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Abstract. The vast majority of ice-sheet modelling studies rely on simplified representations of the Glacial Isostatic Adjustment
(GIA), which, among other limitations, do not account for lateral variations of the lithospheric thickness and upper-mantle
viscosity. In studies of the last glacial cycle using 3D GIA models, this has however been shown to have major impacts on the
dynamics of marine-based sectors of Antarctica, which are likely to be the greatest contributors to sea-level rise in the coming
centuries. This gap in comprehensiveness is explained by the fact that 3D GIA models are computationally expensive, seldomly

open-source and require

complex coupling scheme. To close this gap between "best" and "tractable" GIA models, we here propose Fastlsostasy, a
regional GIA model capturing lateral variations of the lithospheric thickness and mantle viscosity. By means of Fast-Fourier
transforms-Transforms and a hybrid collocation scheme to solve its underlying partial differential equation, FastIsostasy can
simulate 100,000 years of high-resolution bedrock displacement in only minutes of single-CPU computation, including the
changes in sea-surface height due to mass redistribution. Despite its 2D grid, Fastlsostasy parametrises the depth-dependent
viscosity in-a-physically-meaningfal-way-and therefore represents the depth dimension to a certain extent. FastIsostasy is here

benchmarked against analytical, as well as 1D and 3D GIA-numerical solutions and shows very-good agreement with them.

isfally-For a simulation of the last glacial cycle, its mean and maximal error over time and space respectively yield less than 5
and 16% compared to a 3D GIA model over the regional solution domain. FastIsostasy is open-source, documented with many

examples and provides a straight-forward interface for coupling to an ice-sheet model. The model is benchmarked here based
on its implementation in Julia, while a Fortran version is also provided to allow for compatibility with most existing ice-sheet
models. The Julia version provides additional features, including a vast library of adaptive time-stepping methods and GPU
support.
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1 Introduction

1.1 GIA is an important feedback on ice-sheet dynamics

Glacial isostatic adjustment (GIA) denotes the crustal displacement that results from changes in the ice, liquid water and
sediment columns, as well as the associated changes in Earth’s gravity and rotation axis (Mitrovica et al., 2001), ultimately
impaeting-altering the sea level (Farrell and Clark, 1976). In the present work, we focus on the deformation and gravita-
tional effects. FThe-For ice sheets, the former is a net negative feedback on ice-sheet-mass balance through the lapse rate of
the troposphere and both imply additional negative feedbacks on ice-sheet-dynamies—inthe-ease-the dynamics of marine-
based regions{Gemez-et-al52010, 2042, 2015, 201 8;- Whitchouse-et-al; 2019)—Altheugh-enhanced-meltingat-the—grounding

ies-, where enhanced melting leads to a grounding line retreat but also to a re-
gional bedrock uplift and a reduetion-decrease of the sea-surface height ;respeetively-(SSH), due to the reduced load and-applied

upon the solid Earth and the lesser gravitational pull of the ice sheet on the oceans (Gomez et al., 2010, 2012, 2015, 2018; Whitehouse et al.

. As depicted in Fig. 1, these effects combine in a decrease in sealevel-and-a—petential-relative sea level (RSL), which is
defined as the difference between the SSH and the bedrock elevation. Compared to the retreated state (panel (b) of Fig. 1)
this decrease ultimately leads to a readvance of the grounding line (panels (c) and (d) of Fig. 1), therefore conditioning the

marine ice-sheet instability along with the buttressing effect from ice shelves (Gudmundsson et al., 2012). It was shown that the
representation of the deformation and gravitational feedbacks can stabilise grounding lines on retrograde slopes (Gomez et al.,
2010, 2012) and that a rapid bedrock uplift can prevent the collapse of marine-terminating glaciers that are transiently forced
Keonrad-et-al;2044;:2015;20616)(Konrad et al., 2015, 2016). Furthermore, an uplifting bedrock might lead isolated bathymet-
ric peaks to connect with the ice sheet, creating so-called pinning points (Adhikari et al., 2014) that further contribute to the
stability of a marine ice sheet. Although the negative feedbacks are illustrated here for ice-sheet retreat, they conversely apply

to ice-sheet growth.

In addition to these effects, recent work has shown that the ice-sheet evolution might be significantly affected by the forebulge
dynamic on longer time scales in which viscous effects become important. This process denotes the region of comparatively
small bedrock uplift (subsidence) surrounding a region of pronounced bedrock subsidence (uplift), which results from a positive
(negative) surface load anomaly. Albrecht et al. (in rev.) suggest that the forebulge formation represents a positive feedback on

ice sheet growth through a decrease of the RSL close to the ice-sheet margin and Kreuzer et al. (in rev.) show that a subsidin

forebulge can increase sub-shelf melting through the formation of oceanic gateways that ease the intrusion of warm circumpolar
deep water.

1.2 Laterally-variable structure of the solid Earth modulates GIA

For a given load applied to the solid Earth, the amplitude-time-scale-and-pattern-of-the-bedrock-deformation-are-time scale of

bedrock deformation is determined by the horizontal extent of the load and the mantle viscosity. The amplitude and the pattern
of deformation are in turn determined by the upper-mantle-density-and-viseosity-and-the-magnitude of the load, the mantle
density and the (elastic) lithospheric thickness. These parameters-properties are close to being laterally homogeneous in many
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Figure 1. Idealised representation, adapted from (Whitehouse-etal;2649)Whitehouse et al. (2019), of the negative GIA feedbacks at—&

marine-terminating-glaeier-on a-marine-terminating glaciers with retrograde bedrock (e.g. Gomez et al., 2010). We perturb the-(a) the initial
configuration of the ice-sheet by (b) enhanced sub-shelf meltingat-the-groundingtine, leading to targer-thicknessgrounding-line retreat, and
therefore larger thickness and increased outflow -at the grounding line. (c) The loss of ice leads to an instantaneous (6t < 1yr) decrease

of the toeal-seatevelRSL, which can be decomposed into an elastic uplift of the bedrock, and a decrease of the sea-surface-height-SSH due
to the reduction of the gravitational pull on the ocean, leading to a readvance of the grounding line. (d) The elastic uplift is followed by a

larger, viscous uplift which further readvances the grounding line and compensates the mass anomaly generated by the ice loss, therefore
restoring the sea-surface-height-SSH close to its original value. The dashed lines used for the ice and the bedrock contour represent their
original position (a).

regions of the solid Earth, which motivated the development of 1D GIA models, where these-parameters-onty-depend-properties
55 are assumed to depend only on the depth coordinate (Dziewonski and Anderson, 1981). However, some regions are an excep-
tion to this and present a-significant lateral variability of solid-Earth parameters-properties (further simply referred to as LV),
even on relatively short spatial sealescales. Since Antarctica displays a strong dichotomy between a moderatly rifting system in

the West-west and an old craton in the East-east (Behrendt, 1999), it represents a prototypical example of LV. As depicted in Fig.
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2, the lithospheric thickness and upper-mantle viscosity are respectively as little as 50 km and 108 Pas in the West-west and as

large as 250 km and 1023 Pas in the Eas

—east (Morelli and Danesi, 2004; Nield et al., 2014; Lloyd et al., 2015; Heeszel et al., 2016; Lloyd et al., 2020; Barletta et al., 2018; White

For simulations of the Antarctic Ice Sheet (AIS) on the time scale of glacial cycles, accounting for the-Antaretie-LV by
using 3D GIA models has shown great differences compared to 1D GIA models {Gemez-et-al; 2048 Van-Calearet-al52023)
Gomez et al., 2018; Van Calcar et al., 2023; Albrecht et al., in rev.), leading to discrepancies reaching up to 700km for the

groundingtine-positionand-grounding-line position, more than 1km for the ice thickness and several metres for the sea-level
equivalent volume of the AIS. Although these impacts are large, they are to be expected, given that the AIS is characterised

by large marine-based regions—the-. The East-Antarctic basins and the West-Antarctic Ice-Sheet (WAIS) —with-respeetive
respectively represent sea-level contributions from ice grounded below sea level of about 19.2m and 3.4 m (Fretwel-et-al;2043)-
—whose-at present day (Fretwell et al., 2013) and their evolution strongly depends on the representation of the GIA feedbacks
depicted in Fig—t-Figure 1. While both regions are likely to present abrupt transitions to ice-free conditions under warming
scenarios, the WAIS is thought to have particularly low resilience, displaying a bifurcation at a mean global warming of as
little as 2°C with respect to the pre-industrial era (Garbe et al., 2020). In the context of anthropogenic warming, this is very
likely to result in an unprecedented rate of sea-level rise, challenging the adaptation of coastal livelihoods that represent a large
portion of human societies (Kulp and Strauss, 2019).

For these reasons, comprehensive projections of sea-level rise require the representation of the Antarctic LV in coupled ice-
sheet/GIA settings. Furthermore, the #pper-mantte-mantle viscosity is uncertain and involves discrepancies of up to two orders
of magnitude at some locations in the upper mantle (i.e. above ~ 670km depth), depending on how viscosities are inferred
from sparse seismic data (Ivins et al., 2022). Parametrie-uneertainties—of-the-iee-sheet-and-GlA-medels-Such uncertainties
thus need to be propagated to the solution ;—typicatty-by—means—of-ensemblesimulations—_typically by an ensemble of
for laterally-variable relaxation times of the deformational response. However, this is not a standard practice in-since only a
few ice-sheet medefting.mostly-models are coupled to a laterally-variable solid Earth, typically represented by using a 3D
GIA model (Gomez et al., 2018; Van Calcar et al., 2023; Albrecht et al., in rev.). This is largely due to the sheerecomputational
eost-of-using-fact that 3D GIA models and-the-fact-that-none-of-them-is—fully-are computationally too expensive for large
ensemble simulations and represent a level of complexity that may be much higher than what is required to answer most of the
GIA models do not present open-source codes to this date—' and some of them even feqﬂffmg%eemmefela}ﬁeeﬂee%ﬂ%eaek
the-require a commercial license (e.g. Huang et al., 2023). These obstacles have prevented most ice-sheet modelling studies
from using 3D GIA models.

1Some of them can however be obtained upon request, such as Seakon (Latychev et al., 2005)
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1.3 Fastlsostasy: reducing the misrepresentation of a laterally-variable solid Earth at low computational cost

The vast majority of ice-sheet simulations rely on greatly simplified GIA models without accounting for the parametric uncer-
tainties of the solid Earth, thus potentially introducing biases in sea-level projections (Gomez et al., 2015). This also holds te
a-eertain-extent-for the Ice-Sheet Model Intercomparison Project (ISMIP) (Seroussi et al., 2020) and its recent continuation to
2300 (Seroussi, 2022), used as the physical basis for the reports of the Intergovernmental Panel on Climate Change (IPCC). In
summary, the ice-sheet modelling community faces the somewhat paradoxical situation of being wekt-increasingly aware of how
important 3D GIA is, without being able to represent it at a reasonable computational cost. The work of Coulon et al. (2021)

artly addresses this with a computationally efficient 2D GIA model but is also characterised by an important limitation: the

viscous response is parametrised by a field of relaxation times. However, the response time scale of the solid Earth depends

not only on the viscosity, but also on the wavelength of the load as mentioned above. For these reasons, deriving spatiall

coherent maps of the relaxation time and constraining them within realistic ranges is not straightforward, as pointed out b
Coulon et al. (2021).
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Figure 2. (a-c) Upper-mantle viscosity from (Whiteheuse-et-al52049:vins-et-al52022)-Whitehouse et al. (2019) and Ivins et al. (2022) at
100, 200 and 300km depth, respectively. If the lithospheric thickness (Pan et al., 2022), depicted in (d), is larger than the layer depth, a

grey shading is applied. The black and dark grey contour lines respectively indicate the present-day iee-ice-sheet and grounded ice margins
(Morlighem et al., 2020).

To tackle thisthese issues, we here propose Fastlsostasy, a regional GIA-medel-derivedfrom-2D GIA model inspired by
first principles and specially tailored for the needs of ice-sheet modellers. FastIsostasy (1) accounts for LV, (2) alews—for
parametrises the depth-dependence of the mantle viscosity, (3) captures the dependence of the response time scale on the
mantle viscosity and the spatial scale of the load, (4) approximates the regional gravitation response and sea-level evolution, (5)
is computationally eheapinexpensive, (6) is extensively tested and (7) offers a simple, open-source and extensively documented



interface for an-effertless-a simplified coupling to an ice-sheet model. To illustrate its capabilities, Antarctica is used as leitmotif
of the present work since it displays (al) a high LV and depth-dependence of solid-Earth parameters-properties as depicted in
110 Fig. 2, (b2) a high sensitivity to GIA due to the vast marine sectors of the AIS, (€3) a large impact on the future of human
societies due to possible rapid sea-level rise and (d4) large uncertainties in the solid-Earth parameters due, in part, to limited
regional data sets. Antarctica might therefore be "the toughest test" when it comes to GIA modelling. We-emphasise-that;
beeause-of this;-Accordingly, the tools provided here are equally well applicable to any other region covered by a past, present

or future ice sheet.

115 Fastlsestasy-in-the-model-hierarechy
1.4 Fastlsostasy in the model hierarch

The hierarchy of GIA models displays a-targe-an important complexity gap between the regional-models;—computationally

cheap models, which are largely used by the ice-sheet modelling community, and the glebal-computationally expensive models,

developed by the GIA community. We-herein-give-To give an impression of this, we herein present a brief overview, summarised
120 in Tab. 1 and Tab. 2, of the GIA model classes that are available to date—We-foeus-on-Maxwellrheology;sinee-itis-the-only-one
on the computation of the deformational response, with references to open-source implementations that we are aware of. The
governing equations of the three first models can be found in Appendix A,

141 ELRA

125 EERA: Weherepropose-torename-the The Elastic-Lithosphere/Relaxed- Asthenosphere (EERAM-e-Meur-and-Huybrechts; 1996)-

ELRA, Le Meur and Huy!

model conceptualises the structure of the solid Earth as two layers stacked along the depth dimension of a Cartesian coordi-
nate system, obtained by a regional projection of the spherical Earth. The elastic lithosphere is parametrised by its thickness
130 F=-eonstant-constant thickness 7'(z,y) = T  and undergoes instantaneous compression under the effect of a load. It is under-
lain by the uppermantle;-asthenosphere?, idealised as a viscous half-space parametrised by a constant the-relaxation-time 7
with-whiehrelaxation time 7(z,y) = 7. According to this, the solution exponentially converges to the equilibrium setution-This

parametrisation-one, which is computed by convolving the load with a Green’s function. Parametrising the transient behaviour
with a relaxation time is however simplistic, since, in reality, the response time scale of the solid Earth does not only depend

dwayelength of
the load, as mentioned previously. Furthermore, ELRA does not represent the depth-dependence of the mantle viscosity ner

any-EV-and-or any LV. Due to its 2D regional domain, it ignores the gravitational and rotational feedbacks on the sea level-

135 on the viscosity, but also on the

2In cratonic regions with a thick lithosphere (e.g. East-Antarctica) there might be no asthenosphere. This does not prevent the use of ELRA, which is

suited, more generally, to approximate the sublithospheric mantle.




InKenrad-etal(2014)-EERA-was-demonstrated-to-display-, as well as the prestress and self-gravitation (Purcell, 1998) - the
latter being partly cancelled by the lack of sphericity (Amelung and Wolf, 1994). Konrad et al. (2014) demonstrated that ELRA

140 displays important transient differences to a 1D GIA model as well as targe-discrepancies in the representation of the peripheral
forebulge. Despite these numerous flaws, ELRA remains-thestandard-choieefor— or even simplified versions of it - remains a
uiquet et al., 2018; Riickamp et al.

widespread choice among ice-sheet modellers (DeConto and Pollard, 2016; Pattyn, 2017; 2019; Lips

, as it mimics the visee-elastie-viscoelastic behaviour of the solid Earth with little implementation effort and at low computa-

tional cost. Its simplicity has led to a large number of implementations within open-source ice-sheet models (e.g. Lipscomb et al.

145 but, to our knowledge, no modular implementation is available to date. Ice-sheet modellers have therefore repeatedly spent time
implementing ELLRA, possibly with suboptimal computational performance as it does not represent the primary focus of their

work.

EEVA:

142 ELVA

150 This modelling approach was proposed by Cathles (1975), applied to ice-sheet modelling for the first time in-by Lingle and
Clark (1985) and efficiently implemented in-Bueler-et-al2007)-by-means-of-by Bueler et al. (2007) through a Fourier collo-
cation method (FCM). Although this model is sometimes named after the authors of the aforementioned work, we here try to
provide a unifying terminology and therefore call it Elastic-Lithosphere/Viscous-mAntle (ELVA). ELVA resembles ELRA
in its structure but is parametrised by the spatially homogeneous upper-mantle viscosity #1(z,y) = 1. It thus avoids any

155 conversion from viscosity to relaxation time and allows the mechanical response to depend on the wavelength of the load
(Bueler et al., 2007). Furthermore, it permits embedding more of the radial structure of the mantle viscosity by introducing

a viscous channel between the elastic plate and the viscous half-space®. However, it does not address any other limitation of

ELRA. It is worth mentioning that PISM (Winkelmann et al., 2011) provides an open-source implementation of ELVA, which
is however embedded within a larger code base. This lack of modularity is addressed by giapy (Kachuck, 2017), a Python
160  implementation of ELVA that might be more accessible than codes traditionally written in Fortran or C++. ELVA was used, for
example, by Kachuck et al. (2020) and Book et al. (2022) to study the stabilising potential of rapid bedrock uplift on the WAIS

rounding line retreat.
LV-ELRA:

143 LV-ELRA

165 The laterally-variable ELRA (LV-ELRA) proposed in{(Coulon-et-al;202-is-econceptuallysimilarto-EERA-but-allowsfor
by Coulon et al. (2021) is a generalisation of ELRA to include laterally-variable upper-mantle relaxation time 7(x,y) and
lithospheric thickness T'(z,y). The latteris-achieved-equilibrium displacement is obtained by solving equations derived from

> which requires the use of Finite Difference Method (FDM) and is computationally more expensive than ELRA, since a large

thin plate theory




170 system of linear equations needs to be solved. To obtain 7(z, y)field-is-typieally-performed-to-preserve-a-, Coulon et al. (2021)

= 79 in the rest of the domain.

— 71 in East-Antarctica and 7(x

ly a Gaussian smoothing on a binary field, with 7(x
Since LV-ELRA does not include a lateral coupling between the transient behaviour of neighbouring cells, this smoothing
ensures a certain spatial coherence of-the-transient-dynamies-of-the-vertieal-deformationwhen relaxing the displacement field
to the equilibrium solution, i.e. neighbouring peints-cells have similar time scales. Altheugh-this-is-a-generalisationof EERA;

175 it-does notaddress-its-many other Himitations In addition to the limitations mentioned in Sect. 1.3, this coupling prevents the
- In the rest of the manuscript, we will refer to these limitations as the ones resulting from a relaxed rheology.

1D-GIA: itating-viseo-elastie Ee ‘ atted-Although computing the changes in SSH resulting
from changes in Earth’s gravity field requires, a-priori, a global domain, it can also be approximated on a regional one. This was

180 done by Coulon et al. (2021) and combined with an LV-ELRA, resulting in the so-called elementary GIA model. This approach
represents one of the most comprehensive regional GIA models developed to date and a valuable improvement for regional
modelling, as it bypasses the computational expense of more complex models. The open-source ice-sheet model Kori includes
the effort of Coulon et al. (2021). however not in a modular way that is directly usable to other ice-sheet modellers.

— ELVA Elementary GIA FastIsostasy
- R R model (LV-ELRA) (LY-ELVA),
Grid 2D D D D
Rheology Relaxed Maxwell Relaxed Maxwell
LY X < = v
Radial siructure 2layers (lumped), 3layers (lumped) Zlayers (lumped) L layers (umped)
Domain Tegional, Tegional Tegional, Tegional,
Distortion accounted for X X X v
Sea level treatment X X = =
YVariable ocean surface X X X =
Rotational feedback X X X X
Computational cost low low low/intermediate low

Table 1. Comparison of the GIA models with 2D grids and low computational cost. L € N here denotes an arbitrary number of layers.
Well-represented phenomena are symbolised by v and neglected ones by "x'. Phenomena that are represented with a large amount
of simplification are denoted by "~". For instance, LV-ELRA is here considered to only partially represent LV, since it is subject to the
limitations of a relaxed rheology. Another example of partially represented phenomenon is the change in sea level, which typically requires
a global domain but can be reasonably approximated regionally as done in the elementary GIA model (Coulon et al., 2021) and FastIsostasy.




144 Global 1D GIA models

185 Global 1D GIA models ;-capture the radial structure of the solid Earth and-ecompute-its(down to the core-mantle boundary)
but none of its lateral variability. They compute the gravitational field as well as the vertical and horizontal deformation
by means-of spherical-harmonies—They-solving the underlying PDEs after spherical harmonic expansion of the dependent
variables. 1D GIA models typically represent the spatial heterogeneity of the sea-surface-heightSSH, the migration of shorelines
and the rotational feedback (Mitrovica and Milne, 2003; Kendall et al., 2005; Spada and Melini, 2019). Most of them were

190 cross-validated in-by Spada et al. (2011) and Martinec et al. (2018), showing great agreement while presenting intermediate

computational cost. However, they are incapable of rendering any LV {(e-g—Klemann-et-al;2008;-SpadaandMehini; 2049)-

. Klemann et al., 2008). Spada and Melini (2019) proposed an open-source implementation of 1D GIA, which remains an

3

exception in the field.
PG

195 1.4.5 Regional 3D GIA models

Based on Finite Element Methods (FEMs), Nield et al. (2018) and Weerdesteijn et al. (2023) have proposed regional models

to_compute the solid-Earth deformation in the presence of LV. Unlike ELRA, ELVA and LV-ELRA, these regional GIA
models resolve the depth dimension (down to the core-mantle boundary) and allow for grid refinement in regions where
a higher resolution is needed. In particular, the work of Weerdesteijn et al. (2023) provides an open-source implementation

200 that is compatible with heavily parallel hardware by extending ASPECT, a model originally developed to solve mantle
convection problems. Despite this, ASPECT requires about an hour to compute a few hundred years of high-resolution bedrock
deformation on 256 CPUs. This represents a computational cost that is too high for most on-going ice-sheet modelling studies,
while ignoring the gravitational and rotational effects of GIA.

146 Global 3D GIA models.

205 3D GIA models account for all the processes represented in 1D GIA models and are, in addition, capable of fully capturing the

heterogeneity of solid Earth parameters—properties. This also results in simulations that are more complicated to set up, since
the user needs to provide fields of lithospheric thickness and mantle viscosity. Unlike 1D GIA models, they-were-not-coherently
benehmarked-so-far3D ones have not been systematically benchmarked but can be considered to be the best technology avail-
able for cases like Antarctica. M%mwwmm
210 spherical harmonics (e.g. Bagge et al., 2021), finite-elements{e-g
. Martinec, 2000; Wu, 2004; A et al., 2013; van der Wal et al., 2015; Sasgen et al., 2018; Zhong et al., 2022; Huang et al., 2023

Finite Volume Method (FVM, Latycheyv et al., 2005; Gomez et al., 2018), or perturbation theory {e-g—Wu-and-Wang;2006; Zhenget-al;2
e.g. Wu and Wang, 2006). Simulations on glacial time scales however-typieallyrequire—from—days—up—to—weeks-typically

require at least several hours and up to few days (Zhong et al., 2022; Pan et al., 2022; Albrecht et al., in rev.) of computation,
215 even with heavily parallelised codestGomez-et-al;2018;Van-Calearet-al;2023). This is particularly problematic for propa-




gating parametric uncertainties of the solid Earth and-the-ice-sheet-onlong-simulation—timeson long simulations, since the

limit of computational resources is typically reached with only a-one or few ensemble members. Furthermore;-As mentioned

above, Zhong et al. (2022) proposed the first open-source implementation of a 3D GIA medels-tend-to-have-large-time-steps

Elementary-GIA
EERAGlobal 1D EEVARegional 3D modelGlobal 3D
(LV-ELRA Y}
Grid D 1b-61A 3D 3D-GIA 3D
Maxwell MaxweH-and
Rheology Maxwel-like-Maxwell MaxweH-like-Maxwell
others-
*xxWavelength-depen- X xa-y’ xv
dent-response xxLV
Hayers-Humped)y2Hayers
ZHayers-ttampedL layers Humped)yntayers
Radial structure #-L layers (resolved)
(resolved) thumped)-r-tayers¢L h
layers (resolved)
ronalrestonal-ctobal
Domain regional-global regional
global
Gravitationally
Distortion accounted for ¢y w336y’
self-eensistent x
Sea level *v X oy
Fime-varying-Variable
DA *v X xoty
ocean basinsurface
Rotational feedback *v X v
Numerical scheme EBDM-EBMACM FEM diverse
spherical harmonics
Computational cost tew-intermediate tew-intermediate/high few-high
Exemplary publications o Nield et al. (2018); Weerdestei clie 2005); Zhonig et al. (2022)
Spada and Melini (2019)

Table 2. Comparison of the GIA medel-families-available-at-the-time-models with 3D grid and higher computational cost. L € N here denotes
an arbitrary number of this-publicationlayers. We here focus on Maxwell rheology, since it is the most commonly used in literature. However
these models can also be adapted to represent other rheologies.
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1.4.7 Fastlsostas

The summary above points out a gap between the elementary GIA model (Coulon et al., 2021) and regional 3D GIA models

a(Nield et al., 2018; Weerdesteijn et al., 2023)
: the former is computationally cheap but suffers the limitation of a relaxed rheology, whereas the latter accurately represent

the viscoelastic response of the solid Earth, however with a computatlonal cost that is-teo-high-for-mest-en-geing-makes them
impractical for most ice-sheet modelling studies;—while

on LV-ELVA, a laterally-variable EEVA-generalisation of ELVA, coupled to a Regional Sea-Level Model (EV-EEVA)-modet
coupled-to-theregionalsea-levelmodel{ReSeLeM)-Subsequenthy,-we-diseuss-some-of-, both of which are introduced in Sect. 2,
along with a discussion of the underlying limitations. In Sect. 3, we discuss the practical features of the-its Julia implementation,
such as the adaptive time stepping used for integration and GPU support. Finalty;--we-In Sect. 4, we subsequently benchmark
Fastlsostasy against analytical, as well as 1D G1A-and 3D numerical solutions. Finally, we discuss the results as well as possible
future improvements.

Remarks on open-source codes. Thanks to recent work, the GIA model classes listed above now present at least one
open-source code, which have typically become available much later than the first equivalent proprietary code. For instance,
1D and 3D GIA L . . . R . o

of the-model—models already exist for 40 and 20 years, respectively, but their first open-source implementation were only.

ublished much later, respectively in Spada and Melini (2019) and Zhong et al. (2022). We here specifically refer to source
codes that are licensed and can be downloaded and used without request. All open-source codes mentioned above however lack
tools from modern software development, including (1) dynamically built documentations with code examples, (2) automated
test suites and (3) a transparent development, which can be eased, for instance, by the use of GitHub issues and pull requests.
Although these aspects are of technical nature, we believe that they can greatly contribute to making GIA model development
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more transparent, participative and reliable, as well as increasing the user-friendliness of the code. This, in turn, eases the
progress of research and we have therefore applied these concepts to Fastlsostasy.

Since LV-ELVA is a generalisation of ELVA, the latter can be used in FastIsostasy by simply providing it with homogeneous
parameter fields. Additionally, we implemented ELRA in an efficient way, further described in Appendix A. Thus, both of

these simpler models now present a modular, optimised and documented implementation, distributed under GNU General
Public License v3.0._

2  Model description

2.1 Preliminary considerations

As depicted in Fig. 3, FastIsostasy assumes a rectangular domain 2 C R?, obtained from a projection of the spherical Earth onto
a Cartesian plane with dimensions 2W,, and 2 W, respeetively-in the directions of the lateral coordinates x and y respectively.
We introduce the uniform spatial discretization step h, = hy, = h such that the domain is subdivided into N, x N, cells,
with NV, N, € N. We define all variables that are not specified as scalars (c.f. Tab. 3) to be smooth fields, as, for instance, the
vertical load 0% (x,y,t) : R3 — R. For convenience, we will omit the space and time dependence from now on. The discretized
equivalent of smooth fields are denoted by bold symbols, e.g. *# € R¥=*Nv and their entries by the index notation o;%, with

ie€{1,2,...,N;},j€{1,2,...,N, }. The field-ofverticalHoad-vertical load field is expressed as:

7% = —g (pice AHice + psw AHSY +psed AHsed) , (1)
with g%QﬁSmbifhegfavﬁaﬁeﬂa}ﬂeee}efaﬂefk the mean gravitational acceleration at the Earth surface, and p'°®, p*Vand

. p*° respeetively-the mean densities of ice, seawater and sediment -respectively.* The height anomalies AH°®, AHSY and

AH®*4 of the corresponding columns are defined with respect to the-initial-condition;-assumed-to-represent-a-configuration
elose-to-equilibrinma reference state. On this domain, the first and second spatial derivatives of a-ptacehetderan arbitrary field

M can be computed with central differences:

“In-the-present-work-the-eontributionfrom-sediments-will- be-ignored-but-FastIsostasy’s APHnterface already accepts external forcing from sediments but
they will be ignored for the present work.
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with K the distortion factor of the chosen projection.’ Furthermore, the pseudo-differential operator |V| of a placeholder
arbitrary matrix M is adapted from Bueler et al. (2007) to suit ror-equispaeced-distorted grids:

VIM=F ' (ko F(M)) oK, 3)

with © the element-wise product, © the element-wise division, F the Fourier transform, F —1 its inverse and k the coefficient
matrix derived in Bueler et al. (2007). Models that do not account for distortion underestimate the length and area of cells away

from the reference latitude and therefore require a domain with restricted spatial extent, a limitation that is here overcome.

OT2:10°0 @71 98 910 1028 3200 3400 6.6:10'0 028 3.625-10'% ~

Table 3. Numerical values of constants in Fastlsostasy, from left to right: Earth mass, Earth radius, mean gravitational acceleration at
Earth’s surface, density of ice, sea-water, lithosphere and mantle, elastic modulus and Poisson ratio of the lithosphere (compressible)

resent-day ocean surface area. Values for the solid Earth are largely derived from the Preliminary Reference Earth Model
PREM, Dziewonski and Anderson, 1981) and the ocean surface from Cogley (2012).

2.2 Lumping the depth dimension

As depicted in Fig. 3, the vertical structure of the solid Earth is modelled by a stack of layers along the vertical dimension z.

With the layer index [ € {0,1,...,L — 1, L} going from top to bottom, the layers are:

— [ = 0: an elastic plate with

laterally-constant Young modulus
Ey(z,y) = Fy and Poisson ratio vg(z,y) = vy, and laterally-variable thickness Ty (z,y).

- 1e{1,2,...,L—2,L—1}: an arbitrary number of viscous channels, each with Young modulus Z=-<eenstantE)(z,y) = E,
Poisson ratio #—=-eenstant-v;(z.y) = v, and viscosity 7;(x,y). As depicted in Fig. 3, the first of these layers has a

5The distortion K does not appear in 0% since it cancels out when computing the volume-to-area ratio.
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Figure 3. Schematic representation of a typical FastIsostasy domain.

laterally-variable thickness T3 (x,y) that is complementary to Ty(x,y) and allows all further layers to have a homoge-

Li(z.y) =T forl > 2.

295 — [ = L: aviscous half-space with Young-medulasFr—-constantlaterally-constant Young modulus £y, (z,y) = Er, Pois-
son ratio #r—=-—constant-and-homogeneous-viseosity-nr—=-—eonstyy, (x,y) = vy, and viscosity 0y (z,y) =1y,

neous one

Whereas | = O represents the lithosphere, all further layers represent the remaining mantle. To-avoidresolvingthe-depth-dimension;

Fastlsostasy lumps the latter layers into a single ene-layer by computing a so-called effective viscosity for the whole mantle.
The key to do so is provided by Cathles (1975), where a three-layer model including an elastic plate, a viscous channel and a
300 viscous half-space is converted into a two-layer model where the viscous channel and the viscous half-space have been lumped

into a single half-space by introducing the following scaling factor:

~  29C(R)S(k) + (1 —7?) T?k% +725(k)? 4+ C(k)?
Bs0T) = G OmS() T (1) Tw + S(xP + C(R)E" @

S
3 n

with 7" the channel thickness, 7} the channel viscosity divided by the half-space viscosity, C' (k) = cosh(T'k)

andthe-wavenamberofand S(x) = sinh(T'k). The characteristic wavenumber x = 7\~ ! is defined by choosing a characteristic

305 wavelength A for the load. Hence, solving the 3-layer-three-layer case can be formulated as solving the 2-layer-two-layer case
with the half-space viscosity scaled by R. We propose to generalise this idea by performing an induction from the bottom to

the top layers, i.e., with decreasing :
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Initialisation: layer [ = L is a viscous half-space with nleff =1L,
Induction step: layer [ 4 1 can be represented as viscous half-space with nlefl and is overlain by a viscous channel /. These

can be converted in an equivalent half-space with effective viscosity:

1
T =R K, —n T, | gt ©)
M1

Thus, ¢ is the effective viscosity of the half-space representing the compound of layers [ € {1,2,...,L —1,L}. In essence,

this represents a nonlinear mean of the viscosity over depth-and-allows-accounting-for-an arbitrary number of layersi i
; . =1, X o : e

ob O O procedure;-w oduce-a-sou s

to-, which is only computed at initialisation and can improve the parametrisation of the depth dimension compared, for instance

to Bueler et al. (2007). However, this approach presents important limitations:

— Since the depth dimension is not resolved, the multi-modal response of the Earth to surface loading is not captured
as accurately as in 1D and 3D GIA models. 1a-thepresent-work—we-set-the-characteristic length- ot -the loadto-be
1000kem;-a—valuesuitedforFor instance, the computation-on-theseale-ofcontinental-iee-sheets—larger the load, the
deeper the deformation into the mantle and the more relevant the radial layering of viscosity and density, which is not
captured in Fastlsostasy._

— The deformational response is likely to be less accurate for loads with dimensions that substantially differ from the
characteristic wavelength A, used in Equation 4 to lump the depth dimension. We however emphasise that, for a given
ice sheet, A can be chosen such that the near field of deformation is well represented. which is typically what is required
in_coupled simulations to ice-sheet models. For all the computations presented here, we choose A to be the mean of
W W}

— Equation 4, as derived in Cathles (1975), applies to laterally-constant viscosities. In the present case, we however allow
the viscosity to be laterally variable and apply this scaling for each column.

Finally, to account for compressibility and lateral variations of the shear modulus, a scaling « of the viscosity is introduced

and described in Seet—€:-

n=anst.

This-gives-Appendix C. This yields the corrected effective viscosity 7, which brings the Maxwell time of FastIsostasy close
to that of a 3D GIA model-—;

n=an’. (©)
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Although converting the 3D problem into a 2D one introduces an-etrerthe limitations mentioned above, it also greatly reduces
the computational cost. In particutaraddition, the partial differential equation (PDE) governing an elastic plate on a viscous

half-space can be transformed into an ordinary differential equation (ODE), as we describe in the next section.
2.3 LV-ELVA

We now assume that the aforementioned lumping of the layers has been performed and that the lithosphere and underlying
mantle are represented by an elastic plate overlaying a viscous half-space. Since the vertical extent of the plate is typically two

orders of magnitude smaller than its horizontal one, it is considered to be thin. By assuming a Maxwell rheology, the vertical

displacement+'°" = ° |+ total vertical displacement u°' + v of the bedrock resulting from a stress o** can be decomposed
in an elastic and a viscous response, respectively denoted by ‘tte—ny and u. In-its-eurrent-version; Fastisostasy-only-computes

Computing-the-As in Bueler et al. (2007), the elastic response of the lithosphere ean-be-done-by-conveluting-is computed by

a convolution of the load o** with an appropriate Green’s function F<I"°':

KQO_zz
ueel . Fiﬂ ®

)

This represents the instantaneous compression of the lithosphere and accounts for the distortion resulting from the projection.
In reality, this process takes place on the time scale of days, but it can be considered to be immediate-instantaneous compared
to the long time scales of the viscous response and the ice-sheet dynamics. To construct the elastic Green’s function, tabulated

Farrell (1972, table A3) are used, as done by Bueler et al. (2007). This treatment of the elastic response shows great agreement
with a 3D GIA modelin-Fest-3-, as shown in Section 4.,

When material from the solid Earth is displaced, a hydrostatic force counteracting the load arises. We define the pressure

field p as the sum of all these effects:

p:cf“—g(pIUiilﬂmeU), ®)

with p' and p™ mean densities of the lithosphere and the upper mantle. Since the displacement occurs in Earth’s outermost
layers, we here assume g to be constant over these shallow depths. 3D GIA models usually represent the elastic lithosphere as
a viscous layer with very high viscosity and the elastic displacement therefore also implies a hydrostatic force. We argue that
this is closer to reality and adapt this point of view to the present context by including the elastic displacement in Eq. 8, unlike
Bueler et al. (2007) and Coulon et al. (2021). The evolution of the viscous displacement is therefore coupled to the elastic one

and is governed by:
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ou 0?> M, 0*M, 0?M,
20(e) V1 (G ) =p+ Tt + 2%+ T ©)

AL

with #-the-upper-mantle-viscosity-field-and-M,,., M, M, the flexural moments for a thin plate (Ventsel and Krauthammer,
2001; Coulon et al., 2021):

M,, = /%%amzdz --D <g:2‘ + 1/22;;) : (10)
M, = /%%ayyzdz =-D <gZZ +ugi§) , (11)
My, = /%%ozyzdz =-D(1-v) (‘ngy (12)
In these equations, D-—Biexy)y— BB A2 (— i is-the-D = By T (z.y) (12(1 — v2)) s the laterally-variable litho-
spheric rigidity field.

The PDE can be understood as a-an ad-hoc generalisation of beth-ELVA (Cathles, 1975; Lingle and Clark, 1985; Bueler
et al., 2007) and-that is inspired by LV-ELRA (Coulon et al., 2021) and further described in Appendix A. Though we did not
yet-manage to formally derive it by generalising the work of Cathles (1975) to heterogeneous viscosities, setting—H—=r{e4r
in-Eq. 9 yields results that are very close to those of a 3D GIA model, as shown in Seet—Section 4. The right-hand side F' of

the PDE can be evaluated by applyinga-finite-differencemethod-(EFDMfinite difference, as defined in Eq-—2Equation 2:

F=p+DyuM,,+2DsyM,, + Dy M,,. (13)

By-Subsequently, a Fourier collocation of this equation can be achieved by making use of Eq. 3 and rearranging terms;-the-time

O Bhy A ECN /PN

ou

== FYFFoOKo2n) 0 (k+¢)), (1

with € < 1 aregularisation term to avoid division by 0. Thus, with

obtainan-ODPEthat by using a hybrid FDM/FCM approach the PDE expressed in Eq. 9 is transformed into an ODE, which can

be solved with explicit integration methods. In particular, we thus avoid solving a large system of linear equations, as normall
done in FDM, FVM or FEM codes. Note that in Bueler et al. (2007) the closed form of a Crank-Nicolson (implicit) scheme is

givenderived, thus providing unconditional stability. Due to the complexity of the right-hand side, finding such a closed form
for LV-ELVA is more challenging and goes beyond the scope of this work. We emphasise that the smaller time steps resulting

from explicit schemes might nevertheless be needed for (1) coupling purposes, as an-iterative-schemefor-convergence-ofthe
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a dense output in time can be provided to the ice-sheet and-selid-Earth-histery-ean-be-aveidedmodel, and (2) eapturing-with
enotgh-aceuraey-accurately capturing the fast dynamics that can occur in regions of low viscosity.

Formally—werequire-the-far-field-Far away from the ice sheet, the changes of the load are comparatively small and we
therefore require the displacement to be zero at the domain boundaries®. However, FCM does not allow explicit treatment of

sueh-Dirichlet boundary conditions (BCs). To enforce its approximate representation, we subtract the mean displacement of
the corner vertices from the solution at each time step, which is here expressed with the common choice of notation from

programming:

1
Wi () = i 5(t) — Z(um(t) +u1,n, () +un, 1(t) +un, N, (1)) (15)

Note that this differs from Bueler et al. (2007), where the whole domain boundary is used for this purpose. We argue that our
approach is a better representation of the required BC because (1) corner points are further away from the load and (2) are

equidistant from the centre of a rectangular domain.

2.4 Regional sea-level model (ReSeL.eM

A t-when-eomputing-s{t)-In a coupled setting, a GIA model is typically expected to take the ice thickness field as an input
and to return the RSL field, S, as an output, which can be expressed as:

S(%?/J) = Zss(xayat)_zb(x7y7t)7 (16)
Zlryt) = st £ N@yt) e, (an
Pyt) = zu@y) tulzy))Lullzy), (18)

with 2 the SSH. 2" the bedrock elevation, s the barystatic sea level (BSL), N the SSH perturbation due to changes in
the gravitational field and c a time-dependent scalar. In a global model, ¢ ensures mass conservation of water, which is
however impossible to ensure in a regional model with open boundaries. In contrast, we here use ¢ to impose a mean zero
SSH perturbation at the domain boundary, similar to Equation 15, The sea-level terminology used here follows the definitions
of Gregory etal. (2019), which we refer to for any further detail. Whereas the displacements u_and u°! are computed as
described in Sect, 2.3, the SSH perturbation V can be regionally approximated by the convolution of the mass anomaly with
an appropriate Green’s function I'"Y, as proposed in Coulon et al. (2021):

6

This is not completely correct since the ocean load changes at the domain margin, which is however impossible to represent accurately in a regional

model.
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N = TNel? (19)
9
R 1
N — €
Lo = Me<231n(9/2)>’ (20)

with R, the Earth radius at the equator, M. the Earth mass, and 6 the colatitude. To avoid dividing by # = 0°, we impose a
minimal colatitude of the barystatie-sealeveH{BSk)—The-volume-change-of-order of the resolution. By neglecting the changes
420 in surface load from sediments and expressing A H*V with the RSL, Eq. 1 becomes:

T = g (P75 Su) O+ (H—HE)C) A @n

with O the ocean function, C the continent function, G the ecean-attime-step-k-is-defined-asgrounded-ice function, which can
be expressed by introducing the indicator function 1 and the ice thickness above flotation H :

0O = 1-max(C,G), (22)
425 C = 1(S<0), (23)
g = 1LHY>0), (24)
g = He-sP (25)
P

In Eq. 21, the activation mask A defines what we further consider the near field of displacement it yields 1 close to the

ice sheet and 0 otherwise. This approach is similar to what is done in Coulon et al. (2021) and is, by definition, somewhat

430  arbitrary, The choice made here is exemplarily shown in Sect. 4 for Antarctica. Most importantly, the activation mask enforces

a zero change in load close to the boundary of the domain, which is necessary to fulfil the BCs expressed in Equation 15, This

is a limitation compared to a global GIA model but allows to account for water column changes in the near field of the ice sheet,
unlike most regional models (Lingle and Clark, 1985; Le Meur and Huybrechts, 1996; Bueler et al., 2007; Kachuck et al., 2020; Book et a

~

435 In Goelzer et al. (2020), the evolution of the BSL is described as’:

|40
s(t) = , 26
/V(V\), ~ Apd ( )
Vi = VISV 27)

TWe refer the reader to Adhikari et al. (2020) for an alternative treatment.
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with A4 the present-day ocean surface and V' the volume contribution of ice sheets to the ocean. The latter is decomposed

into V| the contribution from ice above flotation;—; VP°V, the contribution from changes in the bedrock height; and Vden,

440 the contribution from density differences between meltwater and seawater. We refer the reader to Goelzer et al. (2020) for the
detailed computation of these quantities, which are defined with respect to a reference state, typically the present-day one.

Global-GIA-medels-typieally-Assuming a fixed ocean surface to compute the evolution of shorelines;leading-to-animportant

B
Mo n a tocolve—thic—nonlbne

445 tens of metres over glacial cycles. To tackle this, we propose an extension of Goelzer et al. (2020) that accounts for the time
dependence of the ocean surface A(#) when computing the BSL. To this end, we first introduce a time discretisation ¢ = k At,
with O(At) = 10yr. We further introduce the ocean surface as a function A(s), which is nonlinear with respect to the BSL
AVy = Vi — Vi1 over a time step At—=-+#;—+tp—=r--whieh-in-turns-leads to a change Asy, = sy, —si—1 of the BSL. Oversmall
scales, Asy is a small number and the nonlinear relationship between the volume contribution, the ocean surface and the BSL
can be approximated by a trapezoidal rule, depieted-pictured in Fig. 4 and leading-to-described by the following equation:

A(Sk) —+ A(Sk_l) .

AVkZ (sk—sk_l) 9

(28)

This equation is solved by using s;_; as an initial guess and the updated BSL, sy, is typically obtained after a few iterations of

455

Aod
460 A°(s)=~A°(s),  with: y=—"L%—

465 is of course an important simplification compared to global GIA models, which typically resolve the migration of shorelines

Mitrovica and Milne, 2003; Kendall et al., 2005). Nonetheless, this is an improvement compared to fixing A%{#)-=A27A(t) = Apq.
In particular, the bottom-right panel of Fig. 4 shows that the EGM-sea-level-sea level of the Last Glacial Maximum (LGM) is
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overestimated by about 5m for fixed ocean boundaries compared to the-our trapezoidal approximation. This can lead to differ-

ences of several kilometres in the greunding-tine-grounding-line position, depending on the local bedrock slope. We emphasise

470 that a more sophisticated approach than ours is likely to require a global domain, which we here want to avoid.
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Figure 4. (Top) Schematic representation of the trapezoidal approximation used to solve the rontinearity-of-the-sea-tevel-equationnonlinear
dependence between BSL, s, and ocean surface, A. We hereby use Ay as shorthand for A(sy ). (Bottom left) OeeanPresent-day ocean surface
overbarystatic-change-of sea-level-with-respeet-to-present-dayand ocean-surface function, ferfixed-boundaries-versus-A(s), as computed by
the trapezoidal approximation of the basin evolution. (Bottom right) SeatevetBSL computed for a change in ice volume equivalent to LGM,

for fixed boundaries versts-compared to the trapezoidal approximation.

P
L Ice-Sheet Model 1

1—1“““ 22 2%.0,C.G
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(or ELVA/ ELRA)
w, U S

Figure 5. Interface between Fastlsostasy and an ice-sheet model, adapted from De Boer et al. (2017) and Coulon et al. (2021).
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475 erder-of-In summary, allowing for a time variable ocean surface is the main adaptation of the reselution—Finally-the-regional

sea-level fietd-ST{#4+4is-updated-bytreatment described in previous work (Goelzer et al., 2020; Coulon et al., 2021) and it
constitutes ReSeLeM. Fastlsostasy involves, as depicted in Fig. 5, a coupling between LV-ELVA and ReSeLeM.

SL(x,y,t) = s(t) + N(z,y,t) +c(t),

2.5 Limitations

480

in-LV-ELVA presents
limitations, since it relies on a linear PDE describing the macroscopic behaviour of the solid Earth as a Maxwell body. Therefore
it does not account for transient rheologies (Caron et al., 2017; Ivins et al., 2021
».composite rheologies (van der Wal et al., 2010, 2015). anisotropy (Beghein et al., 2006; Accardo et al., 2014), or microscale
485  properties of the material (Van Calcar et al., 2023). LV-ELVA only computes the vertical displacement of GIA and neglects the
horizontal one, which has a negligible impact on ice-sheet dynamics. Nonetheless, the horizontal displacement might be used

to constrain GIA models through GNSS measurements and its implementation is left for future versions of the model.
The governing equation of LV-ELVA was postulated here in an ad-hoc way, as described in Appendix A, but lacks a formal
derivation. Since the depth dimension is not resolved in LV-ELVA, Stokes flow of the mantle is not fully represented, similar
490  to depth-integrated solvers of ice-sheet dynamics and shallow-water approximations used in general circulation models. Tn
addition, the regional nature of the domain makes it inherently complicated to ensure BCs that are consistent with a global
conservation of mass. Therefore, the sea-level is only solved in an approximate way and the feedback from perturbations in the
Earth’s rotation, which will be small near the poles, is not accounted for. In particular, we emphasise that the far-field;simitar

nonlinear rheologies (Gasperini et al., 2004; Kang et al., '

495

500 eM=—28 fails to give good

results if most of the contribution stems from an ice sheet that is not included in the domain. For instance, the BSL computed
in FastIsostasy over a glacial cycle cannot be correct if the domain only covers Antarctica, since most of the contribution stems
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from the Northern Hemisphere ice sheets. This can however be solved by setting up a domain for the northern hemisphere and
coupling it to the Antarctic one, or simply by taking the BSL obtained from proxies or global GIA models.

Future releases of Fastlsostasy will focus on addressing some of these problems. We emphasise that, despite these limitations,
the results presented in Sect. 4 show that FastIsostasy is a significant improvement compared to ELRA and ELVA, since it
represents the near-field GIA response of laterally-variable Earth structures with improved accuracy and a negligible increase
in computational cost. We believe that this adequately covers the needs of most ice-sheet modellers.

3 Implementation, performance and further remarks

Fastlsostasy has been implemented in Julia (FastIsostasy.jl) and in Fortran. Julia (Bezanson et al., 2017) is a high-performance

language with a vast ecosystem, on which Fastlsostasy.jl relies to offer convenient features and geod-performaneeefficient
computation:

1. To evaluate the right-hand side of the ODE obtained in Eq. 14 and perform the convolutions used to compute the

elastic and the sea-surface-gravitational response, Fastlsostasy.jl relies-on-uses forward and inverse Fast-Fourier Trans-
forms (FFTs), which are implemented in an optimised way in FFTW,jl (Frigo and Johnson, 2005). Evaluating the
right-hand side therefore displays-scales with a computational complexity of O (N log, N), for a matrix of size N =
N; x Ny. To achieve an even better speed increase, (1) N,, [V, are generally chosen as powers of 2, (2) FFF-plans

e-pre-computed-during-the-initialisation-of-the-computation-domain-FFTs are precomputed as far as possible and (3)
the transforms are computed in-place to reduce the memory allocation. FastIsostasy owes its name to fast-earth

an early implementation of ELVA (referred in the acknowledgements) and to its reliance on FFTs to perform all the

expensive computations.

. To subsequently integrate the right-hand side in time, FastlIsostasy.jl relies-on-uses OrdinaryDiffEq.jl (Rackauckas and

Nie, 2017), a package that offers a wide range of optimised routines. We here restrict ourselves to explicit methods, which
heweverrange from the simplest explicit Euler scheme up to schemes of order 14. Explieit-time-integration-For all the
results presented here, we used the Runge-Kutta method proposed in Bogacki and Shampine (1996). Explicit integration
schemes typically require decreasing the time step with increasing spatial resolution, which is handled by the adaptive
time-stepping methods of OrdinaryDiffEq.]jl to prevent instabilities. This requires more evaluations of the right-hand side
and leads the scaling of computational complexity for the full problem to be higher than O (N log, N) —In-Fastlsestasyjk

with FFTs. By providing keyword arguments, the user is able to influence any option related to the time-integration
integration in time, such as the scheme, the error tolerance, the minimal time-steptime step, etc.

. Fastlsostasy.jl relies-en-uses CUDA jl 3¢ al; ~a)-(Besard et al., 2019b) and ParallelStencil.jl to optionally

run performance-relevant computations on a GPU (so far restricted to NVIDIA hardware). Due to their heavily par-
allelised architecture, GPUs are able to scale better than CPUs for some computations—in-our-—ecase;—the-FF T -related
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535 operations-mentioned-above. The speed increase thus obtained will be illustrated in Test 1 of the model validation. Of-
fering a GPU-parallelised GIA code is unprecedented to our knowledge and only requires the user to set the keyword

argument use_cuda=true.

4. In Fastlsostasy.jl, the nonlinearity introduced by the time-dependent ocean surface is solved by using NLsolve.jl, in
combination with an interpolator of A(SECA(s), which is constructed at initialisation using Interpolations.jl. Since

540 A{SEG)-A(s) is monotonic and initial guesses are close to the solution, the computation time associated with this
step is negligible. Furthermore, whereas the adaptive time-stepping is convenient to enforce stability of the viscous
displacement, updating the diagnostics - such as the elastic displacement, the ocean surface and sea level - can be done

less frequently. For instance Atgms=-10¥-At¢ = 10yr is used in the present work and can be determined by the user

through a keyword argument.

545 As illustrated above, FastIsostasy.jl relies on numerous Julia packages. Since it is a registered package, it can however be
easily installed, along with all its dependencies, by simply running add FastIsostasy inJulia’s package manager. Further-
more, it is thoroughly documented at https://janjereczek.github.io/FastIsostasy.jl/dev/, including an-APlrefereneea description
of the application programming interface, a tutorial and a-few-examplespractical examples, which are a simplified version of
the code used for the results shown in Section 4. Additionally, FastIsostasy.jl is designed in a modular way that facilitates its

550 coupling to an ice-sheet model and we therefore believe that the implementation burden associated with its use is very low.

Since Julia does not yet support compilation to binaries, Fastlsostasy is additionally programmed in Fortran to allow for

compatibility with most existing ice-sheet models -—Nenetheless;-and has already been coupled to Yelmo (Robinson et al., 2020
. Since Fortran does not provide packages that allow convenience at the level of the Julia ecosystem—Thus, the Fortran version:

(1) does not allow computation on GPU, (2) only provides explicit Euler and-Runge-Kutta-methods-of 4th-order-for integration

555 in time, and (3) does not allow for time-evolving ocean boundaries.

4 Model validation and benchmarks
We now validate FastIsostasy with series of tests:

— Test 1: a comparison to an analytical solution for an idealised load on a homogeneous, flat Earth. This aims to check that

the numerics are well-implemented for the simplest case and that our results are comparable to Bueler et al. (2007).

560 — Test 2: a comparison to benchmark solutions of three different 1D GIA models, showing-great-agreement-among-each
otherpresented in Spada et al. (2011). This aims to understand the discrepancies which can arise from the flat-Earth

stmplifieation-and-the-lumping of depth-dependent viscosity profiles inte-a-single-valueand the regional approximations
of the SSH perturbation.

— Test 3: a comparison to Seaken-(latychev-etal;2005;-Gomez-et-al52048)athe 3D GIA model -Seakon (Latychev et al., 2005; Gon
565 on idealised cases of LV. This aims to check whether Eq. 9 and its discretization, Eq. 14, are valid fer-heterogeneous
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parameter—fieldsapproximations of the deformational response in the presence of LV. Here we will also compare the
elastic displacement of Seakon versus-and FastIsostasy.

— Test 4: a comparison to Seakon with realistic LV and forced by the ice loading of a full glacial cycleas-iee-history. This

aims to check whether loads and Earth structures of typical applications can be reasonably well represented.

These tests are summarised in Tab. 4 and aim to quantify, as erthogenally-independently as possible, each source of difference
error between Fastlsostasy and the referenee-baseline solutions listed above. This is measured by an absolute and a relative

value, respectively defined as:

e (x,y,t) = |upi(z,y,t) — urerpL (@, y,1), (29)

abs
t
e(x,y,t) — € (x’y’ ) , (30)
max lusL(z,y,1)|
with the indices "FI" and "refBL" respectively indicating the FastIsostasy and referencesolutions—For-Test-+-werequire-the

over space, respectively using é(t) and é(¢). In the forthcoming analysis, we will often mention a tight upper bound for these
timeseries to quantify them in a scalar way, and will emphasise the maximal error, since the spatial mean can hide important
local discrepancies.

4.1 Test 1 - Analytical solution for idealised load on homogeneous Earth

We first reproduce the test proposed in Bueler et al. (2007) by using a 2-layer model with W, = W, = 3000km, N = N, =

N, =256 and h ~ 23km. The lithesphere-has-afirst layer is parametrised by the lithospheric thickness 7'(z,y) = 88km and &

the underlying half space by the mantle viscosity 7(z,y) = 102! Pas. The load - placed-at the centre-of the- computation-domain;
is-a-is a Heaviside function in time that represents a flat cylinder of ice, with radius R = 1000km and thickness H = 1km,

laced at the centre of the computation domain. For this idealised case, an analytical solution of the viscous solution is provided
in Bueler et al. (2007), yielding:

u(r,t) = p'°gHR- /6_1 {exp <—2€;’;> = 1] J1 (kRo) Jo(kr)dk, 31
0
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615

’ Test H Compared to... Load T, n ‘ L ‘ et)<... ‘ é(t) <... ‘

2-1
1 Analytical solution Ice cylinder homogeneous - 0.019 0.021
32
2 1D GIA models Ice cylinder & ice cap homogeneous ~ 0.11 0.19
Gaussian heterogeneity N
3 3D GIA model Ice cylinder fsee FigDH(c.f, 32 0.05 0.15
Appendix D)
) Estimation for Antarctica 43
4 3D GIA model Glacial cycle (ICE6G_D) 0.05 0.16
(Pan et al., 2022)

Table 4. Summary of the tests performed using Fastlsostasy. The two last columns provide tight upper bounds on the mean and maximal
CITOTS OVEL Space.

with Jy and .J; the Bessel functions of first kind and respectively of order 0 and 1, and 3 = 3(k) = p™g + Dr*. To make
the solution of Fastlsostasy comparable to this, we set K ; = 1 and p' = 0. which neglects distortion and prevents the elastic
displacement from contributing to the pressure term. Panel (a) of Fig. 6 shows cross-sections of the domain along the z
dimension, demonstrating that the numerical solution closely follows the analytical one. In complement, panel (b) shows the
corresponding maximal and mean error over time. I-appears-thatfor-For ¢ > 5000 yr, the viscous displacement is captured with
mean{eS) < max(etS ) < tmFor+-<2000yre®™ < 2P < 1m, For ¢ < 2000yr, the displacement surface is well captured

in terms of shape but appears to be slightly shifted along the z-dimension, due to the approximate treatment of the BCs as
written in Eq. 15and-leadingto-an-errorof up-to-e22>~5m, leading to a larger upper bound on the error é**5(¢) < 5.8m,
which corresponds to e2=6:02¢ < 0.021. Whereas in Bueler et al. (2007) a correction of this effect is applied based on the
knowledge of the analytical solution, we here decide not to do so. First, because such correction only applies to this specific

case and second, because users should be informed about the upper-bound-of-potential numerical error that will arise in their

ofice-volumechange—This-inturns-experiments. When imposing Eq. 15, the unrealistically high forcing rate resulting from
the Heaviside load leads to errors resultingfromEeg: hat-aretareerthanforrealist icati
higher than what is expected from a load that is coherent in space-and-time-time. The discretisation error presented here should

be therefore understood as an upper bound for a flat Earth.
Panel (c) shows that the maximal and mean equilibrium error respectively decrease with O{—0-4)-and-O{—0-36)-a slope

of —0.4 and —0.33 in log, —log,, space, showing that convergence to the analytical solution of equilibrium can be achieved
relatively quickly with increasing resolution. Fe-study—the-The run-time on CPU (Intel i7-10750H 2.60GHz) versus GPU
(NVIDIA GeForce RTX 2070) . the computations-of Test-1-have beenperformed-with-an-explicit Euler scheme with-fixed-tim




620

625

(b)

= 6
max
(o 1100°yr — mean
315):‘1‘ ______ == == - | g
4
—=-100 {190 —=° 8
E - §
= &
ice (height B
-200 scaled 1:25) 2 g
10000 yr forebulge =
= numeric
-300 {50000 yr == analytic 0
0 0.5 1 1.5 0.1 05 1.5 5
7 (10" km) Time (kyr)
(c) (d)
e~ cpu
— gpu 10?
]
= =
59 //_ < 101\;
S - g
3 N\ = /— = =
= LN —— - -
= 0 S = g
i% ! \"»\ // 10"
S
- max Yo || o
10-1 mean

24 2') 26 27 28 24 25 26 27 28

N=N,=N, (1) N=N,=N, (1)

Figure 6. (a) Transient cross-sections of bedrock displacement along z-axis, from the center of the domain until z = 1800 km. The resolution
used here is N, = N, = 28, h ~ 23km. (b) Corresponding mean and maximal errors over time. (c) Resolution-dependence of maximum and
mean error at equilibrium with respect to the analytical solution, with the light and dark gray-grey dashed lines representing the corresponding

linear regressions, respectively seorrespondingto-O{—0-4)-O{—0-36)-with slopes of —0.4 and —0.33 in log, —log,, space. (d) Resolution
dependence of the computation time on CPU versus GPU, with the light and dark gray-grey dashed lines respeetively-representing the

corresponding to-O{0-6)-{0-02)linear regressions, respectively with slopes of 0.73 and 0.17 in log, —log,, space.

panel (d) and shew-shows that using a GPU is advantageous for A->-128N > 64, which corresponds to the typical problem
size for ice-sheet modelling. More specifically, the CPU and GPU computation time respectively increase with ©{0-6}-and
O(0-62)-a slope of 0.73 and 0.17 in log, —log;, space, thus giving a clear advantage to GPU computation for large problems.
Thanks to the hybrid FCM/FDM scheme used to evaluate Eq. 14, the scaling of computation time on both CPU and GPU is
better than is usually obtained from finite-differencevolume-orelementmethods; FDM, FVM and FEM since all of them rely

ARARAANAAAAAAANAARAANAS
on the-expensive-eperation-of-solving a large system of linear equations.

4.2 Test 2 — 1D GIA solutions of idealised loads on layered Earth

In Spada et al. (2011), a range of 1D GIA models are benchmarked against each other and show great-excellent agreement
on various experiments. Here, we reproduce the benchmark tests called "1/2" (geodetic quantities) and "2/2" (geodetic rates),

which are similar to Test 1 but presents the following differences:
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— The computation domain is a spherical-Earth-on—-which-we-stereographic projection of the spherical Earth, centred at
colatitude 6 = 0°, and the effect of distortion is therefore included, unlike for Test 1. We apply ice loads with pi°® =

931kgm™3, chosen in agreement with Spada et al. (2011), and the following geometries:

A) Lindricalice toad-of thicl 1 | radits f— 10°

{B) an ice cap with maximal height Hy,,x = 1.5km, radius § = 10° and its shape defined by a cosine function.

(B) acylindrical ice load of thickness // = 1km and radius § = 10°

— The Earth structure has three layers, namely (1) a lithosphere of thickness Ty = 70km and shear modulus Gy =5-
10'1Pa, (2) an upper mantle of thickness T; = 600km and viscosity 7; = 10?! Pas and (3) a lower mantle reaching
down to the core-mantle boundary with a viscosity 72 = 2 - 10*! Pas. For any further detail, we refer the reader to the
M3-L70-VO01 profile shown in (Spada et al., 2011). In FastIsostasy, these layers are translated into a-quasi-elastie-an

elastic plate, a viscous channel and a viscous half-space.

— The sea-surface-heightresultsresults of SSH perturbation provided in Spada et al. (2011) allow us to check the validity
of Eq. 29, used in FastIsostasy.

TappearsinFig—7Figure 7 demonstrates that the viscous displacement, its rate and the sea-surface-height-SSH computed in
Fastlsostasy reasonably-qualitatively follow the results of Spada et al. (2011). The latter corresponds to the outputs of PMTF,
VILMA (Martinec 2000) and VEENT, which show such good agreement that they are tamped-gathered into a single output.

uantitatively, the mean displacement error between FastIsostasy and Spada et al. (2011) arises
v a a a \V S 40 " 1O as a a a a a v-atd

abs abs

cylindrical load and yields é*P® < 47m, i.e. ¢ < 0.19. In both cases, the difference in vertical displacement propagates—is

propagated to the computation of the sea-s

sea-sturface-height-SSH parturbation according to 29. As shown in the last row of Fig. 7, this leads to a maximal difference
between FastIsostasy and the 1D GIA models th al-sea-surface

height-displacementthat reaches at most 6 m but less than 2m on average, for maximal SSH perturbations around 40 m in both

models.

Since the experimental setup is strietly—the—same-as_similar as possible for the 1D GIA models and Fastlsostasy, the

differenees-in-viscous-displacement-these differences can be largely attributed to ( Mlthe lumpmg of the depth dimension as
erformed in Eq. 4, which leads the two approaches selving a 4 all-maxima
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Figure 7. Comparison of FastIsostasy versus-and Spada et al. (2011) on tests "1/2" and "2/2". From top to bottom: viscous displacement w,

viscous displacement rate < and resulting sea-surface-height-SSH perturbation N. From left to right: cylinder and cap of ice applied as load.

equations and (2) to the regional domain used here, which only allows an approximate treatment of the BCs as described in
Equation 15.

4.3 Test 3 — 3D GIA solution of idealised load on idealised LV-Earth

Seakon is a global 3D GIA model {Eatychev-etal;2005;-Gomez-etal; 2648 -that-that includes all the processes mentioned in
Section 1.4.6. It solves the deformational response of the solid Earth with EVM on an unstructured grid, which is typically
finer at the poles, where the bedrock displacement is largest. It has been extensively used in GIA studies (e.g. Mitrovica et al.,
2009; Austermann et al., 2021; Pan et al., 2021, 2022) and evern—coupled to an ice-sheet model in {Gemez-et-al;2018)—We
M@%M(M@WWWGHChka FastIsostasy against Seakon efrioer idealised cases with

LV similar to that estimated across Antarctica. Here again, a cylindrical ice load with H = 1km and R = 1000km is applied
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w#por-on a domain with W, = W, = 3000km and enty-two-tayers-thelithosphere-and-the-mantle-[N, = IV, = 128, To isolate
the error from the lumping of the depth dimension, the vertical structure of the solid Earth is kept as simple as possible, with a

We distinguish four cases (a-d), which are all parametrised by a Gaussian-shaped anomaly that is almost zero on the bound-
ary and yields its largest value at the interior of the domain. For case A-{ease-B(a) (case b), this anomaly represents a decrease
(increase) from 7' = 150km down to 7" = 50km (up to 7" = 250km) of the lithspherie-lithospheric thickness towards the in-
terior of the domain. For case €ease-B(c) (case d), this anomaly represents atogarithmie-an exponential decrease (increase)
from 77 = 10%! Pas down to 7 = 102° Pas (up to » = 1022 Pas) of the mantle viscosity towards the interior of the domain. The
heterogeneities (a-d) are fepfesen{eéﬁﬁg—D%shown in Appendix D and are used to generate results that will-bereferred-te
are refered to by "LV-ELVA". To quantify the
improvement resulting from the use of LV-ELVA instead of ELVA @iﬁw we also generate results with the nominal, ho-
mogeneous parameters 7'(z,y) = 150km and n(z,y) = 10?! Pas andreferto-this run-asFastisestasy HD(FHD)-Furthermeore;

we-introduece-the-index-SK—torefer-to-the-eutput-of-Seaken—(or 7 = 3,000 yr) and index them with "ELVA" (or "ELRA").
As can be seen in the top and middle row of Fig. 8, FI3D-LV-ELVA closely follows Seakon on cases (a-da-b) by showing

similar time scales, amplitudes and shapes of the bedrock displacement. In the bottom row of Fig. 8, it-appears—that-the
maximal and mean relative differences respectlvely remain at mﬁé@—é@%—aﬂ&meaﬁée}—é%éever—&me—fhus—&&ﬂsfymg

€(t) < 0.07 and e(¢) < 0.03 over time. In comparison, the-differences-of FHD-to-Seaken-are-similar-to-these-of FI3D-ELVA
yields similar errors for case (a) and enly-slightly higher in case (b), with values of meax{e)<042-and-mean{e) <005
Thisis-dueto-thefaet-¢(t) < 0.12 and e(¢) < 0.05. For ELRA, the maximal error over time is slightly higher, although not

significantly. We recall that the lithospheric thickness is an important control ef-on the shape of the bedrock displacement but

noet-direetly-ofits-magnitadenor-only an indirect one on its magnitude and time scale. This can be seen in Eq. 9, where the
lithospheric rigidity D is only multiplied with spatial derivatives of the displacement. fts-Misrepresenting the LV of lithospheric

thickness therefore only has a marginal effect for cases (a-b), but we emphasise that its impact on the displacement magnitude

can however become important when the 4
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~load presents localised
features, as later shown in Test 4. Furthermore, accounting for a heterogeneous lithospheric thickness can impact the bedrock

slopes significantly, which are an important control ef-on ice-sheet grounding-line stability and therefore ef-on the evolution of

ice sheets. Finally, as shown in an additional experiment presented in Appendix D, (LV-)ELVA yields equally low error values
in the absence of a lithosphere. This is the extreme case of a thin lithosphere, where the absence of flexural moments effectivel

710 decouples the displacement of neighbouring cells - a behaviour that is present in both Seakon and (LV-)ELVA.

ice (height scaled 1:25) forebulge == Seakon — LV-ELVA
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Figure 8. Comparison of Fastlsostasy and Seakon for (a-b) heterogeneous lithospheric thickness and (c-d) upper-mantle viscosity.

row) cross section of the domain along the = dimension, displaying the displacement of both models and (middle row) the correspondin

difference. (Bottom row) Transient evolution of eandé, the mean and maximal relative errors of ELRA, ELVA and LV-ELVA compared to

Seakon.

The advantage of using LV-ELVA over ELVA beecomes-merepreminentand ELRA becomes significant when studying (c-d).
For these cases, FHD-ELVA yields large transient differences compared to Seakon, reaching-mase{e}<-0-37andmean{e) <01
with é(¢) < 0.37 and é(¢) < 0.11. Here again, ELRA shows marginally higher error values. This clearly shows that EEVA-and

thus-BERA—-are-netneither ELRA nor ELVA are suited to represent the typical variations of viscosity over Antarctica, In

715 comparison, LV-ELVA vyields errors of only é < 0.11 and € < 0.04, similar to those obtained on tests (a-b). Since these values
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are systematically lower than what was obtained in Test 2, it appears that the error of LV-ELVA mainly stems from the layered
Earth structure that can only be partially accounted for on a 2D grid, and not from the LV generalisation presented in Equa-
tion 9. This is further supported by an additional test, presented in Appendix D, where Seakon and LV-ELVA adopt a 1D Earth

structure following PREM. This leads to errors of ¢ < 0.16 and that-¢ < 0.06, which is very close to what was observed on Test
2,

=~

For cases (a:b), it should be noted that ELRA, ELVA and LV-ELVA sheuld-be systematically preferred—particularly beeause
it-onty requires-a-negligible inerease-of the-computational-eostpresent the same equilibrium state because of the constant
lithospheric thickness, as can be formally deduced by setting the time derivative to 0 in the equations presented in Appendix A.
We stress that the higher transient error of FHHD-ean-ELVA and ELRA can therefore be easily missed when considering equilib-
rium states, This is the case in Le Meur and Huybrechts (1996), where the only spatial comparison across models is made for
a quasi-equilibrium state. We further draw attention to the fact that the transient error metrics used in the present study are are
stricter than plotting the mean spatial displacement of each model over time, which is done in Le Meur and Huybrechts (1996)
and which potentially hides large localised differences between ELRA and the 1D GIA model used for comparison.

MWWWWWM%&%MMW
forebulge by about [10,15|m, which is a systematic error, When considering a layered Earth, as shown in Appendix D, this
similar behaviour when comparing ELRA to a 1D GIA. This comparatively large transient is the source of the aforementioned
error of e(t) < 0.16. This most likely arises because the mantle flow contributing to the amplitude of the forebulge is not
resolved in LV-ELVA. Since the forebulge forms in the vicinity of the ice margin, this might be an important error source
to keep in mind when comparing FastIsostasy to a 3D GIA model in a coupled ice-sheet evotutioncontext, especially when
We-also-note-here-that-our-experience-has-shown-that When performing Test 3, we noticed that a large lithospheric thickness,
a large gradient of the lithospheric thickness, or a low viscosity leads-to-therequirement-of-astrictererror-toleranceforthe
adaptive-time-steppingall lead to a higher computational cost. This is consistent with theoretical insights, predicting thatsystems
thatare stiffer-or that display-alower Maxwell-time require-since all of these cases lead to a larger value of the right-hand side
&Emmm&smaﬂer time steps Me%ﬂmpeftaﬁ&y—lﬁppeaf%%hmﬁgh%e*ample
¥sto resolve this with sufficient accuracy.
mmmwmmmm D.

4.4 Test 4 — 3D GIA solution of the last glacial cycle on a realistic Earth

So far, the-medel-Fastlsostasy has been tested with idealised loads and parameter fields. We now consider the more realistic

case of simulating the GIA response of two different Earth structures to the last glacial cycle, as reconstructed in ICE6G_D
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(Peltier et al., 2018), an updated version of ICE6G_C (Peltier et al., 2015; Argus et al., 2014) after a mismatch with the
present-day uplift was pointed out in Purcell et al. (2016). The first structure is a 1D Earth that does not present any LV.
The second structure is a 3D Earth with the lithospheric thickness depieted-in—Fig-—2-and the mantle viscosity fields from

{Pa&e&al—%(—)%%)li@vevtvavuggga which are similar to those ef-(vins-et-al;2022)—Combiningthese-two-structures—with-the
s+depicted in Figure 2. We now compare the results of 5 different models:
WSeakon 1D (SK1D) s-and Seakon 3D (SK3D);FastisesasyHD-(EHD)-and Fastlsostasy 3D(FI3D).
For FI3D;-we-define-the-depth-of the- model’s mantle-to-be-. It should be noted that the present comparison omits LV-ELRA,
since its implementation goes beyond the scope of the present work..
For the regional models to be comparable with each other, ELRA, ELVA and LV-ELVA are coupled to ReSel.eM, which
uses a BSL forcing derived from SK3D instead of Equation 28, in accordance with the comment made in Section 2.5, To
WMMMMMW km;-sinee-it-was

e;-~. We observed this to yield lower error metrics
than {400,500} km, which appears coherent since, according to Eq. 4, deeper models might overestimate the inflaence—of
W deeper layers of the mantle to the effective viscosity. Mg—B%—we«pfmﬁde—&em%paﬁseﬂ%e—SKlﬁ

results-to-SK3DWe recall that the effective viscosity should primarily capture the response to loads with characteristic lengths
of continental ice sheets and that deeper layers are mostly excited by loads with larger wavelengths.
PanelThe error plot shown in panel (a) of Fig. 9 depicts, for all time steps, the displacement of SK3D, considered to be closest
to reality, against the-otherresults-indexed-with{FHD-SKIDFI3D}ELRA, ELVA, SK1D and LV-ELVA. We hereby only
represent the points within amaskthe activation mask .4, represented by the black contours of panels (c-h) and corresponding to
the EGM-extent-of-the-AlS;sinee-this-is-the-typical region of interest in-for ice-sheet modelingmodellers. The position around
the identity shows that FH-D-ELVA leads to displacements that are biased towards lower values, especially for ugsksp < —300m
where the error comes close to P ~ 130m. Although this bias is somewhat smaller for SK1D, it still reaches similar maximal
values. In comparison, FI3D-LV-ELVA is centred around the identity and presents no such bias. This can be explained by the
fact that a thinner lithosphere and a less viscous mantle in West-Antarctica allows for larger transient displacements around
LGM. Furthermore, the spread around identity-the identity, especially around the lower, unbiased displacement values, is an
additional metric to take into account. For usksp > —300m, SK1D, F3b-and-FHD-LV-ELVA and ELVA respectively present
the smallest, the intermediate and the largest spread. As expected, ELRA shows a larger bias than LV-ELVA but, surprisingly,

a smaller one than SK1D and ELVA. However, the spread of ELRA is larger than for any other model.
Panel (b) depicts the evolution-of-the-mean and maximal relative difference eforFHDF3D-for ELRA, ELVA, LV-ELVA

AAARSAR AR AAAANAR AN AAA

and SK1D with respect to SK3D. The mean and maximal value respectively relate to the spread around the identity and the bias

observed in panel (2). In panel (b), the error metrics are computed for the full domain and therefore include the far field, where
the rotational feedback dominates the displacement. Since none of the regional models is capable of capturing this, SKID
shows the smallest mean error over time, with esxp (4) < 0.0L. In comparison, ELRA, ELVA and LV-ELVA show larger mean
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Figure 9. Comparison of Seakon and FastIsostasy, fellewing—glacial-eyeleforced by the ice loading from ICE6G_D (Peltier et al., 2018
. (a) Displacements at all time steps of #sxsp—versus—trrELRA, #sxrp-ELVA, SK1D and #wr3p-LV-ELVA against SK3D for cells
that-are-tce-covered-at-EGM;—visualised-by-within the black-contourin-panels—{e-hjactive mask. (b) Mean-Transient mean and maximal

displacement errors, respectively denoted by e(t) and é(t), of #rrryELRA, #sxrp—ELVA, SK1D and #rrsp-LV-ELVA with respect to

wsrap-over-timeSK3D, for all domain cells. (c-e) Displacement of FHPELVA, SK3D and their differences for the time step of maximal

error. (f-h) Disptacement-fields-of FI3D-SK3D-and-their difference-Same as (c-e) for the-timestep-of maximat-errorLV-ELVA.
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latter definition of the mean error is closer than what is relevant to most ice-sheet modellers but highlighting the larger error of
regional models in the far field ensures that the users of Fastlsostasy are aware of this limitation. The low values of the mean
error that are observed regardless of the model can be explained by the fact that most of the regions, especially the bulk of East
Antarctica, can be well represented by an intermediate mantle viscosity and lithospheric thickness.

790 Interestingly, the peak values of mesc{esgrr-and-max{ermmr-Eskin and égpya are very close to each other and yield about
0.22, corresponding to max(e2ls)=~130meé*>s ~ 130m. In both cases, these values are observed over ¢ € [—22, —12] kyr,
which correspond to the 10kyr of rapid deglaciation following LGM. In comparison, ELRA presents a peak maximal error

with a similar timing and a marginally smaller amplitude é < 0.19. However, it presents large errors over the last 6 kyr
of simulation, This points out that high errors of FHHD-ELRA, ELVA and SKI1D are to be expected when rapid changes of

795 ice thickness occur - a situation that could be triggered by sustained anthropogenic climate warming. For FHBELVA, the
peak difference to SK3D is observed at £ = —18kyr. The corresponding displacement fields and their difference are plotted
in (e-dc-¢), corroborating that a Hb-Earth-structure-used-inFHastlsostasy-ELVA does not allow enough displacement in West-

Antarctica after LGM. In—contrast-to-the-maximal-values—the-mean-differences—of FHlD-and-SK1D-with-respeetto-SK3D

800

The location of the peak error points out that the use of ELVA, coupled to an ice sheet model, may lead to significant errors

since the WAIS is strengly-dependent-on-small-changes-of thegrounding-line-position;typically-oceurring-inregions-of- lowe

based on a retrograde bedrock below
805 sea level and is therefore particularly sensitive to the GIA response, as pointed out in the introduction.

Compared to FHB-ELRA, ELVA and SK1D, FI3B-LV-ELVA reduces the maximal error down to about mex(ermp)-<0+4éy _grya < |
which corresponds to masx(eils )< 80m-and-satisfies-ourbound-on-the relative-differeneeé®™ < 80m. The displacement fields
for the time step-of peak-maximalerror{ = —14kyr are plotted in panels (f-h) and show that the everall-near-field displacement
is reasonably well matched, even in-the-worst case -In-the near-field- FI3D-slightly-underestimates-the-displacement compare

810 to-SK3DPfor the time step showing the largest error metrics. In particular, the displacement is slightly underestimated in most

of the active mask. Since this appears to be a systematic offset, it could easily be corrected by tuning the density and/or the vis-

cosity chosen for FI3BLV-ELVA®. We however decide not to do so and-give-the-user-an-idea-of the-to highlight the differences
to SK3D without additional tuning.

In(e-h)it-appears-that-Throughout Test 4, SK3

815

8

This could simply be done by hand or, for instance, with an unscented Kalman inversion, as shown in the code documentation.
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Das baseline. There it

820 appears (1) that ELVA presents smaller errors than ELRA and (2) that LV-ELVA presents smaller errors compared to SK3D
than ELVA compared to SK1D.
Despite-these-differences-
Run-time analysis. Despite the errors compared to Seakon, and potentially to any 3D GIA model, we believe that Fastl-
sostasy can be a particularly appealing tool, since the 420-kyr—+un-of-FI3D-122kyr run takes only about +4-9 minutes to
825 compute for a horizontal resolution of & = 20km, resulting in 350 x 350 grid points. For FHDELVA, the absence of LV leads
to a reduced computation time of only about 4 minutes aglgv(wﬁmns]ﬂmlgévvv@ygmvlmmszﬁ)tm&nmms These compu-
tations were performed on an NVIDIA GeForce RTX 2070, an+
GPU with moderate performance by the standards of 26232024, Although the time stepping is adaptive, no values beyond

A#—lr@ly’%@vtvvay/r\ are used. This

alow-cost

830

the-potentially provides the ice-sheet and-GIA-medel-historiesmodel with an input that is very dense in time, for instance as
opposed to Gomez et al, (2018).

In comparison, the Seakon simulation takes about 4.5 days on 150 CPUs with a time step of A+<H25:40800}y=dt € [125,1000] yr.
Assuming an ideal paralelization-parallelisation scaling of 100%, this corresponds to about a million minutes of CPU-runtime,

835 or~76;000-times-which roughly corresponds to five orders of magnitude more than what FastIsostasy requires. The models
used in Zhong et al. (2022); Albrecht et al. (i
04,

Furthermore, the power consumption of the GPU used in the present study is of 185 W, compared to a typical value of

more than 100 W for a single, modern CPU. As the energy consumption is expressed as the product of power and computation

840 time, Fastlsostasy appears to be less energy-consuming than Seakon by several orders of magnitude. Finally, we draw attention
to the fact that the acquisition price of the GPU used here is a few hundred euros, which is far less than that of a large CPU

cluster.

resent smaller computation times, reducing this order of magnitude down

Of course, the twe-run-time of Seakon and Fastlsostasy are not dlrectly comparable: Seakon solves the global GIA problem,

-a grid with many more
845 degrees of freedom that reaches down to the core-mantle boundary. The output of Seakon is much richer, since it includes,

for-instanee;the-position-of-the-among others, the rotational feedback, the position of migrating shorelines, the horizontal dis-
placement of the bedrock and the relative sea level at any point on Earth. Nonetheless, these quantities tend to be irrelevantless

which requires many-m

relevant for ice-sheet modellingptirpeses-, and Fastlsostasy therefore offers an opportunity to regionally mimic the behaviour

of a 3D GIA model at very low computational, energy and financial cost.

850 5 Conclusions

9Tabulated value found at https://www.nvidia.com/es-es/geforce/graphics-cards/compare/?section=compare-20
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Throughout all the tests, FastIsostasy displays a maximal and mean error over space of é(¢) < 0.2 and e(¢) < 0.05, both bein
typically much smaller for most time steps. In particular, Test 1 has shown that the discretisation error of Fastlsostasy is ver
small and that, with increasing problem size, its computational expense scales better than what is typically obtained with FDM

FVM and FEM solvers. Test 2 has shown that Fastlsostasy represents the deformational response and the SSH perturbation

with a relatively low error compared to 1D GIA models, despite solving the problem on a 2D regional grid. Test 3 and Test
4 have shown that LV-ELVA Intitations. sinee itk i ibi : :

these-problemsproduces greatly reduced errors with respect to SK3D, compared to ELRA and ELVA, and even to SK1D for
the near-field GIA response. This means that the model uncertainty between FastIsostasy and Seakon is smaller than the upper
bound on parametric uncertainty, given by the difference between a 1D and a 3D Earth structure (Albrecht et al., in rev.).
Despite-the-aforementioned-timitationsIn_conclusion, Fastlsostasy can greatly reduce the transient error of bedrock dis-
placement compared to ELRA, ELVA and ;-in-seme-cases;-eveneven to 1D GIA models --by-dealing-with-laterally-variable
Bueler et al. (2007) and Coulon et al. (2021) and was coupled to ReSeL.eM, which regionally approximates the transient changes

in ocean load. Whereas the differences between Fastlsostasy and global GIA models are within the range of parametric un-
certainties, the computation time is typically reduced by 3 to 5 orders of magnitude. For most ice-sheet models, FastlIsostasy

thusrepresents-can thus represent a leap in GIA comprehensiveness at very low computational cost, even for high-resolution

runs on the time scale of glacial cycles. This has straight-forward applications, since the GIA response is particularly relevant
for the many marine-based regions of the AIS, where significant LVs of the solid Earth can be present. This is the case for
the Amundsen sector, which could become the largest source of sea-level rise in the coming century and therefore requires

rojections that account, as accurately as possible, for the stabilising effect of GIA.

Since fields of the lithospheric thickness and the upper-mantle viscosity can be easily found in literature, FastIsostasy reduces
the difficulty of creating meaningful ensembles isreduced,forinstance-compared-with-models-thatare not-directly-parametrised
by-the-viseestty-compared to relaxed rheologies (Coulon et al., 2021). The very short runtime of Fastlsostasy offers an efficient
method of propagating the uncertainties of the solid-Earth parameters to fature—sea-level-prejections—thus—allowing—mere
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885 s—past and future climatic

scenarios.

We-betieve-that-even-We believe that GIA modellers, as well as the few ice-sheet models that are coupled to a 3D GIA

modelean-stitl, can benefit from FastIsostasy, since it can be used as a fast-prototyping tool. In particular, a scheme to tune

the parameters of Fastlsostasy can turn it into an emulator of a 3D GIA model —hewever-with-a-with better interpretability

890 than, for instance, machine learning techniques. Nonetheless, it should be emphasised that some scientific questions can onl

be answered with a global 3D GIA model and that FastIsostasy is a complementary tool that does not aim to replace it. Finally,
we believe that its-the relatively abbreviated code and-of FastIsostasy and its few equations compared to 1D or 3D GIA models

ean-be-are particularly well suited for educational purposes.

Code and data availability. Fastlsostasy is available under GNU General Public License v3.0 at https://github.com/JanJereczek/FastIsostasy.
895 jl (Julia version) and https://github.com/palma-ice/Fastlsostasy (Fortran version). The data used in the present work can be found at https:
/lgithub.com/JanJereczek/isostasy_data. The archived versions of the code and data used for this paper can be found at https://zenodo.org/

doi/10.5281/zenodo0.10419117 and https://zenodo.org/doi/10.5281/zenodo.10419334.

Video supplement. Animations of the results obtained by FastIsostasy on Test 4 can be found at https://github.com/JanJereczek/FastIsostasy.

il.
900 Appendix A: From ELRA to LV-ELVA

Following Le Meur and Huybrechts (1996), the governing equations of ELRA vyield:

Plgu F DVt =07, (Al
1

% = —(u—u) (A2)
T

with ©°9 the equilibrium displacement and all further quantities already introduced in this paper. Equation A1 can be solved
905 convolving the load with a Green’s function derived from a Kelvin function of order 0, as described in Le Meur and Huybrechts (1996)
. In FastlIsostasy, the convolution is performed via FFTs, which is much faster than a computation in time domain. Coulon et al. (2021)

eneralised the equations of ELRA to a laterally-variable lithospheric thickness and relaxation time (LV-ELRA):
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with M4, M<% and M4 the flexural moments at equilibrium, computed by introducing ©° into Equations 10-12. For ELRA
as well as LV-ELRA, a relaxed rheology is used, which presents the limitations explained in Section 1.3. ELVA, as proposed
by Cathles (1975); Lingle and Clark (1985); Bueler et al. (2007

directly parametrised by viscosity:

addresses this limitation because its governing equation is

0
2n|V| (,71; + p™gud + DV4Ay = 0%, (A5)

However, this assumes a constant lithos

throughout the domain, which therefore prevents the representation of LV. We tried to generalise the derivation presented
in Cathles (1975) to LV, however unsuccessfully. Instead, we combined Eq. A3 and Eq. A5, thus obtaining:

ou e PMy,  0*M,, 0°M, .
2n(x,y)|V\a+p gqu®d + 52 +28x8yy+ ay2yy:" ; (A6)

with the flexural moments accounting for the laterally-variable lithospheric thickness. By introducing a pressure term, as
done in Bq. 8, and accounting for the distortion /', we obtain the governing equation of LV-ELVA, as written in Equation 9. For
constant parameters, LV-ELVA simplifies to the equation of ELVA and can be therefore understood as an ad-hoc generalisation
that reduces the error made compared to a 3D GIA model. Using ELVA in Fastlsostasy is simply achieved by running LV-ELVA
with constant parameters. This seamless approach offers a code that is easier to maintain and an interface that is simpler to use,
at the expense of a minor increase in computational expense compared to the use of a specific solver that takes advantage of
the simplifications made in ELVA.

Appendix B: Ocean surface function

The function A(s) : R — R is here computed by summing the surfaces of cells situated below the BSL s, based on the 1
arc-minute global topography of ETOPO1 (Amante and Eakins, 2009). Note that this slightly overestimates the ocean surface
since all regions below sea-level are counted as part of the ocean, including, for instance, parts of the Netherlands. To tackle

this, we introduce a bias correction scaling v, which avoids any offset for the present-day value A,4 and depends on the
uncorrected value A(s):
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~ A
A(s) =~y A(s), with: ~= 121(37}:10)' (B1)

To reduce the runtime, we precompute A(s) as a piecewise-linear interpolator for s € [—150,70] yr with a discretization of

As = 0.1m. The resulting function is depicted in the bottom-left panel of Fig. 4 and shows that, for the range of realistic
sea-level contributions over glacial cycles, the trapezoidal approximation leads to variations of the ocean surface between -7%
and +4% around the present-day value.

Appendix C: Scaling the effective viscosity

Two important characteristics of the mantle have to be accounted for, such that the Maxwell time 7 = 1 E~! of FastIsostasy is
comparable to that of a 3D GIA model. This is done by introducing two correction factors. First, one of the underlying assump-
tions made by Cathles (1975) is that the mantle is incompressible, i.e. #-=05-is-assumed-v' = 0.5 is assumed as opposed
to vg = 0.28 for the elastic lithosphere. In reality, the mantle is however a compressible medium with #“=+6-28° ~ 0.28.
We now look for #%7)!, the viscosity that has to be used in the incompressible case in order to match the Maxwell time of the
compressible case. By introducing the shear modulus G = E (2(1+v))~!, we obtain:

i ¢

n n
I/ — Cl
3G+ 260+ €D
1+v o e
<:> 21 — (,C: cC LC. C2
n_ T/l = (€2)

In essence, this means that compressible mediums have a tengerrelaxation-larger Maxwell time and that we need to slightly
increase the viscosity values for-the-incompressible-ease-to render this—, since Eq. A5 used to postulate Eq. 9 assumes an

incompressible viscous flow. This is supported by Fig. C1, which shows that a 1D GIA model displays longer decay times for

a compressible mantle, compared to an incompressible one.
Second, both the shear modulus and the viscosity depend on the temperature of the medium. For instance, a positive tem-

perature anomaly in the mantle leads to a negative anomaly of both viscosity and shear modulus. This means that the decrease
of the Maxwell time due to the decrease of viscosity is somewhat compensated by the decrease in shear modulus. We have

chosen to compute this scaling by calibrating FastIsostasy to results of a 3D GIA model:

17 =exp (10g10 (?f)) n't=a%% (') n", (C3)

with 79 = 102! Pas the calibration constant used throughout this work. We thus obtain a relation between the viscosity #1)°,

inferred from seismic measurements, and the corrected effective viscosity 7, ultimately used in FastIsostasy:

n=a%%an‘=an. (C4)

—~

If the depth dimension is lumped according to Eq. B1, then the viscosity field ﬁ#ﬂfﬁ, representing the compound of layers

from ! =1to!l =L, is used for n°.
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Figure C1. Decay times of a 1D GIA model with v° = 0.28 (compressible) and ' = 0.5 (incompressible).

Appendix D: Additional-figuresComplementary information on Test 3 & 4

The anomalies of lithospheric thickness and upper-mantle viscosity used in Test 3 are represented in Figure D1 and result from
a scaled Gaussian distribution N (0,0) with o = (W/4)2 T, and I € R**? the identity matrix.

In addition to Test 3, we perform two simulations with laterally-constant Earth structures in Seakon. The first one corresponds
to PREM (Dziewonski and Anderson, 1981) and the second to a single-layer mantle without elastic lithosphere. The results are
respectively depicted in columns (a) and (b) of Fig. D2. Unsurprisingly, the first case shows a very similar error pattern to what
is obtained in Test 2 and highlights that the main error source of FastIsostasy comes from the lumped depth dimension rather
than from the generalisation of ELVA to LV-ELVA. The second case shows that, in the absence of a lithosphere, the match

between Seakon and Fastlsostasy yields () < 0.04 and é(¢) < 0.08. In particular, this example shows that, in both models

the absence of a lithosphere effectively decouples neighbouring cells due to the absence of flexural moments.

Decreasing T’ Decreasin
Case_ TS mnereasing 7| T | Increasing | PREM | T=0 | ELRA
Runtime (5) 35.6 407 338 250 41 | 249 | 142

Table D1. Runtime of Fastlsostasy in Test 3 for a resolution of N, = N,, = 128, on a single CPU (Intel 17-10750H 2.60GHz).

Whereas Fig. 9 uses SK3D as baseline for the error metrics, we propose to use SK1D as a baseline to compare ELRA and
ELVA in Figure D3. In Fig. D3, it appears that ELRA is more biased towards large displacements than ELVA. Furthermore, the
mean error is similar for both models but the maximal error is overall higher for ELRA, with é(¢) < 0.21. In comparison, the
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Figure D1. Gaussian-shaped LV used in Test 3 for (a) a lithospheric thinning, (b) a lithospheric thickening, (c) a viscosity decrease and (d)

a viscosity deerease-increase towards the centre of the domain.
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Figure D2. Comparison of FastIsostasy and Seakon for (a) a layered mantle with-hemegeneeus-following PREM and (b) the-absenee-of-any
a mantle with a single layer and no lithosphere.
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maximum error of ELVA yields é(t) < 0.16. The middle row of Fig. D3 highlights that the higher error of ELRA stems from
an overestimated displacement in the Mary Byrd Land. In comparison, the bottom row shows that ELVA displays a much more
975 homogeneously distributed error.
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Figure D3. Comparison of SKitb—and—FHDELRA, foHewing—glacial—eyeletoading—+rom—ELVA and SKID forced by ICE6G_D
Peltier et al., 2018). (a) Displacements at all time steps of wrro-versus-#skoELRA and ELVA against SK1D, for cells that-are-iee-covered

atEGM;-visualised-by-within the black-contourin-panelste-hjactive mask. (b) Mean-Transient mean and maximal errors of ++r-ELRA and
ELVA with respect to #sxrp-overtimeSK1D. (c-e) Displacement of FHPELRA, SKI1D and their differences for the time step of maximal

error. (f-h) Same as (c-e) for ELVA.
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