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Abstract. The poor representation of the macrophysical properties of shallow oceanic cumuli in climate mod-
els contributes to the large uncertainty in cloud feedback. These properties are also difficult to measure because
it requires high-resolution satellite imagery that is seldomly collected over ocean. Here, we examine cumu-
lus cloud macrophysical properties, their size, shape, and spatial distributions, over the tropical western Pacific
using 170 15 m resolution scenes from Terra’s Advanced Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER) collected during the 2019 Cloud, Aerosol and Monsoon Processes Philippines Experiment
(CAMP2Ex) mission. The average cloud fraction (CF) was 0.12, half of which was contributed by clouds less
than 1.6 km in area-equivalent diameter. This compared well to Terra’s Multi-angle Imaging SpectroRadiometer
(MISR) resolution-corrected CF of 0.14 but less than the 0.19 measured by Terra’s Moderate Resolution Imag-
ing Spectroradiometer (MODIS). The cloud size distribution exhibited a power law form with an exponent of
2.93 and an area–perimeter power law with a dimension of 1.25. ASTER, MISR, and CAMP2Ex aircraft lidar
showed excellent agreement in the cloud top height (CTH) distribution peak altitude of ∼ 750 m. We examined
cumulus properties in relation to meteorological variables and found that the variation in mean CTH is controlled
most by the total column water vapor, lower-tropospheric stability (LTS), and estimated inversion strength (EIS).
The variation in CF is most controlled by surface wind speed and near-cloud relative humidity instead of LT-
S/EIS, suggesting the need to improve low-cloud parameterizations in climate models that use LTS/EIS based
on stratocumulus studies.

1 Introduction

Tropical oceanic low clouds, such as shallow cumulus, have
been found to explain most of the inter-model spread in
global mean cloud feedback (Bony and Dufresne, 2005;
Zelinka et al., 2016). This is primarily due to challenges5

in realistically simulating these clouds at the subgrid scale
of global climate models (Ceppi and Nowack, 2021; Myers
et al., 2021). Consequently, large-eddy simulations (LESs)

have been utilized to resolve low-cloud processes, such as
their response to changes in lapse rate, in surface fluxes, 10

and in surface temperatures, to predict the low-cloud feed-
back (Rieck et al., 2012; Zhang et al., 2012; Bretherton,
2015). These processes are tightly coupled to cloud macro-
physical properties. For example, cloud fraction within a do-
main strongly modulates radiative effects (Chen et al., 2000; 15

George and Wood, 2010; Bender et al., 2016). The cloud top
height and spatial distribution also strongly impact the radia-

1
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tion field (e.g., Chen et al., 2000; Tobin et al., 2012). For ex-
ample, Tobin et al. (2013) found that the outgoing longwave
radiation increases, while the shortwave radiation decreases,
as the cloud field becomes more aggregated, showing that
the emerging radiation field can depend on the spatial orga-5

nization and geometry of clouds. Other studies (Rampal and
Davies, 2020; Goren et al., 2023; Lang et al., 2024) have fur-
ther shown how cloud morphology and cloud heterogeneity
can impact the measured radiative field. Their results imply
that cloud macrophysical properties must be considered in10

the parameterization of the highly interactive processes of ra-
diative heating, turbulent and convective mixing, and cloud
microphysical processes that govern the variability in low
clouds in LES models (Klein et al., 2017). To mitigate the
uncertainties in model parameterizations, it is crucial to bet-15

ter constrain cloud models using observational data.
To help understand cloud macrophysical properties, long-

term data from satellite observations are desirable. Jones et
al. (2012) found that satellite imagers with a spatial resolu-
tion of 80 m or less are needed to accurately measure cloud20

fraction to an error of 0.01, instrument and algorithm cloud
detection sensitivity aside, in the trade wind regions of the
world. Most meteorological satellite imagers, however, have
a spatial resolution of around 1 km, which is larger than the
typical size of shallow cumulus clouds (e.g., McFarquhar et25

al., 2004; Zhao and Di Girolamo, 2007). This can result in
substantial overestimates in cloud fraction (e.g., Shenk and
Salamonson, 1972; Di Girolamo and Davies, 1997; Zhao
and Di Girolamo, 2006). For example, Dey et al. (2008)
found that when pixel resolution degrades from 15 m to 1 km,30

the mean cloud fraction can increase 4-fold, while the total
number of clouds can reduce 26-fold for trade wind clouds.
Given the importance of having high-resolution data, obser-
vations of cumulus cloud fields should ideally come from
land-based imagers. Such high-resolution (< 80 m) freely35

available satellite data are found in land-based satellite mis-
sions, such as Landsat (Crawford et al., 2023) and Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER; Abrams, 2000). But such land-based imagers nor-
mally collect very little data over ocean, have radiometric40

gain settings that may not be appropriate for cloud analyses,
and have sampling and archiving strategies that are not con-
ducive to forming statistically unbiased properties of clouds.
Therefore, there remains the challenge of acquiring high-
resolution data over the oceans for studies of cloud macro-45

physical properties.
Previous observational studies of the macrophysical prop-

erties of cumulus cloud fields have used images from air-
craft, space shuttle, and land-imaging satellite instruments.
These are summarized in Table 1. Most of these studies are50

based on small observational data sets, with resolutions of
30–60 m and at most 19 scenes. Only two of these studies
(Zhao and Di Girolamo, 2007; Mieslinger et al., 2019) used
high-resolution satellite data at 15 m with a larger number
of scenes. Moreover, among these previous studies, the loca-55

tions analyzed are very sparse. Thus, there remains a need to
get more statistics on the macrophysical properties of cumu-
lus cloud fields using high-resolution satellite data in other
regions, particularly with well-characterized environments
obtained, for example, with intensive field campaigns. Note 60

that the characterization of the aerosol environment is also
of importance given its impact on cloud macro- and micro-
physical properties (e.g., McFarquhar et al., 2004; Yuan et
al., 2011; Li et al., 2010; Sheffield et al., 2015).

Caution must be taken when comparing cumulus cloud 65

statistics using different scales, given that different instru-
ments have different domain sizes and spatial resolutions as
shown in Table 1. A study by Dey et al. (2008) showed how
the statistics of the macrophysical properties of trade wind
cumuli derived by Zhao and Di Girolamo (2007) changed 70

with domain size and pixel resolution. As the domain size
decreases, the probability of separating clouds into smaller
clouds increases and the probability of having cloudier and
clearer domains increases. As the pixel resolution degrades,
smaller clouds amalgamate into larger clouds and the number 75

of partially filled cloudy pixels increases. Moreover, when
comparing aircraft with satellite data, differences between
the one-dimensional and two-dimensional measurements of
cloud size distributions must be considered. Aircraft cloud
size distributions are usually biased towards smaller cloud 80

sizes, assuming random sampling (Rodts et al., 2003; Romps
and Vogelmann, 2017; Barron et al., 2020). As a result, dif-
ferences in time, location, instrument resolution, and sam-
pling must be considered when comparing between different
studies. 85

Table 1 also summarizes the properties of cumulus clouds
based on LES models. Low-cloud feedback has been stud-
ied by using simulations of clouds from LES models to find
a relationship between cloud properties and large-scale me-
teorology that can be used to predict how clouds will re- 90

spond to changes in the meteorology within coarser-scale
models. Most of these studies have focused on stratocumu-
lus clouds. Some of these findings, for example, indicate that
the lower-tropospheric stability (LTS), estimated inversion
strength (EIS; Wood and Bretherton, 2006; McCoy et al., 95

2017), reduced subsidence (Myers and Norris, 2013; Blossey
et al., 2013; van der Dussen et al., 2016), sea surface temper-
ature (Qu et al., 2015; Stein et al., 2017; Geiss et al., 2020;
McCoy et al., 2017), and surface wind speed (Bretherton et
al., 2013) all can have an impact on cloud cover and cloud 100

top height. Fewer studies have been done on shallow cumulus
clouds. In particular, Nuijens and Stevens (2012) and Brueck
et al. (2015) found that surface wind speed can influence
cloud amount and cloud top height. Yamaguchi et al. (2019)
have also shown that vertical wind shear can influence cu- 105

mulus deepening. Given the limited number of studies, there
is a need not only for more observations of cumulus clouds
but also for their relationships with large-scale meteorologi-
cal conditions (Klein et al., 2017).
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Here, we provide a study of cloud macrophysical prop-
erties using data collected during the National Aeronautics
and Space Administration (NASA) Cloud, Aerosol and Mon-
soon Processes Philippines Experiment (CAMP2Ex; Reid et
al., 2023). This field campaign offered an opportunity to in-5

vestigate shallow cumulus clouds in a different region from
those studies listed in Table 1. The CAMP2Ex mission took
place in the Philippines from August to October 2019, with
the goal of investigating cloud–aerosol interactions and their
influence on the southwest monsoon precipitation in the re-10

gion. During CAMP2Ex, the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) was tasked to
sample clouds over parts of the ocean near the Philippines
region. ASTER provides high-resolution data suitable for
studying cloud macrophysical properties of cumulus cloud15

fields.
This study uses 170 ASTER scenes dominated with cu-

mulus clouds and collected during CAMP2Ex to analyze the
macrophysical properties of cumulus cloud fields and their
relationships with larger-scale meteorological conditions in20

the tropical western Pacific. The ASTER data used in this
study are discussed in Sect. 2. Section 3 discusses the cloud
masking technique used. Section 4 presents the results of
trade wind cumulus properties, which include cloud size,
cloud fraction, cloud area–perimeter relationship, cloud top25

height, and spatial distribution. Cloud fraction and cloud top
height are also compared to those derived from the Multi-
angle Imaging SpectroRadiometer (MISR) and Moderate
Resolution Imaging Spectroradiometer (MODIS). Section 5
examines the relationship of the macrophysical properties30

observed with the meteorological conditions, while Sect. 6
summarizes our results.

2 ASTER data

ASTER is an instrument on board the NASA Earth Observ-
ing System Terra spacecraft, which is in a Sun-synchronous35

orbit with an Equator crossing time of around 10:30 lo-
cal time. ASTER has two cameras: one that points at nadir
and one that points backward in the along-track direction.
The nadir camera has three visible and one near-infrared
spectral bands (0.50 to 1.0 µm) at 15 m spatial resolution,40

six shortwave infrared spectral bands (1.0 to 2.5 µm) at
30 m spatial resolution, and five thermal infrared spectral
bands (8 to 12 µm) at 90 m spatial resolution. Note that the
ASTER shortwave infrared data are no longer available af-
ter April 2008 due to the detectors not functioning. ASTER45

takes around 600 scenes in a day, with each scene covering
a 60 km× 60 km area. More details about the ASTER instru-
ment can be found in Abrams (2000).

Since ASTER was designed for land surface studies, it
primarily collects data over land only. However, as part of50

the CAMP2Ex mission, it was tasked to acquire data over
the Philippines region (0–25° N, 110–135° E) from August

to October 2019 with appropriate radiometric gain settings
for acquiring cloud properties. The ASTER Level 1T (L1T)
calibrated radiance data (version V003) that were collected 55

during the mission were used in this study. In total, there
were 2022 scenes from 81 separate days. Scenes occurring
over land were not included to facilitate the cloud masking
described below, giving a total of 1217 oceanic scenes. There
were a lot of cirrus present during the observing period (Reid 60

et al., 2023). Scenes that had any pixel with a brightness tem-
perature less than 0 °C were also excluded to avoid potential
cirrus contamination, leaving a total of 378 scenes. These too
may contain cirrus, as described in the next section.

3 Cloud masking and labeling 65

To generate cloud masks, a single threshold approach was
applied to the ASTER 3N channel (760–860 nm, nadir view)
over each 60 km× 60 km scene, following earlier studies
(Zhao and Di Girolamo, 2006, 2007; Dey et al., 2008; Jones
et al., 2012; Dutta et al., 2020). In brief, a threshold was 70

manually selected for each scene by simultaneously viewing
the radiance and mask images to visually verify the chosen
threshold. Any scene that was not easily masked with a sin-
gle threshold was removed from the data set. Some scenes
that contained sun glint were used if a threshold could be 75

accurately determined, while scenes that were visually deter-
mined to be contaminated by cirrus were not used in the anal-
ysis. Thresholds were successfully obtained for 180 ASTER
scenes that were visually determined to be dominated by
cumulus clouds. Figure 1 shows an example of an ASTER 80

scene on 12 August 2019 along with its cloud mask.
Scenes that contained clouds with cloud area-equivalent

diameters, defined as the diameter of a circle with the same
cloud area, greater than 30 km, or half the ASTER scene
domain, were excluded from the analysis. This was done 85

to reduce the uncertainty in cloud edges with the finite do-
main size being 60 km× 60 km. Moreover, clouds of this size
are typically not classified as trade cumulus. This reduced
the total number of scenes to 170 from 36 separate days.
There were 46, 33, and 91 scenes for the months of August, 90

September, and October, respectively. Figure 2 shows a map
of the CAMP2Ex region, with the centers of each of the 170
ASTER scenes colored by the date each scene was collected.
The final list of the ASTER scenes and the thresholds de-
rived for each scene can be found in the Supplement, thereby 95

making our results reproducible.
At the 15 m spatial resolution, each pixel was assigned

as either completely cloudy or clear. After classification,
pixels were grouped into individual clouds using the four-
connectivity rule, where two cloudy pixels that share one 100

edge but not one vertex belong to the same cloud. This
was done using the cloud labeling algorithm available in
Zhao (2006). In total, the number of clouds found within the
170 scenes is 2 181 059.
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Figure 1. (a) ASTER channel 3N image (60 km× 60 km) taken on 12 August 2019 and (b) its cloud mask, where white represents cloud,
grey represents clear, and black represents no data.

The uncertainties in our cloud masking approach and their
impact on the cumulus statistics are discussed in Zhao and
Di Girolamo (2007). The largest impact is on cloud fraction,
where much of the uncertainty from our approach comes
from cloud edge pixels. This uncertainty can be estimated us-5

ing the formulation given by Di Girolamo and Davies (1997).
Otherwise, cumulus cloud size distributions and spatial dis-
tributions have been shown to be insensitive to small pertur-
bations in the choice of cloud detection thresholds as shown
and discussed in other similar studies (e.g., Wielicki and10

Welch, 1986; Zhao and Di Girolamo, 2007).

4 Observed statistics of cumulus cloud
macrophysical properties

The following sections present the trade wind cumulus
macrophysical properties over the tropical western Pacific15

using the 170 cloud-masked scenes from ASTER channel 3N
that were derived in Sect. 3. These include cloud size, cloud
fraction, cloud area–perimeter relationship, cloud top height,
and spatial distribution. These properties are compared to
previous studies on oceanic shallow cumulus cloud proper-20

ties and, in the case of cloud fraction and cloud top height, to
MISR and MODIS satellite retrievals.

4.1 Cloud size distribution

The cloud size distribution shows the fraction of clouds
within a finite range of sizes. The cloud size distribution25

has been commonly observed to follow a power law distri-
bution (Benner and Curry, 1998) and has been used to com-
pare cloud models and observations (Neggers et al., 2003).
The cloud size distribution n (D) following the power law is
given by30

n (D)= aD−λ, (1)

where D is the cloud area-equivalent diameter, and a and λ
are constants. The area of each cloud is defined as the product
of the number of cloudy pixels and the area of each pixel. D
is then calculated from the cloud area by assuming a perfectly 35

circular cloud.
The scaling parameter, λ, can be determined by taking the

natural logarithm of both sides of Eq. (1), giving

lnn (D)= ln(a)− λ lnD, (2)

where λ is the slope of the least-squares linear regression be- 40

tween lnn (D) and lnD. This method of fitting a least-squares
line, called the “line fit” method, has been shown to give
more weight to larger clouds, which tend to be poorly sam-
pled, and is sensitive to the binning strategy. Thus, the “di-
rect power law fit” method described by Zhao and Di Giro- 45

lamo (2007) was also used in this study.
In the direct power law fit method, the mean of all cloud

diameters D is first determined as

D =
1
n

n∑
i

Di, (3)

where n is the total number of clouds in a scene, and Di is 50

the area-equivalent diameter of each cloud. From Eq. (1), the
probability density function of D is given as f (D)= (λ−
1)D−λ, so that the expected value of D, E (D), is

E (D)=

∫ Du
D0
Df (D)dD∫ Du
D0
D dD

=

∫ Du
D0
D1−λdD∫ Du

D0
D−λdD

=
(1− λ)(D2−λ

u −D2−λ
0 )

(2− λ)(D1−λ
u −D1−λ

0 )
, (4)

TS1where D0 and Du are the smallest and largest cloud di- 55

ameters among all the clouds, respectively. For a sufficiently
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Figure 2. The center of each ASTER 60 km× 60 km scene used in the CAMP2Ex region, colored by date (YYYY.MM.DD). Red stars in-
dicate operational sounding stations published by the University of Wyoming (https://weather.uwyo.edu/upperair/sounding.html, last access:
16 March 2022).

large number of samples,D ∼= E(D), and λ can be solved by
combining Eqs. (3) and (4). This method has been shown to
be statistically unbiased with equal weight assigned to each
data point (Zhao, 2006). Note that the direct power law fit
method does not make use of any binned data and is thus5

independent of binning strategy.
The solid line in Fig. 3 shows the normalized frequency of

all clouds with area-equivalent diameters of less than 7 km
in 100 m bin widths on a logarithmic scale. Clouds with
D > 7 km are poorly sampled and were excluded in the anal-10

ysis of cloud size distribution. We note that 68 of the 170
ASTER scenes used contained clouds with D > 7 km. How-
ever, clouds with D > 7 km only make up less than 0.007 %
of all clouds observed.

Figure 3 shows λ= 2.93 with correlation coefficient R =15

0.99 using the line fit method, while the double power law
line fit gives λ1 = 1.95 and λ2 = 3.27, with a scale break
at Dc = 0.6 km that was computed as the point that leads to
the least residual. These results are similar to those reported
by Benner and Curry (1998) for the double power law from20

MODIS Airborne Simulator (MAS) images (λ1 = 1.98 and
λ2 = 3.06) and Zhao and Di Girolamo (2007) for the single
(λ= 2.85) and double power law (λ1 = 1.88 and λ2 = 3.18)
as seen in Table 1. Mieslinger et al. (2019) report a slightly
smaller exponent with the single power law of λ= 2.55 and25

double power law of λ1 = 1.68 and λ2 = 3.12 but with a sim-
ilar scale break atDc = 0.59 km. Note again these results are

insensitive to small changes in the cloud masking threshold
used but can differ with other studies due to domain size and
spatial resolution. 30

Figure 3 also shows that the direct power law fit gives
λ= 2.16 with R = 0.99, which is similar to Zhao and Di
Girolamo (2007). This is shown as a dashed step line in Fig. 3
instead of a straight line since the direct power law fit was
not calculated based on binned data. A double direct power 35

law fit gives λ1 = 2.12 and λ2 = 2.94, with a scale break at
Dc = 0.4 km, which is slightly smaller than the scale break
computed from the double power law line fit method. Note
that the difference between the direct power law fit and the
observations for larger cloud diameters (> 1 km) is small, on 40

the order of 10−4, but fits well with the smallest cloud di-
ameters. On the other hand, the difference between the line
fit and the observations for the smallest cloud diameters is
large, on the order of 10−1, but fits well for the larger cloud
diameters. 45

4.2 Cloud fraction distribution

Figure 4 gives the cloud fraction and cumulative cloud frac-
tion as a function of cloud area-equivalent diameter using
bin intervals of 100 m. Cloud fraction was defined as the ra-
tio of the number of cloudy pixels to the total number of 50

pixels. The average cloud fraction from all 170 scenes is
0.115± 0.014. This uncertainty comes from half the frac-

https://weather.uwyo.edu/upperair/sounding.html


8 M. V. De Vera et al.: Observations of the macrophysical properties of cumulus cloud fields

Figure 3. Normalized distribution of cloud equivalent diameter of
clouds smaller than 7 km in diameter using bin width of 100 m for
the 170 ASTER scenes.

tion of cloud edge pixels (Di Girolamo and Davies, 1997),
which is 0.027. The cloud fraction over the CAMP2Ex re-
gion is only slightly larger (around a 0.03 difference) than
those from previous studies done over other tropical regions,
such as those by Benner and Curry (1998), McFarquhar et5

al. (2004), Zhao and Di Girolamo (2007), and Mieslinger et
al. (2019). Very similar to Zhao and Di Girolamo (2007), half
of this total cloud fraction is from clouds less than 1.6 km in
diameter. A peak in cloud fraction is observed at cloud diam-
eters between 400 and 500 m, showing how small most of the10

cumulus clouds sampled in this region are. Note that most of
the bins between 10 to 30 km only contained one cloud, so an
increase is seen in cloud fraction as cloud area is proportional
to cloud diameter.

The ASTER, MISR, and MODIS cloud fractions for15

the CAMP2Ex region provide an opportunity to compare
with results of Zhao and Di Girolamo (2006) and Dutta et
al. (2020) in other regions. They showed large overestimates
of cloud fraction reported by MISR and MODIS as compared
to ASTER. This was due to the presence of subpixel clouds,20

especially in trade wind cumulus-dominated regions where
typical cumulus size can be smaller than the resolution of
passive sensors like MISR and MODIS. Here, cloud fractions
from the MISR Level 2 Top-of-Atmosphere (TOA)/Cloud
Classifiers product (TC_Classifiers) version 3 (Moroney et25

al., 2014) and from the MODIS Cloud Mask (MOD35) Col-
lection 6.1 (Ackerman and Frey, 2015) were compared to the
total cloud fraction from the ASTER scenes. MISR provides
two different cloud fraction products, the standard estimate
cloud fraction (SECF) and resolution-corrected cloud frac-30

tion (RCCF), at 17.6 km resolution, both of which are de-
rived from the Radiometric Camera-by-camera Cloud Mask
over ocean (Zhao and Di Girolamo, 2004). To compare
ASTER, MISR, and MODIS cloud fractions, ASTER (15 m)

Figure 4. Cloud fraction and cumulative cloud fraction as a func-
tion of cloud equivalent diameter using bin width of 100 m for
170 ASTER scenes sampled over the western Pacific Ocean during
CAMP2Ex.

and MODIS (1 km) cloud mask pixels were collocated to 35

the MISR 17.6 km cloud fraction pixels. Cloud fractions
from ASTER and MODIS were then calculated for each
17.6 km× 17.6 km region to directly compare them to MISR
SECF and RCCF. Note that the MODIS pixels are labeled
as cloudy, probably cloudy, probably clear, clear, or no re- 40

trieval. Cloudy and probably cloudy pixels were considered
as cloudy, while clear and probably clear pixels were con-
sidered as clear in computing for the MODIS cloud frac-
tion. This is consistent with how cloud fraction climatolo-
gies are derived from MODIS (Stubenrauch et al., 2012). 45

Only regions that contained at least 99 % of the total possi-
ble number of ASTER pixels in a 17.6 km× 17.6 km region
were used for the comparison. Taking an average over all
17.6 km× 17.6 km regions, the mean ASTER cloud fraction
was 0.12, the mean MISR SECF was 0.49, the mean MISR 50

RCCF was 0.14, and the mean MODIS cloud fraction was
0.19. Thus, there is an overestimate of cloud fraction due to
pixel resolution for MISR SECF and MODIS that is simi-
lar to what was reported by Zhao and Di Girolamo (2006)
for scenes over the tropical western Atlantic. We see that the 55

resolution correction provided by the MISR RCCF algorithm
(Jones et al., 2012) carries a small bias (+0.02), which is well
within the uncertainties reported in this product by Dutta et
al. (2020) and very close to the fraction of cloud edge pixels
reported above. 60

4.3 Cloud area–perimeter relationship

The scaling relationship between cloud perimeter and cloud
area was given by Lovejoy (1982) as

P ∝
√
Ad , (5)
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Figure 5. Density plot of cloud area against cloud perimeter using
50 logarithmic bins from 0.1 to 10 000 km on the y axis and 0.001 to
10 000 km2 on the x axis for clouds larger than 12 pixels in the 170
ASTER scenes during the CAMP2Ex period with fractal dimension
d without a scale break and d1 and d2 with a scale break.

where A is the cloud area, P is the cloud perimeter, and d is
the fractal dimension. The value of d describes the complex-
ity of the cloud shape. For regular shapes, such as circles and
squares, d is unity, while d approaches the value of 2 as the
perimeter becomes more contorted. The perimeter of each5

cloud was defined as the total length of all the edges adjacent
to noncloudy pixels, while the cloud area was computed in
the same way as described in Sect. 4.1.

Figure 5 shows the observed normalized frequency of
cloud perimeter versus cloud area in log–log space. Using a10

least-squares fit, the slope of the line was d = 1.25 with a cor-
relation coefficient of 0.98. This is slightly smaller than pre-
vious studies listed in Table 1, indicating cumulus clouds of
smoother shapes were sampled during the CAMP2Ex period.
When two lines of best fit were determined, the slopes were15

d1 = 1.20 and d2 = 1.55, with a scale break in cloud area
of dc = 0.19 km2 (or 0.50 km in area-equivalent diameter),
which has the least residual. This shows that the larger clouds
have more complex shapes than smaller clouds, consistent
with previous studies (Cahalan and Joseph, 1989; Benner and20

Curry, 1998; Gotoh and Fujii, 1998). Note that the fractal di-
mension d will also be insensitive to small perturbations in
the cloud threshold as Cahalan (1991) showed only a 0.1 in-
crease in dimension with around a 300 % increase in thresh-
old.25

4.4 Spatial distribution

We characterize the spatial distribution using the statistics of
the nearest-neighbor distance (NND) in the observed cloud
fields as done in Zhao and Di Girolamo (2007). The distance
between two clouds was calculated as the Euclidean distance30

between their mass centers. Figure 6a shows the observed

frequency distribution of NND with a peak around 0 to 50 m.
However, because the size of a cloud limits the minimum
possible value of its NND, Fig. 6b shows the frequency dis-
tribution of the ratio of NND to the cloud area-equivalent 35

radius. This shows that around 30 % of clouds have a nearest
neighbor within a distance of 3 times their radius. At a bin
width of 10 (not shown here), more than 75 % of clouds have
a nearest neighbor within a distance of 10 times their radius.
This result is very similar to that reported by Zhao and Di 40

Girolamo (2007).

4.5 Cloud top height distribution

ASTER channel 14 (12 µm) has the least amount of wa-
ter vapor absorption among the thermal infrared channels
of ASTER. Thus, channel 14 data were used to retrieve the 45

cloud top height (CTH) for each 90 m resolution cloudy pixel
using the same method as Zhao and Di Girolamo (2007). A
90 m resolution cloud mask was first constructed by flagging
a 90 m resolution pixel in the channel 14 scene as cloudy only
if all the 15 m subpixels within the corresponding channel 3N 50

scene were cloudy based on the 15 m cloud mask (Sect. 2.4).
For these 90 m cloudy pixels, the brightness temperature
(BT) was calculated from the radiance for each cloudy pixel
using the procedure in ASTER’s Algorithm Theoretical Ba-
sis Document for Brightness Temperature Version 3.0 (Alley 55

and Jentoft-Nilsen, 1999). The BT is converted to a CTH
by equating it with the temperature profile from a sound-
ing. Note that this approach assumes that cloud emissivity is
equal to 1 and that atmospheric absorption of radiation within
this channel does not happen above the cloud top. 60

The soundings used were obtained during the CAMP2Ex
mission. These soundings included dropsondes from the
NASA P-3 aircraft, as well as ship sondes (van Diedenhoven
et al., 2022). However, they were limited in that there were
only 11 out of 36 ASTER scene days when there was at least 65

one sounding available. Thus, standard synoptic soundings
acquired over the Philippines from four sites, namely sta-
tions 98223, 98433, 98444, and 98618 (shown as red stars
in Fig. 1) for 00:00 UTC, were also used. As these sound-
ings had lower vertical resolution compared to those from 70

the CAMP2Ex mission, the temperature profile was interpo-
lated to every 5 m. The sounding collected nearest in time
and space to that of the ASTER center was used to convert
the BT into CTH by equating it with the temperature profile
of the sounding. Note that small perturbations to the choice 75

of the cloud detection threshold will only impact the num-
ber of 90 m pixels used to retrieve CTH but not the values of
CTH (Zhao and Di Girolamo, 2007).

As an estimate of the uncertainty in retrieving CTH due
to sounding choice, temperature profiles from each sound- 80

ing from the aircraft dropsonde was compared to the tem-
perature profile from an operational sounding nearest in time
and space. Both temperature profiles were then re-gridded
onto an evenly spaced grid from 500 to 4000 m – the altitude
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Figure 6. (a) Normalized distribution of the nearest-neighbor distance using bin width of 50 m and (b) of the ratio of the nearest-neighbor
distance to the cloud area-equivalent diameter using bin width of 1 for the 170 CAMP2Ex ASTER scenes.

range containing most of the cloud tops in our data. From
this, the root mean square difference (RMSD) between the
temperature profiles from the dropsonde and the operational
sounding was calculated. An overall mean RMSD of 0.9 K
was calculated. The same was done for each sounding from5

the ship sondes, leading to an overall mean RMSD of around
1.0 K. With a ±1.0 K uncertainty in the temperature profile
due to sounding choice, there is around a ±160 m uncer-
tainty in height. Note that the dropsonde has an uncertainty of
±0.2 K (UCAR, 2020) in temperature measurements, while10

the ship sonde has an uncertainty of ±0.3 K (Vaisala, 2020).
The overall uncertainty in height is then mostly due to sound-
ing choice.

We also want to compare the CTH obtained from the
ASTER scenes to that retrieved by other satellite instru-15

ments, such as MISR and MODIS. MISR CTH data in the
MISR Level 2 TOA/Cloud Height and Motion Parameters
product, namely TC_Cloud (Version F01_0001; Mueller et
al., 2013), and MODIS CTH data in the MODIS Level 2
Cloud product, namely MOD06 (Version 6.1; Platnick et al.,20

2015), were retrieved for each ASTER scene by taking the
valid MISR CTH retrievals at 1.1 km resolution and the valid
MODIS CTH retrievals at 1 km resolution within the ASTER
scene. CTH distributions for MISR and MODIS within the
ASTER scenes were then compared to those obtained from25

the ASTER scenes using the BT technique.
Figure 7a shows the CTH frequency distribution with bin

width of 100 m for different ranges of cloud area-equivalent
diameter normalized by the total number of the cloudy pixels
examined. The cloud diameters used in Fig. 7a were calcu-30

lated from the 90 m cloud mask in the same way as calculated
from the 15 m cloud masks. On average, cloudy pixels from
larger clouds have higher cloud tops than those from small
clouds as seen in the widening of curves as the range of cloud
diameters increase. A peak in ASTER-retrieved CTH around35

1.2 to 1.3 km was observed from all clouds.

As a comparison, Fig. 7b shows the CTH distribution with
bin width of 250 m for all ASTER scenes versus the MISR
and MODIS CTHs retrieved for each scene. Figure 7b also
shows the CTH distribution derived from the High-Spectral- 40

Resolution Lidar – Generation 2 (HSRL-2; Hair et al., 2008;
Burton et al., 2018) instrument on board the NASA P-3 air-
craft during CAMP2Ex (Fu et al., 2022), which were not typ-
ically coincident with the ASTER scenes. The MISR CTH
distribution peaks around 750 to 1000 m, the MODIS CTH 45

distribution peaks around 0 to 250 m, and the HSRL-2 CTH
distribution peaks around 500 to 750 m. Thus, there is around
a 1250 m spread in the location of the peak in the CTH distri-
butions between the four instruments. Below we discuss this
further to better understand the likely causes for the differ- 50

ences.
First, the CTH distribution from in situ measurements us-

ing the HSRL-2 (data processed by Fu et al., 2022) is seen to
have two modes, having CTHs larger than 4 km, as compared
to the CTH distribution from ASTER. Recall that ASTER 55

(and coincident MISR and MODIS) scenes do not include
scenes that have any clouds colder than 0 °C anywhere in a
60 km× 60 km ASTER scene. No such filtering was placed
on the HSRL-2 data, which include all heights observed. The
0 °C isotherm is around 5 km, yet heights greater than 4 km 60

are still observed from the HSRL-2 data, albeit very infre-
quently. This may be due to a sampling bias towards larger
clouds in the aircraft data, as larger clouds, such as congestus,
were targeted during research flights (Fu et al., 2022). Still, it
is the lower clouds that dominate the frequency distribution. 65

Since the HSRL-2 data are a sample from 19 separate days
scattered over the ASTER collection period, the CTH mode
in the 500–750 m bin is taken as reference for comparison.
We see that this lower peak is closer to the peak in MISR
CTHs than it is to the peak in ASTER CTHs. 70

The MODIS CTH distribution peak is around 1000 m
lower than the peak in the BT-derived ASTER CTHs, 750 m
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Figure 7. (a) Normalized distribution of cloud top heights with 100 m bin width from ASTER for different cloud equivalent diameters
and (b) a comparison of the normalized distribution of cloud top heights with 250 m bin width obtained from ASTER, MISR, and MODIS
corresponding to each ASTER scene and from the HSRL-2 on board the P-3 aircraft.

lower than the peak in the MISR stereoscopically retrieved
CTHs, and 500 m lower than the peak in the HSRL-2. When
collocated ASTER and MODIS pixels were examined, 81 %
of the 1 km MODIS pixels reporting CTH had CF< 0.50
based on the ASTER 15 m mask (See Fig. 9 of Reid et al.,5

2023, for an overlay of an ASTER–MODIS example high-
lighting this effect). This is consistent with the results of
Sect. 4.2, where a peak in the cloud fraction distribution
was seen at the 400 to 500 m cloud equivalent diameter bin.
Because of its coarse resolution, the CTH MODIS retrieval10

is affected more by the surface temperature when there are
subpixel clouds compared to ASTER, thus biasing the cloud
height low.

MODIS also uses a latitude-dependent BT lapse rate to in-
fer low-level cloud heights over water. These lapse rates were15

developed from collocated MODIS-observed 11 µm BTs,
CALIPSO low-level cloud heights, and sea surface tempera-
tures, with a different set of lapse rates determined for each
month, to create the monthly zonal mean “apparent 11 µm
BT lapse rates” (Baum et al., 2012). Thus, differences in the20

lapse rate used by MODIS and the “true” lapse rate from
the sounding can also cause differences in the retrieved CTH
distributions between MODIS and ASTER. Using the coef-
ficients given in Baum et al. (2012), the lapse rate used by
MODIS for each ASTER scene was computed and averaged25

to 3.34 K km−1 for all scenes. Lapse rates were also com-
puted from the surface to around 2 km in altitude for the
sounding used for each ASTER scene in retrieving CTHs.
This averaged to 5.74 K km−1 for all scenes. Thus, there is
a 2.40 K km−1 difference in lapse rates, with MODIS hav-30

ing a lower lapse rate. This would then translate to MODIS
reporting CTHs with a high bias of around 800 m on aver-
age, which is opposite to what is observed in Fig. 7b. This
strongly implies the dominating effect of subpixel clouds

is leading to an overall lower MODIS CTH relative to the 35

ASTER, MISR, and HSRL-2.
For the MISR CTH distribution, the peak frequency oc-

curs in the 750–1000 m bin at 0.33, although the frequency
in the 500–750 m bin is only slightly lower at 0.30 as seen
in Fig. 7b. This lines up well with the HSRL-2, having a 40

peak CTH frequency in the 500–750 m bin but with a fre-
quency in the 750–1000 m bin at 0.21, which is not much
different from the MISR peak at 0.33. The slight difference
may be an indication of sampling differences between MISR
and HSRL-2 observations. Note that MISR retrieves CTH 45

using a stereoscopic technique (Mueller et al., 2013), which
is not impacted by subpixel cloud biases. As such, the dif-
ference between the ASTER and MISR CTHs is likely due
to violations in the assumptions of the ASTER BT retrieval
technique. One of the assumptions is that the cloud emis- 50

sivity is always equal to 1, which may not always be true.
While CTH retrievals were from channel 14 90 m pixels
that were fully cloudy based on the 15 m cloud mask, some
15 m cloudy pixels may not have been fully cloud covered.
Since the ocean surface is warmer than clouds in this re- 55

gion and time period, optically thin cloud or subpixel cloud
would bias the cloud top heights low, opposite to what is ob-
served relative to the MISR or HSRL-2 CTHs. This leads
to the possibility of either significant thin cirrus contami-
nation or significant water vapor absorption as the possi- 60

ble source for ASTER CTHs that are biased high relative
to MISR and HSRL-2. Thin cirrus contamination was ruled
out because of the care taken in filtering scenes that con-
tain cirrus, including the use of the 12 µm channel. To ex-
amine the impact of water vapor absorption, soundings used 65

for each scene, along with the spectral response function
of ASTER channel 14 (ASTER instrument characteristics,
https://asterweb.jpl.nasa.gov/characteristics.asp, last access:
2 July 2023), were input into the radiative transfer model li-

https://asterweb.jpl.nasa.gov/characteristics.asp
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bRadtran (Mayer et al., 2020) with a cloud layer of optical
depth 9.6 at 700 to 900 m in altitude to simulate BTs re-
trieved. Simulations without water vapor in the atmosphere
were run to examine the impact of water vapor absorption.
Results showed that a 2 to 5 K cooling due to water vapor5

absorption can lower the ASTER-retrieved CTHs by ∼ 200
to 900 m, thus bringing it more in line with the MISR heights,
which had a mode that was 500 m lower than ASTER.

In summary, Fig. 7b shows the different CTH distributions
retrieved using different techniques. The HSRL-2 CTH dis-10

tribution has a peak close to that of MISR, with the small
differences between the two likely due to sampling differ-
ences. The MODIS CTH peak is the lowest among the dis-
tributions, where the presence of subpixel clouds leads to the
overall lower MODIS CTHs. The ASTER CTHs shown in15

both Fig. 7a and b do not include any correction for water
vapor absorption; thus they are biased high. Radiative trans-
fer simulations indicate that bias expected from the neglect
of water vapor absorption in this region and time period is
consistent with the difference we see between ASTER and20

MISR CTHs. Finally, the analyses above were for coinci-
dent MISR and MODIS data that fell within the ASTER
60 km× 60 km scenes. Not all ASTER clouds had retrieved
MISR and MODIS CTHs. When restricting the analysis (not
shown) to pixels with valid MISR and MODIS CTHs that25

had at least one ASTER CTH, none of the conclusions drawn
above changed.

The CTHs reported here are also similar to the heights re-
ported for the RICO region over the Atlantic east of Antigua
(Zhao and Di Girolamo, 2007). They too used ASTER for30

retrieving CTH and found a peak frequency around 900 m.
They reported that neglecting water vapor absorption could
bias the cloud heights up to 200 m. This suggests that total
column water vapor (TCWV) observed during CAMP2Ex
was much higher than that observed during RICO. Indeed,35

Fig. 8 shows the TCWV for the CAMP2Ex and RICO regions
during their respective mission periods, as derived from the
fifth generation of atmospheric reanalysis data (ERA5) by
the European Centre for Medium-Range Weather Forecasts
(ECMWF; Hersbach et al., 2020). Repeating the radiative40

transfer simulations above, results showed a ∼ 2 K BT dif-
ference between the two regions. Thus, accounting for water
vapor absorption in estimating CTH from ASTER, both re-
gions show a peak frequency in CTH of ∼ 750 m.

5 Comparison of meteorological variables with45

macrophysical properties

In the previous sections, the macrophysical properties (size,
areal fraction, area–perimeter relationship, CTH, and a met-
ric for the spatial distribution) of boundary layer cumuli ob-
served during CAMP2Ex using ASTER were presented and50

compared to in situ measurements, prior studies, and re-
trievals from other satellites. In this section, the relationship

Figure 8. Normalized distribution of total column water vapor from
ERA5 reanalysis data for the RICO (blue) and CAMP2Ex (orange)
regions.

of those cumulus cloud macrophysical properties to large-
scale meteorological parameters is examined.

Previous studies have investigated the relationship be- 55

tween the large-scale meteorology and the shallow cumu-
lus cloud macrophysical properties. Zhao and Di Giro-
lamo (2007) did not find any relationship between the two
during the RICO campaign, which they hypothesized was
due to the inability of the forecast meteorological data that 60

they used to capture the scales in which the cumulus clouds
reside. Mieslinger et al. (2019), on the other hand, analyzed
cumulus cloud fields over the western Atlantic and the cen-
tral and eastern Pacific and found that the surface wind speed
was the dominant controlling factor for their estimated cloud 65

macrophysical properties. They found that with increasing
surface wind speed, the cloud fraction and cloud top heights
increased, leading to a shift in the cloud size distribution to-
ward larger clouds with smoother shapes. They reached this
conclusion by examining the average cloud field properties 70

as a function of single-binned meteorological parameters us-
ing ERA5 Interim data. However, data binning can create ar-
tificial relationships between uncorrelated data depending on
how the data are binned (Wainer et al., 2006; Rusakov, 2023).
To avoid this issue, we use multiple linear regression to in- 75

vestigate the relationship between the large-scale meteorol-
ogy and observed macrophysical properties.

The ERA5 reanalysis data were used to characterize the
large-scale meteorological conditions instead of the avail-
able soundings due to the limited temporal and spatial cov- 80

erage of the soundings and inconsistencies in the spatial and
temporal resolution between the different sounding instru-
ments. The ERA5 reanalysis data at the hours of 01:00,
02:00, 03:00, and 04:00 UTC were used, the time period
that the ASTER scenes were taken. Data included the u 85

(east) and v (north) wind components at 10 m and pres-
sure levels of 1000–850 hPa (every 25 hPa) and 600 hPa (the
boundary layer top), vertical velocity and relative humidity at
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Table 2. Meteorological variables at the different levels used in this study. Fields extracted or calculated from the ERA5 reanalysis data.

Meteorological variable (units) Levels

u and v wind components [m s−1] 1000–850 hPa (every 25 hPa), 600 hPa
Vertical velocity [Pa s−1] 1000–850 hPa (every 25 hPa), 600 hPa
Relative humidity 1000–850 hPa (every 25 hPa)
Sea surface temperature (SST) [K] –
Total column water vapor (TCWV) [kg m−2] –
Wind speed [m s−1] 10 m, 1000–850 hPa (every 25 hPa), 600 hPa
Wind speed difference [m s−1] 1000–975 (950, 925, 900, 875, 850) hPa, 950–925 (900, 875, 850) hPa, 850–600 hPa
Wind direction [°] 10 m, 1000–850 hPa (every 25 hPa), 600 hPa
Lower-tropospheric stability (LTS) [K] 1000–975 (950, 925, 900, 875, 850, 700) hPa
Estimated inversion strength (EIS) [K] 1000–700 hPa
Equivalent potential temperature [K] 1000–850 hPa (every 25 hPa)
Equivalent potential temperature difference [K] 1000–975 (950, 925, 900, 875, 850) hPa, 950–925 (900, 875, 850) hPa
Convective available potential energy (CAPE) [J kg−1] 850 hPa
Convective inhibition (CIN) [J kg−1] 850 hPa

pressure levels of 1000–850 hPa (every 25 hPa), sea surface
temperature (SST), and total column water vapor (TCWV).
These variables were compiled for the time period of Au-
gust to October 2019 over the CAMP2Ex region with a hor-
izontal resolution of 0.25°× 0.25°. From these, other vari-5

ables such as wind speed, wind speed difference, wind direc-
tion, lower-tropospheric stability (LTS), estimated inversion
strength (EIS), equivalent potential temperature (θe), equiv-
alent potential temperature difference, convective available
potential energy (CAPE), and convective inhibition (CIN)10

were calculated using MetPy version 1.4.1 in Python. This
gave a total of 88 meteorological variables, which are shown
in Table 2. Note that the ERA5 boundary layer height (BLH)
variable was also examined and was found to be insignif-
icant based on p value for all the observed macrophysical15

properties. Therefore, it was not included in the final list of
variables shown in Table 2. The low ranking may be due to
the decoupling of the planetary boundary layer (PBL) in the
trade cumulus regime, leading to relatively shallow and small
cumuli with CTHs well below the PBL top as found in other20

studies (Karlsson et al., 2010; Kubar et al., 2020).
Figure 9 shows contour normalized frequency by altitude

diagrams for relative humidity and temperature from the
ERA5 reanalysis data. A wide spread in relative humidity
is seen, while the temperature has a relatively narrow spread.25

The median vertical profile is shown as the solid black line.
At the surface, there is a median relative humidity value
of around 80 % and a temperature of around 300 K. These
have around a 9 % and 2 K RMSD relative to the median
relative humidity and temperature profile soundings, respec-30

tively, obtained from the dropsondes and ship sondes that
were used in Sect. 4.5 for CTH retrieval. Comparing the fre-
quency by altitude diagram for relative humidity to a similar
figure in Davison et al. (2013) for the RICO campaign, lower
relative humidity was generally observed for the RICO field35

campaign at altitudes above 3 km. This is consistent with the

lower TCWV values observed during RICO from the ERA5
reanalysis data as discussed in Sect. 4.5.

For each ASTER scene, the mean value of the meteoro-
logical variables (Table 2) contained within each scene was 40

taken to represent the whole scene. The pooled standard de-
viation of the meteorological variables contained within each
ASTER scene can be found in the Supplement. Standard de-
viations are relatively small, as seen in the median coeffi-
cient of variation values (around 0.1), showing the represen- 45

tativeness of taking the mean to represent the whole scene.
The general statistics for the mean meteorological variables
among all scenes are also given in the Supplement. In gen-
eral, there is a wide variability seen in the mean meteorolog-
ical variables, apart from SST. All 88 meteorological vari- 50

ables were then standardized by subtracting the mean and
dividing by the standard deviation.

The different statistics of cloud macrophysical properties
were obtained from individual ASTER scenes, and the stan-
dardized meteorological variables were then fit into a mul- 55

tiple linear regression model for each cloud macrophysical
property. The R2 and adjusted R2 values obtained when do-
ing so are shown in Table 3. The adjusted R2 value consid-
ers the number of variables in the model, and unlike the R2

value, it only increases when the new variable improves the 60

model more than would be expected by chance. As seen in
the adjusted R2 values, less than 30 % of the variation in the
cloud size distribution parameters (line fit λ and direct power
law fit λ) and fractal dimension is explained by all the vari-
ables. This may be due to the low variability seen in these 65

properties among all the scenes (see the Supplement). How-
ever, for the cloud fraction and mean cloud top height, 51 %
and 72 % of their variation can be explained by the variables,
respectively. With this, the discussion below only focuses on
the results for cloud fraction and mean cloud top height. 70

To rank the meteorological variables that affected the
cloud properties, variable selection was first done from the
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Figure 9. Contour frequency by altitude diagrams for relative humidity (a) and temperature (b) from the ERA5 reanalysis data. Relative
humidity bins are 2 %, temperature bins are 1 K, and altitude bins are 100 m. The median is shown by the solid black line, while the 25th
percentile and 75th percentile are shown by dotted black lines.

Table 3. R2 and adjusted R2 values for the multiple linear regres-
sion model containing all 88 variables for each cloud macrophysical
property.

Cloud macrophysical property R2 Adjusted R2

Line fit λ 0.56 0.19
Direct power law fit λ 0.58 0.21
Fractal dimension 0.52 0.10
Mean cloud top height 0.85 0.72
Cloud fraction 0.74 0.52

full regression model using backward elimination (Faraway,
2014) by examining the p values. Starting with the multi-
ple regression model with 88 variables, the variable with the
greatest p value (the least significant) was removed. A model
was then fit again and the variable with the greatest p value5

was again removed. This was repeated until all p values were
significant at the 0.05 level. After this process, the remain-
ing variables in the model were ranked by the change in R2

when that variable is removed. By doing so, the variables are
ranked according to which ones explain most of the varia-10

tion in the observed macrophysical property. Note that the
results do not differ when the remaining variables were in-
stead ranked by the change in the adjusted R2 values.

The final multiple linear regression model for mean cloud
top height contains 26 variables, with R2

= 0.80 and ad-15

justed R2
= 0.77. This model has a root mean squared error

(RMSE) of 127 m using the leave-one-out cross-validation
(LOOCV) technique. Table 4 shows the top six ranked vari-
ables by the change in R2 from 0.80 when that variable
is removed from the regression model. TCWV, EIS, LTS,20

Table 4. Top six meteorological variables that explain most of the
variation in the observed mean cloud top height.

Meteorological variable Pressure level Change in R2

TCWV −0.14
EIS 1000–700 hPa −0.12
LTS 1000–700 hPa −0.11
Wind speed difference 1000–975 hPa −0.02
Wind speed difference 1000–950 hPa −0.02
Vertical velocity 925 hPa −0.02

wind speed difference, and vertical velocity are seen to rank
highest. These results are consistent with other observa-
tional studies that have shown higher TCWV, or total pre-
cipitable water, can lead to higher cloud tops in boundary
layer clouds (e.g., Forsythe et al., 2012). The stability terms 25

of EIS and LTS are also important as higher values would re-
duce entrainment drying and warming, moistening the plan-
etary boundary layer and allowing for deeper and more low
stratiform clouds (Wood and Bretherton, 2006). Wind speed
difference is also important as wind shear can tilt deeper cu- 30

mulus clouds, limit vertical cloud development, and enhance
evaporation at cloud tops (Neggers et al., 2003; Yamaguchi et
al., 2019; Helfer et al., 2020), while vertical velocity or sub-
sidence near the cloud top can limit the deepening of marine
boundary layer clouds, such as stratocumulus, stratus, and 35

cumulus, due to the pushing down of the top of the marine
boundary layer (Myers and Norris, 2013).

The final multiple linear regression model for cloud frac-
tion contains 24 variables, withR2

= 0.59 and adjustedR2
=

0.53. This model has RMSE of 0.068 using the LOOCV 40
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Table 5. Top six meteorological variables that explain most of the
variation in the observed cloud fraction.

Meteorological variable Pressure level Change in R2

Wind speed 975 hPa −0.08
Relative humidity 900 hPa −0.08
LTS 1000–900 hPa −0.08
Wind speed 925 hPa −0.06
EIS 1000–700 hPa −0.05
LTS 1000–700 hPa −0.05

technique. Table 5 shows the top six ranked variables by the
change in R2 from 0.59 when that variable is removed from
the regression model. From the table, wind near the surface
is the variable that has the biggest impact on cloud fraction.
This agrees with previous modeling and observational stud-5

ies that have shown how surface wind speed can increase
surface fluxes of moisture and heat and deepen the bound-
ary layer, allowing for deeper and larger clouds (Nuijens and
Stevens, 2012; Brueck et al., 2015). Naud et al. (2023) also
found that the 10 m winds are the dominant cloud-controlling10

factor for shallow cumulus regions. Relative humidity above
the cloud is also important for cloud entrainment and lifetime
(Eastman and Wood, 2018). Notice also that the standard EIS
and LTS terms calculated between the 1000 and 700 hPa lev-
els are lower in the ranking. This is in agreement with Cutler15

et al. (2022), who recently showed using surface-based and
satellite cloud data, along with reanalysis data, that the cor-
relation between LTS and EIS on cumulus cloud cover is low
compared to the correlation of LTS and EIS with stratocu-
mulus cloud cover. Lewis et al. (2023) also recently showed20

how EIS is not the most important variable for low-cloud
cover in the trade cumulus regions. This is an important find-
ing because climate models use these stability terms to pa-
rameterize low-cloud cover (Neale et al., 2010) and in cli-
mate sensitivity studies to study low-cloud feedback (Brient25

and Schneider, 2016; McCoy et al., 2017; Myers et al., 2021;
Sherwood et al., 2020).

Finally, McFarquhar et al. (2004) and Dey et al. (2011)
have also investigated how cloud amount and cloud top
height can vary with aerosol amount over the Indian Ocean.30

Given that the CAMP2Ex mission was held in the Philip-
pines region due to its complex aerosol environment (Reid
et al., 2023), the variability in the macrophysical properties
with mean aerosol optical depth (AOD) retrieved by MISR
for each ASTER scene during the mission was also investi-35

gated by examining each of the macrophysical properties as
a function of AOD and by grouping scenes based on their
AOD into “clean” and “polluted” (not shown here). There
was not much variability seen in the cloud macrophysical
properties (coefficient of variations ranging from 0.01 to 0.340

for the different properties) as there was not much variabil-
ity in the AOD observed in the region (standard deviation of

0.10) for the observed ASTER scenes. Most of the ASTER
scenes were collected under fairly pristine conditions, with
only 7 % of the 550 nm AODs retrieved from MISR having 45

values greater than 0.3. This is in contrast to other studies
that have investigated the impact of aerosol loading on the
cloud macrophysics. For example, in the study by Dey et
al. (2011), which also used ASTER and MISR data, about
half of the aerosol retrievals had 550 nm AODs > 0.3. They 50

also had a much larger sample size. Thus, the generality of
McFarquhar et al.’s (2004) finding that the cloud macrophys-
ical properties depend on aerosol properties could not be well
tested here, given the narrow range in observed AOD over the
CAMP2Ex region. 55

6 Conclusions

Cloud macrophysical properties place strong controls on
local- to global-scale radiative and latent heat budgets. The
macrophysical properties of oceanic shallow cumulus clouds
are challenging to model and observe owing to their small 60

sizes and remote locations despite being a commonly occur-
ring cloud type over the oceans, particularly over the trop-
ics. The representation of tropical shallow cumuli in cli-
mate models continues to be a major source of uncertainty
in cloud feedback. This, in part, calls for improved observa- 65

tions of these clouds and their relationship to meteorologi-
cal variables to help improve and evaluate their representa-
tion in models. This is possible with existing satellite instru-
ment missions focused on land studies, such as ASTER, but
such instruments are rarely tasked to collect data over oceans 70

with sampling and settings that are appropriate for deriving
the macrophysical properties of clouds. One such occurrence
took place as part of the CAMP2Ex field campaign, where
the ASTER instrument on board Terra was tasked to collect
high-resolution imagery over the ocean waters surrounding 75

the Philippines.
In this study, the macrophysical properties of 2 181 059

cumulus clouds over the tropical western Pacific were ex-
amined using 170 ASTER scenes collected from August to
October 2019 during the conduct of the CAMP2Ex field cam- 80

paign. An average cloud fraction of 0.115± 0.14 was re-
trieved, with half of that fraction contributed by clouds less
than 1.6± 0.1 km in area-equivalent diameter. Around 80 %
of the individual scenes had a cloud fraction less than 0.2.
The cloud size distribution follows a power law form, with 85

an exponent of 2.93 (R = 0.99) using the line fit method
and 2.16 (R = 0.99) using the direct power law fit method.
An area–perimeter power law was also observed with a di-
mension of 1.25 (R = 0.98), indicating cumulus clouds of
smooth shapes. More than 75 % of the clouds were found to 90

have a nearest neighbor within 10 times their area-equivalent
radius. After correcting for water vapor absorption that led to
∼ 200 to 900 m bias in cloud top height (CTH) per scene, the
resulting peak frequency in ASTER-derived CTH occurred at
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750 m – consistent with MISR and HSRL-2 CTHs. A remain-
ing uncertainty in CTH due to sounding choice was found to
be ±160 m. With a mean lifting condensation level (LCL) of
466± 89 m for the CAMP2Ex period (Miller et al., 2023), a
mode CTH of 750±160 m, and a mode in the cloud fraction5

distribution occurring in the 400 to 500 m bin, the cloud as-
pect ratio (cloud depth to width) for this mode is 0.6± 0.4.
MODIS CTHs were also found to peak in the lowest alti-
tude bin (0 to 250 m) due to the subpixel (1 km MODIS) na-
ture of these clouds. MODIS and MISR standard cloud frac-10

tion estimates were also found to have large, positive biases
(0.19 and 0.49, respectively) because of the subpixel nature
of these clouds, with biases that are consistent with Zhao and
Di Girolamo (2006). The newer resolution-corrected cloud
fraction product offered by MISR had a small positive bias15

of 0.02, which is consistent with the expectation of the al-
gorithm (Jones et al., 2012), slightly better than other valida-
tion exercises (Dutta et al., 2020), and very close to the 0.014
value of uncertainty in our estimate of the ASTER cloud frac-
tion. Any remaining uncertainty in the macrophysical prop-20

erties owing to subpixel clouds in 15 m ASTER imagery is
expected to be exceedingly small (Dey et al., 2008) relative
to the uncertainties reported above.

Similarities and differences were found when results were
compared to the previous studies shown in Table 1. Differ-25

ences between the studies in the table may be due to the
different times, location, sampling issues, domain size, and
spatial resolution. Given the effect of scale on the statistics,
it may be best to compare amongst studies that have used
ASTER data (Zhao and Di Girolamo, 2007; Mieslinger et30

al., 2019). When comparing to these studies, the macrophys-
ical properties of cumulus clouds from the CAMP2Ex region
are very similar. A noticeable difference was the higher total
cloud fraction in the CAMP2Ex region by around 0.03. The
similarities in cloud macrophysics amongst these ASTER35

studies is remarkable given that they were done in very differ-
ent parts of the world, although all tropical. We also looked
at the 214 scenes of cumulus clouds over the tropical Indian
Ocean described in Jones et al. (2012) and again found very
similar cloud macrophysical properties (not shown here). We40

therefore conclude that the properties of tropical trade wind
cumulus shown here appear to be indicative of the properties
of trade wind cumuli across large swaths of tropical oceanic
regions. While aerosol conditions in the environment may
impact the macrophysics of shallow oceanic clouds as shown45

in McFarquhar et al. (2004) and Dey et al. (2011) over the
Indian Ocean, the narrow range observed in the AOD for the
specific ASTER scenes led to no significant relationship be-
tween the AOD and the macrophysical properties.

The relationship between the observed cloud macrophysi-50

cal properties for each ASTER scene and the meteorological
conditions was also investigated. While this has been done
using ASTER data in other regions containing oceanic cu-
muli by Mieslinger et al. (2019) using the average cloud field
parameters as a function of single-binned meteorological pa-55

rameters, we had concerns that artificial relationships could
be created between uncorrelated data depending on how the
data are binned (Wainer et al., 2006; Rusakov, 2023). To
avoid this issue, we used multiple linear regression for each
macrophysical property, with the full model having 88 vari- 60

ables. Less than 30 % of the variation in the cloud size distri-
bution parameters (line fit λ and direct power law fit λ) and
fractal dimension was explained by all 88 variables. How-
ever, for the cloud fraction and mean cloud top height, more
than 50 % of their variation can be explained by all 88 vari- 65

ables. Variable selection was performed by backward elimi-
nation, reducing the number of variables to 26 for mean cloud
top height and to 24 for cloud fraction. It was found that
TCWV, LTS, and EIS are the variables that contributed the
most to the variation in mean cloud top height, while wind 70

speed near the surface, relative humidity near the cloud, and
LTS calculated between 1000 and 900 hPa contribute most to
the variation in cloud fraction. Mieslinger et al. (2019) also
found that surface wind speed is a huge controlling factor
for cloud fraction, along with the standard LTS term, calcu- 75

lated between 1000 and 700 hPa. Interestingly, in our study,
we find that the standard LTS and EIS terms, calculated be-
tween 1000 and 700 hPa, contribute relatively less to the vari-
ation in cumulus cloud fraction, in agreement with Cutler et
al. (2022) and Lewis et al. (2023). This is important given 80

that these terms are used in climate models to parameterize
overall low-cloud cover (Neale et al., 2010) and in climate
sensitivity studies to study low-cloud feedback (Brient and
Schneider, 2016; McCoy et al., 2017; Myers et al., 2021;
Sherwood et al., 2020). Although not discussed here due to 85

the low adjusted R2 values of the model, similar to cloud
fraction, relative humidity (at 1000, 975, and 900 hPa) and
wind speed (at 925 and 900 hPa) are the top variables that
explain most of the variation in the observed cloud size dis-
tribution parameter (line fit λ) for each ASTER scene. Note 90

again that there is not much confidence in these relationships,
however, because only around 30 % of the variation in the
line fit λ parameter can be explained by the reduced model.
We further note that given that the statistics of the macro-
physical properties of cumulus clouds are influenced by the 95

domain size, the observed relationships of the cloud macro-
physical properties to the meteorological conditions may also
change with domain size.

While this study does show some relationship of cloud
macrophysical properties to the meteorology, we do not in- 100

tend to predict or imply how cloud macrophysical properties
change with varying meteorology. We explicitly note that the
results we presented do not imply any causality. This study
simply provides the statistics on the macrophysical proper-
ties and shows that meteorology can explain some of the ob- 105

served variation in the CAMP2Ex region, which has impor-
tant applications for model evaluation. It should also be noted
that any smaller-scale meteorological variations, which are
not captured due to the coarse resolution of the ERA5 re-
analysis, might be able to explain more of the variation in the 110
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observed properties if such higher-resolution data were avail-
able. While the multiple linear regression model is used, this
does not imply that the relationships between cloud macro-
physical properties and the meteorology are linear. Still, as
seen in our results, multiple linear regression is a useful tool5

to help explain the relationship between the observed proper-
ties and the meteorology, showing the relative importance of
TCWV to the variations in mean cloud top height and surface
wind speed to the variation in cloud fraction.

Data availability. The soundings obtained during the CAMP2Ex10

mission were obtained from https://www-air.larc.nasa.gov/cgi-bin/
ArcView/camp2ex (van Diedenhoven et al., 2022), while the
standard synoptic soundings acquired over the Philippines were
obtained from the University of Wyoming website at https://
weather.uwyo.edu/upperair/sounding.html (Department of Atmo-15

spheric Science, 2022). The ASTER L1T data were obtained
through the NASA Land Processes Distributed Active Archive Cen-
ter (LP DAAC) data pool at https://lpdaac.usgs.gov/products/ast_
l1tv003/ (NASA LP DAAC, 2015). The MISR Level 2 TOA/-
Cloud Classifiers product version 3 data were obtained from the20

NASA Langley Research Center at https://opendap.larc.nasa.gov/
opendap/MISR/MIL2TCCL.003/ (NASA LARC, 2008). The MISR
Level 2 Cloud product for cloud top height data were obtained
from the NASA Langley Research Center at https://opendap.larc.
nasa.gov/opendap/MISR/MIL2TCSP.001/ (NASA LARC, 2012).25

The MODIS Level 2 data, namely MOD35 (Ackerman and
Frey, 2015, https://doi.org/10.5067/MODIS/MOD35_L2.006) and
MOD06 (Platnick et al., 2015, https://doi.org/10.5067/MODIS/
MOD06_L2.061), were obtained from the Level 1 and Atmosphere
Archive and Distribution System of NASA Goddard Space Flight30

Center at https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/
61/ (last access: 3 April 2023). The ERA5 reanalysis hourly data
at pressure levels were obtained through the Copernicus Climate
Change Service Climate Data Store at https://doi.org/10.24381/cds.
bd0915c6 (Hersbach et al., 2018a), while the hourly data at sin-35

gle levels were obtained at https://doi.org/10.24381/cds.adbb2d47
(Hersbach et al., 2018b).
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