this is currently not available in Sweden. Joelsson et al. (2022) presents monthly averages of the 2-

metre temperature in Sweden from 1860, based on homogenised data from a high number of stations. The stations used in this240

study are a subset of the stations used in Joelsson et al. (2022). Since this study makes use of daily temperatures, we cannot

directly utilise their results. However, their findings can help to further evaluate our results. In general, they found the required

temperature corrections to be negative, with larger corrections during summers at the end of the 19th, and beginning of the

20th, century. This means that, generally, temperatures in the historical records were overestimated. For instance, their analysis

indicates a homogeneity break in maximum temperature during 1890 for the station of Karlshamn, which coincides with the245

pronounced shift towards lower numbers in txge25 in Fig. A3. This implies that the estimated event probabilities during the

pre-industrial period in this study are likely too high, which in turn results in an underestimation of FAR.

The analysis using the WWA-method, exhibits FAR similar to, albeit lower than, to FAR estimated using the PI-method

(Bottom five bars, Fig. 5). The FAR distributions for GridClim, E-OBS and ERA5 all exhibit a median of 0.4-0.6 and a low

spread, and with 5th percentiles well above 0. The CORDEX ensemble FAR distribution, here with 62 members, shows a250
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higher median (∼ 0.8), albeit with a greater spread (Q5 ∼−4, Q95 ∼ 0.99) compared to the observational based products

(Q5 ∼−0.8, Q95 ∼ 0.9). The WWA average (Fig. 5) shows the average FAR distribution of the datasets (GridClim, E-OBS,

ERA5, CORDEX ensemble) used in the WWA-method. Here, the median FAR is lower compared to the adjusted station

average of the PI-method, but uncertainty ranges overlap.

Figure 5. FAR synthesis for the summer of 2018, as described by the txge25 index during MJJA. The bar represents the percentiles and

median of the FAR distribution as described in the inset. Green bars denote the average for each method (PI & WWA). The WWA average

here includes GridClim, E-OBS, ERA5 and the CORDEX ensemble. The green crossed bar shows the adjusted average for the PI-method,

whereas the hatched bars (blue & green) display results from the WWA-method. Note that the x-axis is limited for increased readability.

3.2 Gävle 2021255

During the event on the 21st of August 2021, the station Gävle-Åbyggeby measured 121 mm of precipitation in 24 hours. This

is also the annual maximum one day precipitation (rx1day) at that station in 2021. In 2021, none of the other assessed stations

in the study area (Fig. 1) recorded a similar amount of precipitation in a single day. However, there are years in the recent past

with annual daily maxima similar to the Gävle 2021 event, both in Gävle and at other stations (Fig. A4). In the pre-industrial

period there were only two recorded events, both in Härnösand, with similar magnitudes to the 2021 event (Fig. A5).260
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For an event like the heavy precipitation event in Gävle 2021, differences between the distributions of the pre-industrial

and current climate are small at most of the 10 stations used to investigate the event (Fig. 6). There are a few stations (e.g.

Gävle-Åbyggeby, Härnösand, Sveg A) that exhibit larger differences between the two periods, most notably in the tails of the

distributions.
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Figure 6. Histograms of annual rx1day for periods 1882-1911 and 1992-2021. Dashed lines show the pdf of the gumbel distribution fit to

each period. ‡ indicate that at least one year miss 15% of the days in the current period.

The FAR synthesis of the PI-method (Fig. 7) shows the large variability among the stations. Here, Uppsala is the only265

station where the confidence interval doesn’t include 0, Q5 ∼ 0.2. When looking at the median, however, Gävle-Åbyggeby,

Sveg A, Uppsala, Västerås, and Örebro D all exhibit FAR > 0. The remaining stations (Falun-Lugnet, Härnösand, Malung
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A, Stockholm-Observatoriekullen) show a median FAR ≤ 0. These differences are reflected by the large spread and negative

median (Q50 ∼−0.2) of the average of the stations used in the PI-method for the Gävle event (Fig. 7).

FAR distributions from the WWA-method for the Gävle 2021 event are shown in the hatched bars in Fig. 7. PTHBV,270

GridClim, EOBS and CORDEX exhibit similar medians (0.78-0.98), and Q5 ≥ 0.6. The results from ERA5 does not match

the other datasets, with a median FAR ∼−2.5 and Q95 ∼−2. We also note that ERA5 exhibits a negative regression to

GMST, as opposed to the other datasets where the regression is generally positive. A contributor to this could be the overall

underestimation of rx1day in ERA5 found by Lavers et al. (2022). This requires further investigation, and we chose not to

include ERA5 in the datasets (PTHBV, GridClim, E-OBS, CORDEX ensemble) used in the WWA average.275

1 0.5 0 0.5 1

WWA average
CORDEX (50)

ERA5
EOBS

GridClim
PTHBV

PI average
Örebro D
Västerås
Uppsala
Sveg A

Stockholm-Obs
Malung A

Härnösand
Gävle-Åbyggeby

Falun-Lugnet
Delsbo A

5 25 50 75 95
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PI- and WWA-method FAR | Index: rx1day
Event threshold: Gävle 2021

FAR

Figure 7. FAR synthesis for the heavy precipitation event in Gävle 2021 described by the annual maximum 1-day precipitation (rx1day). The

bar represents the percentiles and median of the FAR distribution as described in the inset. Green bars denote the average for each method

(PI & WWA). The WWA average here includes PTHBV, GridClim, E-OBS, and the CORDEX ensemble. The green crossed bar shows the

adjusted average for the PI-method, whereas the hatched bars (blue & green) display results from the WWA-method. Note that the x-axis is

limited to -1 for readability. The ERA5 FAR distribution lies below this range and is not displayed.
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For the Gävle event, there is some disagreement between the WWA-method and the PI-method. For stations such as Gävle-

Åbyggeby, Sveg A, Uppsala, Västerås, and Örebro D, the median FAR derived by the PI-method is of the same magnitude

as that of the WWA-method. However, the uncertainties are generally greater for the stations used in the PI-method, with 5th

percentiles < 0 for multiple stations. Here, the difference in the magnitude of uncertainty between the two methods can likely

be attributed to the fact that gridded data typically does not represent extreme precipitation events as well as local observations,280

and thus has an overall lower variability. Furthermore, the relatively short 30-year period used to represent the current climate

further limits how accurately the gridded datasets can represent the variability. This can lead to unstable estimates of p0 and

p1, and unreliable estimates of FAR.

The question of homogeneity in the station data also applies to the precipitation measurements. During the later parts of

the 20th century, many stations have been converted from manual to automatic operation in Sweden. Here, the placement of285

automatic stations were generally more exposed to wind compared to manual stations, where comparisons have shown that

automatic measurements generally show less precipitation compared to those of manual stations (Alexandersson, 2003).

The two 30-year periods used to represent the pre-industrial (1882-1911) and the current (1992-2021) climate were found to

be stationary at most of the stations (Fig. A5 & A4). Based on this, we decided not to detrend the station data. This also kept

the following analysis (PI-method) closer to the actual observations, not adding a dependence on regressions to e.g. GMST.290

Comparing the pre-industrial and current climate, most of the stations show distributions with very similar means (Fig. 6).

In these cases, the results are more sensitive to the randomness of the bootstrap, resulting in the large uncertainties for some

stations in Fig. 7.

3.3 Comparing the PI and WWA methods

With the long observational time series we can further evaluate to what degree the PI- and WWA-method agree. Here, in295

addition to using the PI-method to estimate FAR, we applied the WWA-method to the observations of the current climate

(1989-2018 & 1991-2021 resp.) at each of the stations for the two events. The results are presented as FAR distributions for

the two events in Figs. 8 and 9.

The results clearly show that the two methods generally yield similar results for the summer of 2018 (Fig. 8), albeit with

somewhat lower FAR numbers for the WWA-method compared to the PI-method. Likely, this is a result of the weak regression300

coefficient between the variable (txge25) and GMST (Fig. A1). Figure 3 gives some indication that the scale of the distributions

varies between the pre-industrial climate and that of the climate of the recent past for a few stations (e.g. Halmstad flygplats,

Vänersborg). This disagrees with the notion that temperature distributions shift following the regression to GMST, which is

utilized in the WWA-method. An implication of this is a shifted distribution that is too wide, giving higher estimates of p0,

and consequently a lower FAR, which could explain the differences we observe between the two methods here. There are two305

stations, Karlshamn and Linköping-Malmslätt, where the WWA-method results in a higher estimation of FAR compared to

the PI-method. Interestingly, for both these stations, the WWA-method yields FAR distributions more aligned with the FAR

(WWA & PI) of the other stations used in the analysis. Overall, this suggests that the WWA-method, even when applied to

only 30-years of data, can capture changes in probabilities for a larger scale temperature related event such as the one in the
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Figure 8. Comparison of FAR distributions for the summer of 2018 from the PI-method and WWA-method applied to txge25 observations

of the recent past. The first (blue) of the two bars in every pair shows the FAR distribution of the PI-method, equivalent to what is shown in

Fig. 5. The second bar (green, hatched) shows the FAR distribution from applying the WWA-method to the time series of observations of the

recent past for each station.

summer of 2018. Furthermore, this indicates that the relationship between GMST and local temperature extremes in this area310

has remained relatively constant throughout the 20th century.
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For the Gävle event, differences between the FAR distributions for the WWA-method and the PI-method are more varied

(Fig. 9). For several stations, the FAR distributions of the WWA- and PI-method generally agree (e.g. Gävle-Åbyggeby, Sveg

A, Uppsala, Örebro D). At the other stations, the median FAR from the two methods does not agree, but the uncertainty ranges

of the FAR distributions still overlap, mostly due to the large uncertainty in FAR distributions of the PI-method. Furthermore,315

the much smaller uncertainty in FAR distributions of the WWA-method is an indication that the short time periods can lead to

distributions not encompassing the whole variability, as discussed above.

Figure 10 shows maps of the regression coefficients between GMST and the index series at the grid points in the two domains

representing the events. For the domain representing the Gävle event, the regression between rx1day (GridClim) and GMST

(1989-2018) is relatively strong along, and in proximity to, the coast between 60 and 62◦N (Fig. 10). Outside this sub-area,320

the regression is generally weaker and not statistically significant, with no distinguishable spatial patterns. In comparison, the

regression between txge25 and GMST in the domain representing the summer of 2018 event exhibits relatively small spatial

variations over the domain (Fig. 10), but with fewer grid points showing a significant regression. This indicates that the extreme

precipitation event is more sensitive to the choice of domain compared to the extreme temperature event.

4 Conclusions325

We have conducted two sets of attribution analysis on two notable extreme weather events in Sweden: The warm summer of

2018 and the heavy precipitation event in Gävle 2021. For the WWA-method we made use of a number of gridded datasets

covering the last decades and assumed that the variable describing the event either shifted, or scaled, with GMST. This allowed

us to calculate the exceedance probabilities, and their change, for the events from distributions that represent the climate in

a pre-industrial period and during the recent past. For the PI-method, we instead relied solely on observations to represent330

the climate during both the pre-industrial and current periods to retrieve corresponding probabilities. We found the extensive

observational record available in Sweden a valuable source of data, that if homogenised could help to further clarify some

uncertainties arising from using non-homogenised data.

For the summer of 2018, results from the PI-method, excluding stations affected by inhomogeneities, exhibit a stronger

attribution compared to the results of the WWA-method. When applied to the station data used in the PI-method, the WWA-335

method also results in slightly lower values for FAR. The systematic difference between the two approaches using temperature

data from the long-term stations indicates that this may be related to the regression between the temperature index (txge25)

and GMST, or the fixed scale parameter of the shifted distributions. However, these differences are rather small, and overall,

our results suggest that the WWA-method can capture changes in probabilities for large-scale temperature related events even

when applied to only 30 years of data, which is shorter than what is recommended.340

We also note that since high temperatures tend to be overestimated in historical observations, using homogenised obser-

vations is likely to result in a higher FAR for heat-wave related extremes using the PI-method. Furthermore, based on these

results, we can conclude that 1 out of 2 of every heat wave similar to the summer of 2018 can be attributed to changes in the

17



Figure 9. Comparison of FAR distributions for the Gävle 2021 event from the PI-method and WWA-method applied to rx1day observations

of the recent past. The first (blue) of the two bars in every pair shows the FAR distribution of the PI-method, equivalent to what is shown in

Fig. 7. The second bar (green, hatched) shows the FAR distribution from applying the WWA-method to the time series of observations of the

recent past for each station.
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Figure 10. Gridded maps showing the regression coefficients between GMST and GridClim for a) the txge25 index over the summer of

2018 domain during 1989-2018, and b) the rx1day index over the Gävle event domain during 1989-2018. Crosses indicate significance at

p≤ 0.05. For the summer of 2018 domain, the spatial variability is relatively low, with few grid points showing a significant regression.

While the Gävle domain shows a cluster of points with a significant regression along the coast between 60◦ and 62◦, the overall spatial

variability is greater compared to the summer of 2018.

climate. Alternatively, such heatwaves have become twice as likely due to changes in the climate. When only using station

data, the previous statement increases to more than 2 out of 3, and would likely be even higher using homogenised data.345

Regarding the precipitation event in Gävle 2021, results from the PI-method are highly variable, making the attribution of

the event uncertain. Here, five out of ten stations exhibit a median FAR > 0.5, but only one displays FAR that is significantly

above 0. On the other hand, except for the ERA5 dataset, there is a fairly good agreement among the gridded datasets analysed

using the WWA-method, and it shows a stronger attribution compared to the PI-method. Applying the WWA-method to the

station data used in the PI-method does not reveal any positive, or negative, tendency when comparing the results of the two350

methods. These large variations within, and between, the two methods make it difficult to draw any conclusions regarding the

attribution of the extreme precipitation event in Gävle in 2021.

Comparing the two events, the regression maps indicate that a precipitation event like the one in Gävle appears to be more

sensitive to the choice of domain than a more widespread and uniform heat-wave like the one in the summer of 2018. This also

agrees with previous findings indicating that extreme precipitation events are more sensitive to the event definition.355

Regarding the more generally applicable WWA-method for attribution, future studies should try to utilise as much data as

possible, and continue to explore how the regional variations in relationships, such as that between the local Clausius-Clapeyron

scaling and GMST, affect the outcome of studies on extreme event attribution.

Code availability. Code used in this analysis is available at https://github.com/Holmgren825/holmgren_kjellstrom_exploring_attribution.
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Figure A2. Trend analysis of the current period (1989-2018) for the txge25 index. KPSS ≤ 0.05 indicates that a series is non-stationary.

ADF ≤ 0.05 indicates that a series is trend stationary.
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Figure A3. Trend analysis of the historical period (1882-1911) for the txge25 index. KPSS ≤ 0.05 indicates that a series is non-stationary.

ADF ≤ 0.05 indicates that a series is trend stationary.
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Figure A4. Trend analysis of the current period (1991-2021) for the rx1day index. KPSS ≤ 0.05 indicates that a series is non-stationary.

ADF ≤ 0.05 indicates that a series is trend stationary.
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Figure A5. Trend analysis of the historical period (1882-1911) for the rx1day index. KPSS ≤ 0.05 indicates that a series is non-stationary.

ADF ≤ 0.05 indicates that a series is trend stationary.
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