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S1 Morphology measures from holographic image analysis 

In Sect. 3.1 of the main manuscript, we define several measured parameters of particles derived from the holographic imaging 

system of the SwisensPoleno. Each holographic particle image is binarized (converted from pixel values ranging from 0 to 1 15 

to a value of either 0 or 1 based on thresholding) and measurements are calculated using the scikit-image image processing 

software (van der Walt et al., 2014). The measurements discussed in the main text are defined here.  

The maximum area-equivalent diameter is defined as the diameter of a circle with the same 2-dimensional projected 

area as the imaged particle’s projected area, where the maximum value of this measurement from the two holographic images 

is taken. A boxplot showing the distribution of maximum area-equivalent diameters for each class used in the study is shown 20 

in Figure S1. The eccentricity is calculated from an ellipse fitted to the measured particle, where the value is the ratio of the 

distance between focal points of this ellipse to the major axis length of the particle. Major axis lengths of the particle are also 

derived from the lengths between the focal points of this fitted ellipse; the range of maximum major axis lengths of the particle 

types in this study is shown in Figure S2. An eccentricity value of zero indicates the particle image is a perfect circle, and as 

the value approaches 1, the particle is more elongated. Here, again, the maximum of this measurement is taken from the two 25 

particle images, and the distributions of the maximum eccentricity measurements for each class is shown in Figure S3. The 

solidity is calculated by taking the ratio of the area of the convex hull (smallest convex polygon that encloses the particle in 

the image) to the area of the particle. A solidity value of 1 indicates a “solid” particle outline that is smooth, and values will 

decrease as the particle in the image becomes more irregular, forming larger “holes” between the convex hull and particle 

areas. The maximum solidity for each particle class is shown in Figure S4. 30 



2 
 

S2 Machine learning specifications 

 

In this study, three separate machine learning models were tested for their ability to classify particle type. Two convolutional 

neural network (CNN) models and a multi-layer perceptron (MLP) model were trained and tested using the Keras (Chollet, 

2015) and Tensorflow (Abadi et al., 2016) frameworks in the Python programming were developed. A simplified overview of 35 

the model architectures and each layer’s output dimensions are shown in Figure S5.  

The first model, termed "Holo.-Only," is a convolutional neural network (CNN) that used the two holographic images 

of a particle as input. Each holographic image used for machine learning is 200x200 pixels, with 16 bits per pixel, with pixel 

values ranging from 0 to 1. To enhance both model performance and training efficiency, we employ transfer learning—a 

method enabling the application of a pretrained model from one data domain to a similar one without extensive retraining 40 

(Weiss et al., 2016). We utilize the EfficientNet B0 model (Tan and Le, 2019), previously trained on the ImageNet image 

database. This model requires an RGB image input (width x height x 3), with pixel values ranging from 0 to 255. Consequently, 

holographic images are stacked to create a 200x200x3, matching the necessary EfficientNet input layer, followed by mapping 

pixel values to the 0-255 data range. Each holographic image is used with an EfficientNet B0 layer, and their resultant outputs 

(7x7x1280) are concatenated (7x7x2560) and flattened (1x125440) prior to the final model layers. This model had 5,931,186 45 

total parameters, of which 1,881,615 were trainable in this application. 

We utilized an MLP model which used only the relative fluorescence spectra from the SwisensPoleno as input (“Fl.-

Only”). These data have dimensions 1x13, representing the 13 measured fluorescence combinations of excitation sources and 

emission wavebands for each event. For this model, the relative fluorescence values are also mapped to the 0 to 255 data 

domain and the passed through three fully connected dense layers (with depths of 1024, 64, and 16 nodes, respectively), each 50 

with the Rectified Linear Unit (ReLU) activation function. The output from the final dense layer is passed to the final model 

layers. This model had a total of 47,919 parameters, all of which were trainable. 

The third model used the two holographic images and relative fluorescence spectra as input (“Holo.+Fl.”). For this 

model, the outputs from each of the two previously described models (1x125440 for the Holo.-Only model and 1x16 for the 

Fl.-Only model) are concatenated together before the final model layers, for which all three models are the same. This model 55 

had a total parameter count of 5,979,090, of which 1,929,519 were trainable. 

Each of the three models shared the final model layers and training configurations. The final model layers common 

to all three model variants pass the output from each model through a 30% dropout layer (Hinton et al., 2012) before a final 

dense layer with linear activation and dimensions matching that of the number of classes used in the model. Finally, a Softmax 

activation layer provided the probability distribution of classification prediction certainty across tested classes. Each model 60 

utilized the Adam optimizer (Kingma and Ba, 2014) with a learning rate η=5e-6 and minimized the cross-entropy loss between 

predicted and true model outputs.  
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Prior to model training, the full dataset (142,072 events) was split randomly along a 60/40% split for training and 

testing, respectively; the same training and testing datasets were used across all three model architectures. The Holo.-Only 

model was trained for 80 epochs, the Fl.-Only model was trained for 150 epochs, and the combined Holo.-Fl. model was 65 

trained for 40 epochs. During model inference, the predicted class is chosen as the maximum of the Softmax distribution based 

on input data from the validation dataset. The accuracy reported throughout the study is the computed harmonic mean between 

the precision and recall of the model evaluation, also known as the f-score, where a value closer 1 indicates better model 

performance; detailed information about these evaluation metrics can be found in Müller and Guido (2016). 

References 70 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M. and others: 

Tensorflow: a system for large-scale machine learning., in Osdi, vol. 16, pp. 265–283., 2016. 

Chollet, F.: Keras, [online] Available from: https://keras.io/, 2015. 

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. R.: Improving neural networks by preventing 

co-adaptation of feature detectors, , 1–18 [online] Available from: http://arxiv.org/abs/1207.0580, 2012. 75 

Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. 

Track Proc., 1–15 [online] Available from: http://arxiv.org/abs/1412.6980, 2014. 

Müller, A. C. and Guido, S.: Introduction to Machine Learning with Python, O’Reilly Media, Inc. [online] Available from: 

https://www.oreilly.com/library/view/introduction-to-machine/9781449369880/, 2016. 

Tan, M. and Le, Q. V.: EfficientNet: Rethinking model scaling for convolutional neural networks, 36th Int. Conf. Mach. Learn. 80 

ICML 2019, 2019-June, 10691–10700, 2019. 

van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E. and Yu, T.: scikit-

image: image processing in Python, PeerJ, 2(1), e453, doi:10.7717/peerj.453, 2014. 

Weiss, K., Khoshgoftaar, T. M. and Wang, D. D.: A survey of transfer learning, Springer International Publishing., 2016. 

 85 



4 
 

 
Figure S1: A boxplot showing the maximum area-equivalent diameters for all events used in this study. The box indicates the 
quartiles of each class dataset, and the whiskers show the full range of the dataset. 
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Figure S2: A boxplot showing the maximum major axis length for all events used in this study. The box indicates the quartiles of 
each class dataset, and the whiskers show the full range of the dataset. 
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Figure S3: A boxplot showing the maximum eccentricity for all events used in this study. The box indicates the quartiles of each 
class dataset, and the whiskers show the full range of the dataset.  95 
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Figure S4: A boxplot showing the maximum solidity measurement for all events used in this study. The box indicates the quartiles 
of each class dataset, and the whiskers show the full range of the dataset. 
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Figure S5: Machine learning model architecture for the study, where numbers indicate the previous layer’s output dimensions. 
Three different model architectures are used with this existing structure. The left path (“Holo.-Only”, colored blue) uses only the 
two holographic images as input. The right path (“Fl.-Only”, colored red) uses only the relative fluorescence spectra, here depicted 105 
as a plot of relative intensities. The third model combines both the two holographic images and the relative fluorescence spectra, 
which are concatenated together. The output layer is the Softmax prediction probability output, which classifies particle type by 
taking the maximum of this output. Here, as an example, the holographic image inputs and relative fluorescence spectra plot 
represent a single hazel pollen event. 


