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Abstract. We evaluate the utility of hyperspectral particulate absorption data to characterize phytoplankton community struc-

ture in the eastern Subarctic Pacific Ocean. Relative to existing algorithms based solely on Chlorophyll-a concentrations (Chla),

improved taxonomic classification (validated with pigment-based data) was obtained by including Principal Components Anal-

ysis of hyperspectral absorption data. Multiple linear regression of hyperspectral absorption data yielded better taxonomic

classification, particularly for estimates of haptophyte biomass. In addition, size-fractionated hyperspectral measurements were5

used to determine the dominant phytoplankton size of the phytoplankton community. Using high-frequency ship-board optical

data, we examined the spatial patterns in phytoplankton taxonomic abundance in coastal and offshore waters around Vancou-

ver Island, British Columbia. Results from this analysis were consistent with expectations based on previous low-resolution

sampling, demonstrating expected seasonal succession of different phytoplankton groups, and significant variability in coastal

phytoplankton taxonomy associated with dominant hydrographic features. In contrast, much less spatial and temporal variabil-10

ity was observed in offshore waters. Derived patterns in phytoplankton taxonomy were linked to observed patterns in surface

water biogeochemical properties, notably the distribution of dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP)

to Chla ratios. Our results highlight the potential for shipboard hyperspectral absorption data to describe phytoplankton com-

munity composition and ancillary biogeochemical variables.

1 Introduction15

Phytoplankton taxonomy plays an important role in ocean biogeochemistry and carbon cycling (Falkowski et al., 1998), as

different phytoplankton groups (or functional types) have distinct physiological and ecological traits that drive the emergent

properties of marine ecosystems (Queré et al., 2005). Diatoms, for example, contribute disproportionately to carbon export

production, by virtue of their large cell size (for many species) and dense siliceous frustules, which resulting in elevated sinking

rates (Smetacek, 1985) and make them sensitive to silicic acid limitation (Krause et al., 2019). In contrast, some haptophytes20

produce calcium carbonate shells (Yoch, 2002) and are significant producers of the climate-active gas dimethyl sulfide (DMS)
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(Archer et al., 2000), making them important contributors to ocean alkalinity balance and regional climate regulation. The

results of anthropogenic forcing, such as ocean warming, increased stratification and changes to nutrient supply, are likely to

cause shifts in the phytoplankton taxonomy (Henson et al., 2021). Knowledge of the distribution of the different phytoplankton

functional types is thus important to observe ongoing changes in phytoplankton ecology and for the parameterisation and25

evaluation of ocean biogeochemical models (Anderson, 2005).

Phytoplankton taxonomic distributions in marine waters have typically been estimated from discrete shipboard measure-

ments, which are labour-intensive and provide limited spatial and temporal resolution. Traditional methods include the mi-

croscopic examination of water samples and the analysis of diagnostic photosynthetic pigments by High-Performance Liquid

Chromatography (HPLC). Microscopy requires expert knowledge and may require a scanning electron microscope for smaller30

phytoplankton. Pigment measurements can be used to estimate the contribution of different taxonomic groups to total chloro-

phyll concentration, but these are subject to some uncertainty due to overlapping pigment signatures of different groups, and

variable pigment contents within groups (Roy et al., 2011). Nonetheless, the pigment-based classification remains the most

commonly used and accessible method, with the potential to broadly distinguish different phytoplankton groups (Kramer and

Siegel, 2019).35

At present, there are several approaches for estimation of phytoplankton taxonomic composition . One approach focuses on

characterizing the dominant group in a sample (e.g. diatoms vs. haptophytes), where the bulk properties of the assemblage are

attributed to that group. We refer to this qualitative approach as phytoplankton community classification and note that it has

been used in a variety of studies (Ciotti et al., 2002; Cetinic et al., 2015; Kramer et al., 2020). Another approach, referred to here

as the assessment of phytoplankton composition, is to estimate the contributions of the different phytoplankton groups to total40

biomass (derived from chlorophyll concentration), using methods such as CHEMTAX (Mackey et al., 1996) or Diagnostic

Pigment Analysis (DPA) (Uitz et al., 2006). This approach provides quantitative estimates of phytoplankton composition

based on the relative abundance of different groups. While similar, qualitative phytoplankton community classification and

quantitative estimates of phytoplankton composition, have different strengths, limitations and applications.

In recent years, optical measurements have become an increasingly common tool for monitoring changes in phytoplankton45

biomass and composition at high resolution across a range of spatial scales. For example, hyperspectral spectrophotometers

have been used to measure chlorophyll concentrations from the continuous underway seawater supply of ships, exploiting

the strong contribution of chlorophyll-a to the particulate absorption at 676 nm (Boss et al., 2013). Hyperspectral data have

also been used to estimate photosynthetic pigment concentrations using a variety of inversion methods (Liu et al., 2019), and

applied to validate satellite Chlorophyll-a data products (Brewin et al., 2016). Studies have also demonstrated the link between50

multi- and hyperspectral measurements and the phytoplankton composition (Alvain et al., 2005; Mao et al., 2010; Isada et al.,

2015). These studies are particularly important in light of the upcoming launch of the PACE (Plankton, Aerosol, Cloud and
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ocean Ecosystem) satellite, which has a spectral resolution of 3nm across the visible light spectrum (Werdell et al., 2019).

Robust interpretation of the data from this new satellite will depend on high-quality validation with in situ observations.

The eastern Subarctic Pacific provides an ideal study area to investigate gradients in phytoplankton taxonomic composition55

across space and time. This region is characterized by a range of contrasting environments, such as high-productivity coastal

regions, stratified nitrate-limited waters, and iron-limited high-nutrient-low chlorophyll waters (Whitney et al., 2005). Spatial,

seasonal and inter-annual variability of nutrient concentrations and phytoplankton biomass in the subarctic NE Pacific is also

linked to various physical processes, including coastal upwelling, wind-driven mixing and river inputs. (Peña and Varela, 2007;

Peña et al., 2019a). Understanding ecosystem responses to this physical variability requires estimates of phytoplankton biomass60

and community composition with high spatial and temporal resolution.

Previously, Zeng et al. (2018) compared different methods for estimating phytoplankton composition and size classes in the

eastern subarctic Pacific. Their results showed that the Chlorophyll-a (Chla) based algorithm of Hirata et al. (2011) was the

most accurate relative to DPA-based estimates of relative contributions of different phytoplankton groups to total biomass. A

potential limitation of this approach is the fact that Chla concentrations can also record changes in the physiological status of65

phytoplankton associated with environmental factors such as light and/or nutrient availability (Geider et al., 1997; Behrenfeld

et al., 2016). Indeed, Burt et al. (2018) found that the C:Chl ratio varied significantly with light and nutrient conditions in

the eastern subarctic Pacific, suggesting that Chla concentrations are impacted by both physiological and biomass / taxonomic

changes in phytoplankton composition. Additional information from hyperspectral data may thus provide further constraints

on phytoplankton community composition.70

This study aims to estimate phytoplankton communities and composition using hyperspectral absorption data collected in the

NE Pacific, bench-marked against phytoplankton pigments measurements. We demonstrate the applicability of hyperspectral

data to derive taxonomic information about phytoplankton assemblages and examine oceanographic controls on the optically-

derived phytoplankton community composition. Using our hyperspectral data, alongside other high-frequency oceanographic

measurements, we also show how phytoplankton taxonomy can help explain the distribution of other biogeochemical variables75

in our survey region.

2 Methods

2.1 Field measurements

The optical and pigment data used in this study were derived from ship-based observations collected on 9 oceanographic cruises

on the CCGS John P. Tully in coastal and offshore waters of the northeast subarctic Pacific between 2016 - 2018, and in August,80

2022 (see Table 1 for specific cruises). These cruises are part of the Line P and La Perouse oceanographic monitoring programs

led by Fisheries and Oceans Canada (DFO), with an overarching objective to observe long-term trends in ocean properties in
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Table 1. Research cruises on the CCGS John P. Tully used for data collection. a pigment data are currently unavailable and thus only optical

data from this cruise are utilized.

Program Dates Cruise ID

Line P

Jun 05 - 21, 2016 2016-06

Feb 05 - 23, 2017 2017-01

Jun 04 - 20, 2017 2017-06

Aug 15 - 31, 2017 2017-08

Sep 11 - 28, 2018 2018-40

La Perouse

May 24 - Jun 5, 2016 2016-47

May 23 - Jun 4, 2017 2017-05

Aug 31- Sep 12, 2017 2017-09

Aug 25 - Sep 6, 2022 2022-22a

coastal and offshore waters of the northeast subarctic Pacific. The location of the sampling stations and cruise tracks are shown

in Fig. 1. Some of the data used in this paper have been previously published in other contexts (e.g., Burt et al. (2018); Zeng

et al. (2018); Peña et al. (2019b)). Pigment measurements are currently unavailable for the August 2022 cruise, and thus only85

the optical data from this cruise are presented here.

Figure 2 shows the overall methodological approach used to predict phytoplankton communities and estimate phytoplank-

ton composition from the ship-board measurements. Individual steps in this method are described in detail in the following

subsections.
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Figure 1. Location of HPLC sampling stations (black dots) and ship tracks during the 2016-01 Line P (solid line) and 2017-05 La Perouse

(dotted line) cruises. Note that the actual cruise tracks change slightly by a few degrees between cruises.

Figure 2. Flow-chart outlining the methods used to estimate phytoplankton community and composition based on HPLC-derived pigment

concentrations and ship-board hyperspectral absorption data (WETLABS AC-S).
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2.2 Pigment measurement90

Phytoplankton pigment samples were collected from the upper 5 m at various stations (Fig. 1) using Niskin bottles attached to

a CTD rosette package. Duplicate water samples ranging from 0.6 to 2 L (depending on phytoplankton biomass) were filtered

onto Whatman GF/F filters and immediately stored at −80◦C for subsequent determination of Chla and accessory pigment

concentrations by HPLC analysis, following the method of Zapata et al. (2000). In total, data from 192 discrete HPLC samples

were matched to the optical data using a time stamp alignment of ± 10 min for comparison of pigment and optically-derived95

phytoplankton composition estimates.

2.3 CHEMTAX and DPA analysis

To estimate the contribution of the main phytoplankton taxonomic groups to Chla, phytoplankton pigment data were analysed

using CHEMTAX (v1.95; Mackey et al. (1996)), following the procedures detailed in Peña et al. (2019b). The data was

separated into coastal (within the continental shelf, less than 200 m water depth) and offshore (beyond the continental shelf100

with water depth > 200 m) stations to account for differences in phytoplankton community composition between these regions

(Peña et al., 2019b; Del Bel Belluz et al., 2021). The phytoplankton groups and initial pigment ratios used for the coastal and

offshore stations are given in Table A1 and A2, respectively.

As an alternative to CHEMTAX, the Chla concentration attributable to the different phytoplankton groups was also calcu-

lated using diagnostic pigment analysis (DPA), which assigns certain pigments to different phytoplankton groups. This method105

was originally developed to determine the contribution of different phytoplankton size classes to Chla (Uitz et al., 2006), but

has been subsequently used to estimate the contributions of the different phytoplankton taxonomic groups (Hirata et al., 2011).

We use the methods and equations of Zeng et al. (2018), to allow a better comparison with their results from the NE Sub-

arctic Pacific. We note that there was generally good agreement between DPA and CHEMTAX results in our data set, with a

strong correlation between the estimates of diatoms (R2 = 0.81) and haptophytes (R2 = 0.55) produced by these two methods110

(Fig. B1), albeit with some offsets from a 1:1 line. Notably, CHEMTAX predicted somewhat lower diatom and higher hap-

tophyte abundances than DPA in our data set, but the overall results are broadly consistent between these two methods. This

difference between the two classification methods is likely due, in part, to the fact that DPA assigns each pigment to only one

phytoplankton group, whereas CHEMTAX permits pigments to be shared by multiple groups.

Both DPA and CHEMTAX provide estimates of phytoplankton composition relative to the total phytoplankton biomass (es-115

timated from total Chla concentration). Besides the errors associated with the chemotaxonomic derivation of phytoplankton

composition, variability in the C:Chl ratio (Behrenfeld et al., 2016), introduces additional uncertainty in the relationship be-

tween Chla concentrations and carbon-based phytoplankton biomass. Indeed, Chase et al. (2022) found that the carbon biomass

of diatoms predicted from pigment-based approaches differed significantly from that obtained from imaging flow cytometry,
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suggesting a complex relationship between pigments and carbon biomass of phytoplankton groups. Nonetheless, our focus120

here is on comparing the performance of different Chla-based methods, which remain the most commonly used approach.

2.4 Pigment clustering

To identify the different phytoplankton communities found in our study region, principal component analysis (PCA) was

applied to the HPLC-derived pigment concentrations. This approach clusters data into representative groups with co-varying

pigment signatures (Borcard et al., 2018). Following the methods of Kramer and Siegel (2019), we excluded the concentration125

of degradation pigments from the analysis (chlorophyllide-a, pheophorbide-a, pheophythin-a, methyl chlorophyllide-a) and

redundant pigments (Monovinyl Chlorophyll-a). The resulting 17 pigments used in the analysis are chlorophyll c1, c2, c3,

peridinin, 19′- butanoyloxyfucoxanthin, fucoxanthin, neoxanthin, prasinoxanthin, violaxanthin, 19′- hexanoyloxyfucoxanthin,

diadinoxanthin, alloxanthin, diatoxanthin, zeaxanthin, lutein, Chlorophyll-b, divinyl chlorophyll-a.

The pigment concentrations were normalized by the Chla concentration prior to performing PCA. Clusters were then clas-130

sified using gaussian mixture model clustering. The number of clusters was chosen based on a visual inspection of the data

as well as hierarchical clustering of pigment data (Kramer and Siegel, 2019). The composition of the different clusters was

determined using the CHEMTAX results (see below), and the differences between the clusters were tested using ANOVA. A

full description of the clustering procedure is described in the Appendix C.

2.5 Nutrient, Salinity and Sea Surface Temperature135

Nutrient concentrations, salinity and sea surface temperature for each of the cruises were accessed from the Institute of Ocean

Sciences Data Archives (DFO, 2023). Surface concentrations of nitrate, phosphate and silicate were determined using an

Astoria Autoanalyser with the methods described in Barwell-Clarke and Whitney (1996). Sea Surface Temperature (SST) and

Salinity were determined using a SEABIRD SBE-45 CTD connected to the ships underwater supply.

2.6 DMS and DMSP concentrations140

During the 2022 August La Perouse Cruise (refer to Table 1), dimethyl sulfide (DMS) and dimethylsulphoniopropionate

(DMSP) concentrations were measured approximately every 40 minutes throughout the cruise using the Organic Sulphur

Sequential Chemical Analysis Robot (OSSCAR) using methods described in Asher et al. (2015). OSSCAR uses a purge and

trap gas chromatograph, coupled with a capillary inlet mass spectrometer to measure DMS and DMSP (hydrolyzed to DMS).

We examined the influence of phytoplankton taxonomy on DMS / DMSP concentrations using ANOVA across different phy-145

toplankton clusters.
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2.7 Continuous ship-board optical measurements

The wavelength (λ)-dependent absorption of light in seawater, a(λ), can be separated into several individual constituents,

a(λ) = aw(λ) + aCDOM (λ) + aNAP (λ) + aph(λ) (1)

where aw(λ) is absorption by pure water, aCDOM (λ) is absorption by CDOM (Coloured Dissolved Organic Matter),150

aNAP (λ) is absorption by Non-Algal Particles (NAP) and aph(λ) is absorption by phytoplankton. The particulate absorption,

defined as absorption by particles larger than 0.2µm, ap(λ) consists of the combined absorption of NAP and phytoplankton.

ap(λ) = aNAP (λ) + aph(λ), (2)

Hyperspectral particulate absorption, ap(λ), was continuously measured from the ship’s seawater intake (at a depth of ∼
7 m) using a Wetlabs AC-S spectrophotometer, following the method described in Burt et al. (2018). Seawater was passed155

through a Vortex debubbler before flowing through the measurement tubes of the AC-S. To measure the apparent optical

properties of dissolved components, an upstream 3-way valve diverted water through a 0.2µm cartridge for 10 min out of

every hour. Particulate absorption spectra were calculated by subtracting the filtered seawater absorption signal (representing

aw(λ) + aCDOM (λ)), and corrected for both scattering and temperature changes between the hourly measurements, using

methods described in Slade et al. (2010). Similarly, the hyperspectral particulate beam attenuation, cp(λ) was calculated from160

the AC-S.

2.8 Chla concentrations from the Absorption Line Height method

Following Boss et al. (2007), particulate absorption at 676 nm (aph(676)) was used to estimate Chla concentration after

calibration against HPLC measured Chla (Chlorophyll-a + Divinyl Chlorophyll-a + Chlorophyllide-a). A linear equation

aph(676) = ap(676)− 39
65

ap(650)− 26
65

ap(715), (3)165

was used to subtract a baseline absorption (between 650 and 715 nm). In our data set, aph(676) showed a strong linear

correlation with Chla ( R2 of 0.96; n=192),

Chla = 76.70± 2.7aph(676) (4)

with a slope that was not significantly different (at the 95% confidence level) to that reported by Burt et al. (2018) in previous

surveys of our sampling region.170

2.9 Phytoplankton size index

To evaluate changes in phytoplankton size from the optical measurements, we compared the spectral slope of the particulate

beam attenuation (γcp) throughout the cruises. This derived variable has been shown to correspond well with the mean size of
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suspended particles (Boss et al., 2001). Although γcp may not be specific to phytoplankton (as it is inclusive of all types of

particles), it has been shown to good proxy as a phytoplankton size index in the absence of significant terrestrial contributions175

(Haëntjens et al., 2022). Following (Boss et al., 2001) , γcp was calculated as:

cp(λ) = Aλ−γcp . (5)

To provide additional context for γcp values, we measured size fractionated values by diverting seawater for at least 10

minutes through a Purtrex 20µm filter when the ship was at the station during the August 2022 cruise. The nominal retention

rating of the filter was chosen to separate micro-phytoplankton (> 20µm in size) from nano-phytoplankton and pico-plankton180

(< 20µm). To obtain the spectra for particles greater than 20µm, the attenuation spectra measured for particles smaller than

20µm were subtracted from that of the total particulate seawater.

2.10 Gaussian Decomposition

Since the majority of phytoplankton absorption, aph(λ), is attributable to phytoplankton pigments, this variable can be de-

scribed as a function of pigment concentrations as,185

aph(λ) = Q∗a(λ)
n∑

i=1

a∗i (λ)Ci (6)

where n is the total number of pigments considered, a∗i is the specific absorption coefficient of the ith pigment at wavelength

λ, and Ci is the concentration of the ith pigment. Q∗a(λ) is the pigment package effect index which describes actual absorption

compared to if the pigments were dispersed into solution (Morel and Bricaud, 1981). The Gaussian Decomposition method

assumes that the phytoplankton absorption spectra can be decomposed into a number of discrete Gaussian curves described by,190

aph(λ) =
l∑

j=1

a∗mj(λ)Cjexp

[
(λ−λmj)2

2σ2
j

]
, (7)

where Cj is the concentration of pigment in the jth absorption band, with a maximum absorption at λmj and Gaussian width

of σj , a∗mj is the specific absorption coefficient and l is the total number of Gaussian bands (Hoepffner and Sathyendranath,

1991).

Following Chase et al. (2013), the absorption of NAP, aNAP (λ), is modelled as an exponential decreasing function of195

wavelength:

aNAP (λ) = aNAP (400)e−0.01(λ−400), (8)
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Figure 3. Example of Gaussian Decomposition of an absorption spectrum. Following Chase et al. (2013), Chlorophyll is abbreviated as

Chl., Photosynthetic Carotenoids (PSC) are defined as the sum of 19′hexanoyloxyfucoxanthin, fucoxanthin, 19′butanoyloxyfucoxanthin and

peridinin concentrations. In contrast, photoprotective pigment concentrations (PPC) are derived from the sum of α-carotene, β-carotene,

zeaxanthin, alloxanthin and diadinoxanthin.

where aNAP (400) is the amplitude of NAP absorption at 400 nm (Chase et al., 2013).

We used the methods and code from Chase et al. (2013) to decompose the hyperspectral particulate absorption spectrum

into 12 Gaussian curves and NAP absorption. Figure 3 shows an example of the Gaussian decomposition. The amplitudes of200

these curves have been shown to be strongly related to pigment concentrations (Liu et al., 2019), and the decomposition acts

to describe the spectral shape using the minimum number of variables possible (Orkney et al., 2020)

2.11 Principal component analysis of spectra

Principal Component Analysis was used on the Gaussian amplitudes of the spectra to identify whether spectral changes cor-

respond to differences in phytoplankton communities. This method differentiates changes in the absorption spectra that may205

occur due to changes in the pigment assemblages, concentration and/or phytoplankton size (Morel and Bricaud, 1981; Bricaud

et al., 2004; Ciotti et al., 2002). Cael et al. (2020) found that the majority of the variation in the absorption spectra was pri-

marily influenced by changes in spectral amplitude (due to biomass changes). In order to examine the residual variability, we

normalized the spectra to the Gaussian peak centred at 470 nm. This peak was chosen as it provided the best separation of
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Table 2. Best-fit equations for the estimation of the phytoplankton groups. agauss(λ) refers to the gaussian peak centred at wavelength, λ.

Diatom

CHEMTAX
Coastal 323.113agauss(675)1.894

All 982.4agauss(675)2.325

DPA
Coastal 85.9701agauss(675)1.493

Al 109.7275agauss(675)1.534

Offshore Haptophytes

CHEMTAX
59.13agauss(550)+ 142.03agauss(584)− 86.66agauss(617)

−109.28agauss(638)+ 55.48agauss(675)

DPA
−9.29agauss(470)− 35.61agauss(550)+ 57.88agauss(584)

−40.41agauss(617)− 28.92agauss(660)+ 14.49agauss(675)

the different communities. This is likely due to the peak being tightly correlated with Chla (R=0.90) and also more strongly210

affected by changes in the pigment packaging effect compared to other parts of the spectrum. (Bricaud et al., 2004). Following

normalization, linear discriminant analysis was used to classify the phytoplankton communities, based on a linear combina-

tion of input variables (Chla and the second principal component) to differentiate between discrete groups (Fisher, 1936). The

accuracy of the analysis was determined using leave-one-out cross-validation (Guo et al., 2007).

2.12 Multiple linear regression215

To quantitatively estimate phytoplankton composition from hyperspectral data, we employed multiple linear regression (MLR)

of the Gaussian amplitudes. This method exploits the differences in pigment concentrations and ratios between phytoplankton

groups, which leads to varying ratios of the Gaussian amplitudes. Different numbers and combinations of the 12 Gaussian

amplitudes (agauss) were regressed against pigment-based derived phytoplankton composition, with an accuracy determined

by computing the R2 value. The best-fit equations shown in Table 2 were determined by sequentially increasing the number220

of gaussian peaks used until further additions resulted in negligible (<5%) improvements in the R2 value. In this method, we

used CHEMTAX and DPA-derived biomass of diatoms and haptophytes as the independent variables. Prior to the regression

analysis, data were log-transformed to account for the wide range of the diatom biomass encountered across our sampling

region (10−3 to 101 mg m−3). We also examined whether separating the data between offshore and coastal waters improved

the accuracy of phytoplankton composition estimation, as reported below.225

2.13 Chla algorithm

We compared our hyperspectral estimates of phytoplankton composition to the regionally-tuned Chla based algorithm of Zeng

et al. (2018) based on the Chla-alogrithm of Hirata et al. (2011), which was tuned against DPA-derived taxonomic estimates.
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This algorithm was found to be more accurate in deriving subarctic Pacific phytoplankton functional types and size classes

compared to the gloabal Chla algorithm of Hirata et al. (2011), the spectral end-member algorithms of Zhang et al. (2013) and230

Zhang et al. (2015), and the back-scattering slope algorithm of Kostadinov et al. (2009),

3 Results

3.1 Phytoplankton community

3.1.1 Pigment-based clustering

Analysis of HPLC pigment data indicates that the first two principal components describe 51% of the variation in the dataset,235

and can be used to cluster pigment distributions into three groups with different dominant taxa. The derived clusters are shown

in Fig. 4, and were named based on the phytoplankton group with the highest abundance based on CHEMTAX analysis shown

in Table 3. The three dominant clusters have significantly different proportions of the different phytoplankton groups (F-

statistics and p-values presented in Table 3, with the exception of dinoflagellates, which are present in low percentages across

all three clusters). Whereas the diatom and haptophyte-dominated clusters are largely composed of those two groups, the240

mixed-assemblage group represents a diverse community with significant proportions of diatoms, haptophytes, prasinophytes,

and cyanobacteria.

12

https://doi.org/10.5194/egusphere-2023-2851
Preprint. Discussion started: 8 December 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 4. Clusters of phytoplankton community dominance identified from the principal components of the HPLC pigments. Shaded region

represent the 99% confidence ellipsoids of each cluster.

Table 3. The mean proportions of phytoplankton groups in the clusters described above as determined from CHEMTAX analysis. Proportions

of Pelagophytes were only determined in offshore stations and Dictyophytes in coastal stations.

Cluster

Diatom Mixed Haptophyte

Phytoplankton group Mean Proportion in the cluster F-statistic p-value

Cyanobacteria 0.01 0.12 0.08 17.21 1.3e-7

Chlorophytes 0.01 0.05 0.16 56.72 4.6e-20

Prasinophytes 0.04 0.24 0.05 111.62 7.78e-33

Cryptophytes 0.06 0.15 0.05 30.10 4.34e-12

Diatoms 0.80 0.22 0.06 515.26 1.10e-77

Dinoflagellates 0.03 0.04 0.05 2.09 0.13

Haptophytes 0.04 0.16 0.47 282.10 9.64e-58

Pelagophytes* - 0.02 0.07 19.8 2.55e-05

Dictyophytes* 0.01 0.03 0.14 126.2 1.53e-28
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Figure 5. Separation of phytoplankton groups based on principle components analysis of optical data. Panel A shows the range of

Chlorophyll-a (Chla) and the second principal component of the different phytoplankton communities. Panel B shows how combining Chla

and the second principal produces a good separation between the different clusters. The dotted line shows the linear decision boundaries

determined by linear discriminant analysis.

3.1.2 Assessment of phytoplankton communities using optical data

The distinct phytoplankton communities identified from the pigment-based clustering occupy an overlapping range of Chla

values (Fig. 5a), making it difficult to discriminate the groups using this variable alone. In contrast, principal component245

analysis of the hyperspectral data can be used to separate the distinct phytoplankton communities. The first two principal

components explain 87% of the total variation in the absorption spectra. The first principal component of absorption spectra

was not strongly related to the phytoplankton community, and analysis of the eigenvectors suggests that it is more strongly

related to the inversion of NAP as part of the Gaussian decomposition. In contrast, the second principal component of the

absorption spectra is more closely related to the pigment-derived phytoplankton community dominance (Fig. 5a). When used250

in combination with Chla data, this second principle component provides good separation between three main phytoplankton

communities (diatom, haptophyte and mixed-assemblage), as shown in (Fig. 5b).

Given that the three taxonomic clusters appear to separate along linear boundaries, we used Linear Discriminant analysis as

a method to classify the phytoplankton communities based on Chl concentrations and the second PCA of hyperspectral data.

The prediction accuracy was found to be 79% (N=192), based on leave-one-out cross-validation. The bulk of the error comes255

from the misclassification of the mixed-assemblage, with good separation between the diatom and haptophyte clusters.

3.1.3 Assessment of phytoplankton size of the different communities

Figure 6 and Table 4 show the size distributions of the different phytoplankton communities derived from the wavelength-

dependent slope of particulate light attenuation. Based on comparisons with size-fractionated data, phytoplankton in the

diatom-dominated communities can be inferred to be predominantly > 20µm, while both the mixed-assemblage and haptophyte-260
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Figure 6. Boxplot shows the distribution of gamma values associated with the phytoplankton communities (pigment-based and optically

based for La Perouse 2022) and size classes. Red pluses (+) indicate outliers which are determined as points whose values are greater than

the 1.5 of the interquartile range from the 25th or 75th percentile.

rich communities are mainly composed of phytoplankton < 20µm. The wide range of apparent sizes in the optically based

mixed assemblage community is attributed to the diversity of phytoplankton comprising it.

3.2 Phytoplankton composition

In deriving quantitative estimates of phytoplankton composition, we focused specifically on diatoms and haptophytes, as both

these groups are abundant in our study region and play distinct but important roles in ecology and biogeochemistry (Peña et al.,265

2019b). As shown in Table 5 and Fig. 7, the MLR approach was able to accurately reproduce observed diatom biomass based

on both DPA and CHEMTAX analysis, explaining more than 70% of observed variability. The best-fit equations obtained

from this analysis predict diatom biomass using only the gaussian peak at 675nm (Table 2), which is strongly associated

with total Chla concentrations (Bricaud et al., 2004; Chase et al., 2013). The strong correlation between diatom biomass and

Chla concentrations explains the accuracy of the Chla based approach of Zeng et al. (2018). This result, in turn, reflects the270

dominance of diatoms in the high productivity coastal waters of the eastern subarctic Pacific.

In contrast to diatoms, haptophytes are more abundant in offshore waters. As shown in Fig. 8 and Table 5, the MLR analysis

was able to explain 63% of the observed variability in haptophyte abundance in oceanic stations as compared to CHEMTAX

and DPA analysis. However, the accuracy of the method decreases significantly (R2 = 0.3) when data from coastal and offshore
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Table 4. The table shows γcp values of the different phytoplankton communities (pigment-based and optically based for La Perouse 2022)

and size classes measured. Two-sample t-tests were used to compare the distribution of γcp, to that of the size-fractionated data from La

Perouse 2022. Std Dev. refers to the standard deviation and T-stat refers to the t-static.

Pigment based clusters

Diatom Mixed Haptophyte

Mean γcp 0.541 0.830 0.842

Std Dev. of γcp 0.236 0.260 0.228

N 47 50 94

Size Class T-stat p-value T-stat p-value T-stat p-value

> 20µm -0.0624 0.950 3.43 0.001 4.25 4.70e-5

< 20µm -5.66 3.98e-7 -1.36 0.179 -1.44 0.15

La Perouse 2022

Diatom Mixed Haptophyte < 20µm > 20µm

Mean γcp 0.532 1.01 0.862 0.930 0.546

Std Dev. of γcp 0.161 0.265 0.126 0.277 0.291

N 2578 1916 1428 18 13

Size Class T-stat p-value T-stat p-value T-stat p-value T-stat p-value

> 20µm -0.4973 0.620 6.28 4.18e-10 8.85 2.58e-18 -3.7262 8.37e-4

< 20µm -10.6 8.22e-26 1.28 0.201 -2.2075 0.0274

waters are combined. By comparison, the Chla based approach of Zeng et al. (2018) has lower accuracy for haptophyte pre-275

diction, with an R2 of 0.43 and <0.05 in offshore and coastal waters, respectively. This result indicates that the MLR method

performs better than the Chla based approach in predicting Haptophyte biomass across our sampling region. Notably, the
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Table 5. Comparison of the Chla based approach and the multivariate linear regression (MLR) in estimating the relative biomass of diatoms

(all and coastal stations) and Haptophytes biomass (all stations and offshore stations only). Values from these algorithms are compared

against CHEMTAX and DPA analysis of discrete samples analysed via HPLC. The uncertainties given are the 95% confidence bounds.

Slopes approaching 1 indicate no bias in the derived values compared to measurements.

Chla based approach MLR

Slope Intercept R2 R2 N

Diatoms

CHEMTAX Coastal Diatoms - - - 0.81 104

CHEMTAX All Diatoms - - - 0.71 192

DPA Coastal Diatoms 0.86±0.06 0.03±0.18 0.89 0.89 104

DPA All Diatoms 0.86±0.04 0.03±0.09 0.91 0.91 192

Haptophytes

CHEMTAX Offshore Hapt - - - 0.63 87

CHEMTAX All Hapt - - - 0.3 192

DPA Offshore Hapt 0.88±0.20 -0.05±0.03 0.43 0.63 87

DPA All Hapt -0.01±0.07 0.08±0.2 0 0.28 192

Gaussian peaks (agauss) used in our analysis correlated with the absorption bands of key pigments found in haptophytes (Table

2). Gaussian peaks used to estimate the biomass of nanophytoplankton (470, 550, 584, 617, 638 and 675 nm) correspond to

absorption by Chlorophyll-a, photosynthetic carotenoids (19’-Hex, 19’-But, Fucoxanthin) and Chlorophyll-c (Bricaud et al.,280

2004), pigments strongly associated with haptophytes.

3.3 Oceanographic controls on phytoplankton community composition

We used the methods described above to estimate the phytoplankton community and composition during August 2022 La Per-

ouse cruise, where pigment data are currently unavailable. As shown in Fig. 9, the relative biomass of diatom increased closer

to the shore, associated with lower sea surface temperature and salinity. In contrast, haptophyte-abundant communities were285

found further offshore, in regions with warmer and more saline oceanic waters. This predicted distribution agrees with late sum-

mer observations from pigment measurements from 2016-2018 and other studies in this region (Peña et al., 2019b), suggesting

the utility of our approach to reconstruct meaningful phytoplankton taxonomic distributions without pigment data. The changes

in community composition along the coastal-offshore gradient likely reflect the transition from a coastal macronutrient-rich

water mass to more nutrient-depleted offshore waters, as described by (Boyd and Harrison, 1999). The high diatom biomass290

found in the south is likely sustained by the nitrate/silicate supplied by the Juan de Fuca Strait outflow (Crawford and Dewey,

1989).

In addition to examining spatial variability, we compared the phytoplankton communities across the different seasons sam-

pled over a 3-year period between 2016 - 2018. We found that seasonal variability was most pronounced in coastal waters,
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Table 6. Results from multiple logistic regressions which estimate the probability of the different phytoplankton communities (each per-

formed with a comparison of two of the three communities), given the nutrient concentrations, Sea Surface Temperature (SST) and salinity.

The estimates of the regression and the p-values for each variable are shown above. Bolded variables are statistically significant for an alpha

value of 0.05.

Diatom/Mixed Mixed/Haptophyte Diatom/Haptophyte

Estimate p-value Estimate p-value Estimate p-value

Intercept -14.1290 0.3626 -118.7865 0.0000 -136.8695 0.0000

Nitrate 0.2834 0.3534 0.3157 0.3530 -0.5176 0.2542

Silicate -0.4535 0.0023 0.0513 0.6140 -0.4352 0.0024

Phosphate 5.4871 0.1212 -6.8738 0.1160 13.1026 0.0482

SST 0.7434 0.0027 0.0817 0.4990 0.5557 0.0070

Salinity 0.1594 0.75818 3.7815 0.0000 4.0650 0.0000

with phytoplankton communities transitioning from diatom-rich during the early spring bloom to haptophyte-rich and mixed295

assemblage later in the summer (Fig. 10.) In contrast, the phytoplankton community in offshore waters remains haptophyte-rich

throughout all seasons, in agreement with the results of Peña and Varela (2007) who found that phytoplankton biomass shows

low seasonal variability offshore.

We used multiple logistic regressions to identify the potential oceanographic drivers of phytoplankton taxonomic variability

across our sampling region, with a particular focus on nutrient concentrations, salinity and sea surface temperature. The results300

(Table 6) of comparisons between the drivers of each community suggest that the occurrence of diatom-dominated communi-

ties is strongly regulated by silicate concentrations and SST (which reflects seasonality). By comparison, the Haptophyte-rich

community are found further offshore (indicated by the significance of salinity). The intercept of the logistic regression was

also found to be statistically significant, suggesting that additional variables, such as light availability, micronutrients, or zoo-

plankton grazing may also play an important role in controlling taxonomic distributions.305

3.4 DMS and DMSP concentrations

Figure 11 shows the relationship between the phytoplankton community and the Chla normalized concentrations of DMS

and DMSP. Results from one-way ANOVA demonstrated statistically-significant differences between the DMS/Chla (p <

.001, N=162) and DMSP/Chla (p < .001, N=180) across the different phytoplankton communities (p < .001, N=152). As

expected from previous studies, haptophyte-rich communities showed the highest DMS and DMSP concentrations per unit310

Chla, reflecting the high DMS/P production by this group (Keller, 1989). The contribution of dinoflagellates is largely low and

invariant between the different groups, and thus unlikely to explain DMS/P variability across the different communities.
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Figure 7. Relationship between multivariate linear regression (MLR)-predicted and pigment-derived diatom biomass in coastal waters of the

northeast subarctic Pacific for (a) CHEMTAX-derived diatoms [R2=0.81, N=103], and (b) DPA-derived Diatoms [R2=0.89, N=103]. The

dashed line represents the 1:1 relationship. The Chla based estimation are shown in (b). Panel (c) shows predicted diatom biomass during

the 2017 August La Perouse cruise calculated using the power law relationship derived from MLR analysis (Table 2). The grey symbols and

black line show values derived from underway hyperspectral measurements (raw data and hourly average, respectively), while the white dots

show estimates derived from CHEMTAX analysis of pigment data at discrete stations.
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Figure 8. Relationship between multivariate linear regression (MLR)-predicted and pigment-derived haptophyte biomass in offshore waters

of the northeast subarctic Pacific for (a) CHEMTAX-derived Haptophytes [R2=0.63, N=87], and (b) DPA-derived Haptophytes [R2=0.63,

N=87]. The dotted line represents the 1:1 relationship. The Chla based estimation are shown in (b). Panel (c) shows predicted haptophyte

biomass during the 2018 Line P cruise calculated using the power law relationship derived from MLR analysis (Table 4). The grey symbols

and black line show values derived from underway hyperspectral measurements (raw data and hourly average, respectively), while the white

dots show estimates derived from CHEMTAX analysis of pigment data at discrete stations.
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Figure 9. Top panels show Phytoplankton community and the CHEMTAX-derived diatom biomass using equation listed in Table 2 during

La Perouse 2022 cruise as determined using the methods listed above. The bottom panels show hydrographic properties during the cruise.

The bottom left is the sea surface temperature measured during the cruise, while the bottom right is a scatter plot of sea surface temperature

against salinity. The points are coloured with the different communities as determined using the methods listed above.
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Figure 10. Proportions of the different phytoplankton communities sampled during each cruise season. Coastal stations are shown on the left

and offshore stations on the right.
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Figure 11. DMS/Chla(left; nM:mg m-3) and DMSP/Chla (right; nM:mg m-3) ratios of the different phytoplankton communities observed

during the 2022 La Perouse cruise.
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4 Discussion

Our results provide further evidence that ship-based hyperspectral absorption data can be used to derive phytoplankton com-

munity and composition with high spatial resolution and reasonable accuracy, particularly for diatoms and haptophytes. This315

work builds on previous studies, with a focus, for the first time, on the NE Subarctic Pacific. As shown in Fig. 8, and Table 5,

the approach used here performs significantly better than Chla based algorithms (particularly for haptophytes), and can pro-

duce high spatial-resolution data capturing sharp gradients in diatom and haptophyte abundance across oceanographic frontal

zones. This information may be utilized alongside other underway measurements, including C:Chl ratios (Fox et al., 2022),

photosynthetic electron transport rates from fast repetition rate fluorometry, ∆O2/Ar and pCO2, to better understand the roles320

phytoplankton community and composition in ocean biogeochemistry.

Within our study region in the eastern Subarctic Pacific, the biomass of diatoms appears to vary most among the differ-

ent phytoplankton groups, correlating well with the first principal component of the pigment data set. However, we find that

the overall changes in the phytoplankton community cannot be completely described using only diatom concentrations, with

important changes in groups such as haptophytes, prasinophytes, cryptophytes, and cyanobacteria occurring somewhat in-325

dependently from diatoms. This underscores the need to characterize both the phytoplankton community in addition to the

composition of the individual phytoplankton groups, to fully examine changes in the phytoplankton taxonomy in this region.

To validate our optically-derived taxonomic classification, we used pigment-based methods as a benchmark for phytoplank-

ton community and composition. These pigment-based methods remain the most commonly used approach to assess phyto-

plankton taxonomy (Kramer et al., 2020) and validate optical algorithms to retrieve different phytoplankton taxonomic groups330

(Mouw et al., 2017). It is important to note, however, that variability in pigment concentrations may result not only from

changes in phytoplankton taxonomy, but also from changing cell physiology in response to environmental conditions (van

Oijen et al., 2004). For this reason, our approach to determining the phytoplankton community using the principal components

of the pigment dataset does not make any explicit assumptions about the pigment content but is rather based on the observed

statistical clustering among pigment groups. This approach follows that used by Catlett and Siegel (2018) and Kramer et al.335

(2020) to classify different phytoplankton communities, and has the advantage that no prior information or assumptions are

needed. The strong coherence between the resulting pigment clusters and CHEMTAX-derived composition suggests that the

chemotaxonomic methods within our study area reflect unique signatures of different phytoplankton groups.

Although CHEMTAX and DPA produced slightly different estimates of diatoms and haptophyte biomasses, we found that

the MLR method worked equally well against both of these validation methods. We thus expect that our results should apply340

to a range of chemotaxonomic methods used to derive phytoplankton compositions. The inherent uncertainties stemming from

assumptions and variations within the pigment-taxa relationship in chemotaxonomic methods are carried forward into any

optical algorithms and are an important source of error. Future studies should therefore focus on comparing optical data with
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the phytoplankton taxonomy derived from different (i.e. non-pigment-based) means, including automated quantitative cell

imagery, and flow cytometry to capture smaller species. This will help validate the robustness of pigment-based classification345

(Chase et al., 2020).

Diatoms tend to dominate high Chla waters, and their biomass is strongly correlated with total Chla. This explains why

Chla is a useful predictor of diatom abundance (Zeng et al., 2018). In contrast, other phytoplankton groups tend to be found

in more mixed phytoplankton assemblages, where the relationship between composition and Chla is more complex. For these

phytoplankton groups, the incorporation of hyperspectral data significantly improved taxonomic resolution as compared to350

Chla data alone, agreeing with previous studies (Catlett and Siegel, 2018). Further improvements in method performance could

be obtained using more complex non-linear approaches (El Hourany et al., 2019).

The methods presented here add to a growing number of approaches aiming to link optical measurements to phytoplankton

community composition (Alvain et al., 2005; Mao et al., 2010; Isada et al., 2015). These methods (including those presented

here) are subject to errors and uncertainty from a number of sources. These include uncertainties in pigment-taxa relationships355

(elaborated further above), variations in optical properties due to physiological conditions and regional variations (Robinson

et al., 2021), statistical noise associated processing and collection of optical data (Slade et al., 2010; Brewin et al., 2016).

Nonetheless, the results presented here suggest that hyperspectral methods can estimate the phytoplankton community com-

position and sizes in our region with sufficient accuracy to investigate the oceanographic controls on broad-scale community

composition and biogeochemical variability of DMS and DMSP. Indeed, the reproduced distribution of phytoplankton com-360

munity, sizes and diatom concentration shown in Fig. 9 is broadly consistent with our current understanding of phytoplankton

biogeography in this region.

5 Conclusions

We were able to relate the optically derived phytoplankton community composition to phytoplankton sizes and other oceano-

graphic and biogeochemical variables, highlighting the utility of hyperspectral data to better understand oceanic processes.365

While the multiple logistic regression used in this study may not resolve all the complex processes that govern phytoplankton

growth, it was able to highlight key factors influencing the distribution of different taxonomic groups. The inclusion of phy-

toplankton taxonomic information into biogeochemical models such as Peña et al. (2019a), may be useful for improving their

accuracy. Similarly, given the significant differences between the DMS and DMSP concentrations for the different phytoplank-

ton communities, hyperspectral data could be used to improve the predictive algorithms for DMS and DMSP (e.g. McNabb370

and Tortell (2022)). Optically derived phytoplankton taxonomic estimates could also help assess whether DMS "hotspots" arise

from floristic shifts (i.e. high DMS associated with high biomass of strong DMS/P producers), as opposed to environmental

factors (e.g. high PAR, strong nutrient stress, mixing) (McParland and Levine, 2019).
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Data availability. Data used in the publication are available on request

Appendix A: CHEMTAX pigment ratios375

Table A1. Initial CHEMTAX pigment ratio matrix used for the coastal stations.

Class/pigments Chl c3 Chl c2 Chl c1 Peri 19-but Fuco Prasin Viola 19-hex Allo Zea Lutein Chl b Chl a

Cyanobacteria 0 0 0 0 0 0 0 0 0 0 0.64 0 0 1

Chlorophytes 0 0 0 0 0 0 0 0.05 0 0 0.03 0.17 0.32 1

Prasinophytes 0 0 0 0 0 0 0.25 0.05 0 0 0.06 0.02 0.73 1

Cryptophytes 0 0.2 0 0 0 0 0 0 0 0.38 0 0 0 1

Diatoms 0 0.15 0.03 0 0 0.85 0 0 0 0 0 0 0 1

Dinoflag 0 0.22 0 0.56 0 0 0 0 0 0 0 0 0 1

Haptophytes 0.18 0.21 0 0 0.04 0.29 0 0 0.47 0 0 0 0 1

Dictophyte 0.06 0.13 0 0 0.38 0.24 0 0 0 0 0 0 0 1

Table A2. Initial CHEMTAX pigment ratio matrix used in the offshore stations

Class/pigments Chl c3 Peri 19-but Fuco 19-hex Allo Zea Chl b Chl a

Cyanobacteria 0 0 0 0 0 0 0.64 0 1

Chlorophytes 0 0 0 0 0 0 0.03 0.32 1

Prasinophytes 0 0 0 0 0 0 0.06 0.73 1

Cryptophytes 0 0 0 0 0 0.38 0 0 1

Diatom-2 0.08 0 0 0.99 0 0 0 0 1

Dinoflag-1 0 0.56 0 0 0 0 0 0 1

Haptophytes 0.18 0 0.04 0.29 0.47 0 0 0 1

Pelagophytes 0.23 0 0.66 0.78 0 0 0 0 1
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Appendix B: CHEMTAX and DPA comparisons

Figure B1. A comparison of derived diatom and haptophyte abundance from DPA and CHEMTAX. The dashed line indicates a 1:1 ratio.

Appendix C: Gaussian Mixture Model Clustering

The Gaussian Mixture Model clustering assumes that the data can be characterized by a mixture of Gaussian distributions. Each

distribution is described by a mean and variance. An Expectation-Maximization algorithm is used to estimate the probabilities

of data points to the clusters(McLachlan and Peel, 2000). To perform the clustering, we needed to describe the initial conditions,380

covariance matrix type, and number of clusters. The initial conditions were randomly generated, and we specified that the

covariance matrix was full (both non-diagonal and not shared).

The number of clusters to be fit is the most subjective part of the process. We chose to fit 3 clusters based on a combination

of visual inspection and examining the hierarchical relationship between pigment ratios to Chla. We followed the methods of

Kramer et al. (2020) to examine hierarchical clusters within the pigment dataset. The resulting dendrogram is shown in Fig.385

C1. Using a linkage cutoff distance of 1.5, three clusters can be identified. Taxonomic designations of the hierarchical clusters

are based on the pigment ratios associated with major phytoplankton taxa. The three clusters identified are similar to those

classified using the Gaussian Mixture Modelling clusters on the principal components of the pigment dataset.
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Figure C1. Dendrogram of phytoplankton pigment ratios to Chla, with different clusters defined by a linkage distance cutoff of

1.5.Abbreviations used: 19-But=19′butanoyloxyfucoxanthin, 19-Hex=19′hexanoyloxyfucoxanthin, Chl c3=Chlorophyll-c3, Peri=peridinin,

Diadino=Diadinoxanthin, Diato=Diatoxanthin, Neo=Neoxanthin, Chl b=Chlorophyll-b, Prasino= Prasinoxaxnthin, Viola=Violaxanthin,

Allo=Alloxanthin, Zea= Zeaxanthin, DV Chl a=Divinyl Chlorophyll-a, Chl c2=Chlorophyll c2, Chl c1=Chlorophyll c1, Fuco=Fucoxanthin.
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