
Reply to the review by Anonymous Referee #1 for the manuscript, “Merging holography, 
fluorescence, and machine learning for in situ, continuous characterization and 
classification of airborne microplastics” by N. D. Beres et al. 
 
 
We thank the anonymous reviewer for their thorough and thoughtful responses and 
recommendations to improve the manuscript. Below, questions and comments by the 
reviewer are in blue and the responses by the manuscript authors are in black. Note that line 
numbers referred to here in the authors’ responses correspond to those in the revised 
manuscript unless otherwise stated.  
 
 
Page 3, line 75 on statement “Some commercially available polymers have previously been 
examined for their autofluorescence”: It might be helpful for the readership to add a few 
sentences already in the introduction on the molecular motifs that are responsible for the 
fluorescent emission. Especially for the non-aromatic polymers, which one typically would 
not consider efficient fluorophores, the observed strong emission reported already in 
previous studies is an interesting phenomenon. 
 
The authors agree that this could be helpful for readers. We’ve modified the introduction 
(Section 1, Lines 74-80) to include some information about the reasons for fluorescence in 
polymers:  
 
“An often-overlooked material property of airborne microplastics that has the potential to 
specify particle type is their natural ability to fluoresce, or autofluoresce, which results from 
the spontaneous emission of light at one wavelength by the fluorophores (molecule or 
compound capable of fluorescence) of the polymers from excited electromagnetic states 
when exposed to higher-energy, lower-wavelength light (Lakowicz, 2006). For polymers, this 
can be due strictly from their molecular structure containing contain aromatic rings, 
conjugated double bonds, or other fluorophores, from stabilizers, additives, or impurities 
unintentionally added to the substance during the polymerization process or after 
production, or by some combination thereof.”  
 
We’ve also included some context to fluorescence by non-aromatic polymers by modifying 
the discussion (Section 4, Lines 471-480):  
 
“…polymers which lack aromatic or highly conjugated double bond structures (i.e., PA, 
PMMA, PP, and PE) are not traditionally associated with strong autofluorescence (Shadpour 
et al., 2006); nonetheless, PA, PMMA, PP, and PE microplastics used in this study displayed 
fluorescence intensities on the same order as the primary biological particles tested. These 
results may suggest the presence of other factors that contribute to their measured 
fluorescence, such as the unintended presence of impurities or additives (i.e., non-
intentionally added substances; (Bridson et al., 2023)). Additionally, while polyolefins like 



polyethylene (PE) and polypropylene (PP) do not contain fluorophores in their chemical 
structure, photo- or thermal-oxidation (Allen et al., 1977; Zhao et al., 2022), impurities 
(Bridson et al., 2023; Laatsch et al., 2023), fibers structural defects (Poszwa et al., 2016), or 
formation of high molecular weight (HMW) clusters (Laatsch et al., 2023) can cause PE and 
PP to become fluorescent. For example, during the photo-oxidation process, enones and 
dienones can be formed (Allen et al., 1977), which makes those polymers gain fluorescent 
properties.” 
 
Page 3, line 82 on statement “No study has used the intrinsic fluorescence of polymers for 
airborne particle identification and characterization in situ.” I think the preprint by Gratzl et 
al., 10.26434/chemrxiv-2023-qzhr8 could/should be cited in this context. 
 
The authors thank the reviewer for suggesting this preprint. We have removed the statement 
(“No study has used the intrinsic fluorescence…”) and added the following to the 
Introduction (Section 1, Lines 92-99) to acknowledge the work by Gratzl et al.:   
 
“One recent work has shown the promising ability to classify airborne MPs using their 
autofluorescence (Gratzl et al., 2024). Here, Gratzl et al. (2024) leverage the Wideband 
Integrated Bioaerosol Sensor (WIBS; Droplet Measurement Technologies, Longmont, CO, 
USA) to detect microplastics based on specific fluorescence signatures excited at two 
wavelengths and detected in two emission wavelength bands. While their approach 
provides a promising step towards a greater understanding of MPs in the atmosphere, the 
recent introduction of the SwisensPoleno air-flow cytometer (Swisens AG; Emmen, 
Switzerland), was recently shown to classify biological aerosol particles with high accuracy 
(Erb et al., 2023, 2024; Sauvageat et al., 2020), expanding the spectral capabilities of the 
WIBS, and combines additional particle information to strengthen the classification ability 
of MPs and other atmospheric coarse-mode aerosol.” 
 
Page 3, line 90 on statement “ … assess the fluorescence response of various common 
microplastics”: I wonder why polystyrol was not included here. It is widely used probably 
also shows a characteristic fluorescence due to the aromatic structure. Along these lines 
and in more general terms, according to which criteria were the five polymers selected.   
 
Polystyrol (or “polystyrene”) was unfortunately unavailable to the authors during data 
collection, and it was chosen to work with the five polymers we had available to us at the 
time rather than increase the complexity of this feasibility study. We agree with the reviewer 
that polystyrene is likely to have a strong fluorescence signal due to its aromatic nature, 
prevalence as an environmental pollutant, and is an important component to include in 
future studies.  
 
The five polymers tested in our study were chosen based on a combination of commercial 
availability and those which are likely to be found in the environment. We agree that more 
testing is needed, expanding the breadth of polymer types as well as non-polymer types. We 
have addressed this need for more testing in the discussion (Section 4).  



 
The study by Ornik et al. should be cited (and probably also discussed) somewhere 
https://doi.org/10.1007/s00340-019-7360-3 
 
We thank the reviewer for suggesting this study be included in our manuscript. We have 
included the following information in our manuscript’s introduction (Section 1, Lines 87-91): 
 
“…Ornik et al., (2020) examined the fluorescence spectra of eight, large commercially 
obtained polymer samples – including polypropylene, polyethylene, polyethylene 
terephthalate, and two polyamides – and demonstrated that their emission spectra is 
generally distinguishable from non-polymer samples. They acknowledged that these same 
principles can be applied to microplastics of various sizes and shapes, while leveraging 
advanced analysis methods such as machine learning, for high accuracy classification.” 
 
Table 1: Did the authors receive any information on the age of the pollen samples? Such 
commercially available biological reference substances are not necessarily freshly 
collected, which brings up the question on how atmospherically representative the derived 
fluorescence signals are. 
 
The authors acknowledge the spectrum of atmospheric relevancy of particles used in this 
study (Section 2.2, Lines 172-175; Section 4). The primary focus of the current manuscript 
is to gauge the SwisensPoleno’s response to various microplastics as a promising first step 
towards identifying and characterizing these particles in near real-time.  
 
While commercially available biological reference substances, like pollen, are widely used 
in laboratory settings, factors such as age and storage conditions (e.g., humidity) may 
influence their fluorescence properties. For example, Pöhlker et al. (2013) state (Page 
3373), “…the fluorescence properties of commercially obtained and freshly harvested 
pollen samples are overall similar, except for increasing intensity with age, and that all 
samples are generally comparable.” Understanding the effect of the age of the pollen 
samples used in the present study is outside the scope of this work; rather, the usage of 
pollen was to (Lines 209-210), “assess the ability for the instrument to distinguish aerosol 
particle types beyond those previously analyzed with the SwisensPoleno.”   
 
However, while not addressed in this study, the authors agree that future work should 
assess how the SwisensPoleno's fluorescence response, specifically, is affected by 
different variables, such as the source and age of various pollen taxa, including both 
commercially available reference pollens and freshly collected samples. We have added 
an additional statement in the discussion that includes the recommendation that future 
studies should consider age of pollen as a variable in fluorescence response in the 
SwisensPoleno (Lines 502-504): “…while not addressed in this study, future work should 
assess how the SwisensPoleno's fluorescence response is affected by different variables, 
such as the source and age of various pollen taxa, of both commercially available 
reference pollens and freshly collected samples”. 



 
Page 8, line 235 on statement “Further details about the SwisensPoleno fluorescence 
measurement system can be found in (Graf et al., 2023).”: It is a pity that the Graf et al. 
reference is not available yet. It is cited few times and could be quite useful for a better 
understanding of the fluorescence response of the instrument. If the publication of this 
study still needs some time, it might be worth to put some relevant information still in this 
study to provide the reader a more comprehensive understanding of the technique. 
 
The authors agree that, without the Graf et al. reference, a more comprehensive explanation 
of the fluorescence technique used in the SwisensPoleno instrument is needed. We will add 
a section to the Supplemental Information that provides an overview of the fluorescence 
system within the SwisensPoleno instrument. In addition, we have changed the statement 
to account for this (Lines 142-143): “Further details about the SwisensPoleno fluorescence 
measurement system can be found in the supplemental information.” 
 
Page 11, line 296 on statement “Here, the water dataset is used as a proxy for the baseline 
fluorescence response of the instrument”: Is this the standard procedure to determine the 
background or is there a force trigger function as commonly used for the WIBS? 
 
The SwisensPoleno data processing algorithm uses an ultrapure water dataset as a 
thresholding dataset; it does not use a force trigger function as is commonly used for the 
Wideband Integrated Bioaerosol Sensor (WIBS). This water dataset is then used to threshold 
the baseline fluorescence response during the routine processing of the measured data, 
because, as was stated (Line 297 in the unrevised manuscript), “…ultrapure water is 
expected to have no detectible autofluorescence beyond instrument background signal”. As 
stated in the previous reviewer response, further explanation will be included regarding the 
fluorescence system of the SwisensPoleno in the Supplemental Information, which will also 
elucidate this point. The statement “Here, the water dataset is used as a proxy for the 
baseline fluorescence response of the instrument…” will be adjusted for clarity (Lines 314-
315): “Here, the water dataset is shown to represent the baseline fluorescence response of 
the instrument, as the ultrapure water is expected to have no detectable autofluorescence 
beyond an instrument background signal.”   
 
Page 14, line 345 on statement “The relative fluorescence spectra for MPs exhibit a 
noticeably higher response in the λex/λem=280/357 nm channel compared to other particles 
tested”: What is the molecular explanation for this spectral feature? 
 
As outlined in the response to the reviewer’s first comment, fluorescence emission spectral 
features in the examined MPs, in general, are due to their chemical structure, which may be 
efficient at absorbing UV wavelength light (Lionetto et al., 2022), such as aromatic functional 
groups or other conjugated bond systems. The presence of impurities, additives, or other 
substances within plastic may also alter the fluorescence response (Bridson et al., 2023; 
Laatsch et al., 2023). External factors, such as photo- or thermal-oxidation may alter the 
polymer’s chemical structure, leading to the introduction of oxygen-containing groups (i.e., 



carbonyls) which may change their fluorescence characteristics. This is important, because 
photooxidation may occur to airborne microplastics through atmospheric aging (Ouyang et 
al., 2021), for example. Monteleone et al. (2021) showed that thermal treatment also alters 
the fluorescence characteristics of various polymers, which may modify detection abilities 
or spectral response in fluorescence spectroscopy applications, such as the 
SwisensPoleno. While future work can focus on understanding the specific excitation and 
emission wavelength bands that can be targeted towards environmental MP detection, 
delving too deep into the molecular explanation of this response is beyond the scope of this 
feasibility study.  
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Reply to the review by Anonymous Referee #2 for the manuscript, “Merging holography, 
fluorescence, and machine learning for in situ, continuous characterization and 
classification of airborne microplastics” by N. D. Beres et al. 
 
 
We thank the anonymous reviewer for their thorough and thoughtful response and their 
recommendations to improve the manuscript. Below, questions and comments by the 
reviewer are in blue and the responses by the manuscript authors are in black. Note that line 
numbers referred to here in the authors’ responses correspond to those in the revised 
manuscript unless otherwise stated.  
 
 
Overall I am very pleased to have reviewed the manuscript, however, I am not clear if the 
model trained can be used for live measurements and why there were no measurements 
using a combination of particles to test the system.  
 
First: yes, models that are trained offline can indeed be used for “live” measurements when 
the instrument is deployed for ambient monitoring. As stated in the (unrevised) manuscript 
(Section 2.1, Lines 128-133), the instrument can be updated to use a model defined by end 
users. We have clarified the wording to be clearer: “The integrated instrument software 
makes use of a machine learning classification model for real time, single-particle 
classification using its holographic images. The model used for real-time or “live” particle 
classification during instrument deployment is developed, trained, and tested offline on 
particle types the user expects the instrument to encounter.” 
 
Second: “using a combination of particles to test the system” is not the intention of our 
study or particularly useful for supervised machine learning model evaluation, as it 
eliminates the ability to accurately assess the model's predictive power. This is because 
there would be no ability to know which particle type (i.e., the ground truth) is being 
introduced into the instrument ahead of time from this mixed sample. Instead, validating 
the model's performance requires a dataset where the true particle type is known 
beforehand, allowing for a direct comparison between the models' predictions and the 
actual particle types. Supervised learning models – like those used in this study – already 
accomplish something very similar to this during the training and testing phases for these 
types of machine learning models, using a “unseen" mixture of the measured data (where 
particle type is known ahead of time) that is set aside before training (Müller and Guido, 
2016). After the model is trained, the machine learning model code uses this portion of 
previously set aside measured data, randomizes the order of the data, and the model 
makes predictions on this unseen, random-order data, and compares the predicted 
particle type to the actual particle type (again, known ahead of time) to get a measure of 
how well the model can predict on new, unseen data. The results of this comparison are 
displayed in the confusion matrices in our study (Figures 7, 8, and 9).  
 



Expanding on this if the study had an example dataset to finish that had resuspended 
already collected environmental MPs (or mixture of the 15 tested particles) this would 
provide a more convincing argument for its use and is shown in examples of other novel 
sampling or analysis methods. It would further reinforce the later results discussion and 
conclusions on the SwisensPoleno system and CNN use and impact of environmental 
samples and their varying fl response which would affect classification.   
 
We appreciate the possibility of resuspending a mixture of the 15 particle types tested in 
this study; however, we believe this would provide very little to no novel information beyond 
what was already shown in the manuscript for the reasons described in the previous 
comment response above.  
 
Given the manuscripts main development are the models and datasets created it would be 
good to see this hosted in an opensource platform, referenced in the text, so that other 
researchers could access it and build on it. 
 
For the machine learning models developed in this study, the model architectures were 
described in detail in the Supplemental Information (Section S2). The authors cannot share 
specific code without authorization from the manufacturer. More importantly, the 
measurement data, and the trained models created from them, do not represent ambient 
particles and any users of this information may be misled by applying them to ambient 
measurements. Section 2.2 outlines the particles used and discusses their atmospheric 
relevance, which may be limited; for example, the models include a dataset of glass 
microspheres, which one will never encounter in ambient measurements. We have added 
a statement on Data Availability (Lines 541-542): “The data and code used in this study are 
available for research purposes on request from the authors.”  
  
To fix/address: 
 
Lines 3 – 33: Abstract, please include the models you used, ML is fairly ambiguous, even if 
you just state the most optimal model that is fine. 
 
The following statement was added to the abstract (Lines 32-34): “The latter model, using 
both the holographic images and fluorescence information for each particle, was the most 
optimal model used, providing the highest classification accuracy compared to employing 
models with only the holography or fluorescence response separately.” 
 
Lines 30-33: Abstract, stating that the holo+fl model was the most optimal, this is a key 
result and adaption of the existing MeteoSwiss model,  but is not mentioned. 
 
We thank the reviewer for this suggestion; it was addressed in the previous comment.  
 
Line 46: MPs are in the majority of publications classified into the 1-5,000um scale, to fit 
your classification us more I would also add in the newer ISO ruling on size as well as the 



publication you have referenced. This is a better justification in my opinion 
(https://www.iso.org/files/live/sites/isoorg/files/store/en/PUB100472.pdf) 
 
Our goal was to align with size suggestions outlined in Hartmann et al. (2019), which aims 
to produce less ambiguous size classes for plastic pollution; indeed, not only is Hartmann 
et al. (2019) cited in the ISO report, but the report’s recommendation on language and size 
classes for microplastics coincide with those used in Hartmann et al. (2019) and, thus in 
our study. We thank the reviewer for providing an additional reference that strengthens this 
definition; we have added it to our definition of microplastics in the manuscript (Line 52).  
 
Line 55-65: All references are fine, but none are particularly recent, there are many reviews 
and also studies that show the detection of MP and NP that could be used. Just an 
observation that doesn’t have to be addressed but was surprising to see. 
 
We thank the reviewer for this observation. We have included new articles based on both 
reviewers. Currently, more than half of the of the references cited in this manuscript were 
published in or after 2020.  
 
Line 117-127: Fl measurement regions, further explanation of why these regions would be 
appreciated (not only that this is what is available through the SwissPoleno), in MP 
research there is some debate on what wavelength to use and filter at. This could be an 
extra comment added to the SI given to support researchers more deeply involved with this 
aspect. 
 
The excitation wavelengths and emission detection wavelength bands for the 
SwisensPoleno were likely chosen to provide insight on the fluorescence information of 
many particle types. The spectral regions of importance for fluorescence spectroscopy and 
particle detection is an ongoing research topic (e.g., Pöhlker et al., 2012, 2013; Savage et 
al., 2017), and will likely vary based on many variables. Understanding which variables and 
to what degree they influence the classification accuracy is a complicated problem that is 
not addressed in this study, as it is outside the scope of this initial test of feasibility for the 
detection and characterization of pure, commercially purchased microplastic particles.  
 
Line 128-133: Clarity on why MeteoSwiss not used, also can a custom python script be 
loaded to the system? MeteoSwiss can be trained and updated but is its current supervised 
learning method not useful for MP analysis? 
 
As stated in the unrevised manuscript (Section 2.1, Lines 129-130), the MeteoSwiss model 
was trained to identify a subset of pollen taxa common to central Europe. Thus, this model 
would not be appropriate to identify airborne microplastic particles. To the best of the 
authors’ knowledge, no model used on the SwisensPoleno system had been developed to 
identify airborne plastic particles.  
 

https://www.iso.org/files/live/sites/isoorg/files/store/en/PUB100472.pdf


Second: Yes, a custom machine learning model – that is, trained specifically to identify the 
particle types expected to be encountered in the atmosphere for the instrument’s location 
– can be used. These models can be developed, trained, and tested using the Python 
programming language, like it was in our study.  
 
Line 143: Materials section: I would like to confirm why PS was not considered for analysis 
as it is one of the major MP polymers detected in aerosols, it is also available from 
Cospheric and Goodfellows. A comment later in the discussion could cover these 
questions as other MP researchers would have. Is the statement in line 459 related to this?  
 
The authors assume “PS” refers to the polymer polystyrene, and we agree that including 
polystyrene microplastic particles to test in this study could have been beneficial. 
Unfortunately, at the time of testing, polystyrene particles were not available to the 
authors. While Line 459 of the manuscript does not relate to this fact, the final paragraph of 
the discussion (Section 4, Lines 498-514) does address future studies and the need to 
include additional particle types, shapes, and sizes.   
 
Line 212: Please state the water quality value. 
 
We have added “18.2 MΩ-cm” to the description of the ultrapure water droplets used in 
this study (Line 230). We thank the reviewer for suggesting this clarification. 
 
Line 223: Added details on the flow rate limits and particle size limits of the system would 
be good to add here, or in section 2.1. The questions I am thinking while read are, is there a 
reason no PM2.5 particle sizes were assessed (PS would be the only standard easily 
availably in this size range), is it because the SwisensPoleno has a detection limit. 
Secondly is there a flow rate limit as well. A web search of the system does not give much 
results unless in it’s the Mars of Jupiter variant. 
 
The authors thank the reviewer for this suggestion. The instrument is, in fact, a Jupiter 
variant of the SwisensPoleno system, as was stated in the abstract (Line 22) as well as in 
the introduction (Line 104) of the unrevised manuscript. However, we have also added this 
into the description of the instrument (Section 2.1, Line 111) of the revised manuscript. In 
addition, we have added the stated size limits and effective flow rate of the instrument in 
this section as well (Lines 118-120), according to the manufacturer specifications: 
“According to the manufacturer, the instrument has an effective flow rate of 40 LPM and 
particles can be detected in their multi-sensor system between that are in the size range 
0.5-300 μm..” 
 
Aerosol particles less than or equal to an aerodynamic diameter of 2.5 μm (“PM2.5”) were 
not intentionally omitted from this study; the authors used particle types and sizes 
available to them at the time of collection or purchase for the specific purpose of testing 
and validating the feasibility of using the SwisensPoleno instrument for the detection and 



characterization of microplastic particles. An investigation on the detection efficiency of 
particles in this size class is needed and is reserved a future study.  
 
Line 227-233: Dataset creation. Will you make this dataset available as an open data 
source, same goes with the model. Since this is a large aspect of the work I would expect to 
see this hosted somewhere, University server, Github or other so that the scientific 
community and others can make use of the data/model and build on it. 
 
This was addressed above in a previous reviewer comment.  
 
Line 261: Can you explicitly confirm here if CNN is used for the holo+fl or not.    
 
The multi-input machine learning model using both the holographic images and relative 
fluorescence (“Holo.+Fl.”) is a hybrid model type, utilizing components and architecture 
from models designed to classify particles using the holography (“Holo.-only”, a 
convolutional neural network, or CNN) and the fluorescence (“Fl.-only”, a multi-layer 
perceptron model, or MLP) separately. The combined model cannot be classified strictly as 
a CNN.  
 
We have clarified the model structures in the manuscript by modifying text in Sections 2.4 
(Lines 277, 279) as well as the description of the machine learning specifications in the 
Supplemental information (Section S2, Lines S32-S33) to state that the Holo.+Fl. model is a 
hybrid structure of a CNN and MLP.  
                       
Line 375-377: Could you expand your discussion to PA, PMMA and PA as they seem less 
distinct from the UMAP. Is there any further discussion that can be given to the important of 
dimensions 1 and 2 in the UMAP plot, are these evenly weight in terms of dimensionality? I 
am thinking along the lines of k-means plot dimension value assignment. 
 
The dimensions produced using the Uniform Manifold Approximation and Projection 
(UMAP) visualization tool in the manuscript do not have weights unlike other clustering 
tools, such as k-means or principle component analysis (PCA). Dimensions 1 and 2 in 
Figure 6 of the manuscript instead represent coordinates in lower-dimensional space that 
preserve the input dataset’s underlying topographical structure. They form a two-
dimensional representation of the similarity or dissimilarity of the multi-dimensional 
information of the input data. In other words, the closer two points are to each other in 
Figure 6, the more similar their information; in contrast, the further away the points are 
from each other, the more dissimilar the data are. Thus, the multispectral fluorescence of 
PA, PMMA, and PE [the reviewer incorrectly referred to PA twice here] are more similar to 
each other than other particle types. However, the machine learning models that include 
fluorescence information as a model  The authors refer to the citing publication (McInnes 
et al., 2018) for additional information about the UMAP mechanics.  
 



Line 387 – 500: Need to check classification values given and how stated, several read as 
incorrect or misleading, detailed in next comments. 
 
Line 402: Should this be 78%? 
 
No, as the volcanic ash dataset (“ash”) had a classification accuracy of 0.8 (or 80%); thus, 
the statement (“…ash, mineral dust, hazel, PET, and PP particle types had an individual 
dataset classification accuracy less than 81%...”) is correct as it stands.  
 
Line 417: 93%? 
 
The statement, “The accuracy for all pollen and MP particle types was greater than 92%...” 
is correct. The statement, “The accuracy for all pollen and MP particle types was greater or 
equal to 93%” is also correct, but we will leave it as it stands with the former statement.  
 
Line 426 – 427: Please confirm the model used here. 
 
Line 426 is the final line of the caption to Figure 8, which refers to Fl.-only model. Line 427 
(of the unrevised manuscript) begins to report the classification accuracies of the Holo.+Fl. 
model, which is clearly stated on Line 428. Here are Lines 427-428 (of the unrevised 
manuscript): “The third model tested combined the holographic images and relative 
fluorescence approaches into a single, multi-input model (“Holo.+Fl.”).” 
 
Line 430: is this not less than 98% accuracy? 
 
Yes, the authors agree with the reviewer that the classification accuracy of the volcanic ash 
and mineral dust datasets (85% and 82%, respectively) is less than 98% accuracy. This is 
clearly stated on line 430 of the unrevised manuscript: “An accuracy of less than 95% was 
observed only for the ash and mineral dust particle types (85% and 82%, respectively).” 
 
An accuracy of 98% (Line 428 of the unrevised manuscript) refers to the overall accuracy of 
the entire model, considering all particle types. The range of classification accuracies for 
the Holo.+Fl. model for individual particle types is 0.72-1.00.  
 
Line 449: related to line 402 accuracy reporting 
 
The authors apologize to the reviewer for the confusion but stand by what is currently 
written on Lines 448-449 of the unrevised manuscript, which states: “…fragmented, 
irregular particle types in this study that had similar size distributions – such as PP, PET, 
volcanic ash, and mineral dust – performed with lower accuracies (accuracies < 81%)…”. 
This statement is simply providing values of classification accuracies of the PP, PET, 
volcanic ash, and mineral dust datasets using the Holo.-Only model and the fact that they 
are less than 0.81. In other words, we are simply stating that the values 0.78, 0.69, 0.80, 



and 0.59 (representing the classification accuracies of PP, PET, volcanic ash, and mineral 
dust, respectfully) are all less than 0.81.  
 
Line 502-506: Should state for singular MP polymer groups? The sentences make it sound 
like you have measured all the particle types together which from my understanding is not 
the case. 
 
The reviewer is correct that we did not measure all particle types together, at the same 
time, as was addressed previously. We have adjusted the text in the opening paragraph of 
the conclusion (Section 5, Lines 516-522) to emphasize and hopefully clarify that each 
dataset was measured separately:  
“In this study, the high-performance capabilities of the SwisensPoleno’s measurement 
system and application of a machine learning classification model were evaluated to 
accurately characterize and identify five different polymer types of MP particles under 
controlled laboratory conditions. The instrument’s ability to identify and differentiate MPs 
from similarly featured coarse-mode aerosol particles, including mineral dust, various 
pollen taxa, and water droplets, was demonstrated. This was achieved through the 
application of a machine learning model that was trained and validated on separate 
datasets consisting of holographic images and fluorescence spectral data for each particle 
type. The high classification accuracy of the model affirmed the instrument’s effectiveness 
in distinguishing between single coarse-mode particles.” 
 
Line 505: Can you claim that it is in real time classification, not an in real time 
measurement? My understanding is that individual particle types where measured. Later 
the analysis was made. 
 
The reviewer is correct: for this study, the classification was performed after the datasets 
were created for the machine learning model, as stated in the instrument description 
(Section 2.1, Lines 131-132 of the unrevised manuscript): “For this study, machine learning 
classification models were created, trained, and evaluated in a separate Python 
programming environment decoupled from the instrument.”  
 
We have adjusted the opening paragraph of the conclusion (Section 5, Lines 516-522) 
based on the response to the previous comment, including the removal of the phrase 
“…near real-time…”.  
 
However, when the SwisensPoleno instrument is deployed to characterize and identify 
ambient particles, the classification happens in near real-time with a pre-trained model 
(such as the one developed for this study) initialized to classify particles during 
deployment.  
 


