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Abstract. Numerical modelling is a reliable tool for flood simulations, but accurate solutions are computationally expensive.

In the recent years, researchers have explored data-driven methodologies based on neural networks to overcome this limitation.

However, most models are used only for a specific case study and disregard the dynamic evolution of the flood wave. This

limits their generalizability to topographies that the model was not trained on and in time-dependent applications. In this paper,

we introduce SWE-GNN, a hydraulics-inspired surrogate model based on Graph Neural Networks (GNN) that can be used5

for rapid spatio-temporal flood modelling. The model exploits the analogy between finite volume methods, used to solve the

shallow water equations (SWE), and GNNs. For a computational mesh, we create a graph by considering finite-volume cells

as nodes and adjacent cells as connected by edges. The inputs are determined by the topographical properties of the domain

and the initial hydraulic conditions. The GNN then determines how fluxes are exchanged between cells via a learned local

function. We overcome the time-step constraints by stacking multiple GNN layers, which expand the considered space instead10

of increasing the time resolution. We also propose a multi-step-ahead loss function along with a curriculum learning strategy

to improve the stability and performance. We validate this approach using a dataset of two-dimensional dike breach flood

simulations on randomly-generated digital elevation models, generated with a high-fidelity numerical solver. The SWE-GNN

model predicts the spatio-temporal evolution of the flood for unseen topographies with a mean average error in time of 0.04 m

for water depths and 0.004m2/s for unit discharges. Moreover, it generalizes well to unseen breach locations, bigger domains,15

and over longer periods of time, compared to those of the training set, outperforming other deep learning models. On top of this,

SWE-GNN has a computational speedup of up to two orders of magnitude faster than the numerical solver. Our framework

opens the doors to a new approach for replacing numerical solvers in time-sensitive applications with spatially-dependant

uncertainties.
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1 Introduction20

Accurate flood models are essential for risk assessment, early warning, and preparedness for flood events. Numerical models

can characterize how floods evolve in space and time, with the two-dimensional (2D) hydrodynamic models being the most

popular (Teng et al., 2017). They solve a discretized form of the depth-averaged Navier-Stokes equations, referred to as Shallow

Water Equations (SWE) (Vreugdenhil, 1994). Numerical models are computationally expensive, making them inapplicable for

real-time emergencies and uncertainty analyses. Several methods aim to speed up the solution of these equations by either25

approximating them (Bates and De Roo, 2000) or by using high-performance computing and parallelization techniques (Hu

et al., 2022; Petaccia et al., 2016). However, approximate solutions are valid only for domains with low spatial and temporal

gradients (Costabile et al., 2017), while high-performance computing methods are bound by the numerical constraints and the

computational resources.

Data-driven alternatives speed up numerical solvers (Mosavi et al., 2018). In particular, deep learning outperforms other30

machine learning methods used for flood modelling, in both speed and accuracy (Bentivoglio et al., 2022). Berkhahn et al.

(2019) developed a multi-layer perceptron model for predicting urban floods given a rainfall event, achieving promising speed-

ups and accuracy. Guo et al. (2021) and Kabir et al. (2020) developed convolutional neural networks (CNN) for river flood

inundation, while Jacquier et al. (2021) used deep learning to facilitate the reduced order modelling of dam break floods and

provide uncertainty estimates. Also Zhou et al. (2022) employed a CNN-based model to determine the spatio-temporal variation35

of flood inundation from a set of representative locations. These works explored the generalization of boundary conditions on

a fixed domain, i.e., they changed the return period of the floods for a single case study, but they need retraining when applied

to a new area, requiring more resources in terms of data, model preparation, and computation times.

To overcome this issue, the community is investigating the generalizability of deep learning models to different study areas.

Löwe et al. (2021) proposed a CNN model to estimate the maximum water depth of pluvial urban floods. They trained their40

model on part of their case study and then deployed it on the unseen parts, showing consistent performances. Guo et al. (2022)

accurately predicted the maximum water depth and flow velocities for river floods in different catchments in Switzerland. To

incorporate the variations in catchment size and shape, they divided the domain into patches. do Lago et al. (2023) proposed

a conditional generative adversarial networks that could predict the maximum water depth unseen rain events in unseen ur-

ban catchments. However, these approaches focus on a single maximum depth or velocity map, disregarding the dynamical45

behaviour, i.e., no information is provided on the flood conditions over space and time, which is crucial for evacuation and

response to the flood.

To overcome this limitation, we propose SWE-GNN, a deep learning model merging graph neural networks (GNN) with the

finite-volume methods used to solve the SWE. GNNs generalize convolutional neural networks to irregular domains such as

graphs and have shown promising results for fluid dynamics (e.g., Lino et al., 2021; Peng et al., 2022) and partial differential50

equations (e.g., Brandstetter et al., 2022; Horie and Mitsume, 2022). Hence, developing GNNs that follow the SWE equa-

tions is not only more physically interpretable but also allows better generalization abilities to unseen flood evolution, unseen

breach location and unseen topographies. In particular, we exploit the geometrical structure of the finite-volume computa-
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tional mesh by using its dual graph, obtained by connecting the centres of neighbouring cells via edges. The nodes represent

finite-volume cells and edges fluxes across them. Following an explicit numerical discretization of the SWE, we formulate55

a novel GNN propagation rule that learns how fluxes are exchanged between cells, based on the gradient of the hydraulic

variables. We set the number of GNN layers based on the time step between consecutive predictions, in agreement with the

Courant–Friedrichs–Lewy conditions. The inputs of the model are the hydraulic variables at a given time, elevation, slopes,

area, length, and orientation of the mesh’s cells. The outputs are the hydraulic variables at the following time step, evaluated in

an auto-regressive manner, i.e., the model is repeatedly applied using its predictions as inputs to produce extended simulations.60

We tested our model on dike-breach flood simulations due to their time-sensitive nature and presence of uncertainties in

topography and breach formation (Jonkman et al., 2008; Vorogushyn et al., 2009). Moreover, given the sensibility to floods of

low-lying areas, fast surrogate models that generalize over all those uncertainties are required for probabilistic analyses. By

doing so, our key contributions are threefold:

– We develop a new graph neural network model where the propagation rule and the inputs are taken from the shallow65

water equations. In particular, the hydraulic variables propagate based on their gradient across neighbouring finite volume

cells;

– We improve the model’s stability by training it via a multi-step-ahead loss function, that results in stable predictions up

to 120 hours ahead, using only the information of the first hour as initial hydraulic input;

– We show that the proposed model can surrogate numerical solvers for spatio-temporal flood modelling in unseen to-70

pographies and unseen breach locations, with two orders of magnitude speed-ups.

The rest of the paper is structured as follows: Section 2 illustrates the theoretical background; Section 3 describes the proposed

methodology. In Section 4, we present the dataset used for the numerical experiments. Section 5 shows the results obtained

with the proposed model and compares it with other deep learning models. Finally, Section 6 discusses the results, analyses

the current limitations of this approach, and proposes future research directions.75

2 Theoretical background

In this section, we describe the theory supporting our proposed model. First, we discuss numerical models for flood modelling;

then, we present deep learning models, focusing on graph neural networks. Throughout the paper, we use the standard vector

notation, with a scalar, a vector, A matrix, and A tensor.

2.1 Numerical modelling80

2.1.1 Shallow water equations

When assuming negligible vertical accelerations, floods can be modelled via the shallow waters equations (SWE) (Vreugdenhil,

1994). These are a system of hyperbolic partial differential equations that describe the behaviour of shallow flows by enforcing
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mass and momentum conservation. The two-dimensional SWE can be written as

∂u
∂t

+∇F = s, (1)85

with

u =


h

qx

qy

 ,F =


qx

q2x
h + gh2

2
qxqy
h

qy
qxqy
h

q2y
h + gh2

2

 ,s =


0

gh(s0x − sfx)

gh(s0y − sfy)

 , (2)

where u represents the conserved variable vector, F the fluxes in the x and y directions, and s the source terms. Here, h[m]

represents the water depth, qx = uh[m2/s] and qy = vh[m2/s] are the averaged components of the discharge vector along the

x and y coordinates, respectively, and g[m/s2] is the acceleration of gravity. The source terms in s depend on the contributions90

of bed slopes s0 and friction losses sf along the two coordinate directions.

2.1.2 Finite volume method

The SWE cannot be solved analytically unless some simplifications are enforced. Thus, they are commonly solved via spatio-

temporal numerical discretizations, such as the finite volume method (e.g., Alcrudo and Garcia-Navarro, 1993). This method

discretizes the spatial domain using meshes, i.e., geometrical structures composed of nodes, edges, and faces. We consider95

each finite volume cell is represented by its centre of mass, where the hydraulic variables, h, qx, and qy , are defined (see Fig.

1). The governing equations are then integrated over the cells, considering piece-wise constant variations, i.e., the value of

the variables at a certain time instant is spatially uniform for every cell. The SWE can be discretized in several ways both in

space and time (e.g., Petaccia et al., 2013; Xia et al., 2017) but we focus on a first-order explicit scheme with a generic spatial

discretization. For an arbitrary volume Ωi and a discrete time step ∆t, the SWE (eq. (1)) can be re-written as:100

ut+1
i = ut

i +

si −
Ni∑
j=1

(F ·n)ij
lij
ai

∆t (3)

with ut
i the hydraulic variables at time t and cell i, ai the area of the ith cell,Ni the number of neighbouring cells, lij the length

of the jth side of cell i, si the source terms, nij = [nxij ,nyij ] the outward unit normal vector in the x and y directions for side

ij, and (F ·n)ij the numerical fluxes across neighbouring cells.

In numerical models with explicit discretization, stability is enforced by satisfying the Courant–Friedrichs–Lewy (CFL)105

condition, which imposes the numerical propagation speed to be lower than the physical one (Courant et al., 1967). Considering

v as propagation speed, the Courant number C can be evaluated as

C =
v∆t

∆x
, (4)

where ∆t and ∆x represent the time step and the mesh size. This condition forces ∆t to be sufficiently small, to avoid a too-fast

propagation of water in space that would result in a loss of physical consistency. Small time steps imply increasing number110
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Figure 1. Schematic representation of an arbitrary triangular volume mesh and its dual graph. Left: a finite-volume cell Ωi along with its

neighboring cells. Vectors ui and uj represent the cells’ hydraulic variables, while lij and nij corresponds, respectively, to the length of the

mesh side and the outward unit normal vector, between cells i and j. Right: the dual graph of the mesh is obtained by considering each ith

cell’s center as a node i, with features xi and connecting neighboring nodes, i and j, via edges ij, with features εij .

of model iterations, which slow down numerical models over long time horizons. Deep learning provides an opportunity to

accelerate this process.

2.2 Deep learning

Deep learning obtains non-linear high dimensional representations from data, via multiple levels of abstraction (LeCun et al.,

2015). The key building block of deep learning models are neural networks, which comprise linear and non-linear parametric115

functions. They take an input x and produce an estimate ŷ of a target representation y as ŷ = f(x;θ), where θ are the parameters

(Zhang et al., 2021). The parameters are estimated to match predicted output with the real output by minimizing a loss function.

Then, the validity of the model is assessed by measuring its performance on a set of unseen pairs of data, called the test set.

The most general type of neural network is the multi-layer perceptron (MLP). It is formed by stacking linear models followed

by a point-wise non-linearity (e.g., ReLU, σ(x) =max{0,x}). For MLPs, the number of parameters and the computational120

cost increase exponentially with the dimensions of the input. This makes them unappealing to large scale high-dimensional

data typical of problems with relevant spatio-temporal features such as floods. MLPs are non-inductive: when trained for

flood prediction on a certain topography, they cannot be deployed on a different one, thus requiring a complete retraining. To

overcome this curse of dimensionality and increase generalizability, models can include inductive biases that constrain their

degrees of freedom by reusing parameters and exploiting symmetries in the data (Battaglia et al., 2018; Gama et al., 2020; Villar125

et al., 2023). For example, convolutional neural networks exploit translational symmetries via filters that share parameters in

space (e.g., LeCun et al., 2015; Bronstein et al., 2021). However, CNNs cannot process data defined on irregular meshes, which

are common for discretizing topographies with sparse details. Thus, we need a different inductive bias for data on meshes.

Graph neural networks (GNNs) use graphs as an inductive bias to tackle the curse of dimensionality. This bias can be relevant

for data represented via networks and meshes, as it allows these models to generalize to unseen graphs, i.e., the same model can130

be applied to different topographies discretized by different meshes. GNNs work by propagating features defined on the nodes,
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based on how they are connected. The propagation rule is then essential in correctly modelling a physical system. However,

standard GNNs do not include physics-based rules meaning that the propagation rules may lead to unrealistic results.

Static inputs

Xs

Dynamic inputs

Ut−p:t

Φ

Ut+1

Φ

. . .
Φ

UT

Output 1 Output T

i

j

time t

xsi

ut−p:ti

εij

Process individual nodes

and edges (Eq. (6))

i

j

GNN
×L

Process neighbourhood of

each node (Eqs. (7)-(9))

hsi

h0
di

ε′ijMLP

MLP

MLP

j

i

MLP

Process individual nodes

(Eq. (10))

hLdi

i

time t+1

ût+1
i

Figure 2. Overview of the proposed SWE-GNN model. The model Φ takes as input the mesh discretization of the static and dynamic input

(blue box) and produces an estimate of their evolution in time (orange box). The model is then repeated auto-regressively, i.e., using its

predictions as inputs, to determine the spatio-temporal evolution of the flood. The encoder-processor-decoder structure of the SWE-GNN

model is shown in the bottom black box. The node inputs xsi and ut−p:t
i represent static attributes, such as elevation and slopes, and dynamic

attributes, representing hydraulic variables, while the edge inputs εij represent the mesh’s geometry. The inputs are encoded into higher-

dimensional embeddings hsi, h0
di (yellow nodes), and ε′

ij via three separate multi-layer perceptrons, shared across nodes or edges. The

embeddings, whose purpose is to increase the inputs’ expressivity, are used as input for the L GNN layers. The output of the GNN hL
di (red

and orange nodes) is decoded via another shared multi-layer perceptron and summed to the hydraulic variables at time t ut
i . The final output

ŷi (blue nodes) represents the prediction at time t+1, i.e., ût+1
i .
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3 Shallow water equations-inspired graph neural network (SWE-GNN)

We develop a graph neural network in which the computations are based on the shallow-water equations. The proposed model135

takes as input both static and dynamic features that represent the topography of the domain and the hydraulic variables at time

t, respectively. The outputs are the predicted hydraulic variables at time t+1. In the following, we detail the proposed model

(Section 3.1) and its inputs and outputs (Section 3.2). Finally, we discuss the training strategy (Section 3.3).

3.1 Architecture

SWE-GNN is an encoder-processor-decoder architecture inspired by You et al. (2020) with residual connections, that predicts140

autoregressively the hydraulic variables at time t+1 as

Ût+1 = Ut +Φ(Xs,Ut−p:t,E), (5)

where the output Ût+1 corresponds to the predicted hydraulic variables at time t+1, Ut are the hydraulic variables at time t,

Φ(·) is the GNN-based encoder-processor-decoder model that determines the evolution of the hydraulic variables for a fixed

time step, Xs are the static node features, Ut−p:t are the dynamic node features, i.e., the hydraulic variables for time steps t−p145

to t, and E are the edge features that describe the geometry of the mesh. The architecture detailed in the sequel is illustrated in

Fig. 2.

Encoder. We employ three separate encoders for processing the static node features Xs ∈ RN×INs , dynamic node features

Xd ≡ Ut−p:t ∈ RN×O(p+1), and edge features ε ∈ RE×Iε , where INs is the number of static node features, O the number of

hydraulic variables (e.g., O=3 if we consider water depth and the x and y components of the unit discharges), p the number of150

input previous time steps, and Iε the number of input edge features. The encoded variables are

Hs = ϕs (Xs) ,Hd = ϕd (Xd) ,E ′ = ϕε (E) , (6)

where ϕs(·) and ϕd(·) are MLPs shared across all nodes that take an input X ∈ RN×I and return a node matrix H ∈ RN×G; and

ϕε(·) are MLPs shared across all edges that encode the edge features in E ′ ∈ RE×G. All MLPs have two layers, with hidden

dimension G, followed by a PReLU activation. The encoders expand the dimensionality of the inputs to allow for higher155

expressivity, with the hyperparameter G being the dimension of the node embeddings. The ith rows of the node matrices Hs

and Hd represent the encoded feature vectors associated to node i, i.e., hsi and hdi, and the kth rows of the edge matrices E ′

represents the encoded feature vector associated to edge k.

Processor. We employed as processor anL-layer GNN that takes a high-dimensional representation of the static and dynamic

properties of the system at time t, given by the encoders, and produces a spatio-temporally propagated high-dimensional160

representation of the system’s evolution from time t to t+1. The propagation rule is based on the shallow water equation. In

the SWE, the mass and momentum fluxes, representative of the dynamic features, evolve in space as a function of the source

terms, representative of the static and dynamic features. Moreover, water can only propagate from sources of water and the

velocity of propagation is influenced by the gradients of the hydraulic variables. Thus, the GNN layer ℓ= 1, . . . ,L− 1 update
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reads as165

s(ℓ+1)
ij = ψ

(
hsi,hsj ,h

(ℓ)
di ,h

(ℓ)
dj ,ε

′
ij

)
⊙
(

h(ℓ)
dj −h(ℓ)

di

)
, (7)

h(ℓ+1)
di = h(ℓ)

di +
∑
j∈Ni

s(ℓ+1)
ij W(ℓ+1), (8)

where ψ(·) : R5G → RG is an MLP with two layers, with hidden dimension 2G, followed by a PReLU activation function,

⊙ is the Hadamard (element-wise) product, and W(ℓ) ∈ RG×G are parameter matrices. The term h(ℓ)
dj −h(ℓ)

di represents the

gradient of the hydraulic variables and enforces water-related variables hd to propagate only if at least one of the interfacing170

node features is non-zero, i.e., has water. The function ψ(·), instead, incorporates both static and dynamic inputs and provides

an estimate of the source terms acting on the nodes. Thus, vector sij represents the fluxes exchanged across neighbouring cells

and their linear combination is used as in eq. (3) to determine the hydraulic variables’ variation for a given cell. In this way,

eq. (7) resembles how fluxes are evaluated at the cell’s interface in the numerical model, i.e., δF(u)ij = J̃ij (uj −ui), which

enforces conservation across interface discontinuities (Martínez-Aranda et al., 2022). Based on this formulation, sij can also be175

interpreted as approximate Riemann solver (Toro, 2013), where the Riemann problem at the boundary between computational

cells is approximated by function ψ(·), in place of equations (e.g., Roe, 1981). To reduce model instabilities, the output of

ψ(·) is normalized along its embedding dimension, i.e., it is divided by its norm ∥ψ(·)∥. This procedure is similar to other

graph normalization techniques that improve training stability (Chen et al., 2022). The contribution of each layer is linearly

multiplied by W(ℓ) (Eq. (7)). From a numerical perspective, this is analogous to an L-order multi-time-step scheme, with L180

being the number of layers, where the weights are learned instead of being assigned (e.g., Dormand and Prince, 1980).

The GNN’s output represents an embedding of the predicted hydraulic variables at time t+1 for a fixed time step ∆t. Instead

of enforcing stability by limiting ∆t, as it is done in numerical models, we can obtain the same result by considering a larger

portion of space, which results in increasing ∆x (cfr. eq. (4)). This effect can be achieved by stacking multiple GNN layers, as

each layer will increase the propagation space, also called neighborhood size. The number of GNN layers is then correlated to185

the space covered by the flood for a given temporal resolution. We can then write the full processor for the L GNN layers as

h(0)
di = hdiW(0),

s(ℓ+1)
ij = ψ

(
hsi,hsj ,h

(ℓ)
di ,h

(ℓ)
dj ,ε

′
ij

)
⊙
(

h(ℓ)
dj −h(ℓ)

di

)
,

h(ℓ+1)
di = h(ℓ)

di +
∑
j∈Ni

s(ℓ+1)
ij W(ℓ+1),

h(L)
di = σ

h(L−1)
di +

∑
j∈Ni

s(L)
ij W(L)

 , (9)

where we employ a Tanh activation function σ(·) at the output of the Lth layer to limit numerical instabilities resulting in

exploding values. The embedding of the static node features hsi and of the edge features ε′ij do not change across layers, as190

the topography and discretization of the domain do not change in time.

Decoder. Symmetrically to the encoder, the decoder is composed of an MLP φ(·), shared across all the nodes, that takes as

input the output of the processor H(L)
d ∈ RN×G and updates the hydraulic variables at the next time step, i.e., Ût+1 ∈ RN×O,
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via residual connections, as

Ût+1 = Ut +φ
(

H(L)
d

)
. (10)195

The MLP φ(·) has two layers, with hidden dimension G, followed by a PReLU activation. Both the MLPs in the dynamic

encoder and the decoder do not have the bias terms as this would result in adding non-zero values in correspondence of dry

areas that would cause water to originate from any node.

3.2 Inputs and outputs

We define input features on the nodes and edges based on the SWE terms (cfr. eq. (2)). We divide node features into a static200

component that represents fixed spatial attributes and a dynamic component that represents the hydraulic variables.

Static node features are defined as

xsi = (ai,ei,s0i,mi,w
t
i) (11)

where ai is the area of the ith finite volume cell, its elevation ei, its slopes in the x and y directions s0i, and its Manning

coefficient mi. We also included the water level at time t, wt
i , given by the sum of elevation and water depth at time t, as node205

inputs, since it determines the water gradient (Liang and Marche, 2009). The reason why we include wt
i in the static attributes

instead of the dynamic ones is that this feature can be non-zero also without water, due to the elevation term, and would thus

result in the same issue mentioned for the dynamic encoder and decoder.

Dynamic node features are defined as

xdi = ut−p:t
i = (ut−p

i , ...,ut−1
i ,ut

i),210

ut
i = (hti, |q|

t
i) (12)

where ut
i are the hydraulic variables at time step t and ut−p:t

i are the hydraulic variables up to p previous time steps, to leverage

the information of past data and provide a temporal bias to the inputs. Contrarily to the definition of the hydraulic variables as

in Eq. (2), we selected the modulus of the unit discharge |q| as a metric of flood intensity in place of its x and y components

to avoid mixing scalar and vector components and because, for practical implications, such as damage estimation, the flow215

direction is less relevant than its absolute value (e.g., Kreibich et al., 2009).

Edge features are defined as

εij = (nij , lij), (13)

where nij is the outward unit normal vector and lij is the cell’s sides length. Thus, the edge features represent the geometrical

properties of the mesh. We excluded the fluxes Fij as additional features as they depend on the hydraulic variables ui and uj ,220

which are already included in the dynamic node features.

Outputs. The model outputs are the estimated water depth and unit discharge at time t+1, i.e., ût+1
i =

(
ĥt+1
i , ˆ|q|t+1

i

)
,

resulting in an output dimension O = 2. The outputs are used to update the input dynamic node features xdi for the following

time step, as exemplified in Fig. 3. The same applies for the water level in the static attributes, i.e., wt+1
i = ei + ĥt+1

i .
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Step 1 Xs U0 U1 . . . Up
Φ

Ûp+1

Step 2 Xs U1 U2 . . . Ûp+1
Φ

Ûp+2

...
...

...
...

...
...

Step τ Xs Ûτ−p−1 Ûτ−p . . . Ûτ
Φ

Ûτ+1

...
...

...
...

...
...

Step H Xs ÛH−p−1 ÛH−p . . . ÛH−1
Φ

ÛT

Model input Model output

Given

Predicted

Figure 3. Example of auto-regressive prediction for p input previous time steps and H predicted steps ahead. The prediction at time τ are

used as new inputs to predict the following time step and so on. The loss and the metrics are evaluated as the average over all steps H .

3.3 Training strategy225

The model learns from input-output data pairs. To stabilize the output of the SWE-GNN over time, we employ a multi-step-

ahead loss function L, that measures the accumulated error for multiple consecutive time steps, i.e.,

L=
1

HO

H∑
τ=1

O∑
o=1

γo∥ût+τ
o −ut+τ

o ∥2, (14)

where ut+τ
o ∈ RN are the hydraulic variables over the whole graph at time t+τ , H is the prediction horizon, i.e., the number

of consecutive time instants, and γo are coefficients used to weight the influence of each variable to the loss. For each time230

step τ , we evaluate the model’s prediction ût+τ and then use the prediction recursively as part of the new dynamic node input

(see Fig. 3). We repeat this process for a number of time steps H and calculate the root mean squared error (RMSE) loss as

the average over all steps. In this way, the model learns to correct its own predictions while also learning to predict a correct

output, given a slightly wrong prediction, hence improving its robustness. After p+1 prediction steps, the inputs of the model

are given exclusively by its predictions. During training, we limit the prediction horizon H instead of using the full temporal235

sequence due to memory constraints, since the back-propagation gradients must be stored for each time step.

To improve the training speed and stability, we also employed a curriculum learning strategy (Algorithm 1). This consists in

progressively increasing the prediction horizon in eq. (14) every fixed number of epochs up to H . The idea is to first learn the

one- or few-steps-ahead predictions to fit the short-term predictions and then increase the number of steps ahead to stabilize

the predictions (Wang et al., 2021).240
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Algorithm 1 Curriculum learning strategy

Initialize:

H = 1

CurriculumSteps= 15

γ1 = 1 (Water depth h)

γ2 = 3 (Unit discharge q)

for epoch = 1 to MaxEpochs do

Ût+1 = Ut +Φ(Xs,Ut−p:t,E)
L= 1

HO

∑H
τ=1

∑O
o=1 γo∥ût+τ

o − ut+τ
o ∥2,

Update the parameters

if epoch > CurriculumSteps*H then

H =H +1

end if

end for

4 Experimental setup

4.1 Dataset generation

We considered 130 numerical simulations of dike-breach floods ran on randomly-generated topographies over two squared

domains of sizes 6.4× 6.4km2 and 12.8× 12.8km2 representative of flood-prone polder areas.

We generated random digital elevation models using the Perlin noise generator (Perlin, 2002) as its ups and downs re-245

flect plausible topographies. We opted for this methodology, instead of manually selecting terrain patches, to automatize the

generation process, thus allowing for an indefinite amount of randomized and unbiased training and testing samples.

We employed a high-fidelity numerical solver, Delft3D-FM, which solves the full shallow water equations using an implicit

scheme on staggered grids and adaptive time steps (Deltares, 2022). We used a dry bed as the initial condition and a constant

input discharge of 50m3/s as the boundary condition, equal to the maximum dike-breach discharge. We employed a single250

Table 1. Summary of the datasets employed for training (TR), validation (VA), and testing (TE). The uncertainty accounts for the variability

across the different simulations in each dataset.

Dataset Number Size (km2) Random Simulation Execution time of

and use of simulations breach location duration (h) numerical model (s)

1 (TR,VA,TE) 100 6.4× 6.4 No 48 29.5 ± 9.1

2 (TE) 20 6.4× 6.4 Yes 48 32.5 ± 5.1

3 (TE) 10 12.8× 12.8 Yes 120 185.5 ± 29.9
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Figure 4. Distribution of the breach locations (red crosses) for datasets 2 and 3.

boundary condition value for all simulations as our focus is to show generalizability over different topographies and breach

locations. The simulation output is a set of temporally-consecutive flood maps, with a temporal resolution of 30 minutes.

We created three datasets with different area sizes and breach locations as summarized in Table 1. We selected a rectangular

domain discretized by regular meshes, to allow for a fairer comparison with other models that cannot work with meshes

or cannot incorporate edge attributes. Furthermore, we considered a constant roughness coefficient mi for all simulations,255

meaning that we use the terrain elevation and the slopes in the x and y directions as static node inputs.

1. The first dataset consists of 100 DEMs over a squared domain of 64 × 64 grids of length 100m and a simulation time of

48 hours. This dataset is used for training, validation, and testing. We used a fixed testing set of 20 simulations while the

remaining 80 simulations are used for training (60) and validation (20).

2. The second dataset consists of 20 DEMs over a squared domain of 64 × 64 grids of length of 100m and a simulation260

time of 48 hours. The breach location changes randomly across the border with a constant discharge of 50m3/s (Fig.

4a). This dataset is used to test the generalizability of the model to unseen domains and breach locations.

3. The third dataset consists of 10 DEMs over a squared domain of 128 × 128 grids of length of 100m. The boundary

conditions are the same as for the second dataset. Since the domain area is four times larger, the total simulation time is

120 hours, to allow for the flood to cover larger parts of the domain. This dataset is used to test the generalizability of265

the model to larger unseen domains, unseen breach locations, and longer time horizons.

Unless otherwise mentioned, we selected a temporal resolution of ∆t=1h, as a trade-off between detail and speed. When the

beginning of the flood is relevant (e.g., for real-time forecasts) higher temporal resolutions are better. Contrarily, if the the final

flood state is relevant, lower temporal resolutions may be better.

4.2 Training setup270

We trained all models via the Adam optimization algorithm (Kingma and Ba, 2014). We employed a varying learning rate with

0.005 as starting value and a fixed step decay of 90% every 7 epochs. The training was carried out for 150 epochs with early
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stopping. We used a maximum prediction horizon H = 8 steps ahead during training as a trade-off between model stability

and training time, as later highlighted in Section 5.4. There is no normalization pre-processing step and, thus, the values of

water depth and unit discharge differ in magnitude by a factor of 10. Since for application purposes discharge is less relevant275

than water depth (Kreibich et al., 2009), we weighted the discharge term by a factor of γ2 = 3 (cfr. eq. (14)), while leaving the

weight factor for water depths as γ1 = 1. Finally, we used one previous time step as input, i.e., Xd = (Ut=0,Ut=1), where the

solution at time t= 0 corresponds to dry bed conditions.

We trained all models using the Pytorch (Version 3.10.8) (Paszke et al., 2019) and Pytorch Geometric (Version 2.2) (Fey and

Lenssen, 2019). In terms of hardware, we employed an Nvidia Tesla V100S-PCIE-32GB for training and deployment (Delft280

High Performance Computing Centre , DHPC), and an Intel(R) Core(TM) i7-8665U @1.9 GHz CPU for deployment and for

the execution of the numerical model. We run the models on both GPUs and CPUs to allow for a fair comparison with the

numerical models.

4.3 Metrics

We evaluated the performance using the multi-step-ahead RMSE (eq. (14)) over the whole simulation. However, for testing,285

we calculated the RMSE for each hydraulic variable o independently as:

RMSEo =
1

H

H∑
τ=1

∥ûτ
o −uτ

o∥2, (15)

Analogously, we evaluated the mean average error (MAE) for each hydraulic variable o over the whole simulation as:

MAEo =
1

H

H∑
τ=1

∥ûτ
o −uτ

o∥1, (16)

The prediction horizon H depends on the total simulation time and temporal resolution, e.g., predicting 24 hours with a290

temporal resolution of 30 min results in H = 48 steps ahead. We also measured the spatio-temporal error distribution of the

water depth using the critical success index (CSI) for threshold values of 0.05 m and 0.3 m, as in Löwe et al. (2021). The CSI

measures the spatial accuracy of detecting a certain class (e.g., flood or no-flood) and, for a given threshold, it is evaluated as

CSI =
TP

TP +FP +FN
(17)

where TP are the true positives, i.e., number of cells where both model and simulations predict flood, FP are the false positives,295

i.e., number of cells where the model wrongly predicts flood, and FN are the false negatives, i.e., number of cells where the

model does not recognize a flooded area. We selected this measure as it discards true negatives, i.e., when both model and

simulation predict no flood, as this condition is over-represented, especially for the initial time steps. Thus, including true

negatives may give an overconfident performance estimate. We measured the computational speed-up as the ratio between the

computational time required by the numerical model and the inference time of the deep learning model. Both times refer to the300

execution of the complete flood simulation but do not include the time required to simulate the initial time steps.
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5 Numerical Results

5.1 Comparison with other deep learning models

The proposed SWE-GNN model is compared with other deep learning methods including:

– CNN: encoder-decoder convolutional neural network, based on U-NET (Ronneberger et al., 2015). The CNN considers305

the node feature matrix X reshaped as a tensor X ∈ Rg×g×IN , where g is the number of grid cells, i.e., 64 for datasets 1

and 2 and 128 for dataset 3, and IN is the number of static and dynamic features. This baseline is used to highlight the

advantages of the mesh dual graph as an inductive bias in place of an image;

– GAT: graph attention network (Velickovic et al., 2017). The weights in the propagation rule are learned, considering an

attention-based weighting. This baseline is considered to show the influence of learning the propagation rule with an310

attention mechanism. For more details see Appendix A;

– GCN: graph convolutional neural network (Defferrard et al., 2016). This baseline is considered to show the influence of

not learning the edge propagation rule, in place of learning it. For more details see Appendix A;

– SWE-GNNng: SWE-GNN without the gradient term xdj − xdi. This is used to show the importance of the gradient term

in the graph propagation rule.315

We evaluated also MLP-based models, but their performance was too poor and we do not report it. All models consider the same

node features inputs X = (Xs,Xd), produce the same output Ŷ = Ut+1, produce extended simulations by using the predictions

as input (as in Fig. 3), and use the same training strategy with the multi-step-ahead loss and curriculum learning. For the GNN-

based models, we replaced the GNN in the processor, while keeping the encoder-decoder structure as in Fig. 2. We conducted a

thorough hyperparameter search for all models, and we selected the one with the best validation loss. For the CNN architecture,320

Table 2. Performance of the deep learning models over the test dataset 1. The provided uncertainty estimates account for the variability across

the different simulations in the dataset. Bold results indicate the best performances, considering a statistical significance with a p-value of

0.05.

DL model RMSE MAE CSIτ [%]

h (m) [10−2] |q| (m2/s) [10−2] h (m) [10−2] |q| (m2/s) [10−2] τ=0.05 m τ=0.3 m

CNN 10.97 ± 5.11 1.33 ± 0.57 3.87 ± 1.29 0.42 ± 0.13 75.64 ± 9.40 73.42 ± 9.26

GAT 25.78 ± 7.23 1.96 ± 0.61 9.27 ± 0.73 5.78 ± 0.11 34.50 ± 10.91 27.07 ± 8.63

GCN 16.49 ± 6.91 1.65 ± 0.55 6.05 ± 1.62 0.57 ± 0.11 61.14 ± 13.34 58.89 ± 11.90

SWE-GNN_ng 16.24 ± 6.65 1.71 ± 0.66 6.10 ± 1.56 0.63 ± 0.07 58.61 ± 11.97 57.91 ± 12.62

SWE-GNN 11.15 ± 5.11 1.22 ± 0.42 3.93 ± 1.63 0.37 ± 0.10 75.85 ± 9.30 73.44 ± 9.28

14



the best model has three down- and up-scaling blocks, with 64 filters in the first encoding block. Interestingly, we achieved

good results only when employing batch normalization layers, PReLU as an activation function, and no residual connections.

All other standard combinations resulted in poor performances, which we did not report as they are outside the scope of the

paper. For the GNN-based architectures, all hyperparameter searches resulted in similar best configurations, i.e., L= 8 GNN

layers and an embedding size G=64.325

In Table 2, we report the testing RMSE and MAE for water depth and discharges, and the CSI scores for all models. The

proposed SWE-GNN model and the U-NET-based CNN perform consistently better than all other models, with no statistically

significant difference in performance according to the Kolmogorow-Smirnov test (p-value less than 0.05). The CNN performs

similar to the SWE-GNN because the computations on a regular grid are similar to those of a GNN. Nonetheless, there are

valuable differences between the two models. First, SWE-GNN is by definition more physically explainable as water can only330

propagate from wet cells to neighboring cells, while in the CNN there is no such physical constraint, as exemplified by Fig.

5b. Second, as emphasized in the following section, the SWE-GNN results in improved generalization abilities. Moreover,

contrarily to CNNs, GNNs can also work with irregular meshes. Regarding the other GNN-based models, we noticed that

the GAT model had the worse performance, indicating that the propagation rule cannot be learned efficiently via attention

mechanisms. Moreover, the GCN and the SWE-GNNng achieved comparable results meaning that the gradient term gives a335

relevant contribution to the model as its removal results in a substantial loss in performance. We expected this behavior as,

without this term, there is no computational constraint to how water propagates.

5.2 Generalization to other breach locations and larger areas

We further tested the already trained models on datasets 2 and 3, with unseen topographies, unseen breach locations, larger

domain sizes, and longer simulation times, as described in Table 1. In the following, we omit the other GNN-based models,340

since their performance was poorer, as highlighted in Table 2.

Table 3. Performance of the deep learning models over the test datasets 2 and 3, respectively composed of unseen domains with unseen breach

locations and unseen domains four times bigger than the training ones, also with unseen breach locations. The provided uncertainty estimates

account for the variability across different simulations. Bold results indicate the best performances, considering a statistical significance with

a p-value of 0.05.

Test DL model RMSE MAE CSIτ [%]

dataset h (m) [10−2] |q| (m2/s) [10−2] h (m) [10−2] |q| (m2/s) [10−2] τ=0.05 m τ=0.3 m

2
CNN 15.74 ± 7.00 1.69 ± 0.47 6.50 ± 2.37 0.54 ± 0.13 51.90 ± 20.25 47.82 ± 18.42

SWE-GNN 11.11 ± 4.65 1.31 ± 0.44 4.84 ± 1.87 0.48 ± 0.13 73.62 ± 8.04 68.46 ± 7.13

3
CNN 16.86 ± 3.12 1.21 ± 0.16 6.07 ± 1.77 0.36 ± 0.10 42.16 ± 15.63 40.92 ± 15.96

SWE-GNN 11.38 ± 3.95 1.12 ± 0.30 3.77 ± 1.98 0.31 ± 0.12 68.53 ± 10.18 64.53 ± 11.20
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(a) Dataset 2

(b) Dataset 3

Figure 5. Comparison of the proposed SWEGNN model against the CNN, for two examples in test datasets 2 (a) and 3 (b). In each panel, the

top left image represents the digital elevation model (DEM), along with a red cross in correspondence of the breach location. The following

blocks represent, respectively, the ground-truth numerical results, the SWE-GNN predictions, and the CNN predictions for water depth and

unit discharges, at the last time instant of the simulation (i.e., 48h for dataset 2 and 120h for dataset 3).

Table 3 shows that all metrics remain comparable across the various datasets for SWE-GNN, with test MAE of approximately

0.04m for water depth and 0.004m2/s for unit discharges, indicating that the model has learned the dynamics of the problems.

The speed-up on GPU of SWE-GNN over dataset 3 further increased, with respect to the smaller areas of dataset 1 and 2,

reaching values twice as higher, i.e., ranging from 100 to 600 times faster than the numerical model on the GPU. We attribute345

this to the deep learning models’ scalability and better exploitation of the hardware for larger graphs.

In Figure 5, we see two examples of SWE-GNN and CNN on the test datasets 2 and 3. The SWE-GNN model predicts better

the flood evolution over time for unseen breach locations, even in bigger and unseen topographies, thanks to its hydraulic-

based approach. On the other hand, the CNN strongly over- or under-predicts the flood extents, unless the breach location is
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(a) Water depths

(b) Discharges

Figure 6. SWE-GNN model’s predictions for water depth (a) and discharges (b). The results are displayed over time for a test topography in

dataset 1, comparing the ground-truth output of the numerical simulation (top row) with the predictions (middle row). The difference (bottom

row) is evaluated as the predicted value minus the ground-truth one; thus, positive values correspond to model over-predictions while negative

values correspond to under-predictions. The legends refer to the maximum values throughout the whole simulation. The top left panel in both

sub-figures represents the initial hydraulic conditions given as input to the DL model, along with the dry bed conditions at time t= 0.
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close to that of the training dataset, indicating that it lacks the correct inductive bias to generalize floods. For both models, the350

predictions remain stable even for time horizons 2.5 times longer than those in training.

5.3 SWE-GNN model analysis
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Figure 7. Temporal evolution of CSI scores, MAE, and RMSE for test dataset 1. The confidence bands refer to one standard deviation from

the mean.
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CSI. As the temporal resolution decreases and, conversely, as the time step increases, the optimal number of GNN layers, in terms of desired

performance level, increases.

Over the entire test part of dataset 1, the model achieves an MAE of 0.04m for water depth and 0.004m2/s for unit dis-

charges, with respect to maximum water depths and unit discharges respectively of 2.88m and 0.55m2/s, and average water

depths and unit discharges of 0.62m and 0.037m2/s.355

We illustrate the spatio-temporal performance of the model on a test sample in Figure 6. Water depth and discharges evolve

accurately over time, overall matching the ground-truth numerical results. The errors are related to small over- or under-

predictions, a few incorrect flow routes, and lags in the predictions resulting in delays or anticipations that are corrected
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Figure 9. Pareto fronts (red-dotted lines) in terms of speed-ups, RMSE, and CSI for varying number of parameters, both for CPU and GPU,

for a temporal resolution ∆t=1h.

by the successive model iterations. In particular, the model struggles to represent discharges in correspondence of ponding

phenomena, i.e., when an area gets filled with water and then forms a temporary lake, as exemplified in the bottom-left part360

of the domain in Figure 6b. This is because of the lower contribution of the discharges to the training loss. Nonetheless, the

error does not propagate over time, thanks to the multi-step-ahead loss employed during training. In fact, the model updates

the solution for the entire domain at each time step. Consequently, it exploits information on newly flooded neighborhoods to

recompute better values for the cells that were flooded before.

We also observe the average performance of the different metrics over time, for the whole test dataset 1, in Figure 7. The365

CSI is consistently high throughout the whole simulation, indicating that the model correctly predicts where water is located

in space and time. On the other hand, both MAE and RMSE increase over time. This is partially due to the evaluation of both

metrics via a spatial average, which implies that in the first time steps, where the domain is mostly dry, the error will naturally

be lower. Nonetheless, the errors increase linearly or sub-linearly, implying that they are not prone to explode exponentially.

Next, we analyzed the relationship between the number of GNN layers and the temporal resolution, to validate the hypothesis370

that the number of layers is correlated with the time steps. Following the CFL condition, we can expand the computational

domain by increasing the number of GNN layers in the model instead of decreasing the time steps. We considered several

models with an increasing number of GNN layers targeting temporal resolutions ∆t = 30,60,90,120min. Figure 8 shows that

lower temporal resolutions (e.g., 120min) require more GNN layers to reach the same performance as that of higher temporal

resolutions (e.g., 30min). One reason why the number of layers does not increase linearly with the temporal resolution may be375

that the weighting matrices Wℓ (cfr. eq. (7)) improve the expressive power of each layer, leading to fewer layers than needed

otherwise.

Finally, we explored different model complexity combinations, expressed by the number of GNN layers and the latent space

size, to determine a Pareto-front for validation loss and speed-up, which results in a trade-off between fast and accurate models.

Figure 9 shows that increasing the complexity reduces both errors and speed-ups while improving the CSI, as expected. While380
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for the GPU the number of hidden features does not influence the speed-up, the performance on the CPU depends much more

on it, with bigger models being slower, implying different trade-off criteria for deployment.

5.4 Sensitivity analysis on the training strategy
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Figure 10. Influence of: (a) the number of training steps ahead on the validation RMSE and (b) the update interval in the curriculum learning.

Finally, we performed a sensitivity analysis on the role of the multi-step-ahead function (cfr. eq. (14)) and the curriculum

learning (Algortihm 1) on the training performance. Sensitivity analysis is a technique that explores the effect of varying hyper-385

parameters to understand their influence on the model’s output. Figure 10a shows that increasing the number of steps ahead

improves the performance. Increasing the number of steps implies higher memory requirements and longer training times.

Because of the best performances and GPU availability, we selected 8 steps ahead in all experiments. However, when per-

forming bigger hyper-parameter searches or when limited by hardware, choosing fewer steps ahead can result in an acceptable

performance. Similar considerations can also be done for the CNN model.390

Figure 10b shows that increasing the interval of curriculum steps linearly reduces the training times, while also improving

the performance. The decrease in performance associated to bigger values is probably caused by the number of total training

epochs, i.e., 150, which are insufficient to cover the whole prediction horizon H . Increasing the total number of epochs should

increase both the performance and the training time but we avoided this analysis and chose an interval of 15 epochs for

the curriculum learning strategy, as a trade-off between performance and training times. Moreover, models with curriculum395

steps between 0 and 15 suffered from spurious instabilities during training, that were compensated with early stopping, while

models with more curriculum steps were generally more stable. This is due to sudden variations in the loss function that limit

a smoother learning process.
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6 Concluding remarks

We proposed a deep learning model for rapid flood modelling, called SWE-GNN, inspired by shallow water equations (SWE)400

and graph neural networks (GNN). The model takes the same inputs as a numerical model, i.e., the spatial discretization of the

domain, elevation, slopes, and initial value of the hydraulic variables, and predicts their evolution in time in an auto-regressive

manner. The results show that the SWE-GNN can correctly predict the evolution of water depth and discharges with mean

average errors in time of 0.04 m and 0.004 m2/s, respectively. It also generalizes well to previously unseen topographies with

varying breach locations, bigger domains, and longer time horizons. SWE-GNN is up to two orders of magnitude times faster405

than the underlying numerical model. Moreover, the proposed model achieved consistently better performances with respect

to other deep learning models, in terms of water depth and unit discharge errors as well as CSI.

In line with the hypothesis, GNNs proved to be a valuable tool for spatio-temporal surrogate modelling of floods. The analogy

with finite volume methods is relevant for three motivations. First, it improves the deep learning model’s interpretability, as

the weights in the graph propagation rule can be interpreted as an approximate Riemann solver and multiple GNN layers410

can be seen as intermediate steps of a multi-step method such as Runge-Kutta. Second, the analogy also provides an existing

framework to include conservation laws in the model and links two fields that can benefit from each other advances. For

example, multiple spatial and temporal resolutions could be jointly used, in place of a fixed one, similarly to Liu et al. (2022).

Third, the methodology is applicable for any flood modelling application where the SWE hold, such as storm surges and river

floods. The same reasoning can also be applied to other types of partial differential equations where finite volume methods are415

commonly used, such as in computational fluid dynamics.

The current analysis was carried out under a constant breach inflow as a boundary condition. Further research should extend

the analysis to time-varying boundary conditions to better represent complex real-world scenarios. One solution is to employ

ghost cells, typical of numerical models (LeVeque et al., 2002), for the domain boundaries, assigning known values in time.

It must be noted that our model cannot yet completely replace numerical models, as it requires the first time step of the420

flood evolution as input. This challenge could be addressed by directly including boundary conditions in the model’s inputs.

Contrarily to physically-based numerical methods, the proposed model does not strictly enforce conservation laws, such as

mass balance. Future work could address this limitation by adding conservation equations in the training loss function, as is

commonly done with physics-informed neural networks. Finally, while we empirically showed that the proposed model along

with the multi-step-ahead loss can sufficiently overcome numerical stability conditions, we provide no theoretical guarantee425

that stability can be enforced for an indefinite amount of time steps.

Future research should investigate the new modelling approach in flood risk assessment and emergency preparation. This

implies creating ensembles of flood simulations to reflect uncertainties, flood warning and prediction of extreme events, and

exploring adaptive modelling during floods, by incorporating real-time observations. The model should also be validated in

real case studies featuring linear elements such as secondary dikes and roads, typical of polder areas. Further work could also430

address breach uncertainty in terms of timing, size, growth, and amount of breaches. Moreover, future works should aim at

improving the model’s Pareto front. For improving the speed-up, one promising research direction would be to employ multi-
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scale methods that allow to reduce the number of message passing operations, while still maintaining the same interaction

range (e.g., Fortunato et al., 2022; Lino et al., 2022). On the other hand, better enforcing physics and advances in GNNs with

spatio-temporal models (e.g., Sabbaqi and Isufi, 2022) or generalizations to higher-order interactions (e.g., Yang et al., 2022)435

may further benefit the accuracy of the model. Overall, the SWE-GNN marks a valuable step towards the integration of deep

learning for practical applications.

Appendix A: Architecture details

In this section, we further detail the different inputs and outputs, the hyperparameters, and the models’ architectures used in

Section 5.1.440

A1 Inputs, outputs, and hyperparameters

Static inputs

Xs

Slop
e x

Slop
e y

Elev
ati

on

Dynamic inputs

U0 U1

W
ate

r de
pth

(ti
me=

0h
)

Disc
ha

rge
(ti

me=
0h

)

W
ate

r de
pth

(ti
me=

1h
)

Disc
ha

rge
(ti

me=
1h

)

Φ

U2

W
ate

r de
pth

(ti
me=

2h
)

Disc
ha

rge
(ti

me=
2h

)

Φ

. . .
Φ

U48

Output 1 Output 48

W
ate

r de
pth

(ti
me=

48
h)

Disc
ha

rge
(ti

me=
48

h)

Figure A1. Detailed inputs and outputs used in the paper, considering a regular mesh, p= 1 previous time steps and a time resolution

∆t= 1h. The initial inputs are dry bed conditions, i.e., Ut=0h, and the first time step of the simulation, i.e., Ut=1h, given by the numerical

model.

Fig. A1 shows the inputs employed by all models in Section 5.1. The static inputs Xs are given by the slopes in the x and y

directions, and the elevation, while the initial dynamic inputs Xd = (U0,U1) are given by water depth and discharge at times

t= 0h, i.e., the empty domain, and t= 1h.

Table A1 shows the hyperparameters employed for each model. Some hyperparameters are common to all models, such as445

learning rate, number of maximum training steps ahead, and optimizer, while other change depending on the model, such as

embedding dimensions and number or layers.
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Table A1. Summary of the hyperparameters and related values’ ranges employed for the different deep learning models. The bold values

indicate the best configuration in terms of validation loss.

DL model Hyperparameter name Values’ range (best)

All models Initial learning rate 0.005

Input previous time steps (p) 1

Temporal resolution (∆t) 1h

Maximum training steps ahead (H) 8

Optimizer Adam

GNN models Embedding dimension (G) 8,16,32,64

Number of GNN layers (L) 1,2,3,4,5,6,7,8,9

Batch size 8

CNN First embedding dimension 16,32,64, 128

Number of encoding blocks 1,2,3,4

Activation function ReLU, PReLU, no activation

Batch size 64

A2 GNN benchmarks

We compared the proposed model against two benchmark GNNs that employ different propagation rules. Since those models

cannot independently process static and dynamic attributes, contrarily to the SWE-GNN, we stacked the node inputs into a450

single node feature matrix X = (Xd,Xs), which passes through an encoder MLP and then to the GNN.

Graph Convolutional Neural Network (GCN) employs the normalized Laplacian connectivity matrix to define the edge

weights sij . The layer propagation rule reads as:

sij =
(

I−D−1/2AD−1/2
)
ij
, (A1)

h(ℓ+1)
i =

∑
j∈Ni

sijW(ℓ)h(ℓ)
j , (A2)455

where I is the identity matrix, A is the adjacency matrix, which has non-zero entries in correspondence of edges, and D is the

diagonal matrix.

Graph Attention Network (GAT) employs an attention-based mechanism to define the edge weights sij based on their

importance in relation to the target node. The layer propagation rule reads as:

sij =
exp(LeakyReLU(aT [W(ℓ)h(ℓ)

i ||W(ℓ)h(ℓ)
k ))∑

k∈Ni
exp(LeakyReLU(aT [W(ℓ)h(ℓ)

i ||W(ℓ)h(ℓ)
k ]))

, (A3)460

h(ℓ+1)
i =

∑
j∈Ni

sijW(ℓ)h(ℓ)
j , (A4)

23



where a ∈ R2G is a weight vector, sij are the attention coefficients, and || denotes concatenation.

A3 CNN

The encoder-decoder convolutional neural network is an architecture composed of two parts (Fig. A2). The encoder extracts

high-level features from the input images, while reducing theirs extent, via a series of convolutional and pooling layers, while465

the decoder extracts the output image from the compressed signal, again via a series of convolutional layers and pooling layers.

The U-NET version of the architecture also features residual connections between images with the same dimensions, i.e., the

output of an encoder block is summed to the inputs of the decoder block with the same dimensions, as shown in Fig. A2. The

equation for a single 2D convolutional layer is defined as:

Yk = σ(Wk ∗X), (A5)470

where Yk is the output feature map for the k-th filter, X is the input image, Wk is the weight matrix for the k-th filter, ∗ denotes

the 2D convolution operation, and σ is an activation function.

64

128

256

128

64

Figure A2. U-NET based CNN architecture employed in the experiments, with first embedding dimension of 64 and three encoding blocks.

Each block is composed of one convolutional layer, followed by a batch normalization layer, a PReLU activation function, another con-

volutional layer, and finally a pooling layer. All blocks with the same dimensions are connected by residual connections, indicated by the

horizontal lines.
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Figure B1. Pareto fronts on test dataset 3 (red-dotted lines) in terms of speed-ups, RMSE, and CSI for varying number of parameters for a

temporal resolution ∆t=1h.

Appendix B: Pareto front for dataset 3

We employed the models trained with different combinations of number of GNN layers and embedding size (Section 5.3) on

test dataset 3. Figure B1 shows that the models performs better in terms of speed with respect to the smaller areas, achieving475

similar CPU speedups and GPU speedups around two times higher than those in datasets 1 and 2.

Code and data availability. The employed dataset can be found at https://dx.doi.org/10.5281/zenodo.7764418. The code repository is avail-

able at https://github.com/RBTV1/SWE-GNN-paper-repository-.

Video supplement. The simulations on the test datasets 1, 2, and 3, run with the presented model, can be found at https://dx.doi.org/10.5281/

zenodo.7652663.480
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