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Abstract. On 20 April 2013, Lushan experienced a magnitude 7.0 earthquake. In seismic assessments, borehole strain

meters, recognized for their remarkable sensitivity and inherent reliability in tracking crustal deformation, are extensively

employed. However, traditional data processing methods encounter challenges when handling massive datasets. This study10
proposes using a graph wavenet graph neural network to analyze borehole strain data from multiple stations near the

earthquake epicenter and establishes a node graph structure using data from four stations near the Lushan epicenter, covering

years 2010–2013. After excluding the potential effects of pressure, temperature, and rainfall, we statistically analyzed the

pre-earthquake anomalies. Focusing on the Guza, Xiaomiao, and Luzhou stations, which are the closest to the epicenter, the

fitting results revealed two accelerations of anomalous accumulation before the earthquake. Approximately four months15
before the earthquake event, one acceleration suggests the pre-release of energy from a weak fault section. Conversely, the

acceleration a few days before the earthquake indicated a strong fault section reaching an unstable state with accumulating

strain. We tentatively infer that these two anomalous cumulative accelerations may be related to the preparation phase for a

large earthquake. This study highlights the considerable potential of graph neural networks in con-ducting multi-station

studies of pre-earthquake anomalies.20

1 Introduction

Earthquakes result from the accumulation of stress in the Earth’s crust during plate movement and collisions. Once the stress

surpasses a critical threshold, the crust ruptures, unleashing seismic waves that reverberate through the ground, causing

substantial dam-age (Campbell et al., 2020; Fan et al., 2021). Extensive research on earthquakes has generated a wealth of

information worldwide, establishing a robust database for studying pre-earthquake anomalies.25
On 20 April 2013, 08:02 UTC, a magnitude 7.0 earthquake struck Lushan County, Ya'an, Sichuan, China, within the

Longmenshan fault zone. Researchers around the world have examined various phenomena preceding and following

earthquakes, delving into subterranean, surface, and spatial changes. Chen et al., (2014) investigated the co-seismic

ionospheric anomalies of the Lushan earthquake by employing a double-difference method that highlighted seismic-wave-

induced acoustic wave propagation into the ionosphere. Guo and Zheng, (2022) proposed a big data-based method for30
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calculating and analyzing earthquake background noise and detecting anomalies within a 50-km radius of the epicenter 30-

150 seconds before the Lushan earthquake. Liu et al., (2014b), discounting meteorological factors, analyzed aerosol optical

depth (AOD) and observed elevated values four days prior, suggesting that AOD can be a potential earthquake precursor in

the Sichuan Basin. Ground-water anomalies were examined by Liu et al., (2014a), who revealed medium-term dynamics and

short-term or imminent anomalies in water-level solid tide aberrations, emphasizing the importance of combining these35
anomalies to determine earthquake timing. Ma et al., (2015) analyzed pre-earthquake tidal cycles and concluded that celestial

body tidal forces trigger earthquakes under critical rock fragmentation and sliding conditions. Zhang et al., (2016) explored

thermal anomalies as earthquake precursors by processing and analyzing the sur-face temperature time series before the

Lushan earthquake, and identified anomalies pre-dominantly near the Longmenshan fault zone. Zhu et al., (2013) analyzed

mobile gravity observations from 2010 to 2012, noting tectonic deformation and energy accumulation in the southern section40
of the Longmenshan fault zone, with implications for the relationship between the Wenchuan Ms8.0 and Lushan Ms7.0

earthquakes. Jiang et al., (2013) detected and analyzed vertical total electron content (VTEC) anomalies in the ionosphere,

noting severe negative anomalies before and on the day of the earthquake, which correlated with the station distance relative

to the epicenter.

Based on the findings from the United States Plate Boundary Observation (PBO) project proposal, borehole strain45
observations have emerged as superior to GPS and laser strain meters in capturing short- to medium-term, as well as pro-

earthquake, strain variations (Zhang, 2004; Zheng and Zhang, 2004). China has deployed multiple four-component borehole

strainmeters, offering not only four-component data but also auxiliary observations of air pressure, groundwater level, and

temperature (Chi et al., 2007; Qiu, 2014; Qiu et al., 2020). Numerous studies on the Lushan earthquake have employed

borehole strain data. Qiu et al., (2013) correlated borehole strain data from the Guza station before the Lushan Ms7.050
earthquake with other influencing factors, establishing a connection to the earthquake. Zhu et al., (2018) identified the

precursors of the Lushan earthquake by analyzing the eigenvalues and eigenvectors from borehole data. Yu et al., (2021)

employed a state-space model to decompose the strain into component responses and discovered the synchronous

acceleration of approximate negative entropy anomalies at multiple stations four to six months before an earthquake. Liu et

al., (2019) used the S-transform method to analyze the time-frequency characteristics of borehole strain data, revealing55
reliable anomalies that reflect the entire process of pre-earthquake, during, and post-earthquake strain changes. Chi, (2013)

uncovered a “tidal aberration” phenome-non, persisting over three months before the earthquake, with significant strain

changes occurring 15 to 19 days prior. Tang and Jing, (2013) conducted an analysis of surface strain co-seismic orders,

noting differences between the Wenchuan and Lushan earthquakes related to earthquake magnitude. Despite the valuable

insights gained from these studies, they mostly focused on single-station data, overlooking the potential correlations between60
multiple stations.

As earthquake monitoring data accumulates, traditional processing methods face challenges in managing vast quantities

of data. The emergence of deep learning, particularly graph neural networks (GNNs), has markedly enhanced prediction and

classification accuracy, particularly for non-Euclidean spatial data characterization (Kipf and Welling, 2016; Niepert et al.,
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2016; Scarselli et al., 2009; Wu et al., 2019; Zhou et al., 2020). Recent developments in spatiotemporal GNN frameworks65
integrate GNNs with various event-learning methods to extract complex dependencies (Oord et al., 2016; Rathore et al.,

2021; Yu et al., 2017). Kim et al., (2022) utilized raw waveform data from multiple stations to classify earthquake events,

demonstrating the effectiveness of GNNs in aggregating features from individual stations. Bilal et al., (2022) refined

earthquake magnitude, depth, and location predictions by extracting features from waveform data from multiple stations and

integrating earthquake catalog information in-to a GNN. Huang et al., (2023) applied a Graph Attention Isomorphic Network70
(GAIN) to analyze earthquake catalogs and geomagnetic signals, successfully detecting pre-earthquake anomalies. These

studies highlighted the significant potential of GNNs in earthquake research.

In this study, we proposed an innovative method for extracting pre-earthquake anomalies from borehole strain data using

Graph WaveNet. To analyze borehole strain data from multiple stations for the Lushan earthquake, our study employed the

flowchart shown in Fig. 1.75

Figure 1: The framework of borehole strain data processing and pre-earthquake anomaly detection.

As shown in Fig. 1, the process begins with the conversion of data from the four-component borehole into strain.

Subsequently, the borehole data are decomposed using the segmented variational modal method (SVMD), and the resulting

decomposed outcomes were fused. By calculating distances between stations using longitudinal and latitudinal coordinates, a80
distance matrix is constructed and then normalized to form an adjacency matrix. The fused data and adjacency matrix serve

as inputs for training, vali-dation, and prediction using the graph wavenet GNN. During the prediction phase, upper and

lower bound prediction intervals are established based on the model’s output. Anomalies were identified by comparing the

prediction intervals with the original data. The cumulative values of pre-earthquake anomalies in the borehole strain data

from various stations were subsequently subjected to statistical analyses.85
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The remained of this article is structured as follows: the two sections delve into the specifics of the Lushan earthquake,

providing an introductory exploration of the event and the borehole data pivotal to our analysis. In the third section, we

introduce the SVMD and delve into the theoretical underpinnings of the graph wavenet network, laying the groundwork for a

comprehensive understanding of our analytical approach. A detailed case study of the Lushan earthquake follows, providing

a tangible illustration that guides readers through the intricacies of our data-processing methodology. Section five unveils the90
anticipated results, predicted outcomes, and cumulative anomaly values. Furthermore, it outlines the application of statistical

methods for identifying pre-earthquake anomalies related to the Lushan earthquake. The final section presents the

conclusions of the study and summarizes the key insights drawn from our analysis.

2 Observation Data and Earthquakes

A formidable 7.0 magnitude earthquake struck Lushan County, Ya'an, Sichuan Province, at 8:02 am on 20 April 2013. The95
epicenter was located at approximately 103° E and 30.30° N within the Longmenshan Fault Zone at a depth of 13 km. The

earthquake mechanism solution revealed a retrograde rupture of the earthquake-induced rupture. By 24 April 2013, the

earthquake had triggered over 4,000 aftershocks, affecting more than 300,000 people across an expansive area exceeding

12,000 km2. The aftermath witnessed a significant loss of life and property. Additionally, the seismic event triggered various

geo-logical hazards, such as earth fissures, landslides, and surface deformation (Hong et al., 2013).100

Figure 2: Location of the four observation stations relative to the epicenter of the Lushan earthquake. The blue triangles represent
the locations of the borehole strain observation stations. The yellow star represents the epicenter of the Lushan earthquake, while
the white curve depicts the Longmenshan fault zone. This map was generated by GMT software, v. 6.0.0rc5 (https://gmt-
china.org/).105
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Dobrovolsky's estimate of the radius of influence of precursors for earthquakes of different magnitudes is shown in the

following Eq. (1) (Dobrovolsky et al., 1979):

� = 100.43� km , (1)

where � denotes the magnitude and � denotes the radius of influence of � magnitude. The Lushan 7.0 magnitude

earthquake's radius of influence extends approximately 1023 km. Among the selected monitoring stations, Guza is situated110
73 km from the epicenter, while Xiaomiao, Luzhou, and Zhaotong are positioned at distances of 268 km, 286 km, and 337

km from the epicenter, respectively. This positioning confirms that the chosen stations possess the capability to monitor

earthquake-related anomalies. Detailed information about Guza, Xiaomiao, Luzhou, and Zhaotong, including latitude and

longitude coordinates, distance from the Lushan earthquake's epicenter, rock type at the drill borehole locations, and

borehole depth, is provided in Table 1. Figure 2 visually depicts the geographical locations of the four observation stations115
relative to the epicenter of the Lushan earthquake.

Table 1. Information on borehole strain stations was used in this study.

Station
Name Locations Rock

Type
Borehole
Depth(m)

Epicentre
Distance(km)

GuZa 30.12° N,102.18° E Granite 40.69 73
XiaoMiao 28.00° N, 102.00° E Siltstone 41.78 268
LuZhou 28.87° N, 105.42° E Quartz Sandstone 40 286
ZhaoTong 27.32° N, 103.73° E Basalt 45 337

The four-component borehole strainmeter serves to observe the temporal inverse of displacement at a specific point,

offering insights not attainable through GPS and seismometers. Operating with a continuous recording frequency of one

sample per minute, it significantly enhances temporal resolution by at least one order of magnitude. Additionally, its120
observation bandwidth surpasses that of seismometers, particularly at the long-period end of the spectrum. This specialized

strainmeter comprises four horizontally positioned sensors designed to measure changes in borehole diameter. These sensors

are strategically spaced at a 45° angle, and the relationship between the four measurements from the strainmeter can be

expressed as follows (Qiu et al., 2009; Su, 2019):

�1 + �3 = �(�2 + �4) , (2)125
This Eq. (2) represents the self-consistent formulation for a four-component borehole strain strainmeter. The self-consistent

coefficient, denoted as � , ideally equals 1, and data is deemed reliable when � is greater than or equal to 0.95. Strain

conversion is achieved through the following Eq. (3) using the four measurements:
�13 = �1 − �3
�24 = �2 − �4

�� = (�1 + �2 + �3 + �4)/2
, (3)

In this Eq. (3), �13 and �24 represent two independent shear strains. Shear strain pertains to alterations in the total area or130

volume of an object while maintaining a deformed shape. Additionally, �� denotes surface strain, signifying changes in area

without a concurrent shift in the object's morphology. This characteristic is observed in the presence of hydrostatic enclosure
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pressure (Su, 2019). For the analysis in this paper, �� data from four stations—Guza, Xiaomiao, Luzhou, and Zhaotong—

were specifically selected for examination.

3 Methods135

3.1 Segmented Variational Modal Decomposition

A Borehole Strain Signal, characterized as a typical nonstationary signal, can be effectively analyzed by decomposing it into

a set of Intrinsic Mode Functions (IMFs) using the Empirical Mode Decomposition (EMD) method. However, EMD

encounters challenges such as mode aliasing. To address this issue, an adaptive time-frequency analysis algorithm, the

Variational Mode Decomposition (VMD), was introduced by Dragomiretskiy and Zosso, (2014). The VMD exhibits superior140
noise immunity in signal processing, providing an effective solution to these challenges. This approach has been successfully

applied by Huang et al., (2022) and Zhang and He, (2023) to process raw earthquake waveforms, yielding improved

decomposition results.

VMD stands as a non-recursive signal processing method designed to decompose a time series into a sequence of intrinsic

mode functions characterized by limited band-width. The decomposition process essentially involves solving variational145
problems, and the variational model can be expressed as follows:

���
�� , {��} �=1

� �� � � + �
��

∗ �� � �−���� 2
2�

�. �. �=1
� ��(�) = �(�)� , (4)

where �� = {�1, �2, …, ��}、 �� = {�1, �2, …, ��} are the � modal functions and the corresponding center frequencies of

the signal decomposition, respectively; �� is the bias computation for time � ; � � is the unit impulse function; � is the150

imaginary unit; ∗ is the convolution computation.

To solve the variational model, a quadratic penalty term � and the Lagrange multiplier operator � � are introduced to make

the variational model unconstrained. The constructed generalized Lagrangian function is:

� �� , �� , � = � �=1
� ��{[(�(�) + �

��
) ∗ ��(�)]�−����}�

2

2

+ � � − �=1
� �� ��

2

2
+ � � , � � − �=1

� �� �� , (5)155

where � denotes the Lagrangian generalization operator; � denotes the data fidelity constraint function; � denotes the

Lagrangian multiplier.

The alternating direction multiplier method (ADMM) is used to solve Eq. (5), and the iterative optimization of �� , �� , and

�. The iterative formulas for the mode �� , the corresponding center frequency �� , and the Lagrange multiplier � can be

updated as:160
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���
�+1 � =

�� � − �≠� ��� �� +�� �
2

1+2�(�−��)2

��
�+1 = 0

∞ �� ���(�) 2��

0
∞ ���(�) 2���

���+1(�) = ���(�) + �(��(�) − � ���
�+1� (�)) , (6)

where ���
�+1 is the �th IMF component in the n+1st iteration; ��

�+1 is the center frequency corresponding to ���
�+1; ���+1(�) is

the value of the Lagrangian operator in the n+1st iteration, and � is the noise tolerance of the signal. Set the termination165

condition of the algorithm as:

�=1
� ���

�+1−���
�

2

2

���
�

2
2� < � , (7)

where � denotes the discrimination accuracy.

In this study, we employ a method of applying Variational Mode Decomposition (VMD) to data segments through the

incorporation of sliding windows (SVMD). This approach effectively addresses the challenge of limited memory when170
conducting VMD on the entire dataset while retaining the correlation between the data points (Chi et al., 2023). The

fundamental principle of the SVMD method is illustrated in Fig. 3.

Figure 3: Schematic diagram of Segmented Variational Modal Method (SVMD) principle.

As depicted in Fig. 3, we opt for a consistent sliding window approach with a size of 7 days and a sliding step of 1. The175
initial sliding window encompasses all the data from the first 7 days. From the second sliding window onwards, only the data

from the last day of the current window is preserved and concatenated behind the results obtained from the previous window.
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3.2 Graph Wavenet Neural Network Architecture

3.2.1 Gated Temporal Convolutional Network for Extracting Temporal Features

During the processing of the time-series data, Causal Convolution maintains the causal relationships inherent within the data.180
This technique facilitates the extraction of time-series features through convolution. However, as the sequence length

increases, capturing temporal dependence requires more convolution layers, thereby substantially increasing computational

demands. To address this challenge, an expansion factor was introduced for Causal Convolution. The inclusion of this

expansion factor can enlarge the receptive field of the Causal Convolution, enabling the capture of longer time-series

features with a reduced number of convolutional layers. The relationship between the input sequence length ��� after causal185

dilation convolution and the output sequence length ���� can be expressed as:

���� = ��� + ������� − (� × � − 1 ) , (8)

where ���� is the length of the output sequence; ��� is the length of the input sequence; padding is the number of zero

paddings added to the ends of the input sequence, which are added at the beginning of the sequence to preserve causality; �

is the size of the convolution kernel, which is a small, learnable weight matrix; and � is the dilation factor, which indicates190
the span of the convolution kernel over the input sequence, with larger dilation factors being able to capture long-term time

dependencies. The dilation causal convolution with a convolution kernel size of 2 and a sliding step of 1 is shown in Fig. 4a.

Figure 4: (a) Schematic of Dilated Causal Convolutional Layers. (b) Temporal-Spatial Layers architecture.

Although Convolutional Neural Networks (CNNs) are commonly employed for image processing, 1D CNNs can also be195
effectively used for time-series analysis. Gated Temporal Convolutional Networks (TCN) leverage 1D CNNs to extract

features from time-series data. This architecture comprises two key modules: one for convolving the input to extract features

by employing tanh as the activation function, and the other for controlling the amount of information passed from the current

layer to the next layer by utilizing the sigmoid activation function. The Gated TCN module is defined as:

� = tanh(�1 ∗ � + �1)•sigmod �2 ∗ � + �2 , (9)200

where �1 and �2 represent the weight parameters, �1 and �2 represent the corresponding bias parameters, and • denotes

convolution.
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3.2.2 Graph Convolutional Networks for Extracting Spatial Features

The fundamental concept of a graph network is to represent interactions among real features based on spatial dependence

dictated by the graph structure. The distance adjacency matrix is symmetrically normalized to function as an adjacency205
matrix for graph convolution. This approach effectively captures the node information and preserves the graph structure. By

constructing an undirected complete graph for each station, where all nodes are directly connected, each node interacts solely

with its neighboring nodes for information exchange. To ensure that input features encompassed all information in the

current node and its first-order nearest neighbor nodes, a first-order symmetric normalized adjacency matrix was selected

during the graph convolution process. The convolution layer of the graph is defined as:210

�(�+1) = �(��−1
2 ⋅ �� ⋅ ��−1

2 ⋅ � � ⋅ � � ) , (10)

where � � denotes the embedding vector of layer l; �(�+1) denotes the embedding vector of layer (� + 1) ; ��−1
2 ⋅ �� ⋅ ��−1

2

denotes the symmetric normalized adjacency matrix of the current layer; where � denotes the degree matrix and �� denotes

the Distance Adjacency Matrix; � � denotes the weight of the neural network in the current convolutional layer; and �

denotes the nonlinear activation function of the neural network. Introducing a dropout rate to the output of each training215
batch in graph convolution involves randomly ignoring half of the hidden layer nodes.

This dropout strategy was applied across different neural networks, and “opposite” fits were averaged. This aids in

mitigating overfitting because conflicting tendencies can cancel each other out during the training process.

3.2.3 Temporal-Spatial Layers

Figure 4b illustrates the structure of the spatiotemporal layer. Each layer within the spatiotemporal layer captures temporal220
dependencies using Gated TCNs. This involved utilizing node features produced by the TCN module and the graph’s

adjacency matrix as inputs for the Graph Convolutional Network (GCN) module. The GCN layer is responsible for capturing

spatial-temporal features, and the spatial-temporal features of the current layer are residual and linked to the input, serving as

inputs to the subsequent spatial-temporal layer. The output of the Gated TCN module serves as the output of the current

spatial-temporal layer, and the outputs of all spatial-temporal layers are interconnected using skip connections. This design225
facilitated the capture of short-term and spatial dependencies.

3.2.4 Graph Wavenet Neural Network Framework

Figure 5 illustrates the framework of a graph wavenet. The initial step involved pre-processing the multistation borehole data

and converting the latitude and longitude of each station into an adjacency matrix. Subsequently, the data underwent a

dimensionality increase in the linear layer, followed by processing in the Gated TCN module to obtain the current230
information. The output of the Gated TCN module is then employed to extract spatial information through the GCN layer.

The extracted spatial and temporal information is connected to the input of the current layer, which serves as the input for the

subsequent spatial and temporal layers, which can capture both the current and historical information using different dilation
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factor sizes. Finally, the information extracted from each Gated TCN layer is aggregated into an output layer. The output

sequence was downscaled using the ReLU activation function and a linear layer. The upper and lower bounds of the output235
sequence were calculated using the normal distribution method. The prediction intervals of the network were constructed

from the upper and lower bounds. The upper and lower bounds of the prediction intervals are determined using the following

formulas:

����� = ���������� + � × std_error

����� = ���������� − � × std_error , (11)240

where ���������� is the predicted value; � is the Z-Score of the normal distribution, which is about 1.96 for a 95%

confidence level; and std_error is the root mean square error.

Figure 5: Framework of Graph Wavenet.

For the graph wavenet neural network model, Mean Absolute Error (MAE) was employed as the loss function for245
backpropagation during training. A dropout of 0.3 was ap-plied during graph convolution to enhance the model’s

generalization. The Adam optimizer was utilized to update the weights, with a learning rate of 0.001 and a weight decay rate

of 0.0001. This configuration allowed the model to decay, effectively preventing over-fitting by reducing parameter

magnitudes. The number of training rounds for the model was set to 100.

4 Data Processing250

We analyzed the four-component borehole strain data collected from Guza, Xiaomiao, Luzhou, and Zhaotong stations from

1 January 2010 to 31 December 2013. Initially, the data from each station were validated using self-consistent equations.

Subsequently, the four-component borehole strain data from each station were transformed into two shear strains, �13 and
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�24 , and one surface strain, �� , using a strain conversion equation. Figure 6a shows the data series of surface strain �� after

converting the borehole strain data from each of the four stations.255

Figure 6: (a) �� of the borehole strain data from 2010 to 2013 for the Guza, Xiaomiao, Luzhou, and Zhaotong stations. (b) SVMD
results of �� components for Guza, Xiaomiao, Luzhou and Zhaotong stations.

Subsequently, the �� data from each of the four stations were decomposed using the Segmented Variational Modal

Method (SVMD). The decomposition parameters were set to a bandwidth of 2,000, the number of modes decomposed to five,260
and the convergence accuracy to 10-7. The results of the SVMD decomposition were compared with data related to the

influencing factors, effectively eliminating the effects of seasonal trends and solid tides. The extracted modes are specifically

related to crustal activity, showcasing short-period, high-frequency oscillatory signals associated with earthquake variations

in earthquake strain within crustal motions (Chi et al., 2019). The time-series data after SVMD decomposition of �� data

from each station are illustrated in Fig. 6b.265

The next step involved data fusion, with SVMD applied to the �� component data from different stations to extract data

related to crustal activities. The construction of the GNN required information from each node; hence, the information from

multiple stations was fused as inputs to the GNN, and the data matrix �� of the constructed �� component is shown below:

�� =

GZ�(�1) GZ�(�2) … GZ�(�2103840)
LZ�(�1) LZ�(�2) … LZ�(�2103840)
XM�(�1) XM�(�2) … XM�(�2103840)
ZT�(�1) ZT�(�2) … ZT�(�2103840)

�

, (12)

Where GZ , LZ , XM , and ZT represent the Guza, Luzhou, Xiaomiao, and Zhaotong stations, respectively; � indicates the270

selection of the surface strain �� component data; � denotes the length of the time series; and � denotes the transpose; and the

fused data matrix � serves as the input for the node information in the Graph Wavenet GNN. The constructed data matrix

has a minute sampling interval with 1,440 data sampling points per day. The data matrix undergoes processing using a

sliding window with a length of 60, where the sliding window size of 60 corresponds to one hour. A sliding window was
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implemented to predict the next hour’s data based on the current hour’s data. The sampled data are considered as the features275
of the sample, and the data shape is constructed as a tensor of [64, 60, 4, 1], where 64 denotes the sample length and [60, 4, 1]

represents the input or output of a single data point. In this context, 60 signifies the sequence length, 4 is the number of

nodes, and 1 is the number of node features. The selected data spanned 2010 to 2013, divided chronologically in a ratio of

3:1:4. Specifically, 2010 and 2011 were allocated as the training and validation sets, respectively, whereas 2012 and 2013

were used as the test set.280
The subsequent step involved constructing the adjacency matrix of the graph. A node graph of the four stations is shown

in Fig. 7. The graph is defined as � = (�, �), where � corresponds to the set of nodes and � corresponds to the set of edges

in the graph. The relationship between edges and nodes is expressed as ��� = (��, ��) , �� , ��∈ � . Graphs are commonly

represented using an adjacency matrix, where the adjacency matrix � is a � × � square and � denotes the number of nodes.

The graph is written as ��� = 1 if two vertices, � and � , are connected by an edge and 0 otherwise. The number of285

neighboring nodes for node � is referred to as the degree of that node, and the degree matrix � is an � × � diagonal array,

with the elements on the diagonal being the degrees of individual vertices: �(��) = �(�).

Figure 7: Node diagram of the four borehole strain observation stations constructed. The blue triangles indicate the locations of
the four borehole strain stations, the green line indicates the distance between the two stations, and the red square indicates the290
epicenter of the Lushan earthquake.

The true distance between the stations was calculated using the corresponding latitude and longitude data of any two

stations. Assuming that the Earth is a standard sphere, the principle for calculating the distance in latitude and longitude

coordinates involves determining the distance between two points on the sphere, equivalent to the arc length of a cross-

sectional circle. For any two given points and their corresponding latitudes and longitudes, �(�1, �1) and �(�2, �2), with295

the average radius of the Earth as � and the center of the Earth as the midpoint of the right angle coordinates, � and �

represent two points corresponding to the right angle coordinates:
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�(� ��� ( �1) ��� ( �1)), � ��� ( �1) ��� ( �1), � ��� ( �1))，�(�1, �1, �1)

�(� ��� ( �2) ��� ( �2)), � ��� ( �2) ��� ( �2), � ��� ( �2))，�(�2, �2, �2) , (13)

We calculated the angle between two points based on the coordinates of points � and �. Let the angle between � and � be �;300
then, the cosine of the angle cos� is calculated as follows:

cos� = �1∗�2+�1∗�2+�1∗�2

(�1
2+�1

2+�1
2)∗ (�2

2+�2
2+�2

2)
, (14)

Thus, the distance � between two points can be expressed as:

� = R*������(����) , (15)

The distance between two stations was determined by calculating the latitude and longitude coordinates of any two305
stations. Subsequently, an adjacency distance matrix for the node graph is constructed based on these distances. To optimize

the adjacency matrix for use in the Graph Wavenet GNN, the distances between the nodes were normalized to represent the

weights between them. This normalized adjacency matrix was then utilized in the Graph Wavenet model.

5 Results

310
Figure 8: Graph WaveNet graph neural network prediction results; red lines indicate real data and gray areas indicate prediction
intervals. (a) Results of the Lushan earthquake prediction from Guza station; (b) Results of the Lushan earthquake prediction
from Luzhou station; (c) Results of the Lushan earthquake prediction from Xiaomiao station; (d) Results of the Lushan
earthquake prediction from Zhaotong station.
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In this study, we employed a Graph Wavenet GNN to analyze borehole data from multiple stations prior to the Lushan315
earthquake. The analysis focused on extracting pre-earthquake anomalies based on the results obtained. Anomalies were

identified when the raw data surpassed the corresponding upper or lower prediction intervals established by the network. The

prediction results for each station are shown in Fig. 8.

As shown in Fig. 8, our raw data closely align with the predicted intervals, demonstrating the Graph Wavenet accurate

prediction of borehole data at each station. To identify point anomalies in the borehole strain data predictions, we employed320
the following criteria: (a) detecting more than 15 points outside the intervals within a 30-minute window; (b) identifying

difference between the center of predicted intervals and the actual values exceeding 1.5 times the bandwidth of the intervals,

with more than three such points in the same 30-minute period. Days meeting these conditions were considered anomalous

(Chi et al., 2023). To validate whether the extracted anomalous days were earth-quake-related, we randomly selected raw

data for four anomalous days from each station, as shown in Fig. 9.325

Figure 9: Plots of raw data from four randomly selected anomalous days at each station.

In Fig. 9, it is evident that the abnormal days we defined exhibit short-period, high-frequency oscillation signals in the

original waveform, suggesting that these days are associated with crustal activity. The cumulative values of the anomalous

days over time are depicted in Fig. 10.330
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Figure 10: Accumulation results of anomalous days in borehole data from each station. The dashed line indicates the date of the
earthquake, while the red and blue curves indicate the results of the S-shaped fitting before and after the earthquake, respectively.
(a) Anomalous day accumulation results for Guza station; (b) Anomalous day accumulation results for Xiaomiao, Luzhou, and
Zhaotong stations.335

As depicted in Fig. 10a, the cumulative results of the anomalous days at Guza station exhibit a two-part concavity. One

part displayed a rapid increase in the number of anomalous days from October 2012 to three months before the earthquake

(January 2013), after which it leveled off. Our findings align with those of Chi et al., (2013) and Zhu et al., (2018),

indicating that strain anomalies occurred during the 4-8 months preceding the earthquake, and the accumulation of

anomalous days exhibited an accelerating trend. In the other segment, the number of anomalous days started to rise sharply340
from March 2013 to June after the earthquake, after which the increase in anomalous days gradually leveled off. Qiu et al.

(An et al., 2013; Jiang et al., 2013; Yu et al., 2020; Qiu et al., 2013; Zhu et al., 2018) conducted research on short-term

impending earthquake anomalies pre-ceding the Lushan earthquake and suggested that these anomalies occurred within a

few days to one month before the earthquake. Our study yielded similar results, indicating anomalies in the one-month pre-

earthquake period of the Lushan earthquake. Therefore, we posit that these anomalies might be related to the Lushan345
earthquake. The findings of Yu et al., (2021), who observed a brief increase in anomalies followed by a return to a steady

state in the two-month post-earthquake period, align closely with the outcomes of our study.

In Fig. 10b, we analyzed the anomalous day accumulation at other stations within the graph wavenet network.

Remarkably, the accumulation patterns of anomalous days at Xiaomiao and Luzhou closely mirrored those observed at Guza,

featuring concave trends in two distinct phases. However, the fitting results for the Zhaotong station deviated from the350
observed pattern. Analyzing the aforementioned fitting results, we observed a similar trend between the Xiaomiao and

Luzhou stations, resembling the patterns identified at the Guza station. The initial phase witnessed a sharp increase in

January 2013 and plateaued until March 2013, indicating an accelerated accumulation of abnormal days in the four months

leading up to the earthquake. In the second phase, spanning from 5 April 2013 to 28 April 2013, a surge was apparent 15
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days prior to the earthquake, followed by a gradual decline 8 days post-earthquake. This pattern echoes the impending and355
post-earthquake anomalies observed at the Guza Station during the Lushan earthquake. A detailed analysis indicates that the

Xiaomiao and Luzhou stations also detected anomalous signals during the gestation process of the Lushan earthquake,

affirming that the anomalies at these three stations were not random but were indeed linked to the Lushan earthquake.

Further scrutiny of the distances between the stations and the epicenter revealed a noteworthy pattern: Guza station, which

was the closest to the epicenter, record-ed the highest number of anomalous days; Xiaomiao and Luzhou stations, in360
proximity to the epicenter, registered fewer anomalous days than Guza station, whereas Zhaotong station, situated farthest

from the epicenter, reported the fewest anomalous days. This lends credence to the belief that the anomalous signals received

by a station are associated with the distance between the station and epicenter.

Zhang et al., (2020) conducted an analysis of cross-fault deformation preceding the Lushan Ms7.0 earthquake. Their

findings revealed a considerable shift in the cross-fault deformation dynamics of the study area, transitioning from a state of365
“inheritance,” conducive to stress accumulation, to “reverse inheritance” more than six months prior to the earthquake. This

shift exhibits characteristics of coordinated and accelerated fault activities, aligning with the metastable and sub-unstable

states observed in the structural mechanics tests. Notably, earthquakes with magnitudes exceeding 4 in the study area

exhibited a robust structural correlation with the Lushan Ms7.0 earthquake, potentially indicating a partial release of energy

in the locked section of the fault. In summary, our analysis suggests that 4-8 months prior to the Lushan Ms7.0 earthquake,370
the southern section of the Longmenshan rupture exhibited characteristics of a sub-stabilized state. This state led to the

formation of relatively weak segments on the fault, contributing to an increase in the number of anomalous days potentially

associated with the pre-release of energy. Simultaneously, the relatively strong fault segments underwent strain accumulation.

In the days immediately preceding the earthquake, these strong segments reached a destabilized state owing to the

accumulated strain, ultimately facilitating the occurrence of an earthquake (Ma and Guo, 2014).375

Figure 11: Regional daily mean variations in pressure, temperature, and rainfall in the Lushan area from 2010 to 2013.
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Despite its advantages, such as high sensitivity and a wide frequency band during observation, the four-component

borehole strainmeter remains susceptible to interference from surrounding sources. Figure 11 illustrates the impact of

external factors by examining the regional daily mean data of pressure, temperature, and rainfall in the Lushan region (102°380
E, 27° N, 106° E, and 31° N), downloaded from 1 January 2010 to 31 December 2013, via NASA’s Giovanni-4 platform

(https://giovanni.gsfc.nasa.gov/giovanni). The analysis of these data revealed distinct annual trends in pressure, temperature,

and rain-fall. Both pressure and temperature exhibited fluctuations within a certain range, dis-playing opposite trends,

whereas rainfall underwent a consistent increase followed by a decrease each year, in accordance with seasonal changes. To

mitigate the impact of external factors on borehole strain data, we conducted a differencing process on the daily regional385
averages for pressure, temperature, and rainfall in the Lushan area. The results are shown in Fig. 12.

Figure 12: Differing results of regional daily mean pressure, temperature, and rainfall in the Lushan area from 2010 to 2013.

Figure 12 indicates that the regional daily mean differences in pressure, temperature, and rainfall in the Lushan area did

not exhibit any anomalous changes. Therefore, we can exclude the influence of pressure, temperature, and rainfall on the390
anomalies observed in the pre-earthquake borehole data from Lushan.

6 Conclusion

In this study, we proposed a novel pre-earthquake anomaly extraction method based on a graph wavenet network structure

that enables the integration of borehole strain data from multiple stations and makes predictions by learning both temporal

and spatial correlations. The statistical analysis of pre-earthquake anomalies in borehole strain data from four stations, Guza,395
Xiaomiao, Luzhou, and Zhaotong, revealed two S-shaped upward trends in the pre-earthquake period for Guza, Xiaomiao,
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and Luzhou. This indicates that these three stations experienced notable strain anomalies during the gestational period of the

Lushan earthquake. A comparison of anomaly accumulation rates among different stations indicated that the anomaly rate at

Guza station was substantially higher than that at Xiaomiao and Luzhou stations, suggesting a correlation with distance from

the epicenter. Raw data analysis of randomly selected anomalous days from each station confirmed the correlation between400
the extracted anomalous days and the pre-earthquake anomalies. Additionally, we analyzed regional daily averages of

meteorological factors, preliminarily excluding their influence on the anomaly accumulation results. Therefore, we conclude

that the graph wavenet network effectively extracted pre-earthquake anomalies from borehole strain data, highlighting its

potential as a robust approach for studying pre-earthquake anomalies across multiple stations.
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