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Abstract. In this study we explore aerostbud interactions in liquigphase clouds over eastern China (EC) and its adjacent

ocean (ECO) using the WREhemSBM model with fourdimensional assimilation. The results show that our simulations

and analyses based on each vertical layer provide a more detailed representation of thel@etagstdtionsthp compared to

the columnbasedanalyses which have been widely conducted previously. For aerosol activation, cloud droplet number

concentration (W generally increases with aerosol number concentratigi)(Bit low Niereand decreases with.M,at high

Naero The main difference beten EC and ECO is that Mcreases faster in ECO than EC at low.Mue to abundant water

vapor, whereas at high.M, when aerosol activation in ECO is suppressednNEC shows significant fluctuation due to

strong surface effects (longwave radiation cooling and terrain uplift) and intense updrafts. Cloud liquid water contet (CLWC

increases with Nbut the increase rate gradually slows down for precipitating cloudde CLWC increases and then

decreases in neprecipitating clouds. Higherdnd CLWC in EC can be found than in ECO, and the transition pgirdlie

at which CLWC in nofprecipitating clouds changes from increasing to decreasing is also higherA®&ol activation is

strongest at moderatedy, but CLWC increases relatively fast at lowe ECO cloud processes are more limited by cooling

and humidification, whereas strong and diverse surface and atmospheric processes in EC allow intepseetsed to

occur under significant warming or drying conditidAs
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1 I ntroducti on

Atmospheric aerosols have significant effects on the Earth's radiation balance, water cygimaaadystem through direct
absorption and scattering of solar radiation as well as indirect effects on cloud formation and devélp@Tiamy as cloud
condensation nuclei (CCNnd icenuclei(IN) (Carslaw et al., 2010; Wilcox et a2013; Tian et al., 2021The latter, known
as the aerosol indirect effect, or more recently by the Intergovernmental Panel on Climate Change (2013) defined as effectiv
radiative forcing due to aerosdloud interactions, Rk, remairs a challenging scientific topiaiclimate assessment and
prediction because of its complex mechanisms and high uncerté@iiesch et al., 2013; Jia et al., 2019a; Arias et al., 2021)
Liquid-phase clouds offer great opportunities to untaagl®sol indirect effeaue to their sheer abundance and impact on
cloud radiative forcingChristensen et al., 2016)

Twomey (1977)ointed out that under a constant cloud water content, the activation of atmospheric aerosol particles
entering into clouds leads to emtrease in cloud droplet number concentratiog),(Bldecrease in droplet sized an increase
in cloud albedo. This mechanisteymed the aerosol first indirect effeidt revealed to be the key driver of aerosol indirect

effect, besides, the rapidjagtments also contribute significan{i@uaas et al., 2020Two key competing mechanisms exist

2



65

70

75

80

85

90

95

in the latter, one of which is that an increase irc&dlses a decrease in precipitation efficiency and with thisjrecoease in

cloud liquid water path (CLWP) andoeld fraction (CF), this mechanism dominates in precipitation clfAidsecht, 1989)

The other mechanism dominates in fpyacipitating clouds, i.e., with limited water content, the decrease in droplet size
reduces sedimentation velocity and increases dopdiquid water contentresulting in additional cloud top cooling and
pushing further entrainment and evaporaf@retherton et al., 2007Moreover, as cloud droplets decrease in size, their ratio

of surface area to volume is higher and evaporation is faster, resulting in further enhancement of the negative buoyancy &
cloud top(Small et al., 2009)Numerousstudieshave been conducted to assess the contribution of these three mechanisms.
Statistical analysis based on sateltittrieved data indicates that the CL\WPmarine low clouds exhibits a wedkcreasing
trendwith rising Ny caused by aerosol incregsdichibata et al., 2016; Rosenfeld et al., 20I™)yspeerdt et al. (201#und

that CLWP is positively correlated withqgMt low Ny and droplet size greater than the precipitation tioleks i.e., delayed
precipitation leads to increased CLWP. In contrasttterclouds with high Ny andlow possibility ofprecipitation, CLWP

shows a negative correlation withy.Nin this case, the increase of aerosol leads to the decrease oflicplet size and the
increase of Iy which in turn accelerates the mixing and evaporation process and makes CLWP decrease. The CLWP respons
to aerosols differs clearly between precipitation amhprecipitating clouds because of the significant influenck
precipitation process on CLWEhristensen and Stephens, 20I2)WP has a significaipositive correlation with thessiosol

index (Al) in precipitation clouds, and the oppositedm-precipitatingclouds(Chen et al., 2014)urthermore, the response

of CLWP to aerosohighly dependon meteorological conditionsChen et al. (2014indicated that CLWP and aerosol
concentration show aegative correlation when entrainment mixing exerts a marked impact on thesaleuelvaporation
process (which usually occurs under free troposphere with dry and unstable atmosphere), and this relationship shiés to posit
as the atmosphere becomes maixd stable. Such statistical analysis, however, suffers severely from retrieval uncertainties
(Arola et al., 2022) In turn, alsosPoppeht asi $ tind polutca pagks lintee axdecresse i p
in CLWP but an increase in cloud horizontal extent in response to aerosol in¢fedisetsal., 2019; Christensen et al., 2022)

In spite of considerable efforts in recent researches to unravel aelmsbinteractions, it remains challenging to distinguish

and quantify underlying mechanisms of aeragold interactions under diverse air pollution and meteorological conditions.

In order to further resolve the mechanisms of aerolsnid interactionsthe proper use of numerical simulations is
necessaryCurrent global climate models (GCMs) have difficulties in accurately representing the response of cloud to aerosol,
which is mainly due to (lthe limitation of coarse model resolutjd2) the absencef sufficient consideration of cloud droplet
spectral characteristicand (3) the fact that most current GCMs parameterize the precipitation mechanism through the
autoconversion process as an inverse functioryolvithoutaccurate representationarftrainmentmixing processs(Quaas
et al., 2009; Bangert et al., 2011; Michibata et al., 2016; Zhou and Penner,R&didhal climate wdels (RCMs) with higher
resolution and finer physical parameterization can effectively compensate for at least some of these shortcomings and bett
reproduce the physical processes, which help to further distinguish and quantify the deuasiviteration mechanismgLi
et al., 2008; Bao et al., 2019)he Weather Research and Forecasting model (WRF) has been widely used in regional numerical

simulationstudieshecause of its advanced technology in numedakiulation, model framework, and program optimization,
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which has many advantages in portability, maintenance, expandability, and effiffiéenegsion et al., 2011; Islam et al.,
2015; Xu etal., 2021) The chemistrcoupled version of the WRF model (WRFhem) allows to simulate the spatial and

100 temporal distributions of reactive gases and aerosol, spatial transport and their interconversion while simulatoiggiveate
fields and atmospheric physical proceg3egcella et al., 2012; Sicard et al., 20Aylk and bin approaches are commonly
utilized to simulate regional cloud microphysical processes. Bulk schemes diagnose the size distribution of hytemadteor
on different predicted bulk mass (em®ment schemes) or number and mass mixing ratios (doutreent schemes) and
assumed size distribution, showing significant limitations in reproducing processes such as condensation, deposition an

105 evaporatior{Lebo et al., 2012; Wang et al., 2013; Fan et al., 2@if)schemes predict the size distributiornpfirometeors
based on a number of discrete bins, enabling brefeesentationf cloud microphysical processes. As statedKbgin et al.
(2015) previous studiebave demonstrated that bin schemes outperform bulk schemes in simuldt®agaluation of WRF
chem cloud microphysics Bhang et al. (2021k8lso showed that the bin scheme using the explicit approach reproduced the
aerosolinduced convection and precipitation enhancement that the bulk scheme using the saijtegied apach failed

110 to model.In this studythe WRFChemSBM model(Gao et al., 2016 used, in whichthe Model for Simulating Aerosol
Interactions and Chemistry (MOSAIC) WRFChem(Fast et al., 20065 coupled witha spectralbin microphysic§SBM)
schemgKhain et al, 2004) In WRFChemSBM, aerosol information is provided for cloud microphysical simulations, and
cloud microphysical parameters are offered to aerohemistry simulations, which are of great help to reproducerate
aerosol and cloudonditions a well as to distinguish and quantify aereslolud interaction mechanisms.

115 Eastern China (EC) is one of the most huraative regions worldwide, resulting in numerous anthropogenic aerosol
emissions. The contrast between the high aeimsaient air mags of EC and the relatively clean air masses of the Pacific
Ocean makes EC and its adjacent ocean (ECO) ideal regions for exploring-alenasahteractiongFan et al., 2012; Wang
et al., 2015; Zhang et al., 2021#)is shown that low clouds contribute the most to the Earth's energy balance due to their
broadcoverage and the albedo effect governing their impact on emitted thermal ragHationmann et al., 1992The statistics

120 of Niu et al (2022)usingthe satellite data from 202016 show that low clouds in EC and ECO occur most frequently in
winter, reaching more than 50%, with stratocumulus clouds, whigheasestent andensitive to aerosol variatiofda et al.,
2019b) constituting more than 70% of the low clouds. Therefore, tharllECO aerosadloud response in winter is an ideal
condition to investigateaerosoicloud interactions in liquigphase cloudsBased onthe WRFChemSBM mode] we
investigate the aerosoloud interaction mechanisms of EC and ECO in winter by obtaining detailed andebajhition

125 aerosol, cloud parameters as well as meteorological information through reproduction of real scenarios.

The paper is structured fdlows: Section 2 introduces timeodel configuration and observational dasadin the study,
Section 3 presents the evaluation of simulated results and the analysis ofadert@bodsponses presented in the simulations,

and the summary is given in Sien 4.
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2 Met hods and Dat a
2.1 Simulation Setup

We performedmodel simulatios using the WRIEhemSBM (Gao et al., 2016)n whichthe4-bin MOSAIC aerosol module
treats mass and number of nine major aerosol species, including sulfate, nitrate, sodium, chloride, ammonium, black carbor
primary organics, other inorganics, and liquid wéd#averi et al., 2008)The diameters of 4 bins rangiesm 0.0390.156,
0.1560.624,0.62425and 28 0. 0 & m, respectivel vy, and aerosol mpalet i cl
is capable of treating processes such as emissions, new particle formation, particle growth/shrinkage due to uptae®loss of t
gases, coagulation, dry and wet deposifi®ha et al., 2019)n addition,this model incgporates the fast version 8BM,
whichsolves a system of pgoostic equations fahreehydrometeor typediquid drops, ice/snovand graupel) and CCN size
distribution functiongKhain et al., 2010)Each size distribution is structured by 33 mass doubling bins (i.e., the mass of the
particlein the kth bin is twice that of the ith bin). The cloud microphysical processes described in the SBM contain aerosol
activation, freezing, melting, diffusion growth/evaporation of liquid drops, deposition/sublimation of ice particles,ddrop an
ice collisions.

The model domain is shown in Fig.dndtwo-layer nested grids are employed. Harent domair{12 km resolution
have centroids angrid pointsof (32N, 120E) and 151 x125, while thenested domain@ km resolution represent EC (160
x160 grid points) and ECO (121 x121 grid points), respectivélyere are 48 vertical layers up to 50 hPa, with layer spacing
extending from 40 m near the surface to 200 m at 3000 m altitude and over 1000 m above 10000 m altitude. The simulation
run from 00:0000 UTC onl Feb2019to 00:0000 UTC on 13 Fel2019, where the first 24 h are disregarded asgpiand
not involved in subsequent analys&éhe modé outputs once per houMeteorological initial and boundary conditions are
obtained from the National Centier Environmental Prediction (NCEP) FNL global reanalysis data@i&resolution and
available every 6 Hhttpsi/rda.ucar.edu/datasets/ds(B3ast accessll October2023, chemical initial and boundary
conditions from Community Atmosphere ModeatlwChemistry(Emmons et al., 2020and anthropogenic emission sources
come from tle Multi-resolution Emission Inventory for China (MEIC) 2016 version developed by Tsinghua University
(http://meicmodel.org.crast access: 19 March 2023s presented ifig.1, the anthropogenic aerosols of EC and ECO are
dominated by EC under wintetonsoon, although the model domain contains countries and regions other than China, MEIC
can satisfy the anthropogenic aerosol simulation of the region concerned in thisTeithodel parameterizatiosettings
are listed in Tablé. Using these configations,EC and ECO simulations reige around 15,000 and 10,00@Qcorehours,

respectively
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Figure 1. Topography (unit: m) of the model domain, MICAPS (a) and assimilated simulated (b) 850 hPa wind fields (unit:
ms 1) during the simulation periodndtheir correlation coefficients of u and v componentd ) given in the upper right

160 corner

Table 1. Model parameterizatiosettings

Process Number Name
4 RRTMG (Mlawer et al., 1997)
5 GoddardZhong et al., 2016)
Surface layer 1 MM5 Monin-Obukhov(Pahlow et al., 2001)
Land surface 2 Unified Noah(Chen et al., 2010)
1
9
2
2

Longwave radiation
Shortwave radiation

YSU (Shin et al., 2012)
CBMZ and 4bin MOSAIC (Sha et al., 2022)

Boundary layer

Chemistry and aerosols

Photolysis FastJ (Wild et al., 2000)

Sea salt emission MOSAIC/SORGAM(Fuentes et al., 2011)
Dust emission 13 GOCART(Zhao et al., 2010)

Biogenic emssion 3 MEGAN (Guenther et al., 2006)

2.2 Four-dimensional data assimilation

165 The accuracy of the meteorological field is crucial to reproduce realistic aetogdlinteraction, and thus a fedimensional
data assimilation approach is usedoth parendomain and nested domaittssimprovethe simulated meteorological field.
This approach utilizes relaxation terms based on the model error at observational stations to make the simulated raéteorologic

fields closer to realityLiu et al., 2005)thus exerting positive effects on the simulation of atmospheric physical and chemical

6



170

175

180

185

190

195

200

processegRogers et al., 2013; Li et al., 2016; Ngan and Stein, 2017; Zhao et al., 2020; Hu et al.TRé2aRta used for
assimilation are obtained frothe NCEP operational global surfadgtfs://rda.ucar.edu/datasets/ds€@6last access: 19
March 2023 and uppesir (httpsi/rda.ucar.edu/datasets/ds3Bllast access: 19 March 2028bservation subsets, which

contain meteorological elements such &suale, wind direction, wind speed, air pressure, temperanadew point.

2.3 Observational data

We use multiple observatiahdata to assess the ability of the model to reproduce meteorological fields, aerosol and cloud
parametersPrecipitation datés takenfrom thelntegrated MultisatellitE Retrievals for GPM (IMERG)atase{Huffman et
al., 2019) of which the daily accumulated high quality precipitation prod@ct resolution)is used in this study

(https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF _06/summary?keywords=Precjplttoaccess30 May 2023.

Other meteorologicalariablesare obtained from the Meteorological Informati@emprehensiveAnalysis and Process
System (MICAPS) developed by the National Meteorological Center (NMC) of hitpa//www.nmc.cnJast access: 19

March 2023, with 12 h terporal resolution and 11 vertical layers, containing meteorological elements such as wind field,
height, temperature and temperature dew point difference-Wef@ce PMs data are obtained from the National Urban Air
Qudity Realtime Release Platformf China National Environmental Monitoring Centre with 1 h temporal resolution
(https://air.cnemc.cn:1800I4st access: 19 March 2023 he cloud optical depth (AOD) data is obtained from the Moderate
Resolution Imaging Spectrometer (MODIS) MODO04_L2 datésety et al., 2015)of which the AOD product combining

the "Dark Target" and "Deep Blue" algorithmigh 10kmresolutionis used in this studfhttps://ladsweb.modaps.eosdis.nasa.
gov/search/order/1/MODO04_E:B1, last access: 19 March 2023 he cloud parameteiiscluding doud droplet effective

radius (CER), cloud optical thickness (COT), CLWP and cloud phase data at 1 km resolution, as well as cloud top temperatur
(CTT) at 5 km resolution https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MODG6L ast access: 1¥arch

2023, are obtained from the MODIS Lev2ICloud (MODO06_L2) produdPlatnick et al., 2015)The CER, COT and CLWP

are retrieved from 2.1 em wavelength, which is the defa
alsoavailable).

Spatial correlation analysi®earson produghoment coefficiedt Pearsorinear correlation analysis, and root mean
square error (RMSE) are used to assess the spatial and temporal correlations of the simulated and observed values as wel
the error of the simulated values relative to the observatiegpectively To calculate these parameters, it is necessary to
unify the spatietemporal coordinates of the simulated and observed 8atifically, MODIS (310 km resolution) and
IMERG (0.1°resolution) data are interpolated to the WRF grid (12 km resolution) when comparing the model to satellite data,
and WRFsimulationsare interpolated to the MICAPS grid (2.5°esolution) when comparing the model to MICAPS data.

Some screeningriteriaare applied to MODISetrieved cloud variables make sure liquid clouds are seledi®dponaro
et al., 2017)i.e, (1) selecting only liquiphase cloud parameters and (2) filtering out transpateatly pixels (COT < 5) to
limit uncertanties (Zhang et al., 2012)The same filtering also applied WRFChemmodé resultswhenwe evaluaé the
simulationsagainst MODIS dataCloud droplet number concentratibg is calculated according the approach oBrenguier

7
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where 2is an empirical constant with the valuelof 3 7°ni5 afd0COT and CER are obtainiedm MODIS. Moreover,
due to the discontinuity of MODIS data, we matched the simulated data with MODIS data irtespatioal coordinates for
evaluation (i.e., the simulated value is valid only when the MODIS data is valid in thattgpapioral coordin, otherwise
the simulated value is set as the missing and does not participate in the calcllaido)the differences satellite retrievals
and model parameterizatiahge simulated liquidphase clouslare ofterdefinedbased on certain threddswhen comparing
with satelliteretrieved datae.g.Roh et al. (2020¢lassifed the clouds with CLWC > 1 mg mand cloud ice waterontent
(CIWC) < 1 mg ? as liquidphase cloudsn this study, based on the selection of column @O% that matched with MODIS

filtering, the vertical layerg8 layers in total) with cloud optical thickness for water (COTW)I>and cloud opticahickness
for ice (COTI) <0.01 at each grid point améch time are selected as lippldase cloud layers, and the highest layer meeting
this condition isdefined aghe simulated cloud tofthis filtering is only used for comparison with MODtata, andhe

analysis of aerosadloud interactions in liquighhase clouds in this study is stly limited toCLWC > 0 and CIWC =)

3 Results and Discussion
3.1 Evaluation ofsimulation result

Due to limitations in the resolution of observational data (MYCAPS gridded uppegir meteorological field data with a
resolution of 2.5 and data availabilitye(g.,only terrestrial neasurface observations of RMare availablg we utilized
outer domain simulationg/hen evaluating the model results. For aerotmld analysis in Section 3.3 and beyond, we
employed finer inner domain simulations.

Fourdimensional data assimilation direcilypacts the simulatiors of meteorological field (temperaturepressure
humidity and wing, and thereby aerosol and cloddgure2 presents the vertical distribution miteorological variablesom
the simulations and observatioras well as the RMSENd spatial correlatiorcoefficientsof the simulationsrelative to
observations at each layéys the complexity of atmosplie physical and chemical processes and data errors resulted from
processes such as observation iatetpolation the assimilatiomxerts some positive effects on the simulated meteorological
field, but also increasdhle difference between some of Simulatedvariables and the observatioAssimilation effectively
improves the correlation between simulated and observed temperdawegoint depressigmiddle level zonal wind, and
meridional wind, while reducing the RMSE of simigld and observed temperaturegper leveldew point depressigrand
lower and upper level meridional winds the same time, however, it also weakens the correlation between the simulated and
observed lowevel zonal winds, and increases the RMSE ofdineulated and observed rviglvel dew point depression
upperlevel zonal winds, and milkvel meridional windsBut overall, the assimilation is positive and provides effective help

in exploring aerosetloud interactions
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Figure 2. MICAPS and simulatedveragetemperatured) anddew point depressioftn) as well as ud) and v ¢) components
of wind duringthe simulationperiod(black lines) as well as RMSHredlines) and spatial correlation coefficier{tsuelines)

between observations asithulationsbefore and after assimilation for each vertical Iggabscriptsi b f 0

simulationbefore and after assimilation)

_a fir@prefent

Assimilation exertsndirectinfluences on precipitatigraerosol emissiofmainly natural aerosols such as dust and sea
salt), transportand depositionThe RMSE of simulated ad observedprecipitation(Figs. 3a-C) is reduced by1.5% after
assimilation.In terms of aerosol spatial distributiqirigs. 3d-f), the model reasonably reproduces the MODIS AOD

distribution, andthere is no significant difference in the simulated average AOD before and after assimilatfarther

evaluate the effect of assimilation on the simulatibraerosol temporal variation46 stations with relatively continuous
observation (Fig3a are selected evenly from the model domain (M. In general, the simulations before and after
assimilation both reasonably reproduce the temporal variation osodace PMs, and thecorrelation between simulated
and observe®M; s at all stations pass the test at 99% significaBoéwith assimilation, the simulated BNIconcentrations

are generally closer to the observations, and the correlation coefficients between the simulated and the observedédve increa

in 13 of the 16 tations, while the average correlation coefficient of the 16 stations has increased8don0i®B9.
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Figure 5preserd the simulated cloud parameters before and after assimiatitnomparedvith MODIS. It is seen that

below.
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observation andimulation respectively, and subscrigisb f 0
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Figure 4. Temporal variations of neaurface PMs observedlflackline) and simulated beforél(e line) and after (red line)

assimilation of meteorologicdlelds, at each sitdthe r and p valuesepresent the correlation and significancethu#

ahave thé sarhedmeaning as in the previous fijgure

the modelwithout assimilationgenerally reproduces trepatial distribution of MODIS cloud parameters, but with some
overestimatiorior CERandCOT and some underestimatifam Ng. Compared with MODIS, the simulation wigtssimilation
produce overall higherNg and lowerCLWP over land but more reasonable CER and its distribufidre modelalso

reasonably reproduces thgatial distribution of MODISetrievedCOT andCTT, which is important to our analysis presented




Figure 5. Spatial distribution of averageER (ac , i ,lCOE(d¥,)dimensionlessNg (g-i, in cn®), CLWP (j-1, in gm 2)
andCTT (m-o, in €) from MODIS andWRF simulaton before and after assimilatis iThe r and RMSE in the upper right
corner and the subscripts "_bf" and "_af" in the subfigap@ions have the same meaning as in the previous)figure

270

Based on the model samples matched with the spatiporal coordinates of MODIS valid values further evaluate
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