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Abstract. Nitrogen dioxide (NO2) is a precursor of ozone (O3) and fine particulate matter (PM2.5) – two pollutants 

that are above regulatory guidelines in many cities. Bringing urban areas into compliance of these regulatory 

standards motivates an understanding of the distribution and sources of NO2 through observations and simulations. 15 

The TRACER-AQ campaign, conducted in Houston, TX in September 2021, provided a unique opportunity to 

compare observed NO2 columns from ground-, airborne-, and satellite-based spectrometers. In this study, we 

investigate how these observational datasets compare, and simulate column NO2 using WRF-CAMx with fine 

resolution (444 x 444 m2) comparable to the airborne column measurements. We compare WRF-simulated 

meteorology to ground-level monitors and find good agreement. We find that observations from the GEOstationary 20 

Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS) instrument were strongly correlated 

(r2=0.79) to observations from Pandora spectrometers with a slight high bias (NMB=3.4%). Remote-sensing 

observations from the TROPOspheric Monitoring Instrument (TROPOMI) were generally well correlated with 

Pandora observations (r2=0.73) with a negative bias (NMB=-22.8%). We intercompare different versions of 

TROPOMI data and find similar correlations across three versions but slightly different biases (from -22.8% in 25 

v2.4.0 to -18.2% in the NASA MINDS product). Compared to Pandora observations, the WRF-CAMx simulation 

had reduced correlation (r2=0.34) and a low bias (-21.2%) over the entire study region. We find particularly poor 

agreement between simulated NO2 columns and GCAS-observed NO2 columns in downtown Houston an area of 

high population and roadway densities. These findings point to a potential underestimate of NOX emissions (NOX = 

NO + NO2) from sources associated with the urban core of Houston, such as mobile sources, in the WRF-CAMx 30 

simulation driven by the Texas state inventory; and further investigation is recommended. 
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1 Introduction 

Nitrogen dioxide (NO2) is a critical precursor to criteria air pollutants (i.e., ozone or “O3” and fine particulate matter 

or “PM2.5”) that are above regulatory thresholds in many urban areas. Exposure to NO2 is also directly associated 35 

with asthma exacerbation in vulnerable groups (Achakulwisut et al., 2019; Anenberg et al., 2022) and premature 

death (Huang et al., 2021). Due to its short atmospheric lifetime (de Foy et al., 2014), observations of NO2 can 

reveal fine-scale patterns associated with sources. A major source of NO2 is fossil-fuel combustion (McDuffie et al., 

2020) and in many urban airsheds this is the dominant contributor to NO2; however, other natural sources – like 

lightning (Murray, 2016) and soil microbes (Hudman et al., 2012) – along with fires (Jin et al., 2021) and 40 

tropospheric-stratospheric NO2 exchange also contribute to tropospheric NO2 levels. The health burden, sources, and 

short atmospheric lifetime of NO2 all compound in urban environments where there are large populations, diverse 

contributors, and unique fine-scale patterns in NO2 levels. 

 

In the US city of Houston, Texas – the fifth most populous metropolitan region in the US (United States Census 45 

Bureau, 2022) – NO2 is a major concern (Mazzuca et al., 2016) due to its role as a precursor of the formation of O3 

and PM2.5. While NO2 itself nor PM2.5 exceed their respective US EPA National Ambient Air Quality Standards 

(NAAQS), Houston is in moderate nonattainment of the 8-hour Ozone (2015) NAAQS. The large petrochemical 

industry in Houston emits NO2 in addition to other common heavy emitting sources associated with coastal urban 

environments like vehicles, power stations, and shipping channels (Kim et al., 2011). The co-location of this large 50 

population with high levels of NO2 presents a major public health concern that motivates research to better 

understand the sources that are most culpable in contributing to air pollution. Major highways like the I-610 

interstate, the I-10 interstate, and Beltway 8 have heavy vehicle traffic that are responsible for elevated NO2 

concentrations (Miller et al., 2020). Large power stations and industrial facilities operate within and around the 

Houston metropolitan area and these point sources – along with a large shipping channel – are responsible for NO2 55 

plumes (Luke et al., 2010). Characterizing the unique imprints of these disparate sources remains a question of 

scientific concern. There is also evidence that low-income and non-white populations in Houston are 

disproportionally affected by air pollutants such as NO2 (Demetillo et al., 2020).  

 

Synchronous observations of NO2 column densities from aircraft, ground-based, and satellite spectrometers 60 

coincided in September 2021 during the Tracking Aerosol Convection interactions ExpeRiment– Air Quality 

(TRACER-AQ). This campaign provided a unique opportunity to investigate the fine-scale patterns in NO2 levels in 

Houston, TX. One of the devices employed during the TRACER-AQ campaign across its twelve flight days was the 

GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS) instrument that has 

been discussed in many previous studies (e.g., Judd et al., 2020; Kowalewski & Janz, 2014; Leitch et al., 2014; 65 

Nowlan et al., 2018). The GCAS instrument is an ultraviolet-visible (UV-VIS) spectrometer. Its data is used to 

retrieve NO2 columns over a limited number of flight days; this made its observational average more sensitive to 

meteorological conditions than an instrument with a longer time-record; however, this tool observes NO2 pattens 

with uniquely fine-scale resolution (on average 560 x 250 m2) and performed comprehensive measurements of NO2 
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columns across large swaths of the city repeatedly up to three time per day. This differs with observations from the 70 

TROPOMI instrument on board the Copernicus Sentinel-5 Precursor (S5P) satellite that is in a near-polar sun 

synchronous orbit (van Geffen et al., 2022) that only observes NO2 once per day in the early afternoon at a coarser 

resolution of 3.5 x 5.5 km2 at nadir. TROPOMI and GCAS spectra are used to retrieve slant NO2 columns that are 

converted into vertical columns using an air mass factor (AMF) (Palmer et al., 2001) which is the largest source of 

uncertainty in the tropospheric vertical column retrieval algorithm (Lorente et al., 2019). Comparing TROPOMI 75 

data to other observations – like those from aircraft or ground-based monitors – can serve as a useful diagnostic in 

characterizing its performance and potential biases. These characterizations have large-scale implications since 

TROPOMI measures NO2 columns globally and is useful in areas that lack the observational infrastructure of other 

instruments. The Pandonia Global Network (PGN) is a network of Pandora instruments (Herman et al., 2009); these 

instruments are UV-VIS spectrometers that measure spectrally resolved radiance data that is used to retrieve total 80 

vertical NO2 columns. A total of seven Pandora instruments were operational during the TRACER-AQ campaign 

across three separate sites in and around downtown Houston. 

 

The Comprehensive Air Quality Model with Extensions (CAMx) is a multi-scale photochemical model that can 

simulate air pollutants including ozone, fine particulate matter, and NO2 (Ramboll, 2022b). CAMx has been used 85 

extensively to investigate Texas air quality by leveraging model input data created by the Texas Commission on 

Environmental Quality (TCEQ) for air quality planning (Ge et al., 2021; Goldberg et al., 2022) with strong 

performance compared to remote-sensing column concentrations in Texas (Goldberg et al., 2022; W. Li et al., 2023; 

Soleimanian et al., 2023). CAMx can be coupled with meteorological models like the Weather Research and 

Forecasting Model (WRF) which provide the meteorological inputs necessary to simulate fine-scale atmospheric 90 

conditions (Jia et al., 2017) – this coupled modeling system is denoted as WRF-CAMx. Fine-scale simulations from 

WRF-CAMx are useful to understand biases in simulated NO2 and to identify under- or over-estimates of emissions 

from sectors and regions in the inventories that drive the model. 

 

In this study, we leverage the unique coincidence of ground-based Pandora spectrometers, high-resolution airborne, 95 

and TROPOMI-based remote sensing observations of column NO2 during the September 2021 TRACER-AQ 

campaign (Judd et al., 2021). We assess the capabilities of these different data sources through cross-comparisons 

then compare observed NO2 to simulated values from a WRF-CAMx simulation to evaluate its performance. 

Additionally, we consider the impact of different TROPOMI algorithms on performance against Pandora 

measurements. Our comparisons across the three observational datasets clarifies the range of expected values of 100 

NO2 column concentrations in Houston, TX and characterizes potential deficiencies and biases in observational 

products and simulated CAMx values. We investigate weekday-weekend performance of the model and consider 

differences in the spatial distributions of tropospheric NO2 columns to qualitatively identify the sources that may be 

under- or overestimated in local inventories and identify the regions in Houston that are most likely impacted by 

these incorrectly attributed emissions. Additionally, we compare diurnal profiles in column and surface 105 

concentrations of NO2 across relevant products. 
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2 Data and Methods 

2.1 Pandora Observations 

During the TRACER-AQ campaign a total of seven Pandora instruments operated across three sites in Houston 

(Table 1). Pandora instruments are ground-based UV-VIS spectrometers that measure spectrally resolved radiances 110 

and this work only utilizes those collected via direct-sun observations (Herman et al., 2009). Trace gas spectral 

fitting routines are employed to characterize column concentrations of gases (e.g., NO2) similar to remote-sensing 

and aircraft observations (Judd et al., 2020). Details on the Pandora instruments and their fitting routines are 

discussed in detail in past studies (Cede, 2021; Herman et al., 2009). The study was designed to have two Pandoras 

operating coincidently at each site during the campaign; however, due to instrument failures an uneven number of 115 

observations were obtained at each site. In order to evenly weigh the observations between the three sites, we select 

data from a single Pandora instrument at each site. Pan #58 at La Porte, #61 at Aldine, and #25 at University of 

Houston were chosen for the following reasons. As indicated in Table 1, Pan #61 and Pan #58 clearly have the 

largest temporal coverage during the TRACER-AQ time period. While Pan #188 measured more frequently at the 

University of Houston than Pan #25, Pan #188 was operated on a tower about 70 meters above the surface, which 120 

results in missing portions of the tropospheric column when operated in direct-sun mode.  

 

Locations of the three sites are presented in Fig. 2F. These three chosen instruments are shaded and bolded in the 

table below. Pandora direct-sun retrievals represent the “total vertical column” of NO2 which differs from the 

aircraft measurements that only measure the tropospheric column. We directly compare these disparate sources by 125 

adding a “stratospheric NO2 column component” derived from TROPOMI estimates to the aircraft measurements 

(see section 2.2 and 2.3) to compare total column amounts. 

 

Table 1: Details on Pandora instrument operational time 

 130 

Inst. 

# 

Location Lat. Lon. September 2021 Flight Days with Observations  

(Number of high- and medium-quality measurements per day) 

    1st  3rd 8th 9th 10th 11th  23rd 24th 25th 26th  

11 La Porte 29.67 -95.06 322 347 0 0 0 0 0 0 0 0 

58 La Porte 29.67 -95.06 132 190 412 319 415 362 92 439 414 401 

63 La Porte 29.67 -95.06 0 0 0 0 0 0 0 0 265 207 

61 Aldine 29.90 -95.33 168 253 400 391 419 367 420 420 405 420 

148 Aldine 29.90 -95.33 5 1 3 1 3 3 17 17 10 17 

25 U of H 29.72 -95.34 213 256 300 299 392 273 400 382 400 344 

188 U of H 29.72 -95.34 528 610 1184 957 1137 722 372 749 225 95 
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2.2 GCAS Observations 

The GCAS instrument was installed on the NASA G-V aircraft. The GCAS instrument employs charge-coupled 

device array detectors to observe backscattered light. These data can be used to retrieve column densities of gases 

like NO2 below the aircraft using a DOAS computing software (Danckaert et al., 2017). During TRACER-AQ, 

GCAS collected data over the Houston metropolitan area across 12 days during late August and throughout 135 

September 2021. The flight strategy of the aircraft included flying the plane in a ‘lawnmower’ fashion with flight 

lines spaced 6.3 km apart, ensuring overlap at flight altitude (FL280) with the instrument field of view of 45 degrees 

creating one gapless map of NO2 up to three times per flight day with an average differential slant column pixel size 

of 250 m × 250 m. NO2 observations from GCAS are publicly available at the NASA Atmospheric Sciences Data 

Center (NASA/LARC/SD/ASDC, 2022). Observations from two of the flight days – a test flight (August 30) and a 140 

flight over the Gulf of Mexico (September 27) are excluded from this study because they provided no meaningful 

data over Houston. Given the relatively short timeframe of flight data collection; meteorological conditions have an 

influence on the fine-scale patterns in NO2 columns observations. Owing to this, we summarize some basic 

conditions and information of the 10 flight days that focused on Houston (Table 2). Wind and meteorological 

conditions were determined by review of historical weather archives taken at Houston Hobby Airport (NASA, 2023; 145 

Weather Underground, 2023). 

 

Table 2: Basic meteorological conditions and notes during GCAS flights 

 

Day of 

Sept 

2021 

Day of 

the 

Week 

High 

Temp 
Wind direction Additional note 

1 Wed 96 F Weak SW winds Thunderstorms from S to N, 11 AM to 4 PM 

3 Fri 93 F Weak S winds Scattered thunderstorms 12 PM to 4 PM 

8 Wed 94 F N turning NE Clear skies and no rain 

9 Thurs 95 F N turning NE Afternoon fair weather clouds, no rain 

10 Fri 93 F NE turning E 

Clear skies, no rain, some long-range smoke 

aloft 

11 Sat 93 F E winds Afternoon fair weather clouds, no rain 

23 Thurs 83 F E winds 

Clear skies, no rain, cold font overnight Sept 

21 

24 Fri 84 F E turning SE Clear skies, no rain 

25 Sat 87 F NE turning E Clear skies, no rain 

26 Sun 83 F Calm then SE Clear skies, afternoon fair weather clouds 

 150 
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The publicly available GCAS measurements (version R2) include a version of the dataset with reprocessed AMFs to 

include NO2 vertical profile estimates from the fine-scale (444 × 444 m2) WRF-CAMx simulation used in this 

analysis (section 2.4). Air mass factors use this vertical profile information to account for altitude-dependent 

sensitivities in remote-sensing observations. The original vertical profiles in the dataset were derived from a global 

model, GEOS-CF (Keller et al., 2021), that had a coarser spatial resolution (0.25° × 0.25°). Lastly, to directly 155 

compare GCAS measurements to other NO2 column concentrations we regrid them to a common grid; in this study, 

we chose the fine-scale WRF-CAMx grid. Only cloud-free GCAS data is considered in this analysis. 

To characterize the accuracy and precision of GCAS measurements we compare them to observations from the 

Pandora instruments (section 3.1). This comparison requires both spatial and temporal screening. Spatially, we 

restrict our comparison to only the GCAS pixels that contain Pandora instruments. Temporally, we screen out all 160 

Pandora measurements that are more than 15 minutes removed from a GCAS overpass and then identify the Pandora 

measurement time within this 30-minute window that most closely matches the GCAS overpass time. While we 

choose this 30-minute window as an upper-bound cut-off, 96% and 90% of all Pandora closest matches occur within 

a 20- and 15-minute window of GCAS overpasses, respectively, indicating that this choice of window will have a 

minimal impact on our results. After screening the data, we also account for the fact that GCAS only measures the 165 

tropospheric component of the NO2 column. There is a substantial but predictable “above-aircraft” column that is 

not reflected in the GCAS measurements. This is primarily associated with stratospheric NO2. To account for this, 

we approximate the above aircraft component of the GCAS NO2 columns using the stratospheric NO2 column 

component of TROPOMI measurements (section 2.3) and add this to GCAS observations. Additionally, we add a 

“above aircraft” but below troposphere partial column amount based on the CAMx simulation; we calculate the 170 

column. In the 3 highest levels of CAMx that amounts to 0.57 × 1015 molecules cm-2 and add this amount to GCAS. 

2.3 TROPOMI Observations 

The TROPOMI instrument – on board the Sentinel-5P satellite – has measured total slant columns of NO2 daily at 

approximately 13:30 local time globally from April 30, 2018 to present (European Space Agency, 2021). The slant 

column measurements were converted into tropospheric vertical column amounts by subtracting off a stratospheric 175 

NO2 component and transforming the remaining tropospheric slant column to vertical column using an air mass 

factor. We download the publicly available data (https://data-portal.s5p-pal.com/products/no2.html; 

https://dataspace.copernicus.eu/) coincident with the TRACER-AQ campaign in September 2021 for overpasses of 

Houston, TX. In this study, we primarily consider measurements from the latest version (2.4.0) (Eskes et al., 2023); 

however, we additionally consider measurements processed using the version 2.3.1 algorithm (van Geffen et al., 180 

2021) and the NASA Multi-Decadal Nitrogen Dioxide and Derived Products from Satellites (MINDS) product 

(Lamsal et al., 2022) and intercompare these different versions (Fig. 3). All product versions stem from the same 

slant column retrieval but differ in the calculation of the air mass factor for slant to vertical column conversions, and 

in the case of NASA MINDS, separation of the stratosphere and troposphere (Bucsela et al., 2013). The main 

https://data-portal.s5p-pal.com/products/no2.html
https://dataspace.copernicus.eu/
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difference between 2.3.1 and 2.4.0 is the use of the 0.125° × 0.125° Directional Lambertian Equivalent Reflectivity 185 

(DLER) climatology derived from TROPOMI observations which replaces an old 0.5° × 0.5° Lambertian Equivalent 

Reflectivity (LER) dataset used in v2.3.1 (Eskes et al., 2023). NASA MINDS uses a geometry-dependent surface 

Lambertian Equivalent Reflectivity (GLER) product for their surface reflectivity input into the AMF calculation 

based on MODIS observations. The other main difference in these products include use of different a priori NO2 

profiles (1° × 1° TM5-MP for v2.3.1 and v2.4.0 vs 0.25° × 0.25° GMI simulation for NASA MINDS). A 190 

comparison between TROPOMI version 2.4.0 and a MAX-DOAS network found that in moderately polluted 

locations TROPOMI had a median bias of -35%; a comparison between TROPOMI version 2.4.0 and PGN found a 

median bias of -18% over polluted stations (Lambert et al., 2023). 

These publicly available TROPOMI data are further processed for this study. We screen TROPOMI measurements 

to consider cloud coverage and erroneous data using the recommended qa_value filter ( > 0.75). We regrid the 195 

TROPOMI NO2 observations (resolution of 3.5 x 5.5 km2 at nadir) onto the WRF-CAMx grid (444 × 444 m2). 

When comparing TROPOMI observations to Pandora instruments we follow the same spatial and temporal 

screening approach as discussed for GCAS. Spatially, we identify the CAMx grid cell in which each Pandora 

instrument is located and only consider TROPOMI measurements that were regridded to these grid cells. We 

intercompare GCAS, TROPOMI, and CAMx at this resolution but also compare the three datasets at a coarser 200 

resolution (Section 3.4) to account for resolution-dependent errors. Temporally, we screen out all Pandora 

measurements that are more than 15 minutes removed from a TROPOMI overpass time and then identify the 

Pandora measurement time within this 30-minute window that most closely matches the TROPOMI overpass time. 

While we choose this 30-minute window as an upper-bound cut-off, 100% and 97% of all Pandora closest matches 

occur within a 20- and 15-minute window of TROPOMI overpasses, respectively, indicating that this choice of 205 

window will have little impact on our results.  Using WRF-CAMx vertical profile information we calculate both a 

total and tropospheric NO2 column from TROPOMI v2.4.0 measurements using new AMF derived from the WRF 

simulation and we difference the total and tropospheric values to calculate a stratospheric NO2 column component 

from TROPOMI. We take the spatial and temporal average of this stratospheric component in Houston during the 

TRACER-AQ campaign to calculate a constant bias correction to convert tropospheric NO2 columns – from GCAS 210 

and WRF-CAMx – to quasi-total NO2 columns when comparing them to total NO2 column measurements from 

Pandora instruments. This stratospheric vertical column NO2 amount of 3.0 ×1015 is typical for Houston during 

summer (Geddes et al., 2018). Boersma et al. (2018) suggests that 0.5 × 1015 molecules cm-2 is the upper limit of 

structural uncertainty in the stratospheric estimate; this uncertainty should be considered when reviewing results that 

compare total column amounts (i.e., results comparing GCAS and CAMx to Pandora). We additionally account for 215 

diurnal variation in the stratospheric column by applying the results from work by K.-F. Li et al. (2021); they 

calculate a daytime stratospheric NO2 column increase rate of 1.34× 1014 molecules cm-2 starting at 7:00 LT. We 

apply this increase rate by calculating the difference in hours between the dataset times – either the GCAS overpass 

times or CAMx simulation hours – and 13:30 – the approximate TROPOMI overpass time – and then multiply this 

difference by the increase rate. In doing so, total column values before the TROPOMI overpass are decreased and 220 

total column values after the overpass are increased. 
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2.4 WRF-CAMx simulated NO2 

For this study, a set of simulations were conducted employing version 4.3.3 of the Advanced Research Weather 

Research and Forecasting (WRF) model (Skamarock et al., 2021) jointly with the Comprehensive Air Quality Model 

with Extensions (CAMx) v7.20 with the CB6r5 chemical mechanism for a simulation period that matched the 225 

September 2021 TRACER-AQ timeframe. A new high-resolution modeling platform was designed specifically for 

this study that adopted prior approaches used in Texas Commission on Environmental Quality (TCEQ) state 

implementation plan (SIP) modeling (TCEQ, 2021) to update emissions. 

 

The WRF model is a mesoscale numerical weather prediction system designed to serve both operational forecasting 230 

and atmospheric research needs (Skamarock et al., 2005, 2008). We define the WRF modeling domains as slightly 

larger than the corresponding CAMx domains (Fig. 1) to avoid possible numerical artifacts near domain boundaries 

when transferring WRF meteorology to CAMx. The 36 km CAMx domain (red) includes the continental US, 

Mexico, and parts of Central America and Canada. The 36 km, 12 km (blue) and East Texas 4 km (green) domains 

are also used by the TCEQ for State Implementation Plan (SIP) modeling. The higher resolution domains (1.333km 235 

(orange) and 0.444km (cyan)) were selected to include the most relevant GCAS flight tracks while considering 

computational expense. 
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Figure 1: Modeling domains used in the CAMx simulation for the 36 km resolution (red), 12 km resolution 

(blue), 4 km resolution (green), 1.333 km resolution (orange), and the 0.444 km resolution (cyan). Maps data 

provided by Google © 2020, Landsat / CopernicusData SIO, NOAA, U.S. Navy, NGA, GEBCO, IBCAO, 

INEGI, and U.S. Geological Survey. 

Additional information on the WRF-CAMx modeling is included in the supplemental including the WRF physics 245 

options (Table S1), vertical layer mapping from WRF to CAMx (Table S2), and CAMx science options (Table S3). 

We used 0.25° Global Forecasting System (GFS) data assimilation system (GDAS) analysis data 

(DOC/NOAA/NWS/NCEP/EMC, 2023) as initial conditions for the WRF meteorological model; this GDAS data is 

also used for boundary conditions and data assimilation. We configured the output timesteps of WRF to 15 minutes 

for the higher resolution domains. Conducting WRF simulations at fine spatial resolutions (i.e., 4 km, 1.333 km, and 250 

0.444 km) requires careful consideration of physical schemes that are sensitive to grid spacing. We turn off the 

convective cumulus parametrization scheme for the fine grids because WRF can explicitly simulate convection for 

them. For coarser grids we turn on the cumulus parametrization to account for sub grid-scale convection. The other 
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physics options (Table S1) are kept consistent across the different resolutions. The CAMx simulation was first 

performed over the coarser domains (36 km, 12km, and 4 km) from which initial and boundary conditions were 255 

extracted for the higher resolution domains. TCEQ developed the 2019 modeling emissions inventory for the Dallas-

Fort Worth (DFW) and Houston-Galveston-Brazoria (HGB) Attainment Demonstration (AD) SIP revisions (TCEQ, 

2021). Starting with this inventory we implement further changes as discussed in the next paragraph. 

First, we update the CAMx modeling emissions inventory from the TCEQ platform to incorporate 2021 hourly 

Continuous Emissions Monitoring Systems (CEMS) (EPA, 2023) data for the eleven major electric generating units 260 

(EGUs) listed in Table S4. We download hourly data from Clean Air Markets Program Data (CAMPD) for the 

eleven EGUs for the August 30-Sep 27, 2021, period and stack parameters were based on the TCEQ 2019 emissions 

platform (TCEQ, 2021). Second, we update shipping emissions to incorporate MARINER v2 (Ramboll, 2022a) 

emissions built with 2021 Automatic Identification System (AIS) data for the higher resolution domains. Third, we 

reprocess link-based on-road mobile emissions for the higher resolution domains. Fourth, we update biogenic 265 

emissions and lightning NOX (LNOX) based on WRF meteorology. Specifically, we use the Model of Emissions of 

Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2012) version 3.2 for biogenic emissions, the Fire 

Inventory of NCAR (FINN) version 2.2 (Wiedinmyer et al., 2011) for fire emissions, and lightning NOX emissions 

derived by applying the CAMx LNOX processor to the 2021 meteorological data from the WRF simulation. 

Considering that wildfires in the Houston area are rare and that LNOX emissions are associated with convective 270 

clouds that obscure remote sensing column observations, we excluded these two emission sources from the finer 

resolution domains (the 1.333 and 0.444 km domains) but included them in the larger domains. These two sources 

represent a small fraction of emissions in the local Houston area that is the primary focus of the finer resolution 

simulations. Lastly, we regrid all other gridded emissions from the coarser domains to the high-resolution domains 

without refining their spatial resolution. Specifically, all point sources are geo-located to the grid cell containing the 275 

source. On-road mobile source emissions and shipping emissions were provided for individual links which we 

allocated to 444 m grid cells, and are based on known roadway networks, ship tracks, and traffic patterns. Airport 

and railyard emissions were allocated to 444 m grid cells within the property boundary. Other sources retained the 4 

km grid resolution provided by the TCEQ. Daily emissions of NOX and volatile organic compounds (VOCs) in tons 

per day (tpd) for a September weekday are presented in Table 3 below. 280 

We evaluate the WRF simulation meteorology by comparing surface-level wind speed, direction, temperature, and 

water vapor mixing ratio to observations from sixteen ground-level monitors (Table S5-8 and Fig. S2-11) and 

calculate the mean bias error (MBE), mean absolute error (MAE), and Pearson-R squared (R2) statistics as defined 

in supplement table S2. Circular statistics are calculated using the Astropy circular statistics module for Python (The 

Astropy Collaboration, 2022). We obtain integrated surface data from NCDC in the DS3505 format 285 

(ftp://ftp.ncdc.noaa.gov/pub/data/noaa/); these data consist mainly of airport locations and have good meteorological 

siting and quality assurance procedures.  

ftp://ftp.ncdc.noaa.gov/pub/data/noaa/
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Generally, meteorological conditions simulated by WRF agree with ground-level observations especially on the 

more data rich non-cloudy days that are the most important for our intercomparison; however, performance depends 

on the specific measure of meteorology considered. Across all days, the WRF wind direction was well correlated 290 

(R2=0.76) and had minimal bias (MBE=8°), but some unsystematic errors (MAE=26°) compared to observations. 

This indicates that the model generally captures variability in wind direction without a notable bias; however, 

considering any individual observation the simulated direction may differ by 20°-30°. For non-cloudy days – that 

are more relevant for our intercomparisons due to more data – correlation for wind direction was similar (R2=0.73) 

and the bias and error were reduced (MBE=-5° and MAE=21°). Simulations of wind speed were more poorly 295 

correlated (R2=0.26) and had some unsystematic error (MAE=1.20 m/s); however, there was very little systematic 

bias in the wind speed simulation (MBE=-0.02 m/s). Correlation and unsystematic errors improve on the non-cloudy 

days (R2=0.37 and MAE=1.08) while there is still no notable systematic bias (MBE=-0.13 m/s). Considering wind 

speeds at 9am and 1pm (Fig. S2-11), it appears that observations in the afternoon degrade correlation compared to 

the morning and that, generally, simulated wind speeds are better correlated with observations in downtown Houston 300 

than in the south-eastern part of the domain near the Galveston Bay. Comparisons between GCAS observations and 

WRF-CAMx simulations show that the model represents the dominant direction and dispersion of identifiable 

plumes from known sources. The wind speed bias is sufficiently low that model uncertainty will not lead to 

systematic errors in plume advection. Across the eight non-cloudy days, hourly and site-specific – across the sixteen 

monitors – WRF wind direction (R2=0.3 to 0.8; MAE=14° to 32°), wind speed (R2=0.1 to 0.5; MAE=0.94 m/s to 305 

1.35 m/s), temperature (R2=0.69 to 0.81; MAE=0.93 K to 1.18 K), and water vapor mixing ratio (R2=0.28 to 0.78; 

MAE=0.87 g/kg to 3.11 g/kg) performed moderately compared to observations given the fine spatial and temporal 

resolution. Additionally, we compare simulated hourly NO2 (Fig. S12) and maximum daily eight-hour average or 

“MDA8” O3 (Fig. S13) to observations from seventeen TCEQ continuous air monitoring stations (CAMS) operating 

in Houston. We find poor performance and a strong negative bias in the simulated surface-level NO2 (NMB=-59%) 310 

while simulated surface-level MDA8 O3 has a much weaker bias (NMB=-2.5%) compared to observations. 

Comparisons to ozonesondes (Fig. S14-S18) suggest that WRF simulates more aggressive vertical mixing than what 

is observed; this is consistent with our findings of a stronger negative bias at the surface-level than for the columns 

as emitted NO2 at the surface is advected vertically quicker in WRF-CAMx than in reality. 

 315 
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Table 3: CAMx 444 × 444 m2 domain-wide summary of average September weekday emissions by sector in 

units of tons per day (tpd). 

Emission Sector Spatial Resolution NOX (tpd) VOC (tpd) 

EGUs Point locations 25.5 0.2 

On-road mobile Line source 70.9 34.7 

Railyards 444 m gridded 4.2 0.3 

Shipping Line source 63.9 4.3 

KIAH airport 444 m gridded 6.4 0.8 

KHOU airport 444 m gridded 1.8 0.4 

Other    

   Off-road mobile 4 km gridded 33.1 31.4 

   Non-EGU Point Sources Point locations 47.9 27.8 

   Oil and Gas 4 km gridded 0.2 0.0 

   Area 4 km gridded 92.8 623.2 

   MEGAN biogenic 444 m gridded 25.9 319.7 

2.5 Diurnal Comparison 

We further intercompare these data by grouping them at locations and then calculating their average diurnal profiles 320 

during the TRACER-AQ campaign for both column and surface-level NO2. Specifically we compare GCAS, 

CAMx, Pandora, and GEOS-CF (Keller et al., 2021) NO2 columns at the three Pandora sites during TRACER-AQ 

flight days. We include NO2 data from GEOS-CF – that will be used for processing NO2 remote-sensing 

observations from the NASA Tropospheric Emissions: Monitoring of Pollution (TEMPO) mission – to characterize 

differences between a global simulation and our regional WRF-CAMx modeling. Simulated surface and NO2 325 

columns from GEOS-CF are obtained through the GMAO OPeNDAP interface 

(https://opendap.nccs.nasa.gov/dods/) for all of 2021 and filtered to the specific Pandora instrument locations and 

during TRACER-AQ flight days. We apply both spatial and temporal screening. Spatially, we identify the CAMx 

grid cell – for GCAS and CAMx – and GEOS-CF grid cell in which the Pandora instrument is located. Temporally, 

for GCAS, we round all overpass times to the nearest hour and calculate the median value for each hour across all 330 

overpasses and days. For CAMx, GEOS-CF, and Pandora we identify the simulated and observed NO2 column 

concentration closest to the hour and calculate the median value across all flight days and locations.  

For diurnal comparisons at the surface, we use surface-level NO2 concentrations from CAMx and GEOS-CF and 

apply the same temporal screening. Spatially, for the surface-level we consider concentrations at a point in between 

the three Pandora instruments that is representative of downtown concentrations (29.7 °N, 95.3 °W). We choose this 335 

point to represent the temporal behavior of the wider regions rather than individual sites. Additionally, we download 
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hourly NO2 concentrations from the US Environmental Protection Agency (EPA) Air Quality System (AQS) 

(https://aqs.epa.gov/aqsweb/airdata/download_files.html). We download all hourly data for 2021 for the US and 

filter the TRACER-AQ flight days and for monitors in Harris County. We identify the median hourly concentrations 

across these monitors and the TRACER-AQ flight days. 340 

3 Results 

3.1 Comparisons to Pandora Observations 

The observations from ground-based Pandora instruments are considered the most accurate of all observational 

platforms measuring column NO2 presented in this project due to low uncertainties in their air mass factors (Herman 

et al., 2009) when operating in direct-sun mode. The air mass factor in this mode is calculated from simple solar 345 

geometry – unlike TROPOMI and GCAS, which rely on a priori assumptions like the vertical NO2 profile and 

surface reflectivity. Pandora AMFs are not reliant on an a priori profile as the data we are using is only in direct-sun 

mode in cloud-free scenes.  AMF for Pandora is analogous to pathlength through the atmosphere relative to the 

vertical path.  Since all the signal is from direct sun path (extremely minimal scattering), this is purely geometric. 

Given this, we use Pandora observations as our reference dataset to characterize the performance of the two 350 

observational datasets – GCAS and TROPOMI – along with the WRF-CAMx simulation across three sites (Table 

1). These three sites (Aldine, La Porte, and University of Houston) are located in the heavily polluted inner region of 

Houston that we denote as “urban Houston” (Fig. 2F). Background observations from Pandora instruments in less 

polluted sites were unavailable during the TRACER-AQ campaign so there is less certainty about the performance 

of GCAS, TROPOMI, and CAMx outside of urban Houston. We consider the performance of GCAS processed with 355 

a CAMx-based AMF (Fig. 2A), TROPOMI processed with a CAMx-based AMF (Fig. 2B), and CAMx (Fig. 2C) 

and the performance of GCAS and TROPOMI with the operational AMFs (Fig. 2D and 2E) individually and then 

intercompare the three datasets across the ten GCAS observation days (Fig. 2G).  

When comparing the observational and simulated datasets to Pandora observations we consider the total column 

NO2 – we add a stratospheric component from TROPOMI to the tropospheric column NO2 of GCAS and CAMx to 360 

total column as discussed in the methodology. For TROPOMI, we use an AMF derived from the CAMx simulation 

to calculate a tropospheric NO2 column from TROPOMI; following the TROPOMI users guide, we multiply the 

total averaging kernel by the ratio of the total air mass factor to the tropospheric air mass factor. We difference the 

total column NO2 from TROPOMI with the tropospheric column to estimate a constant stratospheric NO2 column 

amount that we add to GCAS and CAMx when we compare them to Pandora; this corresponds to a mean value of 365 

3.0 ×1015. For GCAS, we apply an additional amount to account for the NO2 column in the upper troposphere – 

above the aircraft and below the tropopause. We calculate the column of levels 27-29 that correspond to 9400-18100 

m above sea-level – that extends roughly from the height that GCAS flies at of around 9100 m to the tropopause – 

and apply this to the GCAS results; this corresponds to a value of 0.57 × 1015 molecules cm-2. For all results that 

https://aqs.epa.gov/aqsweb/airdata/download_files.html
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include comparison to Pandora we present total NO2 columns; for results where we only intercompare GCAS, 370 

TROPOMI, and CAMx we compare the tropospheric column. All statistical measures (e.g., R2) are defined in the 

supplement. 

 

 

 375 

Figure 2: Comparison of Pandora total column NO2 to GCAS using CAMx-based AMFs (A), TROPOMI 

v2.4.0 using CAMx-based AMFs (B), and CAMx (C) and GCAS (D) and TROMPOMI v2.4.0 (E) with their 

operational AMFs. Tropospheric columns from GCAS and CAMx are bias corrected with a TROPOMI-

derived stratospheric column factor as discussed in the methodology. Data from all possible overpasses 
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coincident within 15 minutes of a Pandora observation are considered. GCAS flight times generally ranged 380 

from 8:00 AM-4:00 PM CDT. TROPOMI overpasses occurred around 1:30 PM local time. Color coding 

indicates which of the Pandora instruments NO2 column concentrations are being compared against indicated 

in the legend in subplot A, but statistics are presented across all locations. Map of Pandora instrument sites in 

urban Houston (F). Bias between the three datasets and Pandora across GCAS flight days (G) with the 

overall average daily bias indicated above the points for all three datasets. The data are color coded based on 385 

the observed or simulated source that is being compared against Pandora measurements. © OpenStreetMap 

contributors 2023. Distributed under the Open Data Commons Open Database License (ODbL) v1.0. 

 

In Fig 2A-C we characterize the performance of the observational and simulated datasets of NO2 column 

concentrations across the three sites in Houston. For each of the GCAS flight days, we compare GCAS and 390 

TROPOMI observation against Pandora measurements for every overpass that was not obstructed by cloud 

coverage; for CAMx we compare simulated columns for every daytime hour of each GCAS flight day.  

 

Observations from GCAS were both well correlated (r2=0.79) and slightly high biased (NMB=+3.4%) when 

compared to measurements from Pandora. Use of the CAMx AMF in place of the operational AMF had a minimal 395 

impact on comparisons to Pandora (from r2=0.78 and NMB=+6.5%). Observations from TROPOMI on GCAS flight 

days were also well correlated with Pandora measurements (r2=0.73) but there was a negative bias (NMB=-22.8%) 

in v2.4.0. This bias was worse for more NO2 polluted scenes. This negative bias may be attributable to the coarser 

resolution of TROPOMI compared to GCAS that weakens its ability to capture fine-scale plumes (Wagner et al., 

2023) of NO2 associated with road systems, airports, power stations, and industrial facilities. Similar to GCAS, use 400 

of the CAMx AMF in place of the operational AMF for TROPOMI had a minimal impact on comparisons to 

Pandora (from r2=0.76 and NMB=-23.1%). 

 

We calculate the ratios of the TROPOMI v2.4.0 product with the CAMx AMF compared to the operational AMF 

(Fig. S1) in September 2021 throughout the domain and note that tropospheric column NO2 increases in the urban 405 

core and decreases in the city outskirts. The areas with Pandora instruments – in suburban Houston – have roughly 

equivalent values. Given that Pandora instruments were not located at either the most or least polluted areas of the 

metropolitan area, the benefit of the CAMx AMF may be underrepresented by our findings at the Pandora sites.  

 

We compare simulated NO2 columns from CAMx with Pandora measurements; however, in this comparison there 410 

are more points to intercompare as columns were simulated for each hour of every flight day by CAMx and 

observed multiple times per hour from Pandora. The CAMx simulated columns were less correlated with Pandora 

measurements (r2=0.34) than compared to TROPOMI and GCAS, and they had a consistent negative bias (NMB=-

21.2%). This poor correlation could partially be explained by differences in WRF simulated meteorology and 

observed meteorology specifically from differences in wind speed and direction and an inability to fully capture the 415 

bay breeze in Houston. We find that the WRF simulated wind direction (R2=0.76 and MBE=8°), temperature 
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(R2=0.71 and MBE=0.39K), and water vapor mixing ratio (R2=0.86 and MBE=-1.45 g/kg) (Table S5-S8 and Fig. 

S2-11) are generally well correlated and minimally-biased compared to observations; however, there are some 

unsystematic errors in wind direction (MAE=26°) and poor correlation in wind speed (R2=0.26) that would likely 

degrade correlation between observed and simulated NO2 columns. While there are errors in the meteorological 420 

conditions, the biases at the surface are all small – including minimal bias in the wind speed (MBE=-0.02 m/s) – 

indicating that the negative biases in NO2 columns are likely attributable to an underestimate of NOx emissions; 

however, the WRF meteorological performance could partially explain the poor correlation and absolute errors in 

simulated NO2 columns. We also note that generally, the model performance is stronger on windier days – when 

speeds exceed 4 m/s (R2=0.5 and 0.32) – than on calmer days – when speeds are below 3 m/s (R2=0.07, 0.1, and 425 

0.25). Additionally, there can be substantial differences in vertical mixing coefficients in different schemes in the 

models, and these can impact the biases in column concentrations (de Foy et al., 2007; Riess et al., 2023). We briefly 

compare meteorology and the ozone mixing ratio in the WRF-CAMx simulation to ozonesondes data (https://www-

air.larc.nasa.gov/cgi-bin/ArcView/traceraq.2021) and find that while temperature and pressure are captured well, 

there is variable performance in the vertical structure for ozone mixing ratio, wind speed, and wind direction (Fig. 430 

S14-S18). 

 

In Fig. 2G, we intercompare the daily variability in biases across the ten GCAS flight days. There were no 

TROPOMI data for the first two flight days because cloud coverage blocked TROPOMI observations at the Pandora 

sites during its overpass time. The daily average bias of GCAS observations were consistently small throughout the 435 

entire period: they ranged from -2.1 to +1.2 molecules cm-2 1015 on September 10th and the 3rd and 24th, respectively. 

TROPOMI observations were consistently biased systematically low: they ranged from -4.8 to -0.5 molecules cm-2 

1015; however, on all days except the 26th daily averaged TROPOMI biases were more negatively biased than -1.3 

molecules cm-2 1015 compared to Pandora measurements. Unlike the two observational datasets, the bias in 

simulated CAMx NO2 columns had much higher daily variability. On some days, such as September 3rd, there was 440 

little bias in simulated columns compared to Pandora measurements, and on other days such as September 26th, there 

was a minor high bias (+1.2 molecules cm-2 1015); however, on most days there was a negative bias that was the 

strongest on September 23rd when NO2 columns were biased as low as -7.5 molecules cm-2 1015. Generally, 

simulated CAMx columns perform better on weekend days (11th, 25th, and 26th) which is investigated in greater 

detail in section 3.4. 445 
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3.2 Comparisons of different TROPOMI algorithms to Pandora Observations 

 

 

Figure 3: Comparison between Pandora measurements and TROPOMI observations using the CAMx AMF 

for version 2.3.1 (A), 2.4.0 (B), and NASA MINDS (C) and the same respective versions using the operational 450 

AMF (D-F). Data from all possible overpasses coincident within 15 minutes of a Pandora observation are 

considered with one exception: data from September 11th, 2021, was missing from the NASA MINDS product 

and so values in plots C and F exclude this day. 

 

We intercompare TROPOMI observations to Pandora measurements across three different algorithms: version 2.3.1 455 

(Fig. 3 A, D), version 2.4.0 (Fig. 3B, E), and the NASA MINDS product (Fig. 3C, F) using both the CAMx AMF 

(top row) and the Operational AMF (bottom row) for the same Pandora instruments in Houston during the 

TRACER-AQ Campaign. Overall, the choice of algorithm and AMF does affect the performance of TROPOMI 

compared to Pandora, albeit slightly. Regardless of AMF, version 2.4.0 appears to have the worst normalized mean 

bias in Houston during TRACER-AQ (r2=0.73, and NMB=-22.8%), version 2.3.1 is improved (r2=0.72 and NMB=-460 

18.3%) while the NASA MINDS product performs comparably (r2=0.69 and NMB=-18.2%) to version 2.3.1. 

Notably, NASA MINDS data for September 11th are missing so these data are excluded from panels C and F. For 

version 2.3.1 and version 2.4.0 the CAMx AMF slightly improves the bias; however, for the MINDS product the 

CAMx AMF slightly worsened bias compared to the operational AMF. The correlation is generally unaffected by the 
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choice of AMF. We choose TROPOMI version 2.4.0 for the intercomparison in the following sections as it is the 465 

most recent version. 

3.3 Comparisons of GCAS, TROPOMI, and CAMx data on the CAMx grid 

The comparisons between Pandora measurements and the datasets indicate that GCAS observations are in best 

agreement with Pandora. While TROPOMI performs worse than GCAS, it still decisively outperforms simulated 

NO2 columns from CAMx at Pandora sites in both correlation and bias despite its coarser resolution. With the above 470 

in mind, in this section we present NO2 columns observed from GCAS and TROPOMI and simulated from CAMx at 

the 444 × 444 m2 resolution of the CAMx grid. We extend the prior comparison beyond focusing on three discrete 

points in urban Houston to the entire CAMx domain to get a more complete picture of the spatial components of 

these datasets. For each dataset we consider observations across all ten GCAS flight days. We begin by comparing 

GCAS observations only with CAMx simulated columns across all GCAS overpasses as these data are less limited 475 

temporally than TROPOMI observations (Fig. 4). 

 



 19 

 

 

Figure 4: Comparison of GCAS observations to CAMx simulated NO2 columns across all data during GCAS 480 

overpasses (generally 8 am – 4 pm). Temporally averaged GCAS NO2 columns (A), temporally averaged 

simulated CAMx NO2 columns (B), the absolute difference between GCAS and CAMx (C), and a scatter 

density plot comparing all observations between GCAS and CAMx (D). We identify three distinct areas: 

downtown or “DT” (red), the low emissions East Galveston rural Bay or “RB” (blue), and all other areas or 

“OA” (green) and calculate the averages in the top left of each chart. © OpenStreetMap contributors 2023. 485 

Distributed under the Open Data Commons Open Database License (ODbL) v1.0. 

 

 

When considering data from all GCAS overpasses (Fig. 4A, B, C) we observe a consistent negative bias in the CAMx 

product compared to GCAS observations throughout the domain that worsens in the downtown (DT) area (-2.7 490 
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molecules cm-2 1015) compared to background levels in the rural East Galveston Bay (RB) (-1.2 molecules cm-2 1015). 

Near the W A Parish power station in the southwestern area of the domain there are a mixture of positive and negative 

biases in the CAMx simulated columns that are likely indicative of errors in wind speeds or directions in the CAMx 

simulation. Overall, the CAMx simulated columns were well correlated with GCAS observations (r2=0.78) but the 

negative bias was substantial (NMB=-30.6%) (Fig. 4D).  495 

 

We continue this comparison in Fig. 5 where we limit the GCAS and CAMx values temporally around TROPOMI 

overpasses. For Fig. 5, we screen out all observations that are +/- 90 minutes from TROPOMI overpass for each day 

and then temporally average the observations across the GCAS flight days (Fig. 5A-C). We difference, both 

absolutely (Fig. 5D-F) and relatively (Fig. 5G-I), the three pairs of datasets and present them in scatter density plots 500 

(Fig. 5J-L). We focus on three regions: downtown Houston (DT) (red), the rural East Galveston Bay (RB) (blue), and 

all other areas (OA) (green) and calculate the mean values and differences for these areas in the top left of each of the 

plots. The results presented in Fig. 5 are the temporal average across all flight days; however, similar figures for 

individual flight days are presented in the supplemental (Fig. S19-28) 

 505 
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Figure 5: Spatial distribution of GCAS (A), TROPOMI (B), and CAMx (C) NO2 columns averaged across the 

ten GCAS flight days when within 90 minutes of each TROPOMI overpass representing early afternoon NO2 

columns. We identify three distinct areas: downtown or “DT” (red), the low emissions East Galveston Bay or 510 

“RB” (blue), and all other areas or “OA” (green) and calculate the averages in the top left of each chart. 

Absolute differences between GCAS and TROPOMI (D), GCAS and CAMx (E), and TROPOMI and CAMx 

(F). Relative differences between GCAS and TROPOMI (G), GCAS and CAMx (H), and TROPOMI and 

CAMx (I). Scatter density plots of GCAS vs. TROPOMI (J), GCAS vs. CAMx (K), and TROPOMI vs. CAMx 

(L). © OpenStreetMap contributors 2023. Distributed under the Open Data Commons Open Database 515 

License (ODbL) v1.0. 
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First, we consider the spatial distribution of NO2 columns from GCAS (Fig. 5A), TROPOMI (Fig. 5B), and CAMx 

(Fig. 5C) independently. For all three datasets, NO2 columns are higher in downtown Houston than in the rural East 

Galveston Bay; generally, they are between 3 and 5 times as large. The two finer-resolution datasets – GCAS and 520 

CAMx – also capture NO2 peaks associated with point sources like those from W A Parish, Texas City, and Baytown 

and in the Ship Channel. A map of the major point sources discussed in this work is included in the supplemental 

(Fig. S29). The coarser resolution of TROPOMI leads to fewer identifiable peaks associated with point sources; 

however, there are slightly elevated observed values near the W A Parish and Texas City power plants and the Ship 

Channel. Observations from GCAS and TROPOMI reveal a more diffuse peak in NO2 columns in and around 525 

downtown Houston that includes elevated levels of NO2 in the western part of the city. Simulated columns from 

CAMx, on the other hand, primarily estimate higher NO2 values in the eastern area of downtown Houston and have 

lower NO2 values in the western area of the city.  

 

We next consider the three products compared to one another through three methods: absolute difference (Fig. 5D-530 

F), relative difference (Fig. 5G-I), and scatter density plots (Fig. 5J-L). We intercompare these three products by 

isolating three sets of pairs: that is GCAS and TROPOMI, GCAS and CAMx, and TROPOMI and CAMx. 

 

First, considering GCAS and TROPOMI, there appears to be a systematic low bias in TROPOMI observations 

throughout nearly the entire domain. Regardless of the spatial subset, the low bias in TROPOMI was consistent and 535 

ranged from -27% in downtown to -32% in the rural bay (Fig. 5G). In an absolute sense, on average TROPOMI was 

between 2.1 and 0.7 molecules cm-2 1015 lower than GCAS (Fig. 5D) across the three locations. Throughout the 

entire domain, observations from GCAS and TROPOMI were well correlated (r2=0.85), but TROPOMI had an 

overall negative normalized mean bias of -31.6% (Fig. 5J). We note that this low bias is slightly greater than what 

we would expect from considering the biases of these products relative to Pandora measurements as we do in section 540 

3.1; doing this we would expect TROPOMI to be low biased relative to GCAS by around 23%. This slight 

additional negative bias indicates that either the three Pandora sites are unable to capture the full extent of the 

negative TROPOMI bias and that TROPOMI may be lower biased outside of these sites (e.g., areas outside of 

downtown Houston) or that GCAS observations may be biased additionally high outside of these sites. Notably, 

there are a few areas surrounding point sources in the eastern area of downtown and around the W A Parish plant in 545 

which TROPOMI observes higher NO2 columns than GCAS. This is likely attributable to the coarser resolution of 

TROPOMI that results in peaks of NO2 to be spread into surrounding areas that are in the same TROPOMI grid cell. 

 

Second, comparing GCAS to CAMx we again find a low bias relative to GCAS, albeit one with a higher degree of 

spatial variability. In the remote bay, CAMx simulated columns are lower than GCAS compared to elsewhere in the 550 

domain (-50%) (Fig. 5H) while downtown and background levels are similarly biased at 32% and 39%, respectively. 

This lower bias in the low emission East Galveston Bay is indicative of an underestimation of background NO2 

columns in the CAMx simulation. Across these three regions the mean absolute differences range from -2.4 to -1.2 
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molecules cm-2 1015 (Fig. 5E). Visually, the negative bias in CAMx appears to be stronger in downtown and to the 

west, east, and north-west of downtown and less to the south and south-west of downtown. Overall, GCAS and 555 

CAMx are well correlated (r2=0.74) (Fig. 5K); however, simulated columns from CAMx have a worse negative bias 

(NMB=-38.1%) against GCAS than what is captured at the Pandora sites of approximately -21%. Around some 

point sources CAMx columns are positively biased against GCAS observations. This high bias in CAMx is likely 

attributable to differences in wind speed and direction in the WRF simulation than in reality. These differences could 

contribute to NO2 plumes being advected in incorrect directions. 560 

 

Lastly, when comparing observed columns from TROPOMI to simulated columns from CAMx, biases have a great 

degree of spatial variability; however, in general CAMx is negatively biased. In a relative sense (Fig. 5I), the CAMx 

simulated columns are lowest compared to TROPOMI in the rural bay (-26%) and similar in downtown (-7%) and in 

other areas (-11%). There are a few areas where this pattern does not hold: both in the area southwest of downtown 565 

Houston and near point sources, CAMx is biased high compared to TROPOMI. These results indicate that simulated 

columns from CAMx are underestimated in downtown Houston and that this underestimation could potentially be 

attributable to an incorrect advection of NO2 from some downtown source to the south-west perhaps in conjunction 

with an underestimate of emissions in this downtown area. Overall, TROPOMI and CAMx are well correlated 

(r2=0.73) and there is a spatially heterogeneous low bias when considering the two products throughout the domain 570 

(NMB = -9.7%) (Fig. 5L). 

3.4 Comparisons of GCAS, TROPOMI, and CAMx data at a coarser resolution 

The comparisons presented in the prior section are done at the high resolution of the CAMx grid (444 × 444 m2). 

Here, we characterize the effect of the coarser resolution of TROPOMI by performing an additional comparison of 

the three datasets at the 0.05° × 0.05° resolution (approximately 5.5 × 5.5 km2) (Fig. 6). We average all of the NO2 575 

columns from this finer resolution to the coarser resolution based on the centroid of the fine resolution grid cells. 

This new coarser resolution is comparable to that of the TROPOMI observations at nadir (on average 3.5 × 5.5 

km2). We additionally present comparisons at two further coarser resolutions in the supplemental: 0.25° × 0.25° 

(Fig. S30) and 0.1° × 0.1° (Fig. S31). 
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 580 
 

Figure 6: Spatial distribution of GCAS (A), TROPOMI (B), and CAMx (C) at the 0.05° × 0.05° resolution 

averaged across the ten GCAS flight days when within 1.5 hours of each TROPOMI overpass representing 

early afternoon NO2 columns. Absolute differences between GCAS and TROPOMI (D), GCAS and CAMx 

(E), and TROPOMI and CAMx (F). Relative differences between GCAS and TROPOMI (G), GCAS and 585 

CAMx (E), and TROPOMI and CAMx (F). Scatter density plots of GCAS vs. TROPOMI (G), GCAS vs. 
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CAMx (H), and TROPOMI vs. CAMx (I). © OpenStreetMap contributors 2023. Distributed under the Open 

Data Commons Open Database License (ODbL) v1.0. 

 

Generally, this change in resolution has only a minor effect on the trends discussed in the prior section. Observed 590 

NO2 columns from GCAS and TROPOMI have a collocated peak in downtown Houston and NO2 columns from 

TROPOMI are still systematically biased lower compared to GCAS. Simulated NO2 columns from CAMx are 

clearly lower than GCAS in the area directly west of downtown and slightly higher southwest of downtown 

compared to TROPOMI (Fig. 6A-C). Considering the spatial distribution of absolute (Fig. 6D-F) and relative (Fig. 

6G-I) differences between the three products, the low bias in TROPOMI compared to GCAS is generally 595 

homogenous throughout the domain. On the other hand, there are clear peaks in negative biases in downtown and 

western Houston when comparing CAMx to GCAS and in some areas southwest of downtown biases are small and 

positive. Averaging observations to this coarser resolution improved the correlation for all three pairs (r2=0.93, 0.82, 

and 0.83 for GCAS and TROPOMI, GCAS and CAMx, and TROPOMI and CAMx, respectively) while the biases 

remained comparable to what was found in the comparison at a finer resolution (Fig. 5J-L). 600 

3.5 Weekend vs. weekday patterns across the datasets 

Three of the ten GCAS flight days occurred on weekends (September 11th, 25th, and 26th) and observations from 

GCAS and TROPOMI – along with simulated NO2 columns from CAMx –exhibited different patterns on weekends 

versus on weekdays (September 1st, 3rd, 8-10th, 23rd, 24th). This difference in observed and simulated patterns is 

explored in greater detail in this section, first through comparisons to Pandora measurements (Fig. 7) and then 605 

through spatial comparisons of the products on weekdays versus on weekends (Fig. 8). When interpreting these 

results, it should be considered that weekend data is limited to only three days. This data sparsity introduces a high 

degree of uncertainty in conclusions derived from this analysis. Day to day changes in meteorological conditions are 

likely responsible for some of the exhibited differences so they cannot solely be attributed to differences in emission 

patterns. 610 
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Figure 7: Comparison of GCAS (A), TROPOMI (B), and CAMx (C) to Pandora on weekdays and of GCAS 

(D), TROPOMI (E), and CAMx (F) to Pandora on weekends. Data from all possible overpasses coincident 615 

within 15 minutes of a Pandora observation are considered. GCAS flight times generally ranged from 8:00 

AM-4:00 PM CDT. TROPOMI overpasses occurred around 1:30 PM local time. 

 

First, we consider how comparisons of the observational datasets – GCAS and TROPOMI – with Pandora change on 

weekends compared to weekdays. Biases for both GCAS and TROPOMI become more positive on weekends, 620 

NMB=10.2% and NMB=-15.7%, respectively, than on weekdays, NMB=1.5% and NMB=-25.2%. GCAS 

observations are slightly better correlated to Pandora measurements on weekends (r2=0.89 versus r2=0.76); however, 

TROPOMI observations are worse correlated (r2=0.42 versus r2=0.69) that is likely attributable to a limited number 

of observations that are at lower NO2 column levels with limited dynamic range. Overall, biases are slightly worse 

for GCAS and better for TROPOMI on weekends; however, given the small number of measurements it is unclear 625 

whether this pattern is attributable to meteorological conditions or if it is attributable to some systematic bias in the 

instruments. 

 

Simulated NO2 columns from CAMx exhibit clearer weekday versus weekend patterns, and since these simulated 

columns are available for every hour of the day there is a greater number of measurements to support these findings 630 
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than for the two observational datasets. While the correlation is slightly degraded on weekends (r2=0.30 versus 

r2=0.37) the negative bias in simulated columns compared to Pandora measurements is reduced on weekends 

(NMB=-25.5% versus NMB=-9.5%). 

 

 635 
Figure. 8: Spatial Distribution of GCAS, TROPOMI, and CAMx NO2 columns on weekdays (A-C), weekends 

(D-F), and the absolute difference between weekdays and weekends (G-I) and relative difference (J-L). Data 

are averaged across the GCAS flight days corresponding to weekdays or weekends when within 1.5 hours of 

each TROPOMI overpass representing early afternoon NO2 columns. We identify three distinct areas: 

downtown or “DT” (red), the low emissions East Galveston Bay or “RB” (blue), and all other areas or “OA” 640 

(green) and calculate the averages in the top left of each chart. © OpenStreetMap contributors 2023. 

Distributed under the Open Data Commons Open Database License (ODbL) v1.0. 
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GCAS and TROPOMI observations of NO2 column concentrations are higher on weekdays (Fig. 8A, B) than on 

weekends (Fig. 8D, E). This is true in downtown Houston and the rural bay where weekday GCAS observations are 645 

2.1 molecules cm-2 1015 (24%) and 0.6 molecules cm-2 1015 (24%) higher, respectively, on weekdays than on 

weekends. In other areas of Houston, GCAS observations on weekdays are higher than weekends but not to the 

same degree (20%). A similar pattern occurs for TROPOMI, in downtown Houston TROPOMI columns are 20% 

higher on weekdays than on weekends but comparable in other areas and -5% lower in the rural bay. This 

comparison again implicates some underestimated weekday source of NO2 in CAMx that is of great importance in 650 

the western area of Houston; however, due to the lack of data on weekends – that is apparent in the discontinuities in 

the weekend NO2 column concentrations of TROPOMI – it is difficult to examine this quantitatively. 

 

Comparing weekday columns simulated from CAMx with weekend columns, we find that the mean concentrations 

for the three defined areas are nearly identical (Fig. 8C and F), although columns on weekdays are higher south and 655 

southwest of downtown while columns on weekends are higher within downtown. These spatial patterns are further 

revealed in the difference plots (Fig. 8I and 8L) where the difference in weekday versus weekend values appear to 

be split right along I-10; north of I-10 weekday values are much lower than weekend values while south of I-10 the 

opposite is true. This difference is likely attributable to different meteorological conditions on these days. Overall, 

simulated CAMx columns are substantially lower than GCAS and TROPOMI on weekdays but more similar on 660 

weekends implying that weekday emissions may be underestimated in the TCEQ inventory. 
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3.6 Relevance to TEMPO: Diurnal patterns in column and surface NO2 

 

 

Figure 9: Diurnal patterns in Total NO2 columns (top) averaged across the three Pandora sites and 10 flight 665 

days from CAMx (green), GCAS (blue), Pandora (red), and GEOS-CF (black). Diurnal patterns in surface-

level NO2 concentrations (bottom) in downtown Houston for CAMx and GEOS-CF averaged across the 10 

flight days and across all monitors in Harris County for AQS surface-level monitors (red). 

 

Lastly, we characterize the diurnal profiles of simulated and observed NO2 columns during the TRACER-AQ 670 

campaign in downtown Houston (Fig. 9). First, considering column concentrations, we find generally good 

agreement during the early morning (8:00 -10:00 local time) across the two simulated datasets (CAMx and GEOS-

CF) and two observational datasets (GCAS and Pandora). Interestingly, between 9:00 and 11:00 local time, Pandora 

column measurements show a slight increase, while model simulations show a slight decrease during the same time 
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interval. During midday and the afternoon (11:00 – 16:00 local time) – that corresponds to the period with the most 675 

GCAS observations – GEOS-CF columns generally agree well with Pandora observations. In the evening (17:00 – 

19:00 local time), GEOS-CF columns have a substantial high bias across these flight days. The GEOS-CF mismatch 

in the evening has implications for TEMPO NO2 evening retrievals if this is a persistent bias in other urban areas 

since satellite instruments are especially sensitive to a priori assumptions at low sun angles.  

 680 

Second, considering surface concentrations, we see a similar trend. Generally, there is great agreement across the 

three datasets (CAMx, AQS observations, and GEOS-CF) in the early morning (6:00 – 9:00 local time) before they 

begin to diverge with the two simulated produces maintaining comparable magnitudes with low biases compared to 

surface monitors. At around midday to the afternoon (12:00 – 17:00 local time) both simulated products have a low 

bias compared to observed surface-level NO2; however, the bias in CAMx concentrations is worse. Some of the 685 

apparent low bias may be related to an artificial high bias in NO2 chemiluminescence surface monitors (Dunlea et 

al., 2007; Lamsal et al., 2008). In the evening (18:00 – 19:00 local time), surface-level NO2 from GEOS-CF climbs 

rapidly; however, observed NO2 from the AQS and simulated NO2 from CAMx increase only slightly. The large 

increase in NO2 in GEOS-CF in the evening appears at both the surface and in the column potentially indicating 

issues capturing boundary layer dynamics.  690 

4 Conclusions 

This study leveraged observational datasets of NO2 column densities from three instruments – Pandora ground-

based spectrometers, the airborne GCAS instrument, and the satellite TROPOMI instrument. These instruments 

were used to investigate NO2 column densities in Houston, TX during the September 2021 TRACER-AQ campaign 

and to characterize strengths/weaknesses and uncertainties in the respective datasets. These observational datasets 695 

were then compared to simulated NO2 columns from CAMx to characterize the performance of the simulation and to 

identify potential under- or overestimates of emissions in the simulation. We find that GCAS has strong agreement 

with Pandora instruments (r2=0.79 and NMB=3.4%) during its overpasses and that TROPOMI also has strong 

performance but an important low bias – consistent with validation by the European Space Agency (Verhoelst et al., 

2021) – across the urban Houston locations (r2=0.73 and NMB=-22.8%). This low bias in TROPOMI observations 700 

persists despite the inclusion of an air mass factor derived from the CAMx simulation. When comparing different 

versions of TROPOMI we find differences between the v2.3.1, v2.4.0, and NASA MINDS product and find that the 

MINDS (r2=0.69 and NMB=-18.2%) and version 2.3.1 (r2=0.72 and NMB=-18.3%) products – with the CAMx 

AMF – performs comparably and both outperform version 2.4.0 considering bias albeit with slightly worse 

correlation. The performance of the CAMx simulation varied depending on the day, but overall, simulated NO2 705 

columns were more poorly correlated and more negatively biased compared to Pandora measurements than the 

observational datasets (r2=0.34 and NMB= -21.2%). Notably, this low bias in CAMx simulated NO2 columns 

improved on weekends (NMB=-9.5%) – albeit over a limited number of days. This improvement on weekends 

implicates that a source that emits in greater amounts on weekdays (e.g., heavy-duty vehicles) could be 
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underestimated in the TCEQ inventory; however, we cannot say this conclusively given the limited number of 710 

observations on weekends. The poor correlation in the simulated NO2 columns is likely attributable to minor wind 

directional errors – simulated wind direction had a MAE that ranged from 14° to 32° when compared to 

observations – and spatial correlations over larger extents match well. 

 

When we compare the spatial distribution of TROPOMI observations to GCAS (Fig. 3 and 4) we find that the low 715 

bias in TROPOMI NO2 columns is perhaps stronger than the low bias implied at the three Pandora sites – this could 

be a resolution constraint of the coarser TROPOMI product that is unable to capture the fine-scale features in NO2 

column concentrations that GCAS is able to. If coarse resolution is responsible for this low-bias, new instruments on 

geostationary satellites from missions like the NASA TEMPO mission could be leveraged to further improve 

satellite-derived estimates of urban NO2 in cities like Houston. CAMx comparisons to GCAS, when extended 720 

beyond the limited number of Pandora sites, indicate that the CAMx simulated low bias could be substantially worse 

than at the Pandora sites (-32%) in downtown and west of downtown Houston. This overall underestimate in the 

CAMx simulations is potentially attributable to a number of confounding factors including an inability of the WRF 

simulation to capture local meteorology – WRF simulated wind speeds had only modest correlation with 

observations (R2=0.26) although there was little systematic bias (MBE = -0.02) – and an underestimate of emissions 725 

in sectors that are more spatially located in downtown and western Houston like on-road mobile emissions. We also 

consider differences in the diurnal profiles of surface and column NO2 across multiple datasets and find that the 

performance of CAMx is at its worst in the late morning and early afternoon and performance is better during other 

times of the day. 

There is a clear negative bias in the CAMx simulated NO2 columns compared to GCAS observations. Although we 730 

primarily evaluate the performance of WRF meteorology at the surface, we also briefly investigate model vertical 

structure for five ozonesondes from different locations and days (Fig. S14-S18) and find great agreement in 

temperature and pressure; however, there is more mixed agreement in the ozone mixing ratio, wind speed, and wind 

direction. Future evaluation of 3D model simulated vertical structure for NO2 using observations from NASA – such 

as measurements from the High Spectral Resolution Lidar 2 (HSRL-2) instrument, the Tropospheric Ozone Lidar 735 

Network (TolNet), or TRACER-AQ – may be helpful for diagnosing the distinct influences of emissions, meteorology, 

and chemistry on column NO2. A previous study by Liu et al., (2023) has investigated this for the TRACER-AQ 

campaign in Houston, albeit with a different chemical transport model, and found generally good agreement in 

potential temperature but an underestimate of ozone in the free troposphere. We note that the YSU scheme used in the 

WRF-CAMx simulation (Table S1) has been shown to underestimate PBL height in the Houston area during the 740 

TRACER-AQ campaign (Liu et al., 2023) which would likely impact the vertical distribution of NO2. Given the worse 

performance of WRF-CAMx at the surface (NMB=-59%) than for the columns (-22%), if the vertical mixing scheme 

has poor performance we suspect it to be due to overmixing leading to the rapid removal of surface-level NO2. 

Additionally, the low bias in the TROPOMI observations compared to Pandora and GCAS merits further investigation; 

the role of algorithm and resolution could be considered by comparing different versions and finer-resolution 745 
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geostationary observations in the future beyond what is considered in this study. The reference background NO2 from 

TROPOMI used in GCAS could also introduce error into these results that should be considered. Given the fine 

resolution of GCAS observations and CAMx simulated column concentrations there is potential for investigations 

into how air pollution is inequitably distributed across different populations in Houston and how specific sources 

contribute to these inequities. The findings presented here imply that TROPOMI derived NO2 column concentrations 750 

may be underestimated in Houston if not corrected for in applications such as exposure assessments, and NOX 

emissions derivations.  

This analysis benefitted from three independent measurement datasets (i.e., Pandora, TROPOMI, and GCAS) that 

were critical to isolate the negative biases in TROPOMI and CAMx although we note that negative biases in 

TROPOMI have been mentioned in earlier literature (e.g., Verhoelst et al, 2021) and in the quarterly issued operational 755 

validation reports (available at https://mpc-vdaf.tropomi.eu/). It is common to consider TROPOMI measurements as 

accurate representation of NO2 column concentrations; however, if we had done so in this study, we would have failed 

to identify the substantial negative bias in the CAMx simulation of column concentrations. Observations from multiple 

Pandora instruments and GCAS overpasses made it possible to isolate negative biases in TROPOMI and CAMx. 

While there are some errors in the meteorology – notably only a modest correlation between simulated and observed 760 

wind speed, albeit with little systematic bias, and mixed capturing of vertical structure compared to ozonesondes 

observations – these errors are unlikely to fully explain the low bias in simulated NO2. Given the relatively minimal 

biases in WRF simulated wind speed and direction at the surface compared to observations, low NO2 biases in the 

simulated CAMx column concentrations imply that current TCEQ NOX emissions inventories in the Houston area 

used to drive the CAMx simulation may be underestimated, and that this underestimation is likely attributable to a 765 

source with weekday-weekend differences and correlated with roadways and/or population density.  
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