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Abstract. On 20 April 2013, Lushan experienced a magnitude 7.0 earthquake. In seismic assessments, borehole strain 10 

meters, recognized for their remarkable sensitivity and inherent reliability in tracking crustal deformation, are extensively 

employed. However, traditional data processing methods encounter challenges when handling massive datasets. This study 

proposes using a graph wavenet graph neural network to analyze borehole strain data from multiple stations near the 

earthquake epicenter and establishes a node graph structure using data from four stations near the Lushan epicenter, covering 

years 2010–2013. After excluding the potential effects of pressure, temperature, and rainfall, we statistically analyzed the 15 

pre-earthquake anomalies. Focusing on the Guza, Xiaomiao, and Luzhou stations, which are the closest to the epicenter, the 

fitting results revealed two accelerations of anomalous accumulation before the earthquake. Approximately four months 

before the earthquake event, one acceleration suggests the pre-release of energy from a weak fault section. Conversely, the 

acceleration a few days before the earthquake indicated a strong fault section reaching an unstable state with accumulating 

strain. We tentatively infer that these two anomalous cumulative accelerations may be related to the preparation phase for a 20 

large earthquake. This study highlights the considerable potential of graph neural networks in conducting multi-station 

studies of pre-earthquake anomalies. 

1 Introduction 

Earthquakes result from the accumulation of stress in the Earth’s crust during plate movement and collisions. Once the stress 

surpasses a critical threshold, the crust ruptures, unleashing seismic waves that reverberate through the ground, causing 25 

substantial damage (Campbell et al., 2020; Fan et al., 2021). Extensive research on earthquakes has generated a wealth of 

information worldwide, establishing a robust database for studying pre-earthquake anomalies. 

     On 20 April 2013, 08:02 UTC, a magnitude 7.0 earthquake struck Lushan County, Ya'an, Sichuan, China, within the 

Longmenshan fault zone. The epicenter was located at approximately 103° E and 30.30° N within the Longmenshan Fault 

Zone at a depth of 13 km. The earthquake mechanism solution revealed a retrograde rupture of the earthquake-induced 30 
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rupture. By 24 April 2013, the earthquake had triggered over 4,000 aftershocks, affecting more than 300,000 people across 

an expansive area exceeding 12,000 km2. The aftermath witnessed a significant loss of life and property. Additionally, the 

seismic event triggered various geological hazards, such as earth fissures, landslides, and surface deformation (Hong et al., 

2013).  

     Researchers around the world have examined various phenomena preceding and following earthquakes, delving into 35 

subterranean, surface, and spatial changes. Chen et al., (2014) studied the co-seismic ionospheric anomalies of the Lushan 

earthquake. Guo and Zheng, (2022) calculated and analyzed the anomalies of background noise near the pre-earthquake 

epicenter of Lushan earthquake. Liu et al., (2014b) analyzed the aerosol optical depth (AOD) and concluded that the AOD 

could be a potential earthquake precursor in the Sichuan Basin. Liu et al. (2014a) examined groundwater anomalies and 

identified medium-term dynamics and short-term or impending anomalies in solid tidal aberrations of the water-level. Ma et 40 

al., (2015) analyzed pre-earthquake tidal cycles and concluded that celestial tidal forces trigger earthquakes under critical 

rock fragmentation and sliding conditions. Zhang et al., (2016) explored thermal anomalies as a precursor to earthquakes 

using a time series of surface temperatures prior to the Lushan earthquake. Zhu et al., (2013) analyzed the tectonic 

deformation and energy accumulation in the southern section of the Longmenshan Fracture Zone through mobile gravity 

observation data. Jiang et al., (2013) found severe negative anomalies before and on the day of the earthquake by analyzing 45 

the vertical total electron content (VTEC) anomaly in the ionosphere. 

     Based on the findings from the United States Plate Boundary Observation (PBO) project proposal, borehole strain 

observations have emerged as superior to GPS and laser strain meters in capturing short- to medium-term, as well as pre-

earthquake, strain variations (Zhang, 2004; Zheng and Zhang, 2004). China has deployed multiple YRY-4 four-component 

borehole strainmeters, offering not only four-component data but also auxiliary observations of air pressure, groundwater 50 

level, and temperature (Chi et al., 2007; Qiu, 2014; Qiu et al., 2020). Numerous studies on the Lushan earthquake have 

employed borehole strain data. Qiu et al., (2013) correlated borehole strain data from the Guza station before the Lushan 

Ms7.0 earthquake with other influencing factors, establishing a connection to the earthquake. Zhu et al., (2018) identified the 

precursors of the Lushan earthquake by analyzing the eigenvalues and eigenvectors from borehole data. Yu et al., (2021) 

employed a state-space model to decompose the strain into component responses and discovered the synchronous 55 

acceleration of approximate negative entropy anomalies at multiple stations four to six months before an earthquake. Liu et 

al., (2019) used the S-transform method to analyze the time-frequency characteristics of borehole strain data, revealing 

reliable anomalies that reflect the entire process of pre-earthquake, during, and post-earthquake strain changes. Chi, (2013) 

uncovered a “tidal aberration” phenomenon, persisting over three months before the earthquake, with significant strain 

changes occurring 15 to 19 days prior. Tang and Jing, (2013) conducted an analysis of surface strain co-seismic orders, 60 

noting differences between the Wenchuan and Lushan earthquakes related to earthquake magnitude. Despite the valuable 

insights gained from these studies, they mostly focused on single-station data, overlooking the potential correlations between 

multiple stations. The study of seismic monitoring data based on multiple stations has been applied to many scenarios. Liu et 

al., (2019) analyzed the abnormal fluctuations of aerosol optical depth (AOD) before and after the 2008 Wenchuan 
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earthquake and the 2013 Lushan earthquake, and found that the abnormal high AOD values appeared 11 days before the 65 

Wenchuan earthquake and 4 days before the Lushan earthquake. It is considered that the AOD index may be suitable as a 

precursor to the earthquake in the Sichuan Basin. Using borehole strain data from six stations in the Sichuan-Yunnan region, 

Yu et al., (2020) established a graph network and analyzed 13 earthquake cases with Es > 107 in the study area. It was found 

that the strain anomaly before the earthquake generally occurred within the first 30 days of the earthquake event. To study 

the abnormal strain changes before the Wenchuan earthquake, Zhu et al. (2019) introduced negative entropy analysis to the 70 

borehole data of three stations. The results show that Guza and Xiaomiao stations have similar trends and may record 

abnormal changes related to the Wenchuan earthquake. Renhe station failed to detect the anomalies before the earthquake 

due to the distance. An example of multi-station analysis is given, which shows that it is feasible to analyze seismic data 

with multi-station. 

     As earthquake monitoring data accumulates, traditional processing methods face challenges in managing vast quantities 75 

of data. The emergence of deep learning, particularly graph neural networks (GNNs), has markedly enhanced prediction and 

classification accuracy, particularly for non-Euclidean spatial data characterization (Kipf and Welling, 2016; Niepert et al., 

2016; Scarselli et al., 2009; Wu et al., 2019; Zhou et al., 2020). Recent developments in spatiotemporal GNN frameworks 

integrate GNNs with various event-learning methods to extract complex dependencies (Oord et al., 2016; Rathore et al., 

2021; Yu et al., 2017). Kim et al., (2022) utilized raw waveform data from multiple stations to classify earthquake events, 80 

demonstrating the effectiveness of GNNs in aggregating features from individual stations. Bilal et al., (2022) refined 

earthquake magnitude, depth, and location predictions by extracting features from waveform data from multiple stations and 

integrating earthquake catalog information into a GNN. Huang et al., (2023) applied a Graph Attention Isomorphic Network 

(GAIN) to analyze earthquake catalogs and geomagnetic signals, successfully detecting pre-earthquake anomalies. These 

studies highlighted the significant potential of GNNs in earthquake research. 85 

     In this study, we proposed an innovative method for extracting pre-earthquake anomalies from borehole strain data using 

Graph WaveNet. The remained of this article is structured as follows: the next section delve into the specifics of the Lushan 

earthquake, providing an introductory exploration of the observation data pivotal to our analysis. In the third section, we 

introduce the SVMD and delve into the theoretical underpinnings of the graph wavenet network, laying the groundwork for a 

comprehensive understanding of our analytical approach. A detailed case study of the Lushan earthquake follows, providing 90 

a tangible illustration that guides readers through the intricacies of our data-processing methodology. Section five mainly 

includes the analysis of prediction results, the detailed analysis of randomly selected abnormal days and the analysis of 

abnormal accumulation results. The sixth part is the discussion, which mainly includes the comparison and discussion of the 

abnormal accumulation results between different stations and the exclusion of the influence of meteorological factors. The 

final section presents the conclusions of the study and summarizes the key insights drawn from our analysis. 95 
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2 Observation Data 

Dobrovolsky's estimate of the radius of influence of precursors for earthquakes of different magnitudes is shown in the 

following Eq. (1) (Dobrovolsky et al., 1979): 

𝜌 = 100.43𝑀 km ,             (1) 

where 𝑀  denotes the magnitude and 𝜌  denotes the radius of influence of 𝑀  magnitude. The Lushan 7.0 magnitude 100 

earthquake's radius of influence extends approximately 1023 km. Among the selected monitoring stations, Guza is situated 

73 km from the epicenter, while Xiaomiao, Luzhou, and Zhaotong are positioned at distances of 268 km, 286 km, and 337 

km from the epicenter, respectively. This positioning confirms that the chosen stations possess the capability to monitor 

earthquake-related anomalies. Detailed information about Guza, Xiaomiao, Luzhou, and Zhaotong, including latitude and 

longitude coordinates, distance from the Lushan earthquake's epicenter, rock type at the drill borehole locations, and 105 

borehole depth, is provided in Table 1. Figure 1 visually depicts the geographical locations of the four observation stations 

relative to the epicenter of the Lushan earthquake. 

 

Figure 1: Location of the four observation stations relative to the epicenter of the Lushan earthquake. The blue triangles represent 

the locations of the borehole strain observation stations. The yellow star represents the epicenter of the Lushan earthquake, while 110 
the white curve depicts the Longmenshan fault zone. This map was generated by GMT software, v. 6.0.0rc5 (https://gmt-

china.org/). 

Table 1. Information on borehole strain stations was used in this study. 

Station 

Name 
Locations 

Rock 

Type 

Borehole 

Depth(m) 

Epicentre 

Distance(km) 

GuZa  30.12° N,102.18° E Granite 40.69 73 

XiaoMiao 28.00° N, 102.00° E Siltstone 41.78 268 

LuZhou 28.87° N, 105.42° E Quartz Sandstone 40 286 
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ZhaoTong 27.32° N, 103.73° E Basalt 45 337 

     The four-component borehole strainmeter serves to observe the temporal inverse of displacement at a specific point, 

offering insights not attainable through GPS and seismometers. Operating with a continuous recording frequency of one 115 

sample per minute, it significantly enhances temporal resolution by at least one order of magnitude. Additionally, its 

observation bandwidth surpasses that of seismometers, particularly at the long-period end of the spectrum. This specialized 

YRY-4 strainmeter comprises four horizontally positioned sensors designed to measure changes in borehole diameter. These 

sensors are strategically spaced at a 45° angle, and the relationship between the four measurements from the strainmeter can 

be expressed as follows (Qiu et al., 2009; Su, 2019): 120 

𝑆1 + 𝑆3 = 𝑘(𝑆2 + 𝑆4) ,           (2) 

This Eq. (2) represents the self-consistent formulation for a four-component borehole strain strainmeter. The self-consistent 

coefficient, denoted as 𝑘, ideally equals 1, and data is deemed reliable when 𝑘 is greater than or equal to 0.95. Strain 

conversion is achieved through the following Eq. (3) using the four measurements: 

{

𝑆13 = 𝑆1 − 𝑆3

𝑆24 = 𝑆2 − 𝑆4

𝑆𝑎 = (𝑆1 + 𝑆2 + 𝑆3 + 𝑆4)/2
 ,          (3) 125 

In this Eq. (3), 𝑆13 and 𝑆24  represent two independent shear strains. Shear strain pertains to alterations in the total area or 

volume of an object while maintaining a deformed shape. Additionally, 𝑆𝑎 denotes surface strain, signifying changes in area 

without a concurrent shift in the object's morphology. This characteristic is observed in the presence of hydrostatic enclosure 

pressure (Su, 2019). For the analysis in this paper, 𝑆𝑎 data from four stations—Guza, Xiaomiao, Luzhou, and Zhaotong—

were specifically selected for examination. 130 

     Despite its advantages, such as high sensitivity and a wide frequency band during observation, the four-component 

borehole strainmeter remains susceptible to interference from surrounding sources. We used the improved VMD algorithm 

to analyze the 𝑆𝑎 data, and found that the first two components in the decomposition results correspond to the annual trend 

term and the solid tide, respectively, and the remaining components contain a large number of strain signals. We retained the 

remaining components as research data. Because there is no ability to extract meteorological factors such as air pressure, 135 

temperature and rainfall from the remaining components, we analyze the measured data of meteorological factors to 

determine whether the meteorological data affects the results of borehole strain observation. 

3 Methods 

To analyze borehole strain data from multiple stations for the Lushan earthquake, our study employed the flowchart shown 

in Fig. 2. 140 
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Figure 2: The framework of borehole strain data processing and pre-earthquake anomaly detection. 

     As shown in Fig. 2, the process begins with the conversion of data from the four-component borehole into strain. 

Subsequently, the borehole data are decomposed using the segmented variational modal method (SVMD), and the resulting 

decomposed outcomes were fused. By calculating distances between stations using longitudinal and latitudinal coordinates, a 145 

distance matrix is constructed and then normalized to form an adjacency matrix. The fused data and adjacency matrix serve 

as inputs for training, validation, and prediction using the graph wavenet GNN. During the prediction phase, upper and lower 

bound prediction intervals are established based on the model’s output. Anomalies were identified by comparing the 

prediction intervals with the original data. The cumulative values of pre-earthquake anomalies in the borehole strain data 

from various stations were subsequently subjected to statistical analyses. 150 

3.1 Segmented Variational Modal Decomposition 

A Borehole Strain Signal, characterized as a typical nonstationary signal, can be effectively analyzed by decomposing it into 

a set of Intrinsic Mode Functions (IMFs) using the Empirical Mode Decomposition (EMD) method. However, EMD 

encounters challenges such as mode aliasing. To address this issue, an adaptive time-frequency analysis algorithm, the 

Variational Mode Decomposition (VMD), was introduced by (Dragomiretskiy and Zosso, 2014). The VMD exhibits superior 155 

noise immunity in signal processing, providing an effective solution to these challenges. This approach has been successfully 

applied by (Huang et al., 2022; Zhang and He, 2023) to process raw earthquake waveforms, yielding improved 

decomposition results. 
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     VMD stands as a non-recursive signal processing method designed to decompose a time series into a sequence of intrinsic 

mode functions characterized by limited bandwidth. The decomposition process essentially involves solving variational 160 

problems, and the variational model can be expressed as follows: 

𝑚𝑖𝑛
{𝑢𝑘}, {𝜔𝑘}

∑ ‖𝜕𝑡 {[(𝛿(𝑡) +
𝑗

𝜋𝑡
) • 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡} ‖

2
2

𝐾
𝑘=1   

𝑠. 𝑡. ∑ 𝑢𝑘(𝑡) = 𝑓(𝑡)𝐾
𝑘=1  ,           (4) 

where {𝑢𝑘} = {𝑢1, 𝑢2, … , 𝑢𝐾}、{𝜔𝑘} = {𝜔1, 𝜔2, … , 𝜔𝐾} are the 𝑘 modal functions and the corresponding center frequencies 

of the signal decomposition, respectively; 𝜕𝑡 is the bias computation for time 𝑡; 𝛿(𝑡) is the unit impulse function; 𝑗 is the 165 

imaginary unit; • is the convolution computation. 

To solve the variational model, a quadratic penalty term 𝛼 and the Lagrange multiplier operator 𝜆(𝑡) are introduced to make 

the variational model unconstrained. The constructed generalized Lagrangian function is: 

𝐿({𝑢𝑘}, {𝜔𝑘}, 𝜆) = 𝛼 ∑ ‖𝜕𝑡{[(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)]𝑒−𝑗𝜔𝑘𝑡}‖𝐾

𝑘=1
2

2

  

+‖𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)‖𝐾
𝑘=1 2

2
+ ⟨𝜆(𝑡), 𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝐾

𝑘=1 ⟩ ,       (5) 170 

where 𝐿  denotes the Lagrangian generalization operator; 𝛼  denotes the data fidelity constraint function; 𝜆  denotes the 

Lagrangian multiplier. 

The alternating direction multiplier method (ADMM) is used to solve Eq. (5), and the iterative optimization of 𝑢𝑘 , 𝜔𝑘 , and 

𝜆. The iterative formulas for the mode 𝑢𝑘 , the corresponding center frequency 𝜔𝑘 , and the Lagrange multiplier 𝜆 can be 

updated as: 175 

�̂�𝑘
𝑛+1(𝜔) =

�̂�(𝜔)−∑ 𝑢𝑖(𝜔)𝑖≠𝑘 +
�̂�(𝜔)

2

1+2𝛼(𝜔−𝜔𝑘)2   

 𝜔𝑘
𝑛+1 =

∫ 𝜔
∞

0
|𝑢𝑘(𝜔)|2𝑑𝑤

∫ |𝑢𝑘(𝜔)|2𝑑𝑤
∞

0

 

�̂�𝑛+1(𝜔) = �̂�𝑛(𝜔) + 𝜏(𝑓(𝜔) − ∑ �̂�𝑘
𝑛+1

𝑘 (𝜔)) ,        (6) 

where �̂�𝑘
𝑛+1 is the 𝑘th IMF component in the n+1st iteration; 𝜔𝑘

𝑛+1 is the center frequency corresponding to �̂�𝑘
𝑛+1; �̂�𝑛+1(𝜔) 

is the value of the Lagrangian operator in the n+1st iteration, and 𝜏 is the noise tolerance of the signal. Set the termination 180 

condition of the algorithm as: 

∑
‖𝑢𝑘

𝑛+1−𝑢𝑘
𝑛‖

2

2

‖𝑢𝑘
𝑛‖

2

2
𝐾
𝑘=1 < 휀 ,           (7) 

where 휀 denotes the discrimination accuracy.  

     In this study, we employ a method of applying Variational Mode Decomposition (VMD) to data segments through the 

incorporation of sliding windows (SVMD). This approach effectively addresses the challenge of limited memory when 185 

conducting VMD on the entire dataset while retaining the correlation between the data points (Chi et al., 2023). The 

fundamental principle of the SVMD method is illustrated in Fig. 3. 
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Figure 3: Schematic diagram of Segmented Variational Modal Method (SVMD) principle. 

     As depicted in Fig. 3, we opt for a consistent sliding window approach with a size of 7 days and a sliding step of 1. The 190 

initial sliding window encompasses all the data from the first 7 days. From the second sliding window onwards, only the data 

from the last day of the current window is preserved and concatenated behind the results obtained from the previous window. 

3.2 Graph Wavenet Neural Network Architecture 

3.2.1 Gated Temporal Convolutional Network for Extracting Temporal Features 

During the processing of the time-series data, Causal Convolution maintains the causal relationships inherent within the data. 195 

This technique facilitates the extraction of time-series features through convolution. However, as the sequence length 

increases, capturing temporal dependence requires more convolution layers, thereby substantially increasing computational 

demands. To address this challenge, an expansion factor was introduced for Causal Convolution. The inclusion of this 

expansion factor can enlarge the receptive field of the Causal Convolution, enabling to capture longer time series features 

with a reduced number of convolutional layers. The relationship between the input sequence length 𝐿𝑖𝑛 after causal dilation 200 

convolution and the output sequence length 𝐿𝑜𝑢𝑡 can be expressed as: 

𝐿𝑜𝑢𝑡 = 𝐿𝑖𝑛 + 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 − (𝑑 × (𝑘 − 1)) ,          (8) 

where 𝐿𝑜𝑢𝑡  is the length of the output sequence; 𝐿𝑖𝑛  is the length of the input sequence; padding is the number of zero 

paddings added to the ends of the input sequence, which are added at the beginning of the sequence to preserve causality; 𝑘 

is the size of the convolution kernel, which is a small, learnable weight matrix; and 𝑑 is the dilation factor, which indicates 205 
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the span of the convolution kernel over the input sequence, with larger dilation factors being able to capture long-term time 

dependencies. The dilation causal convolution with a convolution kernel size of 2 and a sliding step of 1 is shown in Fig. 4a. 

 

Figure 4: (a) Schematic of Dilated Causal Convolutional Layers. (b) Temporal-Spatial Layers architecture. 

     Although Convolutional Neural Networks (CNNs) are commonly employed for image processing, 1D CNNs can also be 210 

effectively used for time-series analysis. Gated Temporal Convolutional Networks (TCN) leverage 1D CNNs to extract 

features from time-series data. This architecture comprises two key modules: one for convolving the input to extract features 

by employing tanh as the activation function, and the other for controlling the amount of information passed from the current 

layer to the next layer by utilizing the sigmoid activation function. The Gated TCN module is defined as: 

𝑇 = 𝒈(𝑊1 ∗ 𝑥 + 𝑏1) • 𝝈(𝑊2 ∗ 𝑥 + 𝑏2) ,                                (9) 215 

where 𝑊1  and 𝑊2  represent the weight parameters, 𝑏1  and 𝑏2  represent the corresponding bias parameters, and • denotes 

convolution, where 𝒈 is the activation function of the output, 𝝈  is the activation function that determines the ratio of 

information passed to the next layer. 

3.2.2 Graph Convolutional Networks for Extracting Spatial Features 

The fundamental concept of a graph network is to represent interactions among real features based on spatial dependence 220 

dictated by the graph structure. The distance adjacency matrix is symmetrically normalized to function as an adjacency 

matrix for graph convolution. This approach effectively captures the node information and preserves the graph structure. By 

constructing an undirected complete graph for each station, where all nodes are directly connected, each node interacts solely 

with its neighboring nodes for information exchange. To ensure that input features encompassed all information in the 

current node and its first-order nearest neighbor nodes, a first-order symmetric normalized adjacency matrix was selected 225 

during the graph convolution process. The convolution layer of the graph is defined as: 

𝐻(𝑙+1) = 𝜎(�̃�−
1

2 ⋅ �̃� ⋅ �̃�−
1

2 ⋅ 𝐻(𝑙) ⋅ 𝑊(𝑙)) ,         (10) 

where 𝐻(𝑙) denotes the embedding vector of layer l; 𝐻(𝑙+1) denotes the embedding vector of layer (𝑙 + 1); �̃�−
1

2 ⋅ �̃� ⋅ �̃�−
1

2 

denotes the symmetric normalized adjacency matrix of the current layer; where 𝐷 denotes the degree matrix and �̃� denotes 
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the Distance Adjacency Matrix; 𝑊(𝑙) denotes the weight of the neural network in the current convolutional layer; and 𝜎 230 

denotes the nonlinear activation function of the neural network. Introducing a dropout rate to the output of each training 

batch in graph convolution involves randomly ignoring half of the hidden layer nodes.  

     This dropout strategy was applied across different neural networks, and “opposite” fits were averaged. This aids in 

mitigating overfitting because conflicting tendencies can cancel each other out during the training process. 

3.2.3 Temporal-Spatial Layers 235 

Figure 4b illustrates the structure of the spatiotemporal layer. Each layer within the spatiotemporal layer captures temporal 

dependencies using Gated TCNs. This involved utilizing node features produced by the TCN module and the graph’s 

adjacency matrix as inputs for the Graph Convolutional Network (GCN) module. The GCN layer is responsible for capturing 

spatial-temporal features, and the spatial-temporal features of the current layer are residual and linked to the input, serving as 

inputs to the subsequent spatial-temporal layer. The output of the Gated TCN module serves as the output of the current 240 

spatial-temporal layer, and the outputs of all spatial-temporal layers are interconnected using skip connections. This design 

facilitated the capture of short-term and spatial dependencies. 

3.2.4 Graph Wavenet Neural Network Framework 

Figure 5 illustrates the framework of a graph wavenet. The initial step involved pre-processing the multistation borehole data 

and converting the latitude and longitude of each station into an adjacency matrix. Subsequently, the data underwent a 245 

dimensionality increase in the linear layer, followed by processing in the Gated TCN module to obtain the current 

information. The output of the Gated TCN module is then employed to extract spatial information through the GCN layer. 

The extracted spatial and temporal information is connected to the input of the current layer, which serves as the input for the 

subsequent spatial and temporal layers, which can capture both the current and historical information using different dilation 

factor sizes. Finally, the information extracted from each Gated TCN layer is aggregated into an output layer. The output 250 

sequence was downscaled using the ReLU activation function and a linear layer. The upper and lower bounds of the output 

sequence were calculated using the normal distribution method. The prediction intervals of the network were constructed 

from the upper and lower bounds. The upper and lower bounds of the prediction intervals are determined using the following 

formulas: 

𝐿𝑜𝑤𝑒𝑟 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑍 × rmse  255 

𝑈𝑝𝑝𝑒𝑟 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑍 × rmse ,         (11) 

where 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  is the predicted value; 𝑍  is the Z-Score of the normal distribution, which is about 1.96 for a 95% 

confidence level; and 𝑟𝑚𝑠𝑒 is the root mean square error. 
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Figure 5: Framework of Graph Wavenet. 260 

     For the graph wavenet neural network model, Mean Absolute Error (MAE) was employed as the loss function for 

backpropagation during training. A dropout of 0.3 was applied during graph convolution to enhance the model’s 

generalization. The Adam optimizer was utilized to update the weights, with a learning rate of 0.001 and a weight decay rate 

of 0.0001. This configuration allowed the model to decay, effectively preventing over-fitting by reducing parameter 

magnitudes. The number of training rounds for the model was set to 100. 265 

4 Data Processing 

We analyzed the four-component borehole strain data collected from Guza, Xiaomiao, Luzhou, and Zhaotong stations from 

1 January 2010 to 31 December 2013. Initially, the data from each station were validated using self-consistent equations. 

Subsequently, the four-component borehole strain data from each station were transformed into two shear strains, 𝑆13 and 𝑆24, 

and one surface strain, 𝑆𝑎 , using a strain conversion equation. Figure 6a shows the data series of surface strain 𝑆𝑎  after 270 

converting the borehole strain data from each of the four stations. 

     Subsequently, the 𝑆𝑎  data from each of the four stations were decomposed using the Segmented Variational Modal 

Method (SVMD). The decomposition parameters were set to a bandwidth of 2,000, the number of modes decomposed to five, 

and the convergence accuracy to 10-7. The results of the SVMD decomposition were compared with data related to the 

influencing factors, effectively eliminating the effects of seasonal trends and solid tides. The extracted modes are specifically 275 

related to crustal activity, showcasing short-period, high-frequency oscillatory signals associated with earthquake variations 

in earthquake strain within crustal motions (Chi et al., 2019). The time-series data after SVMD decomposition of 𝑆𝑎 data 

from each station are illustrated in Fig. 6b. 
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Figure 6: (a) 𝑺𝒂 of the borehole strain data from 2010 to 2013 for the Guza, Xiaomiao, Luzhou, and Zhaotong stations. (b) SVMD 280 
results of 𝑺𝒂 components for Guza, Xiaomiao, Luzhou and Zhaotong stations. 

     The next step involved data fusion, with SVMD applied to the 𝑆𝑎 component data from different stations to extract data 

related to crustal activities. The construction of the GNN required information from each node; hence, the information from 

multiple stations was fused as inputs to the GNN, and the data matrix 𝑅𝑎 of the constructed 𝑅𝑎 component is shown below: 

𝑅𝑎 = [

GZ𝑎(𝑡1) GZ𝑎(𝑡2) … GZ𝑎(𝑡2103840)

LZ𝑎(𝑡1) LZ𝑎(𝑡2) … LZ𝑎(𝑡2103840)
XM𝑎(𝑡1) XM𝑎(𝑡2) … XM𝑎(𝑡2103840)

ZT𝑎(𝑡1) ZT𝑎(𝑡2) … ZT𝑎(𝑡2103840)

]

𝑇

 ,       (12) 285 

Where GZ , LZ , XM , and ZT represent the Guza, Luzhou, Xiaomiao, and Zhaotong stations, respectively; 𝑎 indicates the 

selection of the surface strain 𝑆𝑎 component data; 𝑡 denotes the length of the time series; and 𝑇 denotes the transpose; and 

the fused data matrix 𝑅 serves as the input for the node information in the Graph Wavenet GNN. The constructed data matrix 

has a minute sampling interval with 1,440 data sampling points per day. The data matrix undergoes processing using a 

sliding window with a length of 60, where the sliding window size of 60 corresponds to one hour. A sliding window was 290 

implemented to predict the next hour’s data based on the current hour’s data. The sampled data are considered as the features  

of the sample, and the data shape is constructed as a tensor of [64, 60, 4, 1], where 64 denotes the sample length and [60, 4, 1] 

represents the input or output of a single data point. In this context, 60 signifies the sequence length, 4 is the number of 

nodes, and 1 is the number of node features. The selected data spanned 2010 to 2013, divided chronologically in a ratio of 

3:1:4. Specifically, 2010 and 2011 were allocated as the training and validation sets, respectively, whereas 2012 and 2013 295 

were used as the test set. 

     The subsequent step involved constructing the adjacency matrix of the graph. A node graph of the four stations is shown 

in Fig. 7. The graph is defined as 𝐺 =  (𝑉, 𝐸), where 𝑉 corresponds to the set of nodes and 𝐸 corresponds to the set of edges 

in the graph. The relationship between edges and nodes is expressed as 𝐸𝑖𝑗 = (𝑉𝑖 , 𝑉𝑗), 𝑉𝑖 , 𝑉𝑗∈ 𝑉. Graphs are commonly 
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represented using an adjacency matrix, where the adjacency matrix 𝐴 is a 𝑁 × 𝑁 square and 𝑁 denotes the number of nodes. 300 

The graph is written as 𝐴𝑖𝑗 = 1  if two vertices, 𝑖  and 𝑗 , are connected by an edge and 0 otherwise. The number of 

neighboring nodes for node 𝑉 is referred to as the degree of that node, and the degree matrix 𝐷 is an 𝑁 × 𝑁 diagonal array, 

with the elements on the diagonal being the degrees of individual vertices: 𝐷(𝑉𝑖) = 𝑁(𝑖). 

 

Figure 7: Node diagram of the four borehole strain observation stations constructed. The blue triangles indicate the locations of 305 
the four borehole strain stations, the green line indicates the distance between the two stations, and the red square indicates the 

epicenter of the Lushan earthquake. 

     The true distance between the stations was calculated using the corresponding latitude and longitude data of any two 

stations. Assuming that the Earth is a standard sphere, the principle for calculating the distance in latitude and longitude 

coordinates involves determining the distance between two points on the sphere, equivalent to the arc length of a cross-310 

sectional circle. For any two given points and their corresponding latitudes and longitudes, 𝐴(𝑁1, 𝐸1) and 𝐵(𝑁2, 𝐸2), with 

the average radius of the Earth as 𝑅 and the center of the Earth as the midpoint of the right angle coordinates, 𝐴 and 𝐵 

represent two points corresponding to the right angle coordinates: 

𝐴(𝑅 𝑐𝑜𝑠( 𝑁1) 𝑐𝑜𝑠( 𝐸1)), 𝑅 𝑐𝑜𝑠( 𝑁1) 𝑠𝑖𝑛( 𝐸1), 𝑅 𝑠𝑖𝑛( 𝑁1))，𝐴(𝑥1, 𝑦1, 𝑧1)  

𝐵(𝑅 𝑐𝑜𝑠( 𝑁2) 𝑐𝑜𝑠( 𝐸2)), 𝑅 𝑐𝑜𝑠( 𝑁2) 𝑠𝑖𝑛( 𝐸2), 𝑅 𝑠𝑖𝑛( 𝑁2))，𝐵(𝑥2, 𝑦2, 𝑧2) ,      (13) 315 

We calculated the angle between two points based on the coordinates of points 𝐴 and 𝐵. Let the angle between 𝐴 and 𝐵 be 𝛼; 

then, the cosine of the angle cos𝛼 is calculated as follows: 

cos𝛼 =
𝑥1∗𝑥2+𝑦1∗𝑦2+𝑧1∗𝑧2

√(𝑥1
2+𝑦1

2+𝑧1
2)∗√(𝑥2

2+𝑦2
2+𝑧2

2)

 ,           (14) 

Thus, the distance 𝑑 between two points can be expressed as: 

𝑑 =  R*𝑎𝑟𝑐𝑐𝑜𝑠(𝑐𝑜𝑠𝛼) ,            (15) 320 
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     The distance between two stations was determined by calculating the latitude and longitude coordinates of any two 

stations. Subsequently, an adjacency distance matrix for the node graph is constructed based on these distances. To optimize 

the adjacency matrix for use in the Graph Wavenet GNN, the distances between the nodes were normalized to represent the 

weights between them. This normalized adjacency matrix was then utilized in the Graph Wavenet model. 

5 Results 325 

In this study, we employed a Graph Wavenet GNN to analyze borehole data from multiple stations prior to the Lushan 

earthquake. The analysis focused on extracting pre-earthquake anomalies based on the results obtained. Anomalies were 

identified when the raw data surpassed the corresponding upper or lower prediction intervals established by the network. The 

prediction results for each station are shown in Fig. 8. 

 330 

Figure 8: Graph WaveNet graph neural network prediction results; red lines indicate real data and gray areas indicate prediction 

intervals. (a) Results of the Lushan earthquake prediction from Guza station; (b) Results of the Lushan earthquake prediction 

from Luzhou station; (c) Results of the Lushan earthquake prediction from Xiaomiao station; (d) Results of the Lushan 

earthquake prediction from Zhaotong station. 

     As shown in Fig. 8, our raw data closely align with the predicted intervals, demonstrating the Graph Wavenet accurate 335 

prediction of borehole data at each station. To identify point anomalies in the borehole strain data predictions, we employed 

the following criteria: (a) detecting more than 15 points outside the intervals within a 30-minute window; (b) identifying 

difference between the center of predicted intervals and the actual values exceeding 1.5 times the bandwidth of the intervals, 

with more than three such points in the same 30-minute period. Days meeting these conditions were considered anomalous 
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(Chi et al., 2023). To validate whether the extracted anomalous days were earthquake-related, we randomly selected raw data 340 

for four anomalous days from each station, as shown in Fig. 9. 

 

Figure 9: Plots of raw data from four randomly selected anomalous days at each station. 

     In Fig. 9, it is evident that the abnormal days we defined exhibit short-period, high-frequency oscillation signals in the 

original waveform, suggesting that these days are associated with crustal activity. Santis et al., (2017) study the 2015 Nepal 345 

event using Swarm magnetic satellite data. For the first time, an S-shaped fitting function was proposed in the abnormal 

accumulation analysis, and some abnormal differences were found in the area around the EQ epicenter from the abnormal 

accumulation results. By comparing the S-shaped function and the linear fitting, it was found that the S-shaped fitting was 

significantly better than the linear fitting. In this paper, the S-type function is used to fit the abnormal accumulation results. 

The cumulative values of the anomalous days over time are depicted in Fig. 10. 350 

     As depicted in Fig. 10a, the cumulative results of the anomalous days at Guza station exhibit a two-part concavity. One 

part displayed a rapid increase in the number of anomalous days from October 2012 to three months before the earthquake 

(January 2013), after which it leveled off. Our findings align with those of (Chi et al., 2013) and (Zhu et al., 2018), 

indicating that strain anomalies occurred during the 4-8 months preceding the earthquake, and the accumulation of 

anomalous days exhibited an accelerating trend. In the other segment, the number of anomalous days started to rise sharply 355 
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from March 2013 to June after the earthquake, after which the increase in anomalous days gradually leveled off. Relevant 

researchers have studied the short-term anomalies before the upcoming Lushan earthquake and believe that these anomalies 

occurred within a few days to a month before the earthquake(An et al., 2013; Jiang et al., 2013; Yu et al., 2020; Qiu et al., 

2013; Zhu et al., 2018). Our study yielded similar results, indicating anomalies in the one-month pre-earthquake period of 

the Lushan earthquake. Therefore, we posit that these anomalies might be related to the Lushan earthquake. The findings of 360 

(Yu et al., 2021), who observed a brief increase in anomalies followed by a return to a steady state in the two-month post-

earthquake period, align closely with the outcomes of our study. Li et al., (2017) analyzed the pre-earthquake anomalies of 

the Lushan earthquake using seismic rate data. The synthesized results show that there is an anomaly of rising earthquake 

frequency over time that lasts for 3-5 months from September 2010, which is highly consistent with our extracted anomaly 

of rapidly increasing anomalous days about 6 months before the earthquake. It indicates that we extracted strain short-term 365 

precursor anomalies associated with the Lushan earthquake. 

 

Figure 10: Accumulation results of anomalous days in borehole data from each station. The dashed line indicates the date of the 

earthquake, while the red and blue curves indicate the results of the S-shaped fitting before and after the earthquake, respectively. 

(a) Anomalous day accumulation results for Guza station; (b) Anomalous day accumulation results for Xiaomiao, Luzhou, and 370 
Zhaotong stations. 

     The findings of this study align with the theory of the synergism process of a fault. Ma and Guo, (2014) conducted a 

laboratory modeling study on the instability of a planar strike-slip fault, suggesting that the occurrence of an earthquake is 

linked to a fault's synergistic process, which encompasses three stages. In the initial stage, there's a deviation of the stress 

curve from linearity. The second stage is marked by the steady increase and expansion of isolated areas of strain release. In 375 

the final stage, the fault's sections of strain release accelerate and expand, alongside a rapid increase in strain levels in areas 

of strain accumulation. The period from September to December 2012 corresponds to the first and the second stages, where 

the stress curve deviates from linearity and isolated areas of strain release grow and extend steadily. From early 2013 up to 

the earthquake, aligns with the third stage, characterized by the accelerated expansion of strain release sections on the fault 
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and a swift rise in strain levels in strain-accumulation areas. The multitude of anomalies observed post-earthquake, including 380 

those caused by crustal fractures and aftershocks, were also evident. Similar phenomena were recorded at the XM and LZ 

stations, correlating with Ma's theory. Thus, we believe that the anomalous phenomena observed prior to the Lushan 

earthquake are related to the earthquake's gestation process. 

     Xu et al., (2019) used GNSS observation network data to study the deformation before the Lushan earthquake and found 

that a locking state that lasted from 5 months before the earthquake to 2 months after the earthquake occurred before the 385 

Lushan earthquake, and that under the locking state, the strain energy was still accumulating until the fault ruptured. When 

the stress accumulation in the pregnant seismic zone enters the nonlinear accumulation stage from linear accumulation, the 

resulting stress perturbation will lead to changes in the additional stress and strain states at nearby strain measurement points 

as the degree of stress and strain accumulation is further enhanced. Rock rupture experiments and theoretical studies have 

shown that pre-slip occurs before fault stick-slip, and the resulting stresses can lead to obvious anomalous responses at 390 

nearby stations (Li, 2002; Ma et al., 1998; Zhao et al., 1997). Zhang et al., (2020) conducted an analysis of cross-fault 

deformation preceding the Lushan Ms7.0 earthquake. Their findings revealed a considerable shift in the cross-fault 

deformation dynamics of the study area, transitioning from a state of “inheritance,” conducive to stress accumulation, to 

“reverse inheritance” more than six months prior to the earthquake. This shift exhibits characteristics of coordinated and 

accelerated fault activities, aligning with the metastable and sub-unstable states observed in the structural mechanics tests. 395 

We believe that even in a locked state, energy pre-release still occurs in the locked part of the fracture. When the strength of 

rock rupture enters the destabilization stage, the way of stressing the adjacent rocks before rupture shows obvious tension 

and compression regions, the reason for the generation is related to the local extension and weakening, and most of the 

anomalies will appear in the form of sudden jumps. In summary, our analysis suggests that 4-8 months prior to the Lushan 

Ms7.0 earthquake, the southern section of the Longmenshan rupture exhibited characteristics of a sub-stabilized state. This 400 

state led to the formation of relatively weak segments on the fault, contributing to an increase in the number of anomalous 

days potentially associated with the pre-release of energy. Simultaneously, the relatively strong fault segments underwent 

strain accumulation. In the days immediately preceding the earthquake, these strong segments reached a destabilized state 

owing to the accumulated strain, ultimately facilitating the occurrence of an earthquake (Ma and Guo, 2014). 

6 Discussion 405 

In Fig. 10b, we analyzed the anomalous day accumulation at other stations within the graph wavenet network. Remarkably, 

the accumulation patterns of anomalous days at Xiaomiao and Luzhou closely mirrored those observed at Guza, featuring 

concave trends in two distinct phases. However, the fitting results for the Zhaotong station deviated from the observed 

pattern. Analyzing the aforementioned fitting results, we observed a similar trend between the Xiaomiao and Luzhou stations, 

resembling the patterns identified at the Guza station. The initial phase witnessed a sharp increase in January 2013 and 410 

plateaued until March 2013, indicating an accelerated accumulation of abnormal days in the four months leading up to the 
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earthquake. In the second phase, spanning from 5 April 2013 to 28 April 2013, a surge was apparent 15 days prior to the 

earthquake, followed by a gradual decline 8 days post-earthquake. This pattern echoes the impending and post-earthquake 

anomalies observed at the Guza Station during the Lushan earthquake. A detailed analysis indicates that the Xiaomiao and 

Luzhou stations also detected anomalous signals during the gestation process of the Lushan earthquake, affirming that the 415 

anomalies at these three stations were not random but were indeed linked to the Lushan earthquake. Further scrutiny of the 

distances between the stations and the epicenter revealed a noteworthy pattern: Guza station, which was the closest to the 

epicenter, recorded the highest number of anomalous days; Xiaomiao and Luzhou stations, in proximity to the epicenter, 

registered fewer anomalous days than Guza station, whereas Zhaotong station, situated farther from the epicenter, reported 

the fewest anomalous days. This lends credence to the belief that the anomalous signals received by a station are associated 420 

with the distance between the station and epicenter. 

 

Figure 11: Regional daily mean variations in pressure, temperature, and rainfall in the Lushan area from 2010 to 2013. 

     Despite its advantages, such as high sensitivity and a wide frequency band during observation, the four-component 

borehole strainmeter remains susceptible to interference from surrounding sources. Figure 11 illustrates the impact of 425 

external factors by examining the regional daily mean data of pressure, temperature, and rainfall in the Lushan region (102° 

E, 27° N, 106° E, and 31° N), downloaded from 1 January 2010 to 31 December 2013, via NASA’s Giovanni-4 platform 

(https://giovanni.gsfc.nasa.gov/giovanni). The analysis of these data revealed distinct annual trends in pressure, temperature, 

and rainfall. Both pressure and temperature exhibited fluctuations within a certain range, displaying opposite trends, whereas 

rainfall underwent a consistent increase followed by a decrease each year, in accordance with seasonal changes. To mitigate 430 

the impact of external factors on borehole strain data, we conducted a differencing process on the daily regional averages for 

pressure, temperature, and rainfall in the Lushan area. The periodic changes can be removed by differential processing, 

which highlights the anomaly of the data. The results are shown in Fig. 12. 
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Figure 12: Differing results of regional daily mean pressure, temperature, and rainfall in the Lushan area from 2010 to 2013. 435 

     Figure 12 indicates that the regional daily mean differences in pressure, temperature, and rainfall in the Lushan area did 

not exhibit any anomalous changes. Therefore, we can exclude the influence of pressure, temperature, and rainfall on the 

anomalies observed in the pre-earthquake borehole data from Lushan. We have reason to believe that the anomalies we 

extracted before the Lushan earthquake are related to the seismogenic process. 

7 Conclusion 440 

In this study, we proposed a novel pre-earthquake anomaly extraction method based on a graph wavenet network structure 

that enables the integration of borehole strain data from multiple stations and makes predictions by learning both temporal 

and spatial correlations. The statistical analysis of pre-earthquake anomalies in borehole strain data from four stations, Guza, 

Xiaomiao, Luzhou, and Zhaotong, revealed two S-shaped upward trends in the pre-earthquake period for Guza, Xiaomiao, 

and Luzhou. This indicates that these three stations experienced notable strain anomalies during the gestational period of the 445 

Lushan earthquake. A comparison of anomaly accumulation rates among different stations indicated that the anomaly rate at 

Guza station was substantially higher than that at Xiaomiao and Luzhou stations, suggesting a correlation with distance from 

the epicenter. Raw data analysis of randomly selected anomalous days from each station confirmed the correlation between 

the extracted anomalous days and the pre-earthquake anomalies. Additionally, we analyzed regional daily averages of 

meteorological factors, preliminarily excluding their influence on the anomaly accumulation results. Therefore, we conclude 450 

that the graph wavenet network effectively extracted pre-earthquake anomalies from borehole strain data, highlighting its 

potential as a robust approach for studying pre-earthquake anomalies across multiple stations. 
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