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Abstract. The poor representation of the macrophysical properties of shallow oceanic cumuli in climate models contributes to 

the large uncertainty in cloud feedback. These properties are also difficult to measure because it requires high-resolution 

satellite imagery that are seldomly collected over ocean. Here, we examine cumulus cloud macrophysical properties, their size, 

shape, and spatial distributions, over the tropical western Pacific using 170 15-m resolution scenes from Terra’s Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) collected during the 2019 Cloud, Aerosol and Monsoon 15 

Processes Philippines Experiment (CAMP2Ex) mission. The average cloud fraction (CF) was 0.12, half of which was 

contributed by clouds less than 1.6 km in area-equivalent diameter. This compared well to Terra’s Multiangle Imaging 

Spectroradiometer (MISR) resolution-corrected CF of 0.14, but less than the 0.19 measured by Terra’s Moderate Resolution 

Imaging Spectroradiometer (MODIS). The cloud size distribution exhibited a power law form with exponent of 2.93 and an 

area-perimeter power law with dimension of 1.25. ASTER, MISR, and CAMP2Ex aircraft lidar showed excellent agreement 20 

in the cloud top height (CTH) distribution peak altitude of ~750 m. We examined cumulus properties in relation to 

meteorological variables and found that the variation in mean CTH is most controlled by the total column water vapor, lower-

tropospheric stability (LTS), and estimated inversion strength (EIS). The variation in CF is most controlled by surface wind 

speed and near-cloud relative humidity instead of LTS/EIS, suggesting the need to improve low cloud parameterizations in 

climate models that use LTS/EIS based on stratocumulus studies. 25 

1 Introduction 

Tropical oceanic low clouds, such as shallow cumulus, have been found to explain most of the inter-model spread in global 

mean cloud feedback (Bony and Dufresne, 2005; Zelinka et al., 2016). This is primarily due to challenges in realistically 

simulating these clouds at the subgrid scale of global climate models (Ceppi and Nowack, 2021; Myers et al., 2021). 
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Consequently, large-eddy simulations (LES) have been utilized to resolve low-cloud processes, such as their response to 

changes in lapse rate, in surface fluxes, and in surface temperatures, to predict the low-cloud feedback (Rieck et al., 2012; 

Zhang et al, 2012; Bretherton, 2015). These processes are tightly coupled to cloud macrophysical properties. For example, 

cloud fraction within a domain strongly modulates radiative effects (Chen et al., 2000; George and Wood, 2010; Bender et al., 35 

2016). The cloud top height and spatial distribution also strongly impact the radiation field (e.g., Chen et al., 2000; Tobin et 

al., 2012). For example, Tobin et al. (2013) found that the outgoing longwave radiation increases, while the shortwave radiation 

decreases, as the cloud field becomes more aggregated, showing that the emerging radiation field can depend on the spatial 

organization and geometry of clouds. Other studies (Rampal and Davies, 2020; Goren et al., 2023, Lang et al., 2024) have 

further shown how cloud morphology and cloud heterogeneity can impact the measured radiative field. Their results imply 40 

that cloud macrophysical properties must be considered in the parameterization of the highly interactive processes of radiative 

heating, turbulent and convective mixing, and cloud microphysical processes that govern the variability of low clouds in LES 

models (Klein et al., 2017). To mitigate the uncertainties in model parameterizations, it is crucial to better constrain cloud 

models using observational data.  

 45 

To help understand cloud macrophysical properties, long-term data from satellite observations are desirable. Jones et al. (2011) 

found that satellite imagers with a spatial resolution of 80 m or less are needed to accurately measure cloud fraction to an error 

of 0.01, instrument and algorithm cloud detection sensitivity aside, in the trade wind regions of the world. Most meteorological 

satellite imagers, however, have a spatial resolution of around 1 km, which is larger than the typical size of shallow cumulus 

clouds (e.g., McFarquhar et al., 2004; Zhao and Di Girolamo, 2007). This can result in substantial overestimates in cloud 50 

fraction (e.g., Shenk and Salamonson, 1972; Di Girolamo and Davies, 1997; Zhao and Di Girolamo, 2006). For example, Dey 

et al. (2008) found that when pixel resolution degrades from 15 m to 1 km, the mean cloud fraction can increase fourfold, 

while the total number of clouds can reduce 26-fold for trade wind clouds. Given the importance of having high-resolution 

data, observations of cumulus cloud fields should ideally come from land-based imagers. Such high-resolution (< 80 m) freely 

available satellite data are found in land-based satellite missions, such as Landsat (Crawford et al., 2023) and ASTER (Abrams, 55 

2000). But, such land-based imagers normally collect very little data over ocean, have radiometric gain settings that may not 

be appropriate for cloud analyses, and have sampling and archiving strategies that are not conducive to forming statistically 

unbiased properties of clouds. Therefore, there remains the challenge of acquiring high-resolution data over the oceans for 

studies of cloud macrophysical properties.   

 60 

Previous observational studies of the macrophysical properties of cumulus cloud fields have used images from aircraft, space 

shuttle, and land-imaging satellite instruments. These are summarized in Table 1. Most of these studies are based on small 

observational data sets, with resolutions of 30-60 m and at most 19 scenes. Only two of these studies (Zhao and Di Girolamo, 

2007; Mieslinger et al., 2019) used high resolution satellite data at 15 m with a larger number of scenes. Moreover, among 
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these previous studies, the locations analyzed are very sparse. Thus, there remains a need to get more statistics on the 65 

macrophysical properties of cumulus cloud fields using high-resolution satellite data in other regions, particularly with well-

characterized environments obtained, for example, with intensive field campaigns. Note that the characterization of the aerosol 

environment is also of importance given its impact on cloud macro- and microphysical properties (e.g., McFarquhar et al., 

2004; Yuan et al., 2011; Li et al., 2010; Sheffield et al., 2015). 

 70 

Caution must be taken when comparing cumulus cloud statistics using different scales, given that different instruments have 

different domain sizes and spatial resolutions as shown in Table 1. A study by Dey et al. (2008) showed how the statistics of 

the macrophysical properties of trade wind cumuli derived by Zhao and Di Girolamo (2007) changed with domain size and 

pixel resolution. As the domain size decreases, the probability of separating clouds into smaller clouds increases and the 

probability of having cloudier and clearer domains increases. As the pixel resolution degrades, smaller clouds amalgamate into 75 

larger clouds and the number of partially filled cloudy pixels increases. Moreover, when comparing aircraft with satellite data, 

differences between the one-dimensional and two-dimensional measurements of cloud size distributions must be considered. 

Aircraft cloud size distributions are usually biased towards smaller cloud sizes, assuming random sampling (Rodts et al., 2003; 

Romps and Vogelmann, 2017; Barron et al., 2020). As a result, differences in time, location, instrument resolution, and 

sampling must be considered when comparing between different studies.  80 

 

Table 1 also summarizes the properties of cumulus clouds based on LES models. Low-cloud feedback has been studied by 

using simulations of clouds from LES models to find a relationship between cloud properties and large-scale meteorology that 

can be used to predict how clouds will respond to changes in the meteorology within coarser scale models. Most of these 

studies have focused on stratocumulus clouds. Some of these findings, for example, indicate that the lower-tropospheric 85 

stability (LTS), estimated inversion strength (EIS; Wood and Bretherton, 2006; McCoy et al., 2017), reduced subsidence 

(Myers and Norris, 2013; Blossey et al., 2013; van der Dussen et al., 2016), sea surface temperature (Qu et al., 2015; Stein et 

al., 2017; Geiss et al., 2020; McCoy et al., 2017), and surface wind speed (Bretherton et al., 2013) all can have an impact on 

cloud cover and cloud top height. Fewer studies have been done on shallow cumulus clouds. In particular, Nuijens and Stevens 

(2012) and Brueck et al. (2015) found that surface wind speed can influence cloud amount and cloud top height. Yamaguchi 90 

et al. (2019) have also shown that vertical wind shear can influence cumulus deepening. Given the limited number of studies, 

there is a need not only for more observations of cumulus clouds but also their relationships with large-scale meteorological 

conditions (Klein et al., 2017).  

 

Here, we provide a study of cloud macrophysical properties using data collected during the National Aeronautics and Space 95 

Administration (NASA) Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex; Reid et al., 2023). This 

field campaign offered an opportunity to investigate shallow cumulus clouds in a different region from those studies listed in 
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Table 1. The CAMP2Ex mission took place in the Philippines from August to October 2019, with the goal of investigating 

cloud-aerosol interactions and their influence on the southwest monsoon precipitation in the region. During CAMP2Ex, the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was tasked to sample clouds over parts of the 100 

ocean near the Philippines region. ASTER provides high resolution data suitable for studying cloud macrophysical properties 

of cumulus cloud fields.  

 

This study uses 170 ASTER scenes dominated with cumulus clouds and collected during CAMP2Ex to analyze the 

macrophysical properties of cumulus cloud fields and their relationships with larger-scale meteorological conditions in the 105 

tropical western Pacific. The ASTER data used in this study are discussed in Section 2. Section 3 discusses the cloud masking 

technique used. Section 4 presents the results of trade wind cumuli properties, which include cloud size, cloud fraction, cloud 

area-perimeter relationship, cloud top height, and spatial distribution. Cloud fraction and cloud top height are also compared 

to those derived from the Multiangle Imaging Spectroradiometer (MISR) and Moderate Resolution Imaging Spectroradiometer 

(MODIS). Section 5 examines the relationship of the macrophysical properties observed with the meteorological conditions, 110 

while Section 6 summarizes our results. 

 
Table 1: Summary of cumulus macrophysical properties from past studies using observations (o) and models (m).  

Reference 

Data Description Size Distributiona Fractal 
Dimensionb Average 

Cloud 
Fraction Instrument 

Domain 
(km x 
km) 

Spatial 
Resolution 

(m) 

Data 
Type Location No. of 

Scenes 
Sub-

scenes?c n(x) 𝜆1 𝜆2 Dc (km) d1 d2 
dc 

(km) 

Plank 
(1969) 

camera on 
aircraft 16x32 NR o Florida coast 12 yes - - - - - - - 0.25 

Wielicki 
and Welch 
(1986) 

MMSd 170x185 57 o 

United States, 
tropical 
western 
Atlantic, 
western 

Arkansas, 
Gulf of 
Mexico 

4 yes - - - - - - - 0.15-
0.19 

Cahalan 
and Joseph 
(1989) 

MMS 170x185 57 o Pacific, South 
America, 

Florida coast 

16 yes - - - - 1.27 1.55 0.5 0.45 

TMe 65x65 28.5 o 19 yes logD 0.89 2.76 0.5 1.34 1.47 0.5 0.55 

Sengupta 
et al. 
(1990) 

MMS 170x185 57 o 

tropical 
Atlantic, Gulf 

of Mexico, 
United States, 

France 

10 yes D 1.39 2.35 1 1.20-
1.27 

1.50-
1.73 0.5 - 
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Benner and 
Curry 
(1998) 

MASf 37x37 50 o 
tropical 

western and 
central 
Pacific, 

Maldives, 
Somali coast, 

Coral Sea, 
Caribbean Sea 

17 yes 

D 

1.98 3.06 0.9 1.23 1.374 0.5 0.0925 

space 
shuttle 110x145 30 o 5 yes 0.94 2.91 0.6 1.1 1.34 0.5 0.09 

Gotoh and 
Fujii 
(1998) 

TM 65x65 28.5 o Japan 1 yes - - - - 1.36 1.677 0.7 - 

Zhao and 
Di 
Girolamo 
(2007) 

ASTER 60x60 15 o 
tropical 
western 
Atlantic 

152 no D 
2.85g - - 1.28 - - 

0.086 1.88h 3.18 0.6 - - - 
2.19i - - - - - 

Jiang et al. 
(2008) aircraft - 50 o Houston 5 - D 2.3 - - - - - - 

Koren et 
al. (2008) ETM+j 170x185 30 o 

Bahamas, 
Barbados, 
Polynesia, 
Hawaii, 

southeast of 
Ascension 

Island 

5 no logA 1.3 - - - - - 0.1-0.25 

Mieslinger 
et al. 
(2019) 

ASTER 60x60 15 o 

tropical 
central and 

eastern 
Pacific, 
tropical 
western 
Atlantic 

1158 no logD 

2.55 - - 1.19 - - 

0.087 

1.68 3.12 0.59 - - - 

Luebke et 
al. (2022) GOES-16k - 2000 o Barbados 842 yes - - - - - - - 0.204 

This study ASTER 60x60 15 o 
tropical 
western 
Pacific 

170 no D 
2.93g - - 1.25 - - 

0.115 1.95h 3.27 0.6 1.20 1.55 0.5 
2.16i - - - - - 

Neggers et 
al. (2003) LES 6.4x6.4 

50 

m 

BOMEXl - - 

D 1.7 

- 0.7 - - - 

0.14 50 SCMSm - - - 1.05 - - - 

66.67 SGP-ARMn - - - 0.4-1.25 - - - 

Heus and 
Selfert 
(2013) 

LES 25x25 25 m RICOo - - D - 2.2 0.4 - - - 0.138 

Dawe and 
Austin 
(2012) 

LES 6.4x6.4 25 m BOMEX - - D 1.88 - 1 - - - - 

aPower law defined by equation (1). 
bPower law defined by equation (5) for area perimeters. 
cManually selected subsets of larger scenes that were cut to show only the cumuli-dominated area 
dLandsat Multispectral Scanner (MSS). 
eLandsat Thematic Mapper (TM). 
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fModerate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS). 
gSingle-line least squares fit. 
hDouble-line least squares fit with a scale break. 
iDirect power law fit.  
jEnhanced Thematic Mapper Plus (ETM+) 
kGeostationary Operational Environmental Satellite-16 (GOES-16) 
lBarbados Oceanographic and Meteorological EXperiment (BOMEX) 
mSmall Cumulus and Microphysics Study (SCMS) 
nSouthern Great Plains (SGP) site of the Atmospheric Radiative Measurement (ARM) 
oRain in Cumulus over the Ocean (RICO) 

2 ASTER Data 

ASTER is an instrument onboard the NASA Earth Observing System Terra spacecraft, which is in a Sun-synchronous orbit 115 

with equator crossing time around 10:30 local time. ASTER has two cameras, one that points at nadir and one that points 

backward in the along-track direction. The nadir camera has three visible and one near-infrared spectral bands (0.50 to 1.0 µm) 

at 15 m spatial resolution, six shortwave infrared spectral bands (1.0 to 2.5 µm) at 30 m spatial resolution, and five thermal 

infrared spectral bands (8 to 12 µm) at 90 m spatial resolution. Note that the ASTER shortwave infrared data are no longer 

available after April 2008 due to the detectors not functioning. ASTER takes around 600 scenes in a day, with each scene 120 

covering a 60 km x 60 km area. More details about the ASTER instrument can be found in Abrams (2000). 

 

Since ASTER was designed for land surface studies, it primarily collects data over land only. However, as part of the 

CAMP2Ex mission, it was tasked to acquire data over the Philippines region (0°-25° N, 110°-135° E) from August to October 

2019 with appropriate radiometric gain settings for acquiring cloud properties. The ASTER Level 1T (L1T) calibrated radiance 125 

data (version V003) that were collected during the mission were used in this study. In total, there were 2022 scenes from 81 

separate days. Scenes occurring over land were not included to facilitate the cloud masking described below, giving a total of 

1217 oceanic scenes. There were a lot of cirrus present during the observing period (Reid et al., 2023). Scenes that had any 

pixel with a brightness temperature less than 0 °C were also excluded to avoid potential cirrus contamination, leaving a total 

of 378 scenes. These too may contain cirrus, as described in the next section. 130 

3 Cloud Masking and Labelling 

To generate cloud masks, a single threshold approach was applied to the ASTER 3N channel (760-860 nm, nadir view) over 

each 60 km x 60 km scene, following earlier studies (Zhao and Di Girolamo, 2006, 2007; Dey et al., 2008; Jones et al., 2012; 

Dutta et al., 2020). In brief, a threshold was manually selected for each scene by simultaneously viewing the radiance and 

mask images to visually verify the chosen threshold. Any scene that was not easily masked with a single threshold was removed 135 

from the data set. Some scenes that contained sun glint were used if a threshold could be accurately determined, while scenes 
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that were visually determined to be contaminated by cirrus were not used in the analysis. Thresholds were successfully obtained 

for 180 ASTER scenes that were visually determined to be dominated by cumulus clouds. Figure 1 shows an example of an 

ASTER scene on 12 August 2019 along with its cloud mask.  

 140 

 
Figure 1: (a) ASTER Channel 3N image (60 km x 60 km) taken on 12 August 2019 and (b) its cloud mask, where white represents 
cloud, grey represents clear, and black represents no data. 

 

Scenes that contained clouds with cloud area equivalent diameters, defined as the diameter of a circle with the same cloud 145 

area, greater than 30 km, or half the ASTER scene domain, were excluded from the analysis. This was done to reduce the 

uncertainty in cloud edges with the finite domain size being 60 km x 60 km. Moreover, clouds of this size are typically not 

classified as trade cumulus. This reduced the total number of scenes to 170 from 36 separate days. There were 46, 33, and 91 

scenes for the months of August, September, and October, respectively. Figure 2 shows a map of the CAMP2Ex region, with 

the centers of each of the 170 ASTER scenes colored by the date each scene was collected. The final list of the ASTER scenes 150 

and the thresholds derived for each scene can be found in the supplementary material, thereby making our results reproducible.  

 

At the 15 m spatial resolution, each pixel was assigned as either completely cloudy or clear. After classification, pixels were 

grouped into individual clouds using the four-connectivity rule, where two cloudy pixels that share one edge but not one vertex 

belong to the same cloud. This was done using the cloud labelling algorithm available in Zhao (2006). In total, the number of 155 

clouds found within the 170 scenes is 2,181,059. 
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The uncertainties in our cloud masking approach and its impact on the cumuli statistics are discussed in Zhao and Di Girolamo 

(2007). The largest impact is on cloud fraction, where much of the uncertainty from our approach comes from cloud edge 

pixels. This uncertainty can be estimated using the formulation given by Di Girolamo and Davies (1997). Otherwise, cumulus 160 

cloud size distributions and spatial distributions have been shown to be insensitive to small perturbations on the choice of 

cloud detection thresholds as shown and discussed in other similar studies (e.g., Wielicki and Welch, 1986; Zhao and Di 

Girolamo, 2007). 

 

 165 
Figure 2: The center of each ASTER 60 km x 60 km scene used in the CAMP2Ex region, colored by date (YYYY.MM.DD). Red stars 
indicate operational sounding stations published by the University of Wyoming (https://weather.uwyo.edu/upperair/sounding.html). 

4 Observed Statistics of Cumulus Cloud Macrophysical Properties 

The following sections present the trade wind cumuli macrophysical properties over the tropical western Pacific using the 170 

cloud masked scenes from ASTER Channel 3N that were derived in Section 3. These include cloud size, cloud fraction, cloud 170 

area-perimeter relationship, cloud top height, and spatial distribution. These properties are compared to previous studies on 
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oceanic shallow cumulus cloud properties and, in the case of cloud fraction and cloud top height, to MISR and MODIS satellite 

retrievals.   

4.1 Cloud Size Distribution 

The cloud size distribution shows the fraction of clouds within a finite range of sizes. The cloud size distribution has been 175 

commonly observed to follow a power law distribution (Benner and Curry, 1998) and has been used to compare cloud models 

and observations (Neggers et al., 2003). The cloud size distribution 𝑛(𝐷) following the power law is given by 

 

 𝑛(𝐷) = 𝑎𝐷!" ,                (1) 

 180 

where 𝐷 is the cloud area-equivalent diameter, and 𝑎 and 𝜆 are constants. The area of each cloud is defined as the product of 

the number of cloudy pixels and the area of each pixel. 𝐷 is then calculated from the cloud area by assuming a perfectly circular 

cloud. 

 

The scaling parameter, 𝜆, can be determined by taking the natural logarithm of both sides of Eq. (1) giving 185 

 

ln 𝑛(𝐷) = ln(𝑎) − 𝜆 ln𝐷 ,           (2) 

 

where 𝜆 is the slope of the least squares linear regression between ln 𝑛(𝐷) and ln𝐷. This method of fitting a least squares line, 

called the “line-fit” method, has been shown to give more weight to larger clouds, which tend to be poorly sampled, and is 190 

sensitive to the binning strategy. Thus, the “direct power law fit” method described by Zhao and Di Girolamo (2007) was also 

used in this study. 

 

In the direct power law fit method, the mean of all cloud diameters 𝐷+ is first determined as 

 195 

			𝐷+ = #
$∑ 𝐷%$

%  ,            (3) 

 

where n is the total number of clouds in a scene and 𝐷%  is the area equivalent diameter of each cloud. From equation (1), the 

probability density function of 𝐷 is given as 𝑓(𝐷) = (𝜆 − 1)𝐷!", so that the expected value of 𝐷, 𝐸(𝐷), is 

 200 

𝐸(𝐷) =
∫ '	)('),'
!"
!#

∫ '	,'!"
!#

= ∫ '$%&,'!"
!#

∫ '%&,'!"
!#

= (#!")('"'%&!'#
'%&)

(-!")('"$%&!'#
$%&)

 ,        (4) 
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where 𝐷. and 𝐷/  are the smallest and largest cloud diameters among all the clouds, respectively. For a sufficiently large 

number of samples, 𝐷+ ≅ 𝐸(𝐷), and 𝜆 can be solved by combining equations (3) and (4). This method has been shown to be 

statistically unbiased with equal weight assigned to each data point (Zhao, 2006). Note that the “direct power law” fit method 205 

does not make use of any binned data and is thus independent of binning strategy. 

 

The solid line in Fig. 3 shows the normalized frequency of all clouds with area-equivalent diameters less than 7 km in 100 m 

bin widths on a logarithmic scale. Clouds with 𝐷 > 7 km are poorly sampled and were excluded in the analysis of cloud size 

distribution. We note that 68 of the 170 ASTER scenes used contained clouds with 𝐷 > 7 km. However, clouds with 𝐷 > 7 km 210 

only make up less than 0.007 % of all clouds observed. 

 

Figure 3 shows 𝜆 = 2.93 with correlation coefficient 𝑅 = 0.99 using the line-fit method, while the double power law line-fit 

gives 𝜆# = 1.95 and 𝜆- = 3.27, with a scale break at 𝐷0 = 0.6 km that was computed as the point that leads to the least residual. 

These results are similar to those reported by Benner and Curry (1998) for the double power law from MODIS Airborne 215 

Simulator (MAS) images (𝜆# = 1.98 and 𝜆- = 3.06) and Zhao and Di Girolamo (2007) for the single (𝜆 = 2.85) and double 

power law (𝜆# = 1.88 and 𝜆- = 3.18) as seen in Table 1. Mieslinger et al. (2019) reports a slightly smaller exponent with the 

single power law of 𝜆 = 2.55 and double power law of 𝜆# = 1.68 and 𝜆- = 3.12, but with a similar scale break at 𝐷0 = 0.59 km. 

Note again these results are insensitive to small changes in the cloud masking threshold used but can differ with other studies 

due to domain size and spatial resolution. 220 

 

Figure 3 also shows that the direct power law fit gives 𝜆 = 2.16 with 𝑅 = 0.99, which is similar to Zhao and Di Girolamo 

(2007). This is shown as a dashed step line in Fig. 3 instead of a straight line since the direct power law fit was not calculated 

based on binned data. A double direct power law fit gives 𝜆# = 2.12 and 𝜆- = 2.94, with a scale break at 𝐷0 = 0.4 km, which is 

slightly smaller than the scale break computed from the double power law line-fit method. Note that the difference between 225 

the direct power-law fit and the observations for larger cloud diameters (> 1 km) is small, on the order of 10-4, but fits well 

with the smallest cloud diameters. On the other hand, the difference between the line fit and the observations for the smallest 

cloud diameters is large, on the order of 10-1, but fits well for the larger cloud diameters. 
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Figure 3: Normalized distribution of cloud equivalent diameter of clouds smaller than 7 km in diameter using bin width of 100 m 230 
for the 170 ASTER scenes. 

 

4.2 Cloud Fraction Distribution 

Figure 4 gives the cloud fraction and cumulative cloud fraction as a function of cloud area-equivalent diameter using bin 

intervals of 100 m. Cloud fraction was defined as the ratio of the number of cloudy pixels to the total number of pixels. The 235 

average cloud fraction from all 170 scenes is 0.115 ± 0.014. This uncertainty comes from half the fraction of cloud edge pixels 

(Di Girolamo and Davies, 1997), which is 0.027. The cloud fraction over the CAMP2Ex region is only slightly larger (around 

a 0.03 difference) than those from previous studies done over other tropical regions, such as those by Benner and Curry (1998), 

McFarquhar et al. (2004), Zhao and Di Girolamo (2007), and Mieslinger et al. (2019). Very similar to Zhao and Di Girolamo 

(2007), half of this total cloud fraction is from clouds less than 1.6 km in diameter. A peak in cloud fraction is observed at 240 

cloud diameters between 400 and 500 m, showing how small most of the cumulus clouds sampled in this region are. Note that 

most of the bins between 10 km to 30 km only contained one cloud, so an increase is seen in cloud fraction as cloud area is 

proportional to cloud diameter.  
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Figure 4: Cloud fraction and cumulative cloud fraction as a function of cloud equivalent diameter using bin width of 100 m for 170 
ASTER scenes sampled over the western Pacific Ocean during CAMP2Ex. 

 

The ASTER, MISR, and MODIS cloud fractions for the CAMP2Ex region provide an opportunity to compare with results of 250 

Zhao and Di Girolamo (2006) and Dutta et al. (2020) in other regions. They showed large overestimates of cloud fraction 

reported by MISR and MODIS as compared to ASTER. This was due to the presence of subpixel clouds, especially in trade 

wind cumuli-dominated regions where typical cumuli size can be smaller than the resolution of passive sensors like MISR and 

MODIS. Here, cloud fractions from the MISR Level 2 TOA/Cloud Classifiers Product (TC_Classifiers) version 3 (Moroney 

et al., 2014) and from the MODIS cloud mask (MOD35) Collection 6.1 (Ackerman and Frey, 2015) were compared to the 255 

total cloud fraction from the ASTER scenes. MISR provides two different cloud fraction products, the standard estimate cloud 

fraction (SECF) and resolution-corrected cloud fraction (RCCF), at 17.6-km resolution, both of which are derived from the 

Radiometric Camera-by-camera Cloud Mask over ocean (Zhao and Di Girolamo, 2004). To compare ASTER, MISR, and 

MODIS cloud fractions, ASTER (15 m) and MODIS (1 km) cloud mask pixels were collocated to the MISR 17.6-km cloud 

fraction pixels. Cloud fractions from ASTER and MODIS were then calculated for each 17.6 km x 17.6 km region to directly 260 

compare to MISR SECF and RCCF. Note that the MODIS pixels are labeled as cloudy, probably cloudy, probably clear, clear, 

or no retrieval. Cloudy and probably cloudy pixels were considered as cloudy, while clear and probably clear pixels were 

considered as clear in computing for the MODIS cloud fraction. This is consistent with how cloud fraction climatologies are 

derived from MODIS (Stubenrauch et al., 2012). Only regions that contained at least 99 % of the total possible number of 

ASTER pixels in a 17.6 km x 17.6 km region were used for the comparison. Taking an average over all 17.6 km x 17.6 km 265 
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regions, the mean ASTER cloud fraction was 0.12, the mean MISR SECF was 0.49, the mean MISR RCCF was 0.14, and the 

mean MODIS cloud fraction was 0.19. Thus, there is an overestimate of cloud fraction due to pixel resolution for MISR SECF 

and MODIS that is similar to what was reported by Zhao and Di Girolamo (2006) for scenes over the tropical western Atlantic. 

We see that the resolution-correction provided by the MISR RCCF algorithm (Jones et al. 2012) carries a small bias (+0.02), 

which is well within the uncertainties reported in this product by Dutta et al. (2020) and very close to the fraction of cloud 270 

edge pixels reported above.  

4.3 Cloud Area-Perimeter Relationship 

The scaling relationship between cloud perimeter and cloud area was given by Lovejoy (1982) as 

 

𝑃 ∝ √𝐴,,             (5) 275 

 

where 𝐴 is the cloud area, 𝑃 is the cloud perimeter, and 𝑑 is the fractal dimension. The value of 𝑑 describes the complexity of 

the cloud shape. For regular shapes, such as circles and squares, 𝑑 is unity, while 𝑑 approaches the value of two as the perimeter 

becomes more contorted. The perimeter of each cloud was defined as the total length of all the edges adjacent to noncloudy 

pixels, while the cloud area was computed in the same way as described in Section 4.1  280 

 

Figure 5 shows the observed normalized frequency of cloud perimeter versus cloud area in log-log space. Using a least-squares 

fit, the slope of the line was 𝑑 = 1.25 with a correlation coefficient of 0.98. This is slightly smaller than previous studies listed 

in Table 1, indicating cumulus clouds of smoother shapes were sampled during the CAMP2Ex period. When two lines of best 

fit were determined, the slopes were 𝑑# = 1.20 and 𝑑- = 1.55, with a scale break in cloud area of  𝑑0 = 0.19 km2 (or 0.50 km 285 

in area-equivalent diameter), which has the least residual. This shows that the larger clouds have more complex shapes than 

smaller clouds, consistent with previous studies (Cahalan and Joseph, 1989; Benner and Curry, 1998; Gotoh and Fujii, 1998). 

Note that the fractal dimension 𝑑 will also be insensitive to small perturbations in the cloud threshold as Cahalan (1991) 

showed only a 0.1 increase in dimension with around a 300% increase in threshold. 
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 290 
Figure 5: Density plot of cloud area against cloud perimeter using 50 logarithmic bins from 0.1 to 10000 km in the y-axis and 0.001 
to 10000 km2 in the x-axis for clouds larger than 12 pixels in the 170 ASTER scenes during the CAMP2Ex period with fractal 
dimension d without a scale break and d1 and d2 with a scale break. 

 

4.4 Spatial Distribution 295 

We characterize the spatial distribution using the statistics of the nearest neighbor distance (NND) in the observed cloud fields 

as done in Zhao and Di Girolamo (2007). The distance between two clouds was calculated as the Euclidean distance between 

their mass centers. Figure 6a shows the observed frequency distribution of NND with a peak around 0 to 50 m. However, 

because the size of a cloud limits the minimum possible value of its NND, Fig. 6b shows the frequency distribution of the ratio 

of NND to the cloud area-equivalent radius. This shows that around 30 % of clouds have a nearest neighbor within a distance 300 

of 3 times their radius. At a bin width of 10 (not shown here), more than 75 % of clouds have a nearest neighbor within a 

distance of 10 times their radius. This result is very similar to that reported by Zhao and Di Girolamo (2007). 

 

 

 305 
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Figure 6: (a) Normalized distribution of the nearest neighbor distance using bin width of 50 m and (b) of the ratio of the nearest 
neighbor distance to the cloud area-equivalent diameter using bin width of 1 for the 170 CAMP2Ex ASTER scenes. 

 310 

4.5 Cloud Top Height Distribution 

ASTER channel 14 (12 µm) has the least amount of water vapor absorption among the thermal infrared channels of ASTER. 

Thus, channel 14 data was used to retrieve the cloud top height (CTH) for each 90-m resolution cloudy pixel using the same 

method as Zhao and Di Girolamo (2007). A 90-m resolution cloud mask was first constructed by flagging a 90-m resolution 

pixel in the channel 14 scene as cloudy only if all the 15 m subpixels within the corresponding channel 3N scene were cloudy 315 

based on the 15-m cloud mask (section 2.4). For these 90-m cloudy pixels, the brightness temperature (BT) was calculated 

from the radiance for each cloudy pixel using the procedure in the ASTER’s Algorithm Theoretical Basis Document for 

Brightness Temperature Version 3.0 (Alley and Jentoft-Nilsen, 1999). The BT is converted to a CTH by equating it with the 

temperature profile from a sounding. Note that this approach assumes that cloud emissivity is equal to one and that atmospheric 

absorption of radiation within this channel does not happen above the cloud top. 320 

 

The soundings used were obtained during the CAMP2Ex mission. These soundings included dropsondes from the NASA P-3 

aircraft, as well as ship sondes (van Diedenhoven et al., 2022). However, they were limited in that there were only 11 out of 

36 ASTER scene days when there was at least one sounding available. Thus, standard synoptic soundings acquired over the 

Philippines from four sites, namely stations 98223, 98433, 98444, and 98618 (shown as red stars in Fig. 1) for 00:00 UTC, 325 

were also used. As these soundings had lower vertical resolution compared to those from the CAMP2Ex mission, the 

temperature profile was interpolated to every 5 m. The sounding collected nearest in time and space to that of the ASTER 

center was used to convert the BT into CTH by equating it with the temperature profile of the sounding. Note that small 
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perturbations to the choice of the cloud detection threshold will only impact the number of 90-m pixels used to retrieve CTH, 

but not the values of CTH (Zhao and Di Girolamo, 2007). 330 

 

As an estimate of the uncertainty in retrieving CTH due to sounding choice, temperature profiles from each sounding from the 

aircraft dropsonde was compared to the temperature profile from an operational sounding nearest in time and space. Both 

temperature profiles were then re-gridded onto an evenly spaced grid from 500 m to 4000 m – the altitude range containing 

most of the cloud tops in our data. From this, the root mean square difference (RMSD) between the temperature profiles from 335 

the dropsonde and the operational sounding was calculated. An overall mean RMSD of 0.9 K was calculated. The same was 

done for each sounding from the ship sondes, leading to an overall mean RMSD of around 1.0 K. With a ± 1.0 K uncertainty 

in the temperature profile due to sounding choice, there is around a ± 160 m uncertainty in height. Note that the dropsonde has 

an uncertainty of ± 0.2 K (UCAR, 2020) in temperature measurements, while the ship sonde has an uncertainty of ± 0.3 K 

(Vaisala, 2017). The overall uncertainty in height is then mostly due to sounding choice. 340 

 

We also want to compare the CTH obtained from the ASTER scenes to that retrieved by other satellite instruments, such as 

MISR and MODIS. MISR CTH data in the MISR Level 2 TOA/Cloud Height and Motion Parameters Product, namely 

TC_Cloud (Version F01_0001; Mueller et al., 2013), and MODIS CTH data in the MODIS Level 2 Cloud Product, namely 

MOD06 (Version 6.1; Platnick et al., 2015), were retrieved for each ASTER scene by taking the valid MISR CTH retrievals 345 

at 1.1-km resolution and the valid MODIS CTH retrievals at 1-km resolution within the ASTER scene. CTH distributions for 

MISR and MODIS within the ASTER scenes were then compared to those obtained from the ASTER scenes using the BT 

technique. 

 

Figure 8a shows the CTH frequency distribution with bin width of 100 m for different ranges of cloud area-equivalent diameter 350 

normalized by the total number of the cloudy pixels examined. The cloud diameters used in Fig. 6a were calculated from the 

90-m cloud mask in the same way as calculated from the 15-m cloud masks. On average, cloudy pixels from larger clouds 

have higher cloud tops than those from small clouds as seen in the widening of curves as the range of cloud diameters increase. 

A peak in ASTER-retrieved CTH around 1.2 to 1.3 km was observed from all clouds.  
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 355 

 
Figure 8: (a) Normalized distribution of cloud top heights with 100 m bin width from ASTER for different cloud equivalent diameters 
and (b) a comparison of the normalized distribution of cloud top heights with 250 m bin width obtained from ASTER, MISR, and 
MODIS corresponding to each ASTER scene and from the HSRL-2 onboard the P-3 aircraft. 

 360 

As a comparison, Fig. 8b shows the CTH distribution with bin width of 250 m for all ASTER scenes versus the MISR and 

MODIS CTHs retrieved for each scene. Figure 8b also shows the CTH distribution derived from the High-Spectral-Resolution 

Lidar – Generation 2 (HSRL-2; Hair et al., 2008; Burton et al., 2018) instrument onboard the NASA P-3 aircraft during 

CAMP2Ex (Fu et al., 2022), which were not typically coincident with the ASTER scenes. The MISR CTH distribution peaks 

around 750 to 1000 m, the MODIS CTH distribution peaks around 0 to 250 m, and the HSRL-2 CTH distribution peaks around 365 

500 m to 750 m. Thus, there is around a 1250 m spread in the location of the peak in the CTH distributions between the four 

instruments. Below we discuss this further to better understand the likely causes for the differences. 

 

First, the CTH distribution from in-situ measurements using the HSRL-2 (data processed by Fu et al., 2022) is seen to have 

two modes, having CTHs larger than 4 km, as compared to the CTH distribution from ASTER. Recall that ASTER (and 370 

coincident MISR and MODIS) scenes do not include scenes that have any clouds colder than 0 °C anywhere in a 60 km x 60 

km ASTER scene. No such filtering was placed on the HSRL-2 data, which includes all heights observed. The 0 °C isotherm 

is around 5 km, yet heights greater than 4 km are still observed from the HSRL-2 data, albeit very infrequently. This may be 

due to a sampling bias towards larger clouds in the aircraft data, as larger clouds, such as congestus, were targeted during 

research flights (Fu et al., 2022). Still, it is the lower clouds that dominate the frequency distribution. Since the HSRL-2 data 375 

is a sample from 19 separate days scattered over the ASTER collection period, the CTH mode in the 500-750 m bin is taken 
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as reference for comparison. We see that this lower peak is closer to the peak in MISR CTHs than it is to the peak in ASTER 

CTHs. 

 

The MODIS CTH distribution peak is around 1000 m lower than the peak in the BT-derived ASTER CTHs, 750 m lower than 380 

the peak in the MISR stereoscopically-retrieved CTHs, and 500 m lower than the peak in the HSRL-2. When collocated 

ASTER and MODIS pixels were examined, 81 % of the 1-km MODIS pixels reporting CTH had CF <0.50 based on the 

ASTER 15 m mask (See Fig. 9 of Reid et al. (2023) for an overlay of ASTER-MODIS example highlighting this effect). This 

is consistent with the results of Section 4.2, where a peak in the cloud fraction distribution was seen at the 400 to 500 m cloud 

equivalent diameter bin. Because of its coarse resolution, the CTH MODIS retrieval is affected more by the surface temperature 385 

when there are subpixel clouds compared to ASTER, thus biasing the cloud height low.  

 

MODIS also uses a latitude-dependent BT lapse rate to infer low-level cloud heights over water. These lapse rates were 

developed from collocated MODIS-observed 11 µm BTs, CALIPSO low-level cloud heights, and sea surface temperatures, 

with a different set of lapse rates determined for each month, to create the monthly zonal mean “apparent 11-µm BT lapse 390 

rates” (Baum et al., 2012). Thus, differences in the lapse rate used by MODIS and the “true” lapse rate from the sounding can 

also cause differences in the retrieved CTH distributions between MODIS and ASTER. Using the coefficients given in Baum 

et al. (2012), the lapse rate used by MODIS for each ASTER scene was computed and averaged to 3.34 K km-1 for all scenes. 

Lapse rates were also computed from the surface to around 2 km in altitude for the sounding used for each ASTER scene in 

retrieving CTHs. This averaged to 5.74 K km-1 for all scenes. Thus, there is a 2.40 K km-1 difference in lapse rates, with 395 

MODIS having a lower lapse rate. This would then translate to MODIS reporting CTHs with a high bias of around 800 m on 

average, which is opposite to what is observed in Fig. 8b. This strongly implies the dominating effect of subpixel clouds is 

leading to an overall lower MODIS CTHs relative to ASTER, MISR, and HSRL-2.  
 

For the MISR CTH distribution, the peak frequency occurs in the 750-1000 m bin at 0.33, although the frequency in the 500-400 

750 m bin is only slightly lower at 0.30 as in seen in Fig. 8b. This lines up well with the HSRL-2, having a peak CTH frequency 

in the 500-750 m bin, but with a frequency in the 750-1000 m bin at 0.21, which is not much different from the MISR peak at 

0.33. The slight difference may be an indication of sampling differences between MISR and HSRL-2 observations. Note that 

MISR retrieves CTH using a stereoscopic technique (Mueller et al., 2013), which is not impacted by subpixel cloud biases. As 

such, the difference between the ASTER and MISR CTHs is likely due to violations in the assumptions of the ASTER BT 405 

retrieval technique. One of the assumptions is that the cloud emissivity is always equal to one, which may not always be true. 

While CTH retrievals were from Channel 14 90-m pixels that were fully cloudy based on the 15 m cloud mask, some 15 m 

cloudy pixels may not have been fully cloud covered. Since the ocean surface is warmer than clouds in this region and time 

period, optically thin cloud or sub-pixel cloud would bias the cloud top heights low, opposite to what is observed relative to 
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the MISR or HSRL-2 CTHs. This leads to the possibility of either significant thin cirrus contamination or significant water 410 

vapor absorption as the possible source for ASTER CTHs that are biased high relative to MISR and HSRL-2. Thin cirrus 

contamination was ruled out because of the care taken in filtering scenes that contain cirrus, including the use of the 12 µm 

channel. To examine the impact of water vapor absorption, soundings used for each scene, along with the spectral response 

function of ASTER’s Channel 14 (ASTER Instrument Characteristics, n.d.), were input into the radiative transfer model 

libRadtran (Mayer et al., 2020) with a cloud layer of optical depth 9.6 at 700 to 900 m in altitude to simulate BTs retrieved. 415 

Simulations without water vapor in the atmosphere were run to examine the impact of water vapor absorption. Results showed 

that a 2 to 5 K cooling due to water vapor absorption can lower the ASTER-retrieved CTHs by ~200 to 900 m, thus bringing 

it more in line with the MISR heights, which had a mode that was 500 m lower than ASTER.  

 

In summary, Fig. 8b shows the different CTH distributions retrieved using different techniques. The HSRL-2 CTH distribution 420 

has a peak close to that of MISR, with the small differences between the two likely due to sampling differences. The MODIS 

CTH peak is the lowest among the distributions, where the presence of subpixel clouds leads to the overall lower MODIS 

CTHs. The ASTER CTHs shown in both Fig. 8a and 8b do not include any correction for water vapor absorption, thus they 

are biased high. Radiative transfer simulations indicate that bias expected from the neglect of water vapor absorption in this 

region and time period is consistent with the difference we see between ASTER and MISR CTHs. Finally, the analysis above 425 

were for coincident MISR and MODIS data that fell within the ASTER 60 km x 60 km scenes. Not all ASTER clouds had 

retrieved MISR and MODIS CTHs. When restricting the analysis (not shown) to pixels with valid MISR and MODIS CTH 

that had at least one ASTER CTH, none of the conclusions drawn above changed.    

 

The CTHs reported here are also similar to the heights reported for the RICO region over the Atlantic east of Antigua (Zhao 430 

and Di Girolamo, 2007). They too used ASTER for retrieving CTH and found a peak frequency around 900 m. They reported 

that neglecting water vapor absorption could bias the cloud heights up to 200 m. This suggests that total column water vapor 

(TCWV) observed during CAMP2Ex was much higher than observed during RICO. Indeed, Fig. 9 shows the TCWV for the 

CAMP2Ex and RICO regions during their respective mission periods, as derived from the fifth generation of atmospheric 

reanalysis data (ERA5) by the European Centre for Medium-Range Weather Forecasts (ECMWF; Hersbach et al., 2020). 435 

Repeating the radiative transfer simulations above, results showed a ~2 K BT difference between the two regions. Thus, 

accounting for water vapor absorption in estimating CTH from ASTER, both regions show a peak frequency in CTH of ~750 

m.  
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Figure 9: Normalized distribution of total column water vapor from ERA5 reanalysis data for the RICO (blue) and CAMP2Ex 440 
(orange) regions.  

5 Comparison of Meteorological Variables with Macrophysical Properties 

In the previous sections, the macrophysical properties (size, areal fraction, area-perimeter relationship, CTH, and a metric for 

the spatial distribution) of boundary layer cumuli observed during CAMP2Ex using ASTER were presented and compared to 

in-situ measurements, prior studies, and retrievals from other satellites. In this section, the relationship of those cumulus cloud 445 

macrophysical properties to large-scale meteorological parameters are examined. 

 

Previous studies have investigated the relationship between the large-scale meteorology and the shallow cumulus cloud 

macrophysical properties. Zhao and Di Girolamo (2007) did not find any relationship between the two during the RICO 

campaign, which they hypothesized was due to the inability of the forecast meteorological data that they used to capture the 450 

scales in which the cumulus clouds reside. Mieslinger et al. (2019), on the other hand, analyzed cumulus cloud fields over the 

western Atlantic and the central and eastern Pacific and found that the surface wind speed was the dominant controlling factor 

for their estimated cloud macrophysical properties. They found that with increasing surface wind speed, the cloud fraction and 

cloud top heights increased, leading to a shift in the cloud size distribution toward larger clouds with smoother shapes. They 

reached this conclusion by examining the average cloud field properties as a function of single-binned meteorological 455 

parameters using ERA5 Interim data. However, data binning can create artificial relationships between uncorrelated data 

depending on how the data is binned (Wainer et al., 2006; Rusakov, 2023). To avoid this issue, we use multiple linear 

regression to investigate the relationship between the large-scale meteorology and observed macrophysical properties.  
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The ERA5 reanalysis data was used to characterize the large-scale meteorological conditions instead of the available soundings 460 

due to the limited temporal and spatial coverage of the soundings and inconsistencies in the spatial and temporal resolution 

between the different sounding instruments. The ERA5 reanalysis data at hours of 01, 02, 03, and 04 UTC were used, the time 

period that the ASTER scenes were taken. Data included the u- (east) and v- (north) wind components at 10 m and pressure 

levels of 1000-850 hPa (every 25 hPa) and 600 hPa (the boundary layer top), vertical velocity and relative humidity at pressure 

levels of 1000-850 hPa (every 25 hPa), sea surface temperature (SST), and total column water vapor (TCWV). These variables 465 

were compiled for the time period of August to October 2019 over the CAMP2Ex region with a horizontal resolution of 0.25° 

× 0.25°. From these, other variables such as wind speed, wind speed difference, wind direction, lower tropospheric stability 

(LTS), estimated inversion strength (EIS), equivalent potential temperature (qe), equivalent potential temperature difference, 

convective available potential energy (CAPE), and convective inhibition (CIN) were calculated using MetPy version 1.4.1 on 

Python. This gave a total of 88 meteorological variables, which are shown in Table 2. Note that the ERA5 boundary layer 470 

height (BLH) variable was also examined and was found to be insignificant based on p-value for all the observed macrophysical 

properties. Therefore, it was not included in the final list of variables shown in Table 2. The low ranking may be due to the 

decoupling of the PBL in the trade cumulus regime, leading to relatively shallow and small cumuli with CTHs well below the 

PBL top as found in other studies (Karlsson et al., 2010; Kubar et al., 2020). 

 475 
Table 2: Meteorological variables at the different levels used in this study. Fields extracted or calculated from the ERA5 reanalysis 
data. 

Meteorological Variable (units) Levels 

u- and v-wind components [m s-1] 1000-850 hPa (every 25 hPa), 600 hPa 

Vertical velocity [Pa s-1] 1000-850 hPa (every 25 hPa), 600 hPa 

Relative humidity 1000-850 hPa (every 25 hPa) 

Sea surface temperature (SST) [K] - 

Total column water vapor (TCWV) [kg m-2] - 

Wind speed [m s-1] 10 m, 1000-850 hPa (every 25 hPa), 600 hPa 

Wind speed difference [m s-1] 1000-975 (950, 925, 900, 875, 850) hPa, 950-925 (900, 

875, 850) hPa, 850-600 hPa 

Wind direction [deg] 10 m, 1000-850 hPa (every 25 hPa), 600 hPa 

Lower tropospheric stability (LTS) [K] 1000-975 (950, 925, 900, 875, 850, 700) hPa 

Estimated inversion strength (EIS) [K] 1000-700 hPa 

Equivalent potential temperature [K] 1000-850 hPa (every 25 hPa) 
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Equivalent potential temperature difference [K] 1000-975 (950, 925, 900, 875, 850) hPa, 950-925 (900, 

875, 850) hPa 

Convective available potential energy (CAPE) [J kg-1] 850 hPa 

Convective inhibition (CIN) [J kg-1] 850 hPa 

 

Figure 10 shows contour normalized frequency by altitude diagrams for relative humidity and temperature from the ERA5 480 

reanalysis data. A wide spread in relative humidity is seen, while the temperature has a relatively narrow spread. The median 

vertical profile is shown as the solid black line. At the surface, there is a median relative humidity value of around 80 % and a 

temperature of around 300 K. These have around a 9 % and 2 K RMSD relative to the median relative humidity and temperature 

profile soundings, respectively, obtained from the dropsondes and ship sondes that were used in Section 4.5 for CTH retrieval. 

Comparing the frequency by altitude diagram for relative humidity to a similar figure in Davison et al. (2013) for the RICO 485 

campaign, lower relative humidity was generally observed for the RICO field campaign at altitudes above 3 km. This is 

consistent with the lower TCWV values observed during RICO from the ERA5 reanalysis data as discussed in Section 4.5. 

 
Figure 10: Contour frequency by altitude diagrams for relative humidity (left) and temperature (right) from the ERA5 reanalysis 
data. Relative humidity bins are 2 %, temperature bins are 1 K, and altitude bins are 100 m. The median is shown in the solid black 490 
line, while the 25th percentile and 75th percentile are shown in dotted black lines. 

 

For each ASTER scene, the mean value of the meteorological variables (Table 2) contained within each scene was taken to 

represent the whole scene. The pooled standard deviation of the meteorological variables contained within each ASTER scene 

can be found in the supplementary material. Standard deviations are relatively small, as seen in the median coefficient of 495 
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variation values (around 0.1), showing the representativeness of taking the mean to represent the whole scene. The general 

statistics for the mean meteorological variables among all scenes are also given in the supplementary material. In general, there 

is a wide variability seen in the mean meteorological variables, apart from SST. All 88 meteorological variables were then 

standardized by subtracting the mean and dividing by the standard deviation.  

 500 

The different statistics of cloud macrophysical properties were obtained from individual ASTER scenes, and the standardized 

meteorological variables were then fit into a multiple linear regression model for each cloud macrophysical property. The R2 

and adjusted R2 values obtained when doing so are shown in Table 3. The adjusted R2 value considers the number of variables 

in the model, and unlike the R2 value, it only increases when the new variable improves the model more than would be expected 

by chance. As seen in the adjusted R2 values, less than 30 % of the variation in the cloud size distribution parameters (line-fit 505 

𝜆 and direct power-law fit 𝜆) and fractal dimension are explained by all the variables. This may be due to the low variability 

seen in these properties among all the scenes (see the supplementary material). However, for the cloud fraction and mean cloud 

top height, 51 % and 72 % of their variation can be explained by the variables, respectively. With this, the discussion below 

only focuses on the results for cloud fraction and mean cloud top height. 

 510 
Table 3: R2 and adjusted R2 values for the multiple linear regression model containing all 88 variables for each cloud macrophysical 
property. 

Cloud Macrophysical Property R2 Adjusted R2 

Line-Fit 𝜆 0.56 0.19 

Direct Power-Law Fit 𝜆 0.58 0.21 

Fractal Dimension 0.52 0.10 

Mean Cloud Top Height 0.85 0.72 

Cloud Fraction 0.74 0.52 

 

To rank the meteorological variables that affected the cloud properties, variable selection was first done from the full regression 

model using backward elimination (Faraway, 2014) by examining the p-values. Starting with the multiple regression model 515 

with 88 variables, the variable with the greatest p-value (the least significant) was removed. A model was then fit again and 

the variable with the greatest p-value was again removed. This was repeated until all p-values were significant at the 0.05 level. 

After this process, the remaining variables in the model were ranked by the change in R2 when that variable is removed. By 

doing so, the variables are ranked according to which ones explain most of the variation in the observed macrophysical 

property. Note that the results do not differ when the remaining variables were instead ranked by the change in the adjusted R2 520 

values. 
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The final multiple linear regression model for mean cloud top height contains 26 variables, with R2 = 0.80 and adjusted R2 = 

0.77. This model has a root mean squared error (RMSE) of 127 m using the leave-one-out cross-validation (LOOCV) 

technique. Table 4 shows the top six ranked variables by the change in R2 from 0.80 when that variable is removed from the 525 

regression model. TCWV, EIS, LTS, wind speed difference, and vertical velocity are seen to rank highest. These results are 

consistent with other observational studies that have shown higher TCWV, or total precipitable water, can lead to higher cloud 

tops in boundary layer clouds (e.g., Forsythe et al., 2012). The stability terms of EIS and LTS are also important as higher 

values would reduce entrainment drying and warming, moistening the planetary boundary layer, allowing for deeper and more 

low stratiform clouds (Wood and Bretherton, 2006). Wind speed difference is also important as wind shear can tilt deeper 530 

cumulus clouds, limit vertical cloud development, and enhance evaporation at cloud tops (Neggers et al., 2003; Yamaguchi et 

al., 2019; Helfer et al., 2020), while vertical velocity or subsidence near the cloud top can limit the deepening of marine 

boundary layer clouds, such as stratocumulus, stratus, and cumulus, due to the pushing down of the top of the marine boundary 

layer (Myers and Norris, 2013). 

 535 
Table 4: Top 6 meteorological variables that explain most of the variation in the observed mean cloud top height. 

Meteorological Variable Pressure Level Change in R2 

TCWV  -0.14 

EIS 1000-700 hPa -0.12 

LTS 1000-700 hPa -0.11 

Wind speed difference 1000-975 hPa -0.02 

Wind speed difference 1000-950 hPa -0.02 

Vertical velocity 925 hPa -0.02 

 

The final multiple linear regression model for cloud fraction contains 24 variables, with R2 = 0.59 and adjusted R2 = 0.53. This 

model has RMSE of 0.068 using the LOOCV technique. Table 5 shows the top six ranked variables by the change in R2 from 

0.59 when that variable is removed from the regression model. From the table, wind near the surface is the variable that has 540 

the biggest impact on cloud fraction. This agrees with previous modelling and observational studies that have shown how 

surface wind speed can increase surface fluxes of moisture and heat and deepen the boundary layer, allowing for deeper and 

larger clouds (Nuijens and Stevens, 2012; Brueck et al., 2015). Naud et al. (2023) also found that the 10-m winds are the 

dominant cloud controlling factor for shallow cumulus regions. Relative humidity above the cloud is also important for cloud 

entrainment and lifetime (Eastman and Wood, 2018). Notice also that the standard EIS and LTS terms calculated between the 545 

1000 and 700 hPa levels are lower in the ranking. This is in agreement with Cutler et al. (2022) who recently showed using 

surface-based and satellite cloud data, along with reanalysis data, that the correlation between LTS and EIS on cumulus cloud 

cover is low compared to the correlation of LTS and EIS with stratocumulus cloud cover. Lewis et al. (2023) also recently 
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showed how EIS is not the most important variable for low cloud cover in the trade-cumulus regions. This is an important 

finding because climate models use these stability terms to parameterize low cloud cover (Neale et al., 2010) and in climate 550 

sensitivity studies to study low cloud feedback (Brient and Schneider, 2016; McCoy et al., 2017; Myers et al., 2021; Sherwood 

et al., 2020). 

 
Table 5: Top 6 meteorological variables that explain most of the variation in the observed cloud fraction. 

Meteorological Variable Pressure Level Change in R2 

Wind speed 975 hPa -0.08 

Relative humidity 900 hPa -0.08 

LTS 1000-900 hPa -0.08 

Wind speed  925 hPa -0.06 

EIS 1000-700 hPa -0.05 

LTS 1000-700 hPa -0.05 

 555 

Finally, McFarquhar et al. (2004) and Dey et al. (2011) have also investigated how cloud amount and cloud top height can 

vary with aerosol amount over the Indian Ocean. Given that the CAMP2Ex mission was held in the Philippines region due to 

its complex aerosol environment (Reid et al., 2023), the variability of the macrophysical properties with mean aerosol optical 

depth (AOD) retrieved by MISR for each ASTER scene during the mission was also investigated by examining each of the 

macrophysical properties as a function of AOD and by grouping scenes based on their AOD into “clean” and “polluted” (not 560 

shown here). There was not much variability seen in the cloud macrophysical properties (coefficient of variations ranging from 

0.01 to 0.3 for the different properties) as there was not much variability in the AOD observed in the region (standard deviation 

of 0.10) for the observed ASTER scenes. Most of the ASTER scenes were collected under fairly pristine conditions, with only 

7 % of the 550 nm AODs retrieved from MISR having values greater than 0.3. This is in contrast to other studies that have 

investigated the impact of aerosol loading on the cloud macrophysics. For example, in the study by Dey et al. (2011), which 565 

also used ASTER and MISR data, about half of the aerosol retrievals had 550 nm AODs > 0.3. They also had a much larger 

sample size. Thus, the generality of McFarquhar et al.’s (2004) finding that the cloud macrophysical properties depend on 

aerosol properties could not be well tested here, given the narrow range in observed AOD over the CAMP2Ex region. 

6 Conclusions 

Cloud macrophysical properties place strong controls on local to global scale radiative and latent heat budgets. The 570 

macrophysical properties of oceanic shallow cumulus clouds are challenging to model and observe owing to their small sizes 

and remote locations, despite being a commonly occurring cloud type over the oceans, particularly over the tropics. The 
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representation of tropical shallow cumuli in climate models continues to be a major source of uncertainty in cloud feedback. 

This, in part, calls for improved observations of these clouds and their relationship to meteorological variables to help improve 

and evaluate their representation in models. This is possible with existing satellite instrument missions focused on land studies, 

such as ASTER, but such instruments are rarely tasked to collect data over oceans with sampling and settings that are 580 

appropriate for deriving the macrophysical properties of clouds. One such occurrence took place as part of the CAMP2Ex field 

campaign, where the ASTER instrument onboard Terra was tasked to collect high-resolution imagery over the ocean waters 

surrounding the Philippines. 

 

In this study, the macrophysical properties of 2,181,059 cumulus clouds over the tropical western Pacific were examined using 585 

170 ASTER scenes collected from August to October 2019 during the conduct of the CAMP2Ex field campaign. An average 

cloud fraction of 0.115 ± 0.14 was retrieved, with half of that fraction contributed by clouds less than 1.6 ± 0.1 km in area 

equivalent diameter. Around 80 % of the individual scenes had a cloud fraction less than 0.2. The cloud size distribution 

follows a power law form, with an exponent of 2.93 (𝑅 = 0.99) using the line-fit method and 2.16 (𝑅 = 0.99) using the direct 

power-law fit method. An area-perimeter power law was also observed with a dimension of 1.25 (𝑅 = 0.98), indicating cumulus 590 

clouds of smooth shapes. More than 75 % of the clouds were found to have a nearest neighbor within 10 times their area-

equivalent radius. After correcting for water vapor absorption that led to ~200 to 900 m bias in cloud top height (CTH) per 

scene, the resulting peak frequency in ASTER-derived CTH occurred at 750 m – consistent with MISR and HSRL-2 CTHs. 

A remaining uncertainty in CTH due to sounding choice was found to be ±160 m. With a mean lifting condensation level 

(LCL) of 466 ± 89 m for the CAMP2Ex period (Miller et al., 2023), a mode CTH of 750 ± 160 m, and a mode in the cloud 595 

fraction distribution occurring in the 400 to 500 m bin, the cloud aspect ratio (cloud depth to width) for this mode is 0.6 ± 0.4. 

MODIS CTHs were also found to peak in the lowest altitude bin (0 to 250 m) due to the subpixel (1 km MODIS) nature of 

these clouds. MODIS and MISR standard cloud fraction estimates were also found to have large, positive biases (0.19 and 

0.49, respectively) because of the sub-pixel nature of these clouds, with biases that are consistent with Zhao and Di Girolamo 

(2006). The newer “resolution-corrected” cloud fraction product offered by MISR had a small positive bias of 0.02, which is 600 

consistent with the expectation of the algorithm (Jones et al., 2012), slightly better than other validation exercises (Dutta et al., 

2020), and very close to the 0.014 value of uncertainty in our estimate of the ASTER cloud fraction. Any remaining uncertainty 

in the macrophysical properties owing to sub-pixel clouds in 15-m ASTER imagery is expected to be exceedingly small (Dey 

et al., 2008) relative to the uncertainties reported above. 

 605 

Similarities and differences were found when results were compared to the previous studies shown in Table 1. Differences 

between the studies in the table may be due to the different times, location, sampling issues, domain size, and spatial resolution. 

Given the effect of scale on the statistics, it may be best to compare amongst studies that have used ASTER data (Zhao and Di 

Girolamo, 2007; Mieslinger et al., 2019). When comparing to these studies, the macrophysical properties of cumulus clouds 
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from the CAMP2Ex region are very similar. A noticeable difference was the higher total cloud fraction in the CAMP2Ex region 635 

by around 0.03. The similarities in cloud macrophysics amongst these ASTER studies is remarkable given that they were done 

in very different parts of the world, although all tropical. We also looked at the 214 scenes of cumulus clouds over the tropical 

Indian Ocean described in Jones et al. (2012) and again found very similar cloud macrophysical properties (not shown here). 

We therefore conclude that the properties of tropical trade wind cumulus shown here appear to be indicative of the properties 

of trade wind cumuli across large swaths of tropical oceanic regions. While aerosol conditions in the environment may impact 640 

the macrophysics of shallow oceanic clouds as shown in McFarquhar et al. (2004) and Dey et al. (2011) over the Indian Ocean, 

the narrow range observed in the AOD for the specific ASTER scenes led to no significant relationship between the AOD and 

the macrophysical properties.  

 

The relationship between the observed cloud macrophysical properties for each ASTER scene and the meteorological 645 

conditions was also investigated. While this has been done using ASTER data in other regions containing oceanic cumuli by 

Mieslinger et al. (2019) using the average cloud field parameters as a function of single-binned meteorological parameters, we 

had concerns that artificial relationships can be created between uncorrelated data depending on how the data is binned (Wainer 

et al., 2006; Rusakov, 2023). To avoid this issue, we used multiple linear regression for each macrophysical property, with the 

full model having 88 variables. Less than 30 % of the variation in the cloud size distribution parameters (line-fit 𝜆 and direct 650 

power-law fit 𝜆) and fractal dimension was explained by all 88 variables. However, for the cloud fraction and mean cloud top 

height, more than 50 % of their variation can be explained by all 88 variables. Variable selection was performed by backward 

elimination, reducing the number of variables to 26 for mean cloud top height and to 24 for cloud fraction. It was found that 

TCWV, LTS, and EIS are the variables that contributed the most to the variation in mean cloud top height, while wind speed 

near the surface, relative humidity near the cloud, and LTS calculated between 1000 hPa and 900 hPa contribute most to the 655 

variation in cloud fraction. Mieslinger et al. (2019) also found that surface wind speed is a huge controlling factor for cloud 

fraction, along with the standard LTS term, calculated between 1000 hPa and 700 hPa. Interestingly, in our study, we find that 

the standard LTS and EIS terms, calculated between 1000 hPa and 700 hPa, contribute relatively less to the variation in 

cumulus cloud fraction, in agreement with Cutler et al. (2022) and Lewis et al. (2023). This is important given that these terms 

are used in climate models to parameterize overall low cloud cover (Neale et al., 2010) and in climate sensitivity studies to 660 

study low cloud feedback (Brient and Schneider, 2016; McCoy et al., 2017; Myers et al., 2021; Sherwood et al., 2020). 

Although not discussed here due to the low adjusted R2 values of the model, similar to cloud fraction, relative humidity (at 

1000, 975, and 900 hPa) and wind speed (at 925 and 900 hPa) are the top variables that explain most of the variation in the 

observed cloud size distribution parameter (line-fit 𝜆) for each ASTER scene. Note again that there is not much confidence in 

these relationships, however, because only around 30 % of the variation in the line-fit 𝜆 parameter can be explained by the 665 

reduced model. We further note that given that the statistics of the macrophysical properties of cumulus clouds are influenced 
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by the domain size, the observed relationships of the cloud macrophysical properties to the meteorological conditions may also 

change with domain size.  

 670 

While this study does show some relationship of cloud macrophysical properties to the meteorology, we do not intend to 

predict or imply how cloud macrophysical properties change with varying meteorology. We explicitly note that the results we 

presented do not imply any causality. This study simply provides the statistics on the macrophysical properties and shows that 

meteorology can explain some of the observed variation in the CAMP2Ex region, which has important applications for model 

evaluation. It should also be noted that any smaller-scale meteorological variations, which are not captured due to the coarse 675 

resolution of the ERA5 reanalysis, might be able to explain more of the variation in the observed properties if such higher-

resolution data were available. While the multiple linear regression model is used, this does not imply that the relationships 

between cloud macrophysical properties to the meteorology are linear. Still, as seen in our results, multiple linear regression 

is a useful tool to help explain the relationship between the observed properties and the meteorology, showing the relative 

importance of TCWV to the variations in mean cloud top height and surface wind speed to the variation in cloud fraction. 680 

Data availability 

The soundings obtained during the CAMP2Ex mission were obtained from https://www-air.larc.nasa.gov/cgi-

bin/ArcView/camp2ex, while the standard synoptic soundings acquired over the Philippines were obtained from the University 

of Wyoming website at https://weather.uwyo.edu/upperair/sounding.html. The ASTER L1T data were obtained through the 

NASA Land Processes Distributed Active Archive Center (LP DAAC) data pool at 685 

https://lpdaac.usgs.gov/products/ast_l1tv003/. The MISR Level 2 TOA/Cloud Classifiers product version 3 data were obtained 

from the NASA Langley Research Center at https://opendap.larc.nasa.gov/opendap/MISR/MIL2TCCL.003/. The MISR Level 

2 Cloud Product for cloud top height were obtained from the NASA Langley Research Center at 

https://opendap.larc.nasa.gov/opendap/MISR/MIL2TCSP.001/. The MODIS Level 2 data, namely MOD35 and MOD06, were 

obtained from the Level 1 and Atmosphere Archive and Distribution System of NASA Goddard Space Flight Center at 690 

https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/. The ERA5 reanalysis data were obtained through the Copernicus 

Climate Change Service Climate Data Store at https://cds.climate.copernicus.eu/. 
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