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Abstract. The continued increase in global plastic production and poor waste management ensures that plastic pollution is a 

serious environmental concern for years to come. Because of their size, shape, and relatively low density, plastic particles 

between 1-1000 μm in size (known as microplastics, or MPs) emitted directly into the environment (“primary”) or created due 

to degradation (“secondary”) may be transported through the atmosphere, similar to other coarse-mode particles, such as 15 

mineral dust. MPs can thus be advected over great distances, reaching even the most pristine and remote areas of the Earth, 

and may have significant negative consequences for humans and the environment. The detection and analysis of MPs once 

airborne, however, remains a challenge because most observational methods are offline and resource-intensive, and, therefore, 

are not capable of providing continuous quantitative information. 

In this study, we present results using an online, in situ airflow cytometer (SwisensPoleno Jupiter; Swisens AG; 20 

Emmen, Switzerland) – coupled with machine learning – to detect, analyze, and classify airborne, single-particle MPs in near 

real time. The performance of the instrument to differentiate single-particle MPs of five common polymer types (including 

polypropylene, polyethylene, polyamide, poly(methyl methacrylate), and polyethylene terephthalate) was investigated under 

laboratory conditions using combined information about their size and shape (determined using holographic imaging) and 

fluorescence measured using three excitation wavelengths and five emission detection windows. The classification capability 25 

using these methods was determined alongside other coarse-mode aerosol particles with similar morphology or fluorescence 

characteristics, such as a mineral dust and several pollen taxa. 

The tested MPs exhibit a measurable fluorescence signal that not only allows them to be distinguished from the other 

fluorescent particles, such as pollen, but can also be differentiated from each other, with high (> 90%) classification accuracy 

based on their multispectral fluorescence signatures. The classification accuracies of machine learning models using only 30 

holographic images of particles, only the fluorescence response, and combined information from holography and fluorescence 

to predict particle type are presented and compared. The latter model, using both the holographic images and fluorescence 



information for each particle, was the most optimal model used, providing the highest classification accuracy compared to 

employing models using only the holography or fluorescence response separately. The results provide a foundation towards 

significantly improving the understanding of the properties and types of MPs present in the atmosphere. 35 

1 Introduction 

Plastics composed of synthetic or semi-synthetic polymer materials are ubiquitous in nearly all components of contemporary 

society. From packaging to consumer products to roadway materials, plastics are utilized because of their low cost of 

production and material properties. Due to these factors and rising demand, plastic production has been increasing by 

approximately 8.4% annually, where only ~9% of plastics are recycled, 12% are incinerated, and the rest accumulates in 40 

landfills and in the environment (Geyer et al., 2017). In recent years, public awareness and concern of plastic pollution as a 

global environmental crisis is increasing (Davison et al., 2021), while, concurrently, the amount of plastic pollution in the 

environment has more than doubled in the period from 2000 to 2019 (Agrawala et al., 2022). 

Plastic may be introduced into the environment through their origin as “primary” particles, i.e., purposefully 

manufactured particles for specific applications, such as personal care products (Fendall and Sewell, 2009) or industrial 45 

abrasives and paints (Verschoor et al., 2016). Once in the environment, plastics may undergo physical (e.g. mechanical), 

radiative, chemical, and biological degradation, which alters their size, shape, and mobility within their environment (Brandon 

et al., 2016; Mao et al., 2020; Othman et al., 2021; Zhang et al., 2021). This degradation produces “secondary” fragments or 

particles. Primary or secondary particles are categorized into various size classes: macroplastics (> 1 cm), mesoplastics 

(between 1-10 mm), microplastics (referred throughout this publication as MPs; 1-1000 µm), and nanoplastics (1-1000 nm) 50 

(Hartmann et al., 2019; International Organization for Standardization, 2023). While MPs have been a known source of 

contamination in aquatic ecosystems (Barnes et al., 2009; Cole et al., 2011; Cózar et al., 2014), an interest in research to better 

understand airborne particles has been on the rise (Beaurepaire et al., 2021; Brahney et al., 2021; Enyoh et al., 2019). Because 

of their size, shape, and material characteristics (such as their low density, (Driedger et al., 2015)), MPs and nanoplastics may 

be emitted into the atmosphere and transported long distances (Brahney et al., 2021), similar to other coarse-mode (maximum 55 

length > 1 µm) particles, such as mineral dust (Schepanski, 2018; Weinzierl et al., 2017), reaching even the most pristine and 

remote areas of the Earth (Aves et al., 2022; Bergmann et al., 2019; Brahney et al., 2020a; Evangeliou et al., 2020). In addition, 

airborne MPs may cause significant health impacts if inhaled, as some particles can be in the respirable size range (Gasperi et 

al., 2018; Stuart, 1984), toxic (Prata et al., 2020), and bio-persistent (Mammo et al., 2020). Understanding the health impacts 

of microplastic particles is still evolving, and knowing their concentration, size distribution, and polymer type is imperative to 60 

address this growing concern (Prata, 2018).  

The atmosphere remains the least understood environmental compartment for the fate of MPs (Akdogan and Guven, 

2019; Zhang et al., 2020). The ubiquity of MPs in the environment and this lack of understanding has created the need for 

reliable, fast, and quantitative analysis methods. In particular, significant progress in studying the impact of atmospheric MPs 



is hindered by the lack of analytical methods which can effectively characterize particles in situ and in the size range relevant 65 

to atmospheric transport. As particle size decreases, the time and effort required for identification of the plastic particles 

increases (Shim et al., 2017) and the size limits of detection for common, robust microplastic identification instruments are 

reached (such as 10-25 µm for FTIR and Raman spectroscopy) (Primpke et al., 2020). Additionally, most conventional 

methods of MP detection and/or characterization are offline (i.e., they do not measure continuously) and require tedious sample 

preparation (Primpke et al., 2020). Many standard analysis protocols are also limited in the information they can provide about 70 

the MPs. For example, some methods may be limited to providing only information connected to the chemical signature of 

material being analyzed, while others – such as the popular methods utilizing optical microscopy – may only provide limited 

information about MP size and relative abundance (Primpke et al., 2020; Shim et al., 2017).  

An often-overlooked material property of airborne microplastics that has the potential to specify particle type is their 

natural ability to fluoresce, or autofluoresce, which results from the spontaneous emission of light at one wavelength by the 75 

fluorophores (molecule or compound capable of fluorescence) of the polymers from excited electromagnetic states when 

exposed to higher-energy, lower-wavelength light (Lakowicz, 2006). For polymers, this can be due strictly from their 

molecular structure, containing aromatic rings, conjugated double bonds, or other fluorophores, from stabilizers, additives, or 

impurities unintentionally added to the substance during the polymerization process or after production, or by some 

combination thereof. Most studies examine extrinsic fluorescence of MPs, which is a method of applying a dye stain that 80 

adheres to the plastics (Capolungo et al., 2021; Primpke et al., 2020), which only provides a means to distinguish MPs from 

other non-fluorescing materials when viewed on filter media from an optical microscope (Erni-Cassola et al., 2017; Maes et 

al., 2017). This technique may be prone to misidentification (Beaurepaire et al., 2021), and, like other popular MP identification 

methods, is offline and labor intensive. Some commercially available polymers have previously been examined for their 

autofluorescence (Allen et al., 1976; Asfour et al., 2020; Hawkins and Yager, 2003; Könemann et al., 2018; Lionetto et al., 85 

2022; Monteleone et al., 2021c, a; Ornik et al., 2020; Piruska et al., 2005; Spizzichino et al., 2016), but the identification of 

polymer types using their autofluorescence has been limited. For example, Ornik et al. (2020) examined the fluorescence 

spectra of eight, large commercially obtained polymer samples – including polypropylene, polyethylene, polyethylene 

terephthalate, and two polyamides – and demonstrated their emission spectra is generally distinguishable from non-polymer 

samples. They acknowledged that these same principles can be applied to microplastics of various sizes and shapes, while 90 

leveraging advanced analysis methods such as machine learning, for high accuracy classification. 

One recent work has shown the promising ability to classify airborne MPs using their autofluorescence (Gratzl et al., 

2024). Here, Gratzl et al. (2024) leverage the Wideband Integrated Bioaerosol Sensor (WIBS; Droplet Measurement 

Technologies, Longmont, CO, USA) to detect microplastics based on specific fluorescence signatures excited at two 

wavelengths and detected in two emission wavelength bands. While their approach provides a promising step towards a greater 95 

understanding of MPs in the atmosphere, the recent introduction of the SwisensPoleno air-flow cytometer (Swisens AG; 

Emmen, Switzerland), was recently shown to classify biological aerosol particles with high accuracy (Erb et al., 2023, 2024; 

Sauvageat et al., 2020), expanding the spectral capabilities of the WIBS, and combines additional particle information to 



strengthen the classification ability of MPs and other atmospheric coarse-mode aerosol. The SwisensPoleno (model: Jupiter) 

characterizes single particles by combining sensor information from digital holography from two orthogonal holographic 100 

imagers, and steady state spectrally resolved fluorescence intensity. The multi-method platform is complimented by state-of-

the-art machine learning algorithms that provide the classification of airborne particle type in near real-time.  

The objective of this study is to assess the fluorescence response of various common microplastics and to identify 

whether this information, together with holographic image of individual particles, measured using the SwisensPoleno can be 

used to distinguish MPs from other particle types. This fluorescence and other measured parameters, such as the particle 105 

morphology, are compared to data of other airborne, coarse-mode particles, including mineral dust, several taxa of pollen, and 

water droplets. These comparisons yield an estimation of viability for the online, in situ detection and classification of airborne 

MPs using the SwisensPoleno multi-sensor approach. 

2 Methods 

2.1 SwisensPoleno 110 

The SwisensPoleno (model: Jupiter; manufactured by Swisens AG; Emmen, Switzerland) is an air-flow cytometer providing 

continuous, in situ characterization of single, coarse-mode aerosol particles using multiple measurement methods in a single 

instrument. It combines sensor information to characterize single particles using digital holography from two orthogonal 

holographic imagers and spectrally resolved fluorescence intensity measurements. In addition, the instrument also provides a 

measurement of elastic forward- and polarized side-scattering of each particle; for this study, however, we focus only on using 115 

only the fluorescence and holographic imaging systems of the SwisensPoleno. The final component of this multi-method 

instrument is an integrated machine learning classification model, allowing the instrument to identify particle type in near-

real-time by training models using all measured properties of individual airborne particles. According to the manufacturer, the 

instrument has an effective flow rate of 40 LPM and particles can be detected in their multi-sensor system between that are in 

the size range 0.5-300 μm. 120 

The SwisensPoleno resolves two digital holograms of the same single particle in the sample stream using digital in-

line holography (Berg, 2022; Berg and Videen, 2011), with imaging sensors placed perpendicular to each other and the imaging 

plane perpendicular to the sample flow. Using only holographic imaging and image analysis, the SwisensPoleno has been used 

to detect and classify pollen particles from several different plant species in the size range between 10 – 200 μm with high 

accuracy (Sauvageat et al., 2020), later adapted to identify fungal spores during ambient monitoring in Switzerland (Erb et al., 125 

2023), and recently shown to be successful when combining holography and fluorescence information for pollen classification 

(Erb et al., 2024). After hologram reconstruction and processing, each particle image is 200x200 pixels, with a resolution of 

0.595 µm per pixel. For size and shape statistics, each holographic image is binarized and analyzed using the scikit-image 

software package (van der Walt et al., 2014) to determine a wide range of characteristic image properties (e.g., mean pixel 



intensity) and morphological features of each particle, including shape (e.g., eccentricity, solidity, etc.) and size (e.g., major 130 

and minor axis lengths, area-equivalent diameter, etc.). 

For fluorescence measurements, the SwisensPoleno uses LEDs at 280 and 365 nm and a 405 nm laser diode for 

fluorescence excitation. The excitation sources are collimated (405nm) or focused (280nm, 365nm) and filtered using bandpass 

filters to narrow their emission spectrum around their center wavelength. The wavebands for detecting fluorescence emission 

are 333-381 nm, 411-459 nm, 465-501 nm, 539-585 nm, and 658-694 nm (referred to further using their center wavelengths: 135 

357, 435, 483, 562, and 676 nm). Thus, the combination of excitation sources and measurement channels provides 13 viable 

measurements for each particle, which we will refer to using the notation of λex/λem for each excitation/emission channel. Note 

that the λex/λem=365/357 nm and 405/357 nm channels are not included in the SwisensPoleno measurement or analysis, because 

the fluorescence emission detection wavelengths are longer than the excitation wavelengths. The instrument’s fluorescence 

system covers the excitation/emission range typical for bioaerosols (Pöhlker et al., 2012). Importantly, the SwisensPoleno does 140 

not differentiate between natural particles that are inherently autofluorescent, such as some bioaerosols, and particles derived 

from synthetic materials such as microplastics. Further detail of the SwisensPoleno fluorescence system can be found in the 

supplemental information.  

The integrated instrument software makes use of a machine learning classification model for real time, single-particle 

classification using its holographic images. The model used for real-time or “live” particle classification during instrument 145 

deployment is developed, trained, and tested offline on particle types the user expects the instrument to encounter. The 

SwisensPoleno is shipped with a default model trained by MeteoSwiss with supervised learning on a subset of common central 

European pollen taxa and water droplets. However, users can train, evaluate, and update their instrument with a classification 

model prepared on other data. For this study, machine learning classification models were created, trained, and evaluated in a 

separate Python programming environment decoupled from the instrument. The details of the machine learning models used 150 

in this study are outlined in Sect. 2.4.  

To create individual particle datasets for this study, the SwisensPoleno instrument inlet was coupled to a particle 

atomizer (SwisensAtomizer) – also manufactured by Swisens AG – that entrains solid, dry test particles into the sample flow 

of the instrument in laboratory or test environments. The atomizer uses a small (~5 cm) acoustic speaker to apply mechanical 

vibrations of user-specified frequencies and amplitudes to a small volume of test particles (typically < 1.5 mL). The sample 155 

volume is physically in contact with the speaker, so that the acoustical vibrations are transferred directly to the test material 

inside the sample volume, sometimes inducing granular convection. Particles at the top of the volume are aerosolized because 

of this vibration and a small amount of air is introduced into the sample volume to encourage the aerosolized particles to exit 

the sample volume and enter the sample stream of the SwisensPoleno instrument.  

2.2 Materials and material preparation 160 

A total of 15 particle types were analyzed using the SwisensPoleno instrument in a laboratory setting, assessing their 

fluorescence response and morphology through fluorescence spectroscopy and holographic imaging, respectively. An 



overview of particles used in this study can be found in Table 1, including their class names, which are referred to throughout 

this work for simplicity. In addition, the total number of events (number of individual particles successfully detected with both 

holographic imaging and fluorescence) for each class are shown. The investigated particle types are categorized as 165 

"microplastic," "pollen," and "other." Five microplastic particle types were tested included polyamide 12 (PA), polyethylene 

(PE), polyethylene terephthalate (PET), poly(methyl methacrylate) (PMMA), and polypropylene (PP), which represent 

common polymers used in society and frequently found as microplastics in the environment (Koelmans et al., 2022; Plastics 

Europe AISBL, 2022; Zhang et al., 2020). All microplastic particles were commercially purchased and tested in the dry state. 

To the best of the authors’ knowledge, polymer samples used in this study are free from solvents, additives, or colorants. In 170 

addition to these MPs, other particle types tested included Arizona Test Dust, a volcanic ash sample from Iceland, water 

droplets, glass reference microspheres, and pollen samples from six different taxa. Although not all particle types in this study 

are atmospherically relevant for ambient particle classification (e.g., glass microspheres), they were selected to represent a 

mixture of overlapping morphology, size, and/or fluorescence properties to assess the instrument's ability to differentiate 

between similarly featured aerosol particles.  175 

Polyamide 12 (PA), also known as nylon 12 or PA12, was purchased in powder form (Goodfellow GmbH; Hamburg, 

Germany). The listed particle size range was 10-50 µm with a reported density of 1.020 g/cm3. PA has many practical 

applications, including product packaging, electrical insulating materials, and sports-related materials (Griehl and Ruesteivi, 

1970) and is a common pollutant to the environment (Sun et al., 2019). 

Table 1: Overview of particles tested in this study and their properties. 180 

Category  Particle type 
Acronym/ 

Class name 
Material supplier/source Morphology 

Material 

density a 

(g/cm3) 

Maximum area-

equiv. diameter b  

(µm)  

Number of 

events 

Microplastic        

 Polyamide (Nylon) 12 PA Goodfellow GmbH Irregular 1.02 27.46 ± 3.38 15933 

 Polyethylene PE Cospheric LLC Spherical 0.96 25.32 ± 7.73 12717 

 Polyethylene terephthalate PET Goodfellow GmbH Irregular 1.38 15.15 ± 3.64 6930 

 Poly(methyl methacrylate) PMMA Cospheric LLC Spherical 1.19 32.45 ± 4.40 8485 

 Polypropylene PP Sigma Aldrich Irregular 0.86 24.00 ± 9.05 8679 

Pollen        

 Fagus sylvatica Beech Thermo Fisher Scientific Irregular Unknown 44.53 ± 2.53 6840 

 Betula pendula Birch Thermo Fisher Scientific Irregular Unknown 21.83 ± 1.73 15503 

 Poa pratensis Grass Thermo Fisher Scientific Irregular Unknown 25.85 ± 2.35 11521 

 Corylus avellana Hazel Thermo Fisher Scientific Irregular Unknown 25.23 ± 1.71 10603 

 Pinus nigra Pine From source Irregular Unknown 48.03 ± 2.60 8798 

 Ambrosia artemisiifolia Ragweed Thermo Fisher Scientific Quasi-spherical Unknown  19. 93 ± 1.11 9102 

Other        

 Volcanic ash Ash From source (Eyjafjallajökull) Irregular 2.6c 10.12 ± 2.40 6064 

 Mineral dust Dust Powder Technology Inc. Irregular 2.5-2.7 12.47 ± 4.18 9430 

 Soda lime glass 

microspheres 
Glass Thermo Fisher Scientific Spherical 2.5 30.67 ± 1.77 5801 

 Water droplets Water Ultrapure MilliQ water Spherical 1 12.73 ± 4.42 5666 

a Provided by the manufacturer, unless otherwise noted. 



b Defined as the diameter of a circle with the same area as the imaged particle, taking the maximum value from the two holographic images of each particle. Values represent the 

mean of each dataset ± one standard deviation. 
c Schumann et al. (2011)  

 185 

Low density polyethylene (PE) microspheres in the nominal size range of 10-106 µm were purchased from Cospheric 

LLC. (Santa Barbara, CA, USA). The reported density is 0.96 g/cm3. PE is used, for example, in reusable bags, rigid trays and 

containers, and agricultural and food packing films and made up approximately 14.4% of the 2022 global plastics production  

(Plastics Europe AISBL, 2022). Because of its high commercial use and potential environmental impact (Royer et al., 2018), 

PE remains a potentially important atmospheric microplastic to characterize.  190 

Polyethylene terephthalate (PET) is one of the most common polymer types in use and has applications in textiles, 

beverage bottles, packaging materials, and other common uses (De Vos et al., 2021). While PET remains one of the most 

recyclable polymer materials (Plastics Europe AISBL, 2022), much of it ends up in the environment (Schmid et al., 2021). For 

this study, PET MPs were generated by milling larger PET granules (Goodfellow GmbH; Hamburg, Germany) using a Retsch 

ZM200 rotor mill. The MPs were sieved through a 50 µm stainless steel mesh, yielding the size fraction < 50 µm for the 195 

sample.  

A sample of poly(methyl methacrylate) (PMMA) microspheres was purchased from Cospheric LLC. (Santa Barbara, 

CA, USA). According to the manufacturer, the density is 1.19 g/cm3 and more than 90% of the purchased PMMA microspheres 

is reported to lie in the size range of 27 – 45 µm. PMMA, also known as acrylic, has a wide variety of practical uses (Ali et 

al., 2015), including the use as a transparent plastic alternative to glass (i.e., Plexiglas). PMMA can be found in environmental 200 

pollution (Brahney et al., 2020b; Thompson, 2004), reaching even the most remote regions of the world (Aves et al., 2022), 

but represents a polymer with low demand from plastic converters (Plastics Europe AISBL, 2022). 

Polypropylene (PP) microplastics were produced by milling larger granules purchased from Sigma Aldrich (ref: 

427888; isotactic, average Mw ~250,000). Briefly, the granules were melted into thin (~1 mm) cuboids at 180°C for 1 h then 

frozen at -70°C. The frozen cuboids were then milled in ice-cold ethanol for seven 30 sec cycles with a knife-mill (Retsch 205 

GmbH) and size fractionated using a vibratory sieve shaker (Retsch GmbH). The fraction taken from the vibratory sieve shaker 

was between 38-50 µm. This fraction was dried prior to use. 

While the pollen taxa in this study represent a small subset of other fluorescent airborne bioaerosol (Pöhlker et al., 

2013), pollen particles are included in this study to assess the ability for the instrument to distinguish aerosol particle types 

beyond those previously analyzed with the SwisensPoleno (Erb et al., 2024; Sauvageat et al., 2020). The six different pollen 210 

samples tested in the SwisensPoleno were measured in a desiccated state; the bulk densities of these samples are unknown. 

Betula pendula (birch), Fagus sylvatica (beech), Corylus avellana (hazel), Ambrosia artemislifolia (ragweed), and Poa 

pratensis (grass) source materials were purchased from Allergon AB (Ängelholm, Sweden) and were introduced into the 

SwisensPoleno instrument using the SwisensAtomizer as described above. A sample of pine pollen presented in this study was 

sampled directly from a recent cutting of a flowering pine tree (Pinus nigra). The cutting with male flowers was placed within 215 



a sealed chamber that was continuously flushed with particle-free air and directly connected to the SwisensPoleno. Pollen 

shedding was encouraged by blowing air at the flowers using a small fan. 

Arizona Test Dust (Powder Technology Inc., Arden Hills, MN, USA) was investigated with the SwisensPoleno for 

its response to a reference mineral dust sample. In figures, the class name for this sample is “dust”. For this study, the A2  

“fine” size fraction was tested in the instrument, where the manufacturer reports a nominal size range of up to 80 µm and 220 

composition of multiple mineral components dominated by silicates. Mineral dust and microplastics may share emission 

pathways (Brahney et al., 2021), and the use of mineral dust in this study represents a particle type with similar size and 

morphological features as microplastic fragments. Mineral dust particles contain a variety of mineral compositions which 

depend greatly on their geographical location (Engelbrecht et al., 2016), some of which have been shown to autofluoresce 

(Savage et al., 2017). The autofluorescence of Arizona Test Dust has previously been measured (Pöhlker et al., 2012), which 225 

showed relatively low autofluorescence intensity with no discernable spectral features.  

A sample of volcanic ash was collected following the 2010 volcanic eruption of Eyjafjallajökull on Iceland. This 

polydisperse sample represents an additional coarse-mode particle type with similar morphology and size to microplastic 

fragments found in the atmosphere.  

Water droplets were produced through the nebulization of Milli-Q 18.2 MΩ-cm ultrapure water using a medical 230 

nebulizer. Ultrapure water is expected to have no fluorescence response (see supplemental information for more information 

about the SwisensPoleno fluorescence system); however, the spherical morphology presents an opportunity to test 

classification accuracy alongside other spherical or quasi-spherical particles.  

Glass microspheres, purchased from Thermo Fisher Scientific Inc., represent a common NIST-traceable particle 

standard for use in aerosol instrument calibration and testing (Dollner et al., 2024; Pinnick et al., 1981). Here, we tested glass 235 

microspheres with a nominal mean diameter 30 ± 1.9 µm as reported by the manufacturer. While the fluorescence information 

of glass microspheres will not be relevant for ambient coarse-mode aerosol monitoring, the microspheres share a morphology 

of other common spherical microplastic beads used in, for example, personal care products (Rochman et al., 2015) and will 

provide useful information in assessing the instrument’s ability to discern different quasi-spherical particles. 

2.3 Dataset creation and cleaning 240 

The SwisensAtomizer was physically coupled to the inlet system of the SwisensPoleno, and each class of tested particles was 

introduced into the instrument by adjusting the atomizer’s vibrational frequency and amplitude and amount of air introduced 

into the sample volume. Particles were generated in this manner for each particle type until a suitable number (> 5000) of 

particles were successfully detected by both the holographic imaging and fluorescence systems, referred to henceforth as an 

event. A total of 142,072 events were used in this study. After a dataset for one particle type is recorded, further processing is 245 

needed to filter unwanted events from the dataset. These unwanted events, for example, can include: events for which the 

particle lies outside a suitable position for holographic image reconstruction, which results in a blurred, out-of-focus particle 

image; events clearly consisting of particle aggregation; or, unambiguous contamination by particles of types not intended to 



be measured, visible through holographic imaging or detectable through unexpected fluorescence spectra of individual 

particles. For example, while training for the mineral dust dataset, a pine pollen particle event can be unambiguously filtered 250 

out due to its distinct shape and fluorescence response measured by the SwisensPoleno. During dataset preparation for machine 

learning training and testing, corrections for stray light (i.e., measurements without particles present in the measurement 

volume) are applied to individual events in each dataset.  

The distribution of events among the particle types, along with a count distribution of each particle's maximum area-

equivalent diameter (defined as the diameter of a circle with the same area as the imaged particle, taking the maximum value 255 

from the two holographic images of each particle), is illustrated in Figure 1.  

 

Figure 1: Count distributions by a) class and b) size for each particle type. The maximum area-equivalent diameter is defined as the 

diameter of a circle with the same area as the imaged particle, and the maximum is taken from the two holographic images from 

each event. 260 

2.4 Machine learning 

The combination of measurement methods from the SwisensPoleno creates a unique set of data for each particle event. These 

particle event data can then be used for training a supervised machine learning classification model to predict particle types in 

near real-time. A supervised machine learning classification model is one that maps predefined, discrete categories or classes 

to the input data corresponding to that output (Müller and Guido, 2016); in this study, the input data is represented by the two 265 

holographic images and/or the fluorescence spectra for each particle, and the output is the known particle type from that event. 

The SwisensPoleno has already demonstrated high accuracy pollen taxa classification using its holographic imaging system 

and supervised machine learning classification model (Sauvageat et al., 2020), and, by combining holographic images with 

more information, such as fluorescence, the classification accuracy of pollen can become more accurate (Erb et al., 2024). This 

is especially important if the features that are used to describe the particle overlap across different particle types, such as 270 



particle autofluorescence (Pöhlker et al., 2012). In such cases, the use of machine learning can be particularly useful to find 

relationships between particle type and measured particle data that traditional analysis methods cannot distinguish.  

In this study, two convolutional neural network (CNN) models and a multi-layer perceptron (MLP) model were 

trained and tested using the Keras (Chollet, 2015) and TensorFlow (Abadi et al., 2016) frameworks in the Python programming 

language to understand the ability of the SwisensPoleno’s single particle holography and fluorescence measurements to 275 

accurately predict particle type. One CNN model (“Holo.-Only”) used only the two holographic images of a particle as input, 

an MLP model used only the fluorescence spectra as input (“Fl.-Only”), and the third, hybrid CNN and MLP model used both 

images and fluorescence as input (“Holo.+Fl.”). Each of the three models were evaluated on the same set of particle events. 

The two models that contained the holographic images as an input layer (Holo.-Only and Holo.+Fl.) additionally employed 

transfer learning using EfficientNet (Tan and Le, 2019) to improve model performance by increasing generalization and 280 

efficiency by greatly reducing resources needed for training. The dataset for this study was divided into training and testing 

subsets using a random 60/40% split. This partitioning resulted in 56,824 events distributed across the 15 datasets that were 

subsequently used for model evaluation. Classification accuracy was evaluated using a weighted average f-score (Müller and 

Guido, 2016), which will be reported as an accuracy in this work. Further details of model architecture and other specifications 

can be found in the supplemental information.    285 

3 Results 

3.1 Morphology through digital holography 

Figure 2 shows two representative events acquired using the instrument’s imaging system for each particle type, displaying 

the range of particle sizes and morphological features used in this study. The maximum area-equivalent diameter means (± 

one standard deviation) for each class are shown in Table 1. The distributions of particle measurements for data of each class, 290 

including the maximum area equivalent diameters, maximum major axis lengths, maximum eccentricity, and maximum 

solidity, are shown in Supplemental Figures S1-S4, respectively. The Ash particle type represented, on average, the smallest 

particles measured in this study with a mean maximum area-equivalent diameter of 10.12 ± 2.40 µm; pine particles contained 

the largest mean size with 48.03 ± 2.60 µm. However, the PP MP class had the largest single particles and greatest range to 

their measured size, with major axis lengths ranging from ~5-100 µm. Despite sieving during sample preparation, the milling 295 

of PP and PET particles from larger granules yielded an unexpectedly large number of particles < 10 µm, which – because the 

samples were untreated – may have aggregated to form large clusters to create the resulting wide size distributions. PE, PMMA, 

ragweed, glass, and water particle types represent (quasi-)spherical particles tested in this study, while PA, PET, PP, ash, 

mineral dust, and the remaining “pollen” types are non-spherical and irregular in shape. The eccentricity (a measure of how 

elliptical a particle is, where a value of zero indicates a circle and values approaching 1 indicate a particle is becoming more 300 

elliptical) of PMMA, glass, PE, water, and ragweed are lowest among the different types, with mean minimum eccentricities 

of 0.16 ± 0.05, 0.16 ± 0.06, 0.22 ± 0.08, 0.25 ± 0.12, and 0.25 ± 0.08, respectively. PP, PET, mineral dust, and ash types 



represent irregular, asymmetric, and rough-edged particles and their size distributions are similar to each other but much 

broader compared to other types (Figure 1). Solidity, a measure of a particle’s 2-D projected roughness (Liu et al., 2015; 

Sinkhonde et al., 2022), for PP, PET, mineral dust, and ash is the lowest of all types (0.91 ± 0.04, 0.91 ± 0.04, 0.92 ± 0.04, and 305 

0.94 ± 0.03 respectively). As expected, the various pollen types tested were more homogenous in morphology compared to 

other types, indicated by their narrow maximum area-equivalent diameter size distribution (Figure 1). 

 

Figure 2: Representative holographic images of two particles from each particle category and each particle type. For each valid 

imaging event, two images are produced per particle, labeled here as “Holo. 0” and “Holo. 1”. Each image is 200x200 pixels at 0.595 310 
µm/pixel. 100 µm scale bars are shown for each image. 

3.2 Absolute fluorescence spectra 

The mean absolute fluorescence response as measured by the SwisensPoleno for the different particle types is shown in Figure 

3. Here, the water dataset is shown to represent the baseline fluorescence response of the instrument, as the ultrapure water is 

expected to have no detectable autofluorescence beyond an instrument background signal.  315 



The “other” category of particles (i.e., ash, mineral dust, glass, and water), show generally low and featureless 

fluorescence across the excitation/emission channels. The glass microspheres have an enhanced fluorescence response in all 

channels with the 280 nm excitation source and in the λex/λem=405/676 nm channel, which has been shown to be non-negligible 

in a previous investigation (Boiko et al., 2015). Mineral dust shows a slightly enhanced fluorescence response above the 

baseline, broadly spread across excitation and emission channels, coinciding with a previous investigation (Pöhlker et al., 320 

2012). The ash sample displayed little to no fluorescence above the water (background) signal.  



 

Figure 3: Mean absolute fluorescence intensity (Volts) measured by SwisensPoleno for all particle classes, where error bars are 

omitted for plot clarity. Columns represent three excitation sources, and the x-axis of each subplot shows center wavelengths of 

emission channels (not to scale). In each subplot, the "water" class represents instrument background fluorescence signal and a 325 
logarithmic y-axis used. a) "Other" category, b) "Pollen" category, and c) “Microplastic” category, where the enhanced fluorescence 

of MP particles in the 280/375 nm excitation/emission can be seen, several orders of magnitude above the "water" background 

signal. 



 Pollen particles show an enhanced fluorescence response in all channels. For the 365 nm and 405 nm excitation 

sources, the average fluorescence response is more similar among the pollen types, exhibiting a broad “hump” across detection 330 

wavelengths where intensities are largely highest in the 483 nm emission detection channel. Generally, the grass pollen (Poa 

pratensis) showed the highest absolute signal response compared to other pollen species, similar to previous studies 

(Lichtenthaler and Schweiger, 1998; Pöhlker et al., 2013).  

For MPs, the mean fluorescence in the λex/λem=280/357 nm channel exhibits the highest response compared to the 

other particle types tested, where the absolute intensity is several orders of magnitude higher than the instrument background 335 

(water) signal. Conversely, the signal from the 658–694 nm waveband for all excitation sources was about an order of 

magnitude lower for MPs compared to the tested pollen species. Thus, for the 280 and 365 nm excitation sources, the mean 

intensity of the absolute fluorescence signal decreased with increasing wavelength. For the λex/λem=280/357 nm channel, the 

mean measured absolute fluorescence response for polyethylene terephthalate (PET) was highest (0.41 ± 0.19 V) compared to 

other datasets tested. For the other two excitation sources, the highest absolute fluorescence response among MPs was from 340 

the PP class. However, this is due to the largest particles found in the PP dataset, where the particle size has a direction 

proportionality to its fluorescence (Hill et al., 2002). In order to address this and other dependencies, the SwisensPoleno 

calculates a relative fluorescence for each detected particle, as described in the supplemental information.  

3.3 Relative fluorescence spectra 

Figure 4 details the differences between absolute and relative fluorescence for the 280 nm excitation source across all detection 345 

wavebands for the five MP particle types. The size dependence for this excitation source and measurement channels of the 

absolute fluorescence shows a power law relationship with the measured intensity; that is, the relationship between absolute 

fluorescence intensity and size is linear in log-log space, and the slope of this relationship typically varies between ~2-3 (Hill 

et al., 2015; Könemann et al., 2018). This relationship holds for all MPs tested in this study except for PET, which has a slope 

of ~1.5 for the 280 nm excitation source response. After applying the normalization technique to calculate a relative 350 

fluorescence, the size dependence (among other non-idealities) was largely eliminated from the measurements (Figure 4b). 



 

Figure 4: a) Absolute and b) relative fluorescence of the 280 nm excitation source for MP classes and water droplets, indicating how 

the size dependence of the fluorescence is mostly eliminated using a relative metric. For each dataset shown, the fluorescence values 

are averaged for each discrete size bin, and error bars represent the calculated standard error for the means in each bin. 355 

The mean relative fluorescence response for the various tested particle types is shown in Figure 5. The relative 

fluorescence spectra for MPs exhibit a noticeably higher response in the λex/λem=280/357 nm channel compared to other 

particles tested, which do not display this spectral feature: the mean λex/λem=280/357 nm relative fluorescence values for MPs 

are greater than ~0.44, whereas for all other particle types tested, the mean values less than 0.33. Across all excitation/emission 

channels, the mean relative fluorescence values for the tested pollen types remain below ~0.5, indicating that no one channel 360 

contributed to a majority of the spectral response of the respective excitation source. Because water, ash, dusts, and glass 

particles exhibit relatively low fluorescence and little variation across the detection wavelength bands, their relative 

fluorescence spectra are generally flat.  



 

Figure 5: Relative fluorescence intensities for each particle type category, where the spectral “signature” of the various particles 365 
tested is more apparent, where error bars are omitted for plot clarity. a) “Other” category, b) “Pollen” category, and c) 

“Microplastic” category. 



The relative fluorescence spectra represent 13 pieces of data for each valid event in the SwisensPoleno, and the ability 

to discern common patterns and relationships in this multidimensional dataset become difficult. We employed Uniform 

Manifold Approximation and Projection (UMAP) analysis (McInnes et al., 2018) to better understand the similarities and 370 

differences of the relative fluorescence spectra. UMAP is a nonlinear dimensionality reduction technique that aims to preserve 

the local and global structure of high-dimensional data in a lower-dimensional space (McInnes et al., 2018). The algorithm 

builds a weighted nearest-neighbors graph, where the weights of the connections are determined by the local density of points 

and their distances in the original high-dimensional space. UMAP then optimizes the embedding by finding a low-dimensional 

representation that minimizes the difference between the distances of connected points in the graph and their distances in the 375 

lower-dimensional space, capturing the inherit, underlying structure of the data, and highlighting the relationships and 

similarities or differences between neighboring points. This 2D representation can then be used to aid visualization and 

highlight these relationships between the data. Figure 6 shows the results of the UMAP algorithm applied to the relative 

fluorescence for all events of each data type used in this study, projected into two dimensions. The spacing of data points in 

the UMAP plot reflects their similarities or differences: points that are close together indicate that they are more similar based 380 

on their spectral characteristics or fluorescence spectra; conversely, points that are far apart in the UMAP plot suggest greater 

dissimilarity or differences in their spectral properties. As expected, events from each dataset form relatively tight clusters, 

and datasets which share relative fluorescence spectral features have clusters in the UMAP that are close together or overlap. 

For example, water, ash, mineral dust, and glass particles overlap in the center of the plot, indicating that their relative 

fluorescence spectral features also overlap. The birch and hazel pollen datasets share similar relative fluorescence spectral 385 

shapes (Figure 5b), and this is reflected in the UMAP representation with slightly overlapping clusters. For all other particle 

types, clustering in the UMAP plot is more distinct, which leads to the interpretation that the underlying relationships in the 

relative fluorescence spectral features are also quite distinct from one another.  



 

Figure 6: UMAP plot of the relative fluorescence spectra for every event in this study. The UMAP analysis depicts the high-390 
dimensional relative fluorescence spectra in a low dimensional (2D) representation, where each dot represents one event in the study. 

This 2D representation also provides insight into the relative similarity and difference between the relative fluorescence spectra: the 

closer each event is, the more similar their relative fluorescence spectra; conversely, and events that are further apart represent 

relative fluorescence spectra that are more dissimilar. Each dot is colored according to its class name in the legend; the text for each 

class is colored according to the category of particle types. The events from the particle classes in the “other” category (i.e., ash, dust, 395 
glass, and water) are clustered and overlapping near the center of the UMAP plot, indicating the underlying similarity of relative 

fluorescence in this study.  

3.4 Particle classification using machine learning 

An integrated component of the SwisensPoleno workflow is the ability to classify particle type in near-real time by applying 

a trained machine learning model. This capability was assessed using the measurements in this study by employing three 400 

different machine learning model architectures utilizing holographic images and relative fluorescence spectra of the particles 

as input parameters for particle type classification.  

The first model investigated uses a convolutional neural network (CNN) that employs only the two holographic 

images as input (“Holo.-Only”). This model differs from models used in previous studies of bioaerosol identification (Erb et 

al., 2024; Sauvageat et al., 2020) by expanding classified particle types beyond bioaerosol and evaluating a different model 405 

architecture. Supervised learning classification models often employ the use of a confusion matrix to convey model 

performance. The values in a normalized confusion matrix show the classification or misclassification for different classes in 



a classification model, where the values are expressed as percentages or proportions relative to the total number of particles in 

each true class. The diagonal values represent the correct classification for each class, while the off-diagonal values represent 

the misclassification percentages. The confusion matrix and performance for the Holo.-Only model can be seen in Figure 7. 410 

The model training resulted in an overall accuracy of 90% on the test dataset. Particle types that share size and shape 

characteristics perform worse than those with defining features, such as pollen. For example, ash, mineral dust, hazel, PET, 

and PP particle types had an individual classification accuracy less than 81%, resulting from their shared irregular 

morphologies and/or similar size distributions. PET particles were incorrectly classified in 21% of the 2,773 events used in the 

test dataset as either ash or mineral dust particles, while PP was incorrectly classified as PET in 12% of the 3,458 test dataset 415 

events. Interestingly, the spherical particle types (glass, water, ragweed, PE, and PMMA) performed surprisingly well 

(accuracy > 96%) considering the overlap in general morphological characteristics and size of the tested particles. Of the pollen 

types, hazel particles were most frequently classified incorrectly with an accuracy of 76%, where nearly all misclassified 

particles (23%) were classified as birch, highlighting an existing challenge in identifying these two particular pollen taxa based 

on their very similar morphology alone.  420 

 

Figure 7: Performance of the Holo.-Only machine learning model using a normalized confusion matrix. The diagonal values in the 

matrix represent the proportion of true positives, or the percentage of correctly classified particles for the respective true class on 



the y-axis. The off-diagonal values represent false positives, indicating the misclassification of particles into respective predicted 

classes on the x-axis. The matrix is normalized along each row.  425 

The second machine learning classification model was a multi-layer perceptron using only the relative fluorescence 

spectra as input (“Fl.-Only”). Here, the Fl.-Only model had an overall classification accuracy of 94% and the distribution of 

prediction accuracy is shown in Figure 8. The accuracy for all pollen and MP particle types was greater than 92%, improving 

on deficiencies when using only the Holo-Only model for these classes. When assessing MP particle types alone, the Fl.-Only 

model performed with greater than 98% accuracy. In contrast, the accuracy for correct classification of water, ash, mineral 430 

dust, and glass particles had a mixed performance, with an accuracy of greater than 95% for glass particles, but less than 74% 

for ash, mineral dust, and water particles.  

 

Figure 8: Performance of the Fl.-Only machine learning model using a normalized confusion matrix. The diagonal values in the 

matrix represent the proportion of true positives, or the percentage of correctly classified particles for the respective true class on 435 
the y-axis. The off-diagonal values represent false positives, indicating the misclassification of particles into respective predicted 

classes on the x-axis. The matrix is normalized along each row.  

The third model tested combined the holographic images and relative fluorescence approaches into a single, multi-

input model (“Holo.+Fl.”). An overall prediction accuracy of 98% was found for this model when using the particle types 

tested in this study. Figure 9 shows the normalized confusion matrix for these results, indicating the prediction accuracy across 440 



all particle types. An accuracy of less than 95% was observed only for the ash and mineral dust particle types (85% and 82%, 

respectively). All MP particles were correctly classified at least 98.5% of the time. Comparing the classification accuracies in 

Figures 8 and 9, all particle types improved their classification performance compared to the models using only their relative 

fluorescence or holographic images. 

 445 

Figure 9: Performance of the Holo.+Fl. machine learning model using a normalized confusion matrix. The diagonal values in the 

matrix represent the proportion of true positives, or the percentage of correctly classified particles for the respective true class on 

the y-axis. The off-diagonal values represent false positives, indicating the misclassification of particles into respective predicted 

classes on the x-axis. The matrix is normalized along each row. For example, 4% of all hazel particles in the test dataset are 

misclassified as birch.  450 

4 Discussion 

Digital holography can provide improved information about aerosol particle size and shape beyond other light scattering 

methods (Berg et al., 2017) and has been demonstrated for various coarse-mode particles, including bioaerosol (Erb et al., 

2024; Sauvageat et al., 2020), ice crystals (Touloupas et al., 2020), and more (Berg et al., 2017). The SwisensPoleno is a 

powerful instrument to capture a diverse range of single-particle morphology in near real-time. The MP particles tested in this 455 

study closely represent two common MP morphologies – spherical beads and fragments – found in the environment (Cowger 



et al., 2020; Helm, 2017; Yu et al., 2023). However, particles that share morphological features and size distributions may be 

misclassified by a machine learning model that uses 2-D images as the only training data input, as was demonstrated in this 

work. For example, fragmented, irregular particle types in this study that had similar size distributions – such as PP, PET, 

volcanic ash, and mineral dust – performed with lower accuracies (accuracies < 81%) when using a machine learning model 460 

employing holographic images as the only input, where including additional, concurrent measurement information may 

increase accuracy of real time particle identification. On the other hand, spherical and quasi-spherical particle types – such as 

ragweed pollen, water droplets, glass beads, PE microspheres, and PMMA microspheres – performed well (accuracies > 96%) 

when considering their holographic images only, indicating that this machine learning model can find distinctive features not 

easily identifiable by eye.  465 

The MP particles tested in this study have an absolute fluorescence response greater than or on the same order as 

pollen particles. The exceptionally strong fluorescence observed for PET particles aligns with expectations, as PET contains 

an aromatic ring in its composition acting as a strongly emitting fluorophore. PET MPs and nanoplastics have previously been 

observed to exhibit autofluorescence, due to their strong absorption in the UV region (Lionetto et al., 2022). And, while PET 

exhibits fluorescence when excited at longer wavelengths (i.e., in the visible spectrum), the results from this study showed that 470 

as the excitation wavelength increases, the fluorescence intensity decreases. However, polymers which lack aromatic or highly 

conjugated double bond structures (i.e., PA, PMMA, PP, and PE) are not traditionally associated with strong autofluorescence 

(Shadpour et al., 2006); nonetheless, PA, PMMA, PP, and PE microplastics used in this study displayed fluorescence intensities 

on the same order as the primary biological particles tested. These results may suggest the presence of other factors that 

contribute to their measured fluorescence, such as the unintended presence of impurities or additives (i.e., non-intentionally 475 

added substances; Bridson et al., 2023). Additionally, while polyolefins like polyethylene (PE) and polypropylene (PP) do not 

contain fluorophores in their chemical structure, photo- or thermal-oxidation (Allen et al., 1977; Zhao et al., 2022), impurities 

(Bridson et al., 2023; Laatsch et al., 2023), fibers structural defects (Poszwa et al., 2016), or formation of HMW clusters 

(Laatsch et al., 2023) can cause PE and PP to become fluorescent. For example, during the photo-oxidation process, enones 

and dienones can be formed (Allen et al., 1977), which makes those polymers gain fluorescent properties. Further investigation 480 

is required to understand the specific mechanisms driving the fluorescent properties observed.   

While the autofluorescence properties of other airborne particles (such as polycyclic aromatic hydrocarbons, mineral 

dust, pollen, etc.) may overlap (Pöhlker et al., 2012; Savage et al., 2017), the use of the SwisensPoleno instrument is a very 

promising method to overcome the challenge of distinguishing MPs from other airborne particles due to the combined 

information of particle morphology and fluorescence provided by the instrument. The relative fluorescence spectra for the 485 

tested particles show distinct spectral features that can be distinguishable from each other, as demonstrated with, for example, 

the UMAP dimensionality reduction technique (Figure 6). The relative fluorescence measurement system, combined with a 

machine learning classification model, allows for particles that share morphological characteristics to be distinguished with a 

high degree of accuracy, such as the spherical particles used in this study (water droplets, ragweed pollen, and glass, PE, and 

PMMA microspheres). When using the relative fluorescence of the particles in a machine learning model, the overall 490 



classification accuracy was enhanced compared to when particle holographic images were only used for model inference, 

increasing from 90% to 94%. Particles that exhibit a distinct fluorescence spectral pattern can be differentiated from other 

particle types with high accuracy using the machine learning model; conversely, particles that have low relative fluorescence 

and non-distinct spectral features – such as water and mineral dust – were more often misclassified in model evaluation. This 

result could prove problematic for any ambient measurements that rely strictly on fluorescence in environments where the 495 

interaction of water droplets and mineral dust are possible. Here, too, future work using the SwisensPoleno may help classify 

these ambiguous fluorescence events by including polarized scattering information for each event.  

It is important to acknowledge that the atmosphere contains a wide variety of aerosols in terms of composition, size, 

and shape (Seinfeld and Pandis, 2016). This study only considers specific subsets of particle types that the SwisensPoleno 

instrument might encounter during ambient monitoring; therefore, while the machine learning models in this study exhibited 500 

generally high classification accuracy, generalizing them to ambient measurements with the SwisensPoleno likely will lead to 

misclassifications. For example, while not addressed in this study, future work should assess how the SwisensPoleno's 

fluorescence response is affected by different variables, such as the source and age of various pollen taxa, of both commercially 

available reference pollens and freshly collected samples. Additionally, spores of various bacteria and fungi – known to be an 

important atmospheric bioaerosol that autofluoresce (Hill et al., 2009) – are not considered here and would certainly be 505 

misclassified if the models used in this study – lacking the necessary training data – were used in ambient particle identification. 

For MPs, while the MPs tested in this study were assumed to be without additives, many plastics are produced with additives 

that enhance their performance or functionality (Hahladakis et al., 2018). Thus, it can be assumed that much of the MPs in the 

environment also contain additives, which could alter their measured fluorescence in the SwisensPoleno. Thus, further 

investigation is required to understand how components of airborne microplastics found in the environment –  such particles 510 

comprised of multiple components (i.e., tire and road wear particles; Kreider et al. (2010)), those containing pollutants 

adsorbed onto the surface (e.g., Fu et al. (2021), Gao et al. (2021)), or those that have undergone environmental weathering 

processes such as photooxidation (Sun et al., 2020) – contribute to changes in measured fluorescence and how this may impact 

their measurement in the SwisensPoleno.  

5 Conclusions 515 

In this study, the high-performance capabilities of the SwisensPoleno’s measurement system and application of a machine 

learning classification model were evaluated to accurately characterize and identify five different polymer types of MP 

particles under controlled laboratory conditions. The instrument’s ability to identify and differentiate MPs from similarly 

featured coarse-mode aerosol particles, including mineral dust, various pollen taxa, and water droplets, was demonstrated. This 

was achieved through the application of a machine learning model that was trained and validated on separate datasets consisting 520 

of holographic images and fluorescence spectral data for each particle type. The high classification accuracy of the model 

affirmed the instrument’s effectiveness in distinguishing between single coarse-mode particles.  



The microplastics tested in this study represent common polymer types for microplastics found in environmental 

pollution. They display sufficient fluorescence intensities that can be measured with the SwisensPoleno, and have distinct 

spectral features, aiding in distinguishing particle type among both MPs and non-MPs. In the machine learning classification 525 

model configurations used in this study, model performance increased when combining holographic images of single 

microplastic particles with their measure relative fluorescence, expanding on previous studies using the instrument for 

bioaerosol identification. Future work is required to understand how increasing sample complexity can affect instrument 

performance and particle typing accuracy. For example, more particle types with varying morphologies and compositions need 

to be tested, such as MP fibers, MP particles that have experienced atmospheric processing or weathering, and MP particles 530 

with additives or other chemical composition differences. The prediction accuracy of these various other MPs needs to be 

evaluated alongside other autofluorescing aerosol particles, including further bioaerosol types such as spores, PAHs, 

combustion byproducts, and tire and road wear particles.  

While an improvement to the comprehensiveness of the data used can improve future studies, all MPs tested in this 

study demonstrated detectable fluorescence, falling within the measurement range of the SwisensPoleno. The combination of 535 

fluorescence and holographic imaging enabled the machine learning models to distinguish various MP types from one another 

and other coarse-mode particles in the study, suggesting the potential suitability of the instrument for monitoring airborne MPs 

in ambient conditions. The ability to monitor and accurately classify MPs in situ and in near-real time would provide a 

substantial increase in understanding of the abundance, distribution, properties, and potential impact MP particles could have 

on humans and the environment. 540 
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