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Abstract. Isotopic measurements of trace gases such as N2O, CO2 and CH4 contain valuable information about production and

consumption pathways. Quantification of the underlying pathways contributing to variability in isotopic timeseries can provide

answers to key scientific questions, such as the contribution of nitrification and denitrification to N2O emissions under different

environmental conditions, or the drivers of multiyear variability in atmospheric CH4 growth rate. However, there is currently

no data analysis package available to solve isotopic production, mixing and consumption problems for timeseries data in a5

unified manner while accounting for uncertainty in measurements and model parameters as well as temporal autocorrelation

between data points and underlying mechanisms. Bayesian hierarchical models combine the use of expert information with

measured data and a mathematical mixing model while considering and updating the uncertainties involved, and are an ideal

basis to approach this problem.

Here we present the TimeFRAME data analysis package for ‘Time-resolved FRactionation And Mixing Evaluation’. We use10

four different classes of Bayesian hierarchical model to solve production, mixing and consumption contributions using multi-

isotope timeseries measurements: i) independent time step models, ii) Gaussian process priors on measurements, iii) Dirichlet-

Gaussian process priors, and iv) generalized linear models with spline bases. We show extensive testing of the four models for

the case of N2O production and consumption in different variations. Incorporation of temporal information in approaches i-iv)

reduced uncertainty and noise compared to the independent model i). Dirichlet-Gaussian process prior models have been found15

to be most reliable, allowing for simultaneous estimation of hyperparameters via Bayesian hierarchical modeling. Generalized

linear models with spline bases seem promising as well, especially for fractionation estimation, although the robustness to real

datasets is difficult to assess given their high flexibility. Experiments with simulated data for δ15Nbulk and δ15NSP of N2O

showed that model performance across all classes could be greatly improved by reducing uncertainty in model input data -

particularly isotopic endmembers and fractionation factors. The addition of the δ18O additional isotopic dimension yielded20
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a comparatively small benefit for N2O production pathways but improved quantification of the fraction of N2O consumed;

however, the addition of isotopic dimensions orthogonal to existing information could strongly improve results, for example

clumped isotopes.

The TimeFRAME package can be used to evaluate both static and timeseries datasets, with flexible choice of the number

and type of isotopic endmembers and the model set up allowing simple implementation for different trace gases. The package25

is available in R, and is implemented using Stan for parameter estimation, in addition to supplementary functions re-

implementing some of the surveyed isotope analysis techniques.

1 Introduction

Analysis of isotopic signatures is frequently used in environmental sciences to infer production and consumption pathways

for trace gases. For example, N2O isotopic composition reflects the production via different pathways (including microbial30

denitrification, nitrification, fungal denitrification), mixing within the soil airspace, and consumption via complete denitrification.

The different production pathways have distinct isotopic ‘endmembers’, which describe the isotopic composition of emitted

N2O. Following emission, N2O from different pathways mixes in the soil airspace, described using the approximated mixing

equation (Ostrom et al., 2007; Fischer, 2023):

δmix ≈
K∑

k=1

fkδk (1)35

where δmix is the isotopic composition of a mixture of two or more sources enumerated by k = 1, ...,K with isotopic compositions

designated δk and fractional contributions to the mixture designated by fk. This approximation assumes that the light isotope

has a much greater concentration than the heavy isotope, which is valid for common trace gases such as CO2, CH4 and N2O.

N2O is consumed during complete denitrification to N2, which favours the light isotope and thus leads to progressive

enrichment of the remaining N2O pool. The isotopic effect of consumption can be approximated using the Rayleigh equation40

(Mariotti et al., 1981; Ostrom et al., 2007; Fischer, 2023):

δsubstr,r ≈ δsubstr,r=1 + ϵ ln(r) (2)

where δsubstr,r=1 and δsubstr,r are the isotopic composition of the initial substrate prior to consumption (r = 1) and when a

certain fraction (1− r) has been consumed, ϵ is the fractionation factor for the reaction in permil (‰) and r is the fraction of

substrate remaining where r = 0 represents a complete reaction.45

We can combine equations 1 and 2 for a full model of mixing and fractionation of the subsequent mixture; for example,

mixing of N2O from different sources within the soil airspace, followed by complete reduction of a certain fraction of N2O,

before measurement of N2O isotopic composition (Fischer, 2023):

δ =

K∑
k=1

fkδk + ϵ ln(r) (3)

2



where δ is the measured isotopic composition. In this equation, we assume that mixing occurs before fractionation, when in50

reality mixing and fractionation are likely occurring simultaneously depending on the soil pore size distribution and connectivity,

the availability of different substrates, and the microbial community present (Denk et al., 2017; Yu et al., 2020; Lewicka-

Szczebak et al., 2020). A detailed discussion of the implications of this assumption is given in SI Section 1. Further uncertainty

in the model equation relates to open vs. closed system fractionation, describing renewal of the N2O pool relative to the

rate of N2O consumption (Yu et al., 2020; Lewicka-Szczebak et al., 2020). However, the largest uncertainties in evaluation55

of this equation to interpret the measured isotopic composition δ relate to the endmembers for different sources δk and the

fractionation factor ϵ.

A commonly used approach to interpret trace gas isotopic measurements is the application of dual-isotope mapping, which

utilises the relationship between two isotopic parameters to infer pathways, for example δ15Nbulk and δ15NSP in the case

of N2O. The mapping approach can be used to roughly estimate the dominance of different pathways and the importance of60

fractionation during consumption (Wolf et al., 2015; Lewicka-Szczebak et al., 2017; Wu et al., 2019; Yu et al., 2020; Rohe et al.,

2021). However, they fail to provide quantitative determination of different pathways or to estimate uncertainty for individual

samples. Moreover, mapping approaches are limited to mixing scenarios involving only two sources, which - for example -

does not allow for the differentiation of contributions from the nitrification and fungal denitrification pathways which have

similar δ15NSP signatures. In addition, there are no statistical packages available to implement these mapping approaches,65

calling into question the reproducibility among studies using this approach.

Bayesian approaches to solve isotopic mixing models have been successfully implemented in several well-known frameworks

(R packages MixSIAR, simmr) (Parnell et al., 2013; Stock et al., 2018). These advanced models are used to resolve the

contribution of multiple sources to a mixture using a range of Bayesian statistical techniques, and are widely used for applications

such as animal diet partitioning (Stock et al., 2018). However, these packages do not offer the capability to deal with pool70

consumption and Rayleigh fractionation, and thus are not suitable for the interpretation of trace gas isotopic measurements

where consumption/destruction plays a key role (Fischer, 2023; Lewicka-Szczebak et al., 2020).

The FRAME (Fractionation And Mixing Evaluation) model provided the first Bayesian tool to include both mixing and

fractionation for the interpretation of isotopic data (Lewicka-Szczebak et al., 2020; Lewicki et al., 2022). FRAME applies a

Markov-Chain Monte Carlo (MCMC) algorithm to estimate the contribution of individual sources and processes, as well as the75

probability distributions of the calculated results (Lewicki et al., 2022). However, the FRAME model can only be applied to

timeseries data by solving separately for single or aggregated points. Although the contribution of different pathways may vary

strongly on short timescales, model parameters - such as isotopic endmembers and fractionation factors - are expected to show

minimal variability between subsequent points in a time series. Timeseries information can be added to isotopic models through

statistical approaches using smoothing and other techniques to account for temporal autocorrelation and measurement noise, or80

through the application of dynamic approaches incorporating differential equations (Bonnaffé et al., 2021). In TimeFRAME,

we use the statistical approach as a natural extension to the implementation of FRAME; investigation of dynamical approaches

may be challenging due to high uncertainties in all inputs and should be a focus of further research.
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Here we present the TimeFRAME extension to the FRAME model to allow for efficient analysis of timeseries data.

TimeFRAME uses one independent time step model in which points in a time series are treated independently, and three85

classes of model to fully incorporate time series information: i) independent time step models, ii) Gaussian process priors

on measurements, iii) Dirichlet-Gaussian process priors, and iv) generalized linear models with spline bases. The models are

solved for the contribution of different pathways, endmembers and fractionation factors within a MCMC framework, and the

full posterior distributions of parameters are reported. The isotopes, endmembers, fractionation factors and model set up are

defined by the user, allowing flexible application to many isotopic problems.90

2 Methodology

2.1 Inference of source contributions

One objective of studying isotopic signatures is to determine the source contributions f1 · · ·fK from measurements of the

mixture. However, measuring one single isotopic species will only be efficient in distinguishing between a maximum of two

sources. For additional sources, or if consumption of the mixture needs to be accounted for, multiple isotopic species are95

necessary. Analysis of N2O sources and pathways, for instance, can include analysis of δ15Nbulk, δ15NSP and δ18O. The

vector of d different isotopic species shall be denoted by X ∈ Rd. Measurements of the isotopic endmember for each individual

source enumerated by k = 1, ...,K are assumed to be known and denoted by S1, ...,SK ∈ Rd together with the fractionation

factor ϵ ∈ Rd. Using vector and matrix notation they can later be used to state the mixing equation in vector form:

f := [f1 · · ·fK ]T ∈ RK (4)100

S := [S1 · · ·SK ]T ∈ Rd×K (5)

The case of Rayleigh fractionation as expressed in Eq. 3 can be similarly expressed in vectorised form:

X = µ(f , r) := Sf + ϵ ln(r) (6)

In a simple example with two sources and measurements of two isotopic species K = d= 2 the mixing equation can be solved105

(assuming convergence is possible) for the parameters of interest using linear algebra (see (Fischer, 2023) for details). More

generally, mixing and fractionation according to Eq. 6 can be solved for an arbitrary number of sources as long as an equal

number of isotopic species is available, ie. K = d≥ 2. In this case the linear system of equations can be written in matrix

terms, and augmented with the sum constraint on f :

X̃ :=

X
1

=

 S −ϵ

1T 0

 f

ln(r)

=: S̃̃f (7)110

This d+1-dimensional linear system of equations can be addressed with decomposition techniques and its solution can be

expressed as f̃ = S̃−1X̃ . A unique solution exists if S̃ is invertible, or equivalently, if none of the mixing lines as well as
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the consumption line are co-linear. Only non-negative solutions f̃ ≥ 0 are feasible to ensure that the source contributions f

correspond to mixing weights and that 0< r ≤ 1.

A flaw of the isotope mapping approach as presented above is that it does not take measurement uncertainty into account.115

However, this can easily be added by formulating the measurements X as random variables with expected value given by the

mixing equation E[X] = µ(f , r). Most commonly, measurements are modeled using the Gaussian distribution with independent

components and variance η2 ∈ R, thus allowing the mixing-fractionation equation to be stated as:

X ∼Nd(µ(f , r),η
21) =Nd(Sf + ϵ ln(r),η21) (8)

A maximum likelihood solution to this mixing-fractionation equation can be pursued (see (Fischer, 2023) for details), however120

this limits the framework to parameters that can be approximated with a Gaussian distribution. Often, the epistemic uncertainty

of source isotopic endmembers is modelled as a uniform distribution to best account for the combination of measurement

uncertainty and true variability in endmember values (Lewicki et al., 2022). Bayesian statistics is useful to incorporate all

assumptions and constraints into the model, as well as to employ numerical inference methods for source contribution estimation

and uncertainty estimation.125

2.2 Stationary inference

Stationary inference involves inference for the source contributions f ∈ SK , where SK is the K-simplex, and the fraction of the

pool remaining r ∈ [0,1] for one single measurement independent of time. This can be accomplished with the original FRAME

model (Lewicki et al., 2022). FRAME constructs a prior and likelihood structure where the isotopic species measurements

X ∈ Rd are independently normally distributed with variance vector η2 ∈ Rd
+ around a mean given by an arbitrary mixing130

equation µ(f , r). The source contributions f are then equipped with a flat Dirichlet prior and the fraction remaining r with a

uniform prior:

f ∼Dir(1), r ∼Uni(0,1)

X|f , r ∼Nd(µ(f , r),η
2)

(9)

The auxiliary parameters for the mixing equation S and ϵ are understood to be random variables as well, with predetermined

fixed priors that are omitted from the model description above. Choosing those priors is dependent on the origin of the data and135

thus not subject to the further engineering of inference models in the following sections. The likelihood of X is understood to

be implicitly conditional on these auxiliary parameters. This means that a joint posterior π(f , r,S, ϵ|X) is fit by the model and

the reported posterior π(f , r|X) is simply its marginalization.

The FRAME model can be extended by taking different choices of prior distributions for the parameters of interest (the

source contributions f and the fraction remaining r). The Jeffreys prior for source contributions is constructed by computing140

the Fisher information matrix and choosing the probability distribution proportional to the square root of its determinant. For

the source contributions f =

1− f

f

 ∈ S2 of two sources S1,S2 ∈ R the computation can be done by omitting the influence
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of fractionation, leading to a uniform prior over the domain of f . For multiple source contributions this is equivalent to the flat

Dirichlet distribution used in the original FRAME model.

Taking now fraction remaining with regards to Rayleigh fractionation r ∈ [0,1] independently of the mixing weights f145

into account, the Jeffreys prior can be computed relative to the pure mixing solution M =X −S1(1− f)−S2f ∈ R with

fractionation factor ϵ ∈ R (Fischer, 2023):

Ir(r)∝−E
[
d2r

dr2
(M − ϵ ln(r))2

η2
|r
]
=

2ϵ2

η2r2
∝ 1

r2
(10)

Therefore the objective prior for the fraction remaining r is given by π(r)∝ 1
r for r ∈ [0,1], which is also known as the

logarithmic prior; since it cannot be normalized it is an improper prior. Additionally, even though this prior can be considered150

uninformative for r individually according to the Jeffreys criterion, a joint prior could lead to different results, although priors

are typically chosen as independent distributions.

In the case of Rayleigh fractionation, however, it might be more reasonable to use a different distribution that is somewhere

in between the uniform and logarithmic prior and incorporates the bounds to the interval [0,1] as well, which is a similar idea

to prior averaging (Berger et al., 2015). The beta distribution offers a functional form that is similar to the Jeffreys prior, but155

can be normalized. Parameterizing the distribution with a restricted concentration parameter α ∈ [0,1], the form Beta(α, 1) is

the uniform distribution for α= 1 and converges to the Jeffreys prior for α→ 0, thus expressing a generalized approach.

2.3 Time series inference

In order to incorporate time series information in the inference procedure, the model can be extended to work with multiple

measurements at different points in time. The source contribution f and fraction remaining r are assumed to be functions with160

respect to time fτ and rτ and the measurements correspond to samples in time Xt =X(τt) at n discrete time points τ1, ..., τn.

Now the measurements can be grouped into a measurement matrix X := [X1 . . .XN ] ∈ Rd×N , where the time dimension is

along the matrix rows. Inference of the parameters can be done at the identical time points ft = f(τt) and rt = r(τt), so that

they can be grouped into similar matrices as well: F := [f1 . . . fN ] ∈ RK×N and r := [r1 . . . rN ] ∈ R1×N . This grouping has

the advantage that the mixing equation can be expressed in vectorized form over all time points without changing its general165

layout (Fischer, 2023):

E[X|F,r] = µ(F,r) = SF+ ϵ ln(r) (11)

2.3.1 Independent time steps

The simplest method to extend the stationary model is to assume complete independence between all points in time. This

reduces the time series problem to a set of N independent stationary problems with one single measurement point each, thus170

the same stationary FRAME model can be used for each point. The vector of measurement errors η ∈ Rd is now also allowed
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to vary in time as η1, ...,ηN

ft ∼Dir(1), rt ∼Uni(0,1) ∀t

Xt|ft, rt ∼Nd(µ(ft, rt),η
2
t ) ∀t

(12)

The prior on the series of source contributions ft and pool fraction remaining rt is now fully independent in time and the

information that could be contained in the fact that some measurements are closer in time than others is ignored.175

Prior information can be encoded into the prior distribution for ft by introducing a concentration parameter σ ∈ RK
+ as well

as a parameter α ∈ (0,1) that interpolates between the uniform prior for rt and the Jeffreys prior using the beta distribution as

described in Section 2.2. This allows for the inclusion of information that is universally true for all time points simultaneously.

If no information is available the model can be extended by adding an additional hierarchical layer for these parameters with

weakly informative hyperpriors being the gamma distribution Γ(2,2) on the positive real axis for concentrations σ and the180

uniform Uni(0,1) for α:

σ ∼ Γ(2,2),α∼Uni(0,1)

ft ∼Dir(σ), rt ∼ B(α,1) ∀t

Xt|ft, rt ∼Nd(µ(ft, rt),η
2
t ) ∀t

(13)

2.3.2 Gaussian Process priors

Time series information can be incorporated by various methods in the case of unconstrained random variables. An obvious

method is to apply the FRAME model with independent time steps on a preprocessed measurement series. The timeseries185

preprocessing can be done before model application, without consideration of the Bayesian mixing model. Candidate preprocessing

algorithms are kernel smoothing, spline smoothing, and local polynomial regression. While the latter can offer uncertainty

estimates of the smoothed time series, a holistic treatment of estimation with uncertainty can be offered by Gaussian process

regression.

Despite the possibility of running the simple time-independent model on preprocessed measurement time series, it is190

beneficial to combine both steps into an advanced model; for example, the problem specific geometry could influence the

feasibility of a region in measurement space. A combined model will include a Gaussian process prior on the measurements Xt

such that posterior means Wt can be estimated and used to drive the FRAME model with independent time steps (Section 12).

The Gaussian process is shifted and scaled to align with the empirical mean µ̂X and standard deviation σ̂X of the measurements
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Xt and controlled by a kernel function G (Fischer, 2023):195

ft ∼Dir(1), rt ∼Uni(0,1) ∀t

Wt|ft, rt ∼Nd(µ(ft, rt),
η2t
2
) ∀t

W ∼ GPd(µ̂X , σ̂X ,G)

Xt|Wt, ft, rt ∼Nd(Wt,
η2t
2
) ∀t

(14)

The distribution on the latent estimates Wt is the product of the Gaussian process prior as well as the independent normal

distribution around the mixing estimate. Ideally, this model does not need to include sampling of ft and rt because if the

mixing equation can be expressed as a linear system of equations (Eq. 7) then the smooth measurement series Wt is sufficient

to solve for the source contribution and fractionation parameters directly. In practice, this approach reduces to applying isotopic200

mapping techniques to the time series that is preprocessed using Gaussian process smoothing.

If the mixing equation is not explicitly inverted but evaluated by sampling the parameters ft and rt, then the latent variables

W can be marginalized over and eliminated from the model. The product density of W can also be expressed using known

identities (Pedersen and Petersen, 2012) for each separate isotopic measurement dimension j = 1, ...,d in terms of its empirical

mean µ̂X,j , empirical standard deviation σ̂X,j and noise variance η2j . Using the Cholesky decomposition these distribution205

parameters can efficiently be computed and used for sampling, thus the latent parameters W can be eliminated from the model

and the likelihood of each row Xj: can be directly computed (Fischer, 2023):

F∼Dir(1), r∼Uni(0,1)

µ(F,r)∼ GPd(µ̂X , σ̂X ,G)

XT
j:|F,r∼NN (µ̃j , Σ̃j +

η2t
2
1) ∀j = 1, ...,d

(15)

Gaussian process priors on measurements use only one single hyperparameter which is the correlation length ρ used to compute

the kernel matrix Gij = κρ(τi, τj). The scale of the Gaussian process is always set to the empirical standard deviation of the210

data and is thus considered fixed. In order to compile a fully hierarchical Bayesian model an inverse gamma distribution
1
ρ ∼ Γ(2,2) can be used as hyperprior for the correlation length, assuming that the time scales are properly normalized.

2.3.3 Dirichlet-Gaussian Process priors

To make use of time series information in the source contributions f and the fraction reacted r, direct priors are desired. These

priors can be constructed by sampling auxiliary variables from multiple independent Gaussian processes Z∼ GPK(G) and215

at each point in time inverting the log ratio transformations on the simplex in order to create a time series of simplex-valued

variables ft . The fraction reacted rt is constrained to the interval [0,1] and can thus be linked for instance by applying the logit

transform logit(r) = ln r
1−r at each point in time, which maps it to the entire real axis. Hyperparameters for correlation length
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ρ ∈ R+ and concentration σ ∈ R+ are used to compute the kernel matrix Gij = σ2κρ(τi, τj) for the Gaussian process. The

general shape of these priors is visualized in Figure 1. Working with the matrix of source contributions F= [f1, ..., fn] ∈ RK×N220

and of the fraction reacted r= [r1, ..., rn] ∈ R1×N the model can be stated in vectorized form, where the link functions are

understood to be column-wise (Fischer, 2023):

clr(F)∼ GPK(G)

logit(r)∼ GP(G)

Xt|ft, rt ∼Nd(µ(ft, rt),η
2
t ) ∀t

(16)

a)

b)

Figure 1. Examples of Generalized Gaussian Process prior with the radial basis function kernel using different values for correlation length

(ρ) and concentration (σ). a) Prior observation for three sources (f1, f2, f3) mapped to the simplex using the centred log ratio transform,

shown over an arbitrary time axis using different values of ρ with σ = 1. b) Estimated marginal densities (LHS) of transformed Gaussian

process priors for different values of the concentration parameters σ with ρ= 0.1, with a prior observation for three sources (f1, f2, f3)

shown over an arbitrary time axis on the RHS.
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Both link functions used can easily be inverted once random variables Z∼ GPK(G) and Y ∼ GP(G) are sampled from

Gaussian processes over time t= 1, ...,N . The inverse of the CLR transform is given by the softmax function and the inverse of225

the logit link is given by the sigmoid function (see Fischer (2023)). The prior on the source contribution parameters G is known

as a generalized Gaussian process prior, and techniques such as Taylor expansion can be used to derive analytic approximations

(Chan and Dong, 2011). Its marginal is a softmax transformed multivariate Gaussian, which is also known as a logistic normal

distribution and serves as an approximation to the Dirichlet distribution (Aitchison and Shen, 1980; Devroye, 1986; Fischer,

2023). Mapping using centered log ratio (CLR) transforms thus creates a time series of random variables with approximate230

Dirichlet marginals, which is referred to as a Dirichlet-Gaussian process (DGP) (Chan, 2013).

The marginals are controlled by the parameter σ of the Gaussian process, which now acts as the concentration parameter of

the Dirichlet distribution. Since the covariance kernel G is scaled to generate Gaussian random variables with unit variance

if σ = 1, the marginal distribution in that case is approximately the uniform Dir(1). This can be seen by sampling from the

generalized Gaussian process priors and estimating the marginals, as shown in Figure 1b.235

Using the isometric log ratio transform ILR instead of CLR reduces the number of Gaussian processes that need to be sampled

to K − 1 for the source contributions. Inverting this link function is accomplished by applying an orthonormal base transform

U to the random variables, and then applying the softmax function. Since interpretability of the sampled Gaussian process

variables is not required, any orthonormal basis is suitable and a simple construction using Gram-Schmidt orthogonalization is

chosen (Nesrstová et al., 2022; Fischer, 2023):240

ILR(F)∼ GPK−1(G)

logit(r)∼ GP(G)

Xt|ft, rt ∼Nd(µ(ft, rt),η
2
t ) ∀t

(17)

Shorthand notation GP(G) = GP(0,1,G) is used with correlation length ρ and scale σ included in the kernel computation

Gij = σ2κρ(τi, τj). Both kernel parameters ρ and σ can be set in advance or given weak hyperpriors. The inverse gamma

distribution 1
ρ ∼ Γ(2,2) and the regular gamma distribution σ ∼ Γ(2,2) are chosen under the assumption that the time variables

τ1, ..., τN are scaled appropriately. This hierarchical model benefits especially from the reduced number of Gaussian processes245

sampled when using the ILR transform, since the kernel covariance matrix must be reconstructed in every sampling step.

The number of hyperparameters could be increased by using separate concentrations and correlation lengths for the source

contributions F and the fraction remaining r.

2.3.4 Spline-based priors

An alternative to Gaussian process priors are spline basis functions, which can be used to construct a linear fitting operation250

that is then mapped to simplex space. This allows for the addition of exogenous variables as predictors of source contributions

or fractionation. A cubic spline basis of M basis functions (Figure 2) is evaluated at the measurement points τ1, ..., τN to form

the evaluation matrix H ∈ RN×M with Hij = sj(τi) for polynomial basis functions s1(·), ...,sM (·). The time series of source

contributions in simplex space is reconstructed with the basis coefficients bk ∈ RM for each source k = 1, ...,K arranged to
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the matrix [b1 · · ·bK ]T =B ∈ RL×M and coefficients for fractionation c ∈ R1×M . This type of model is therefore part of the255

generalized linear model class (Nelder and Wedderburn, 1972) and allows for easy extension with fixed effects relating to

measurement dimensions as well as random effects for experiment replication. It will thus further be referred to as generalized

linear model with spline basis (spline GLM) (Fischer, 2023):

B,c∼N (0,1)

clr(F) =BHT

logit(r) = cHT

Xt|ft, rt ∼Nd(µ(ft, rt),η
2
t ) ∀t

(18)

In consequence, the distribution of the basis coefficient vector bk =BT
k: ∈ RM before transformation has distribution bk ∼260

NM (0,1) for source k = 1, ...,K. After application of the spline basis transform it is thus still Gaussian Hbk ∼NN (0,HHT),

although with a modified covariance matrix HHT ∈ RN×N . Since the inverse centered log ratio transform maps Gaussian

random variables with unit variance approximately to a uniform Dirichlet distribution, it makes sense to scale the basis

transform such that 1
NTr(HHT ) = 1, as the spline basis vectors are not semi-orthogonal in general.

f1

f3

f2

Figure 2. Examples of the spline prior for three source contributions (f1, f2, f3 where f1 + f2 + f3 = 1) transformed to the simplex with

the CLR transformation using different degrees of freedom M that can be used to control the covariance of source contributions at separate

points in time.

2.4 Prior distribution for the fraction remaining r265

Sampling the prior distribution of the fractionation weight r for closed system Rayleigh fractionation is challenging, because it

is connected through the non-linear logarithm to the effect on measurements. Although a uniform prior usually does not inform
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the posterior about anything except the boundaries, the effect of the logarithm on the posterior is much more unclear. Different

choices for prior distributions of r were thus tested for their effect on the generated posterior sample. The simulated dataset

used 17 different values for the fractionation index d ranging from 0.05 to 0.95. Source contributions were fixed to f∗
1 = 0.7270

and f∗
2 = 0.3. Each value of r is used to generate Q= 64 data points X(1), ...,X(Q) with measurement error η = 4 for a total

of 1088 data points (Figure 4a). The stationary inference model given in Eq. 9 was fitted to each point individually, which

makes this setting analogous to the inference procedure used in the original FRAME model (Lewicki et al., 2022).

2.5 Model comparison

2.5.1 Data simulation275

No timeseries datasets with known N2O production and consumption pathway contributions are available, therefore simulated

data must be used for thorough comparison of models. The four models were compared by simulating the data generating

process multiple times, and then comparing the resulting posterior sample with fixed ‘truth’ input values. The time series of

source contributions f and pool fractions reacted r used to simulate the data are denoted by F∗ = [f∗1 · · · f∗N ] and r∗ = [r∗1 · · ·r∗N ]

and the mixing equation with Rayleigh fractionation is used (Eq. 3). Measurement generation is then repeated Q times by280

sampling the source isotopic signature S(q) ∈ Rd×K and fractionation factor ϵ(q) ∈ Rd from their respective priors, and then

adding independent Gaussian measurement errors E
(q)
t ∼Nd(0,η

2) with noise variance η2 ∈ Rd for q = 1, ...,Q (Fischer,

2023):

X
(q)
t = S(q)f∗t + ϵ(q) ln(r∗t )+E

(q)
t (19)

Auxiliary data for source isotopic signatures and fractionation factors are taken from Yu et al. (2020) (Table 1). These285

values correspond to the major N2O sources, nitrification (S1) and bacterial denitrification (S2). Priors are uniform for the

sources Sj ∼Uni(bj ,∆j), j = 1,2 and Gaussian for the fractionation factor with variance matched to the reported bounds

ϵ∼N (c,
∆2

ϵ

2 ).

Table 1. Prior distribution parameters for N2O source isotopic signatures and the fractionation factor for consumption used to simulate data

sets for model testing (Yu et al., 2020). Ranges for sources indicate the full range of previous data used to construct the uniform distribution,

whereas for reduction the range indicates the standard deviation of the Gaussian distribution.

b1±∆1 b2±∆2 b3±∆3 c±∆ϵ

Source Nitrification Denitrification Fungal denitrification Reduction

Abbreviation Ni bD fD Red

δ15Nbulk -55.5±17.0 -25.25±55.1 -38.50±15.0 -6.4±2.7

δ15NSP 35.35±6.7 -1.9±11.2 33.55±12.7 -5.55±1.5

δ18O 23.5±6.0 20.0±6.6 38.45±7.3 -15.4±5.8
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a)

b)

Figure 3. True parameter series used to simulate datasets with different properties. The production-consumption scenario corresponds to

production by nitrification (S1, red) and denitrification (S2, green) following by mixing and subsequently reduction (r = fraction remaining

following reduction, blue) in complete denitrification. a) Six parameter series to test time series modelling, which illustrate: fast changing

source contributions (FastS), slow changing source contributions (SlowS), extremal source contributions (ExtrS), high fractionation (HighF),

average and variable fractionation (AvgF) and low fractionation (LowF). b) The general example (GenE) and the resultant isotopic timeseries,

show measurement values simulated accordingly together with LOESS estimates in the right panel

The simulations are done on fixed parameter sets that intend to be illustrative for six given cases that might occur in

reality. The focus is on investigation of temporal patterns; other fractionation scenarios have been explored previously using290

a stationary model set up (Lewicka-Szczebak et al., 2020; Lewicki et al., 2022). The true parameter time series f∗t and r∗t are

shown in Figure 3 and are sampled at N = 32 equally spaced time steps. One additional general example (GenE) is used for

simulation with properties being less extreme than for the other six, which may be more representative of average datasets that

13



would be encountered in practice. For GenE, a Gaussian error with magnitude η = 5 is used to sample N = 64 measurements

X1, ...,XN . The fixed parameter values and the simulated data is shown in Figure 3.295

Bayesian parameter estimation is then tested on each generated data set X(q) = [X
(q)
1 · · ·X(q)

N ] ∈ Rd×N for q = 1, ...,Q

individually and a total of S posterior samples of all parameters is produced each time. The posterior samples shall be denoted

by F(q,s) = [f
(q,s)
1 · · · f (q,s)N ] and r(q,s) = [r

(q,s)
1 · · ·r(q,s)N ] respectively for s= 1, ...,S.

2.5.2 Measuring quality of inference

Sampling from the posterior distribution does not give unique point estimates for the parameters involved, and multiple ways300

of computing final parameter estimates exist. Most commonly the posterior mean is used as point estimate, although using the

median could, for example, be a useful strategy for posterior distributions that are highly dissimilar to a Gaussian distribution.

The accuracy of the estimation can be assessed by computing the distance between these pointwise estimates and the true

value using root mean squared error (RMSE) and mean average error (MAE). Although it would be possible to compute the

metrics at each point in time, they are averaged for simpler model comparison:305

RMSE
(q)
k :=

√√√√ 1

N

N∑
t=1

(F̂
(q)
kt −F∗

kt)
2 (20)

MAE
(q)
k :=

1

N

N∑
t=1

|F̂(q)
kt −F∗

kt| (21)

Computations for r(q,s) are analogous.

Since the parameters to be estimated are interpreted as a time series, it makes sense to also compare specific time series310

information across the model estimates. The rate of change can be significantly confounded in the measurement time series,

since the measurement errors follow a white noise distribution that introduces high frequency changes. The ability of models

to filter this noise can be measured by comparing the rate of change which is approximated using first differences: ∆F∗
t,j =

F∗
t,j+1 −F∗

t,j and ∆r∗t = r∗t+1 − r∗t for t= 1, ...,N − 1. The magnitude of changes is not necessarily relevant, since poor

estimates of the magnitude of changes would also lead to poor pointwise comparison metrics. Therefore, the ratio of variances315

of first differences shall serve as comparison metric for timeseries information, which can be understood as comparing a notion

of curvature or acceleration in the timeseries (Fischer, 2023):

VarFD
(q)
k =

∑N−1
t=1

(
∆F

(q)
kt −

∑N−1
j=1 F

(q)
kj

)2

∑N−1
t=1

(
∆F∗

kt −
∑N−1

j=1 F∗
kj

)2 (22)

2.5.3 Metrics for comparison of Bayesian posterior distributions

Bayesian models are mainly used to derive pointwise estimates, but their advantage is the creation of a sample from the320

posterior distribution. It is thus also important to take distribution properties into account. Posterior interval coverage is a
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useful metric to evaluate simulated data from the full Bayesian model, meaning in particular that F∗ and r∗ are sampled from

their priors as well. Since the data simulation for model comparison used here has fixed parameter values, interpreting interval

coverage becomes less meaningful. It is still practical to use the size of the credible interval as measure of uncertainty, and thus

the interval span can be compared, which is desired to be as small as possible given otherwise accurate estimates. The credible325

interval with level γ ∈ [0,1] is then the set excluding the tails with a proportion of 1−γ
2 of the most extreme observations on

either side (Fischer, 2023):

I(γ) =

[
q(
1− γ

2
|X), q(

1+ γ

2
|X)

]
(23)

Further metrics for the quality of the entire posterior distributions can be taken into consideration. Posterior predictive checks

are typically used in cases where no true values for the parameter estimates are available, in order to assess the models capability330

of representing the input data well (Rubin, 1984). The posterior predictive distribution is the likelihood of hypothetical future

measurements calculated using the posterior distribution over parameter values in presence of the actually available data:

p(X̃|X) =

∫
p(X̃|F,r)π(F,r|X) dFdr (24)

This posterior predictive distribution is not unique due to the auxiliary parameters S and ϵ. It is unclear whether the posterior

predictive distribution should be proportional to the marginalized likelihood p(X̃|F,r) or rather the likelihood conditioned335

on the auxiliary parameters p(X̃|F,r,S,ϵ). This discrepancy renders comparison of predictive density values across dataset

simulations X(q) ineffective, since the models fit a joint posterior and thus assume that future data must be sampled using

identical auxiliary parameter values, whereas the simulation resamples their values S(q) and ϵ(q) every time.

The log pointwise predictive density (LPPD) is a metric for the quality of the posterior predictive density, and thus by proxy

of the Bayesian model. It is computed by evaluating the predictive density at the original data points and can be approximated340

using the posterior samples (Gelman et al., 2014):

LPPD(q) = ln

∫
p(X|F,r)π(F,r|X) dFdr≈ 1

S

S∑
s=1

p(X|F(s)) (25)

2.6 Model implementation

TimeFRAME is implemented in R R Core Team (2017). Bayesian modelling in TimeFRAME uses Stan for Hamiltonian

Monte Carlo sampling (see SI Section 2). TimeFRAME can be installed using the links provided in the Code and data345

availability section. All experiments were run on an Intel Core i9-10900K CPU. The reported run times in SI Section 2

are for a single sampling chain, and in other sections the reported times are the maximum of four simultaneously run chains.

350
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3 Results

In this Section, we will first discuss the influence of the prior distribution for r, and then present a detailed comparison of

different aspects of model performance. The four classes of models were compared for performance on timeseries data across

a wide range of scenarios representative of edge cases that might occur in reality. For these experiments, fixed parameter values

for source contributions F∗ and fraction remaining r∗ were sampled as described in Section 2.5.1. The model configurations355

to be compared are summarised in Table 2.

Table 2. Model configurations used to compare performance on timeseries data across different edge cases, for the four model classes

described in Section 2.3. ‘Abbreviation’ refer to the abbrevations for each configuration used in subsequent discussion.

Model class Abbreviation Description

Independent Independent Independent time step model described in Eq. 12

Hierarchical Hierarchical independent time step model with gamma hyperprior for concentration σ described

in Eq. 13

Gaussian process prior GP (ρ= 1) Gaussian process prior on measurements with ρ= 1 described in Eq. 15

GP (latent) Gaussian process prior on measurements with ρ= 1 using latent variable formulation described

in Eq. 14

GP (hier.) Gaussian process prior on measurements with inverse gamma hyperprior on ρ

GP (latent, hier.) Gaussian process prior on measurements with with inverse gamma hyperprior on ρ using latent

variable formulation

Dirichlet-GP prior DGP (CLR, ρ= 1) DGP prior using CLR transform and ρ= 1, σ = 1 described in Eq. 16

DGP (ILR, ρ= 1) DGP prior using ILR transform and ρ= 1, σ = 1 described in Equation Eq. 17

DGP (CLR, hier.) DGP prior using CLR transform and σ = 1 with inverse gamma hyperprior on ρ

DGP (ILR, hier.) DGP prior using ILR transform and σ = 1 with inverse gamma hyperprior on ρ

Spline-based prior Spline (CLR) B-spline GLM using CLR link function having M = 8 for source contributions and M = 4 for

fraction remaining described in Eq. 18

Spline (ILR) B-spline GLM using ILR link function and M = 8 for source contributions and M = 4 for

fraction remaining

Spline (Laplace) B-spline GLM using ILR link function and M = 8 for source contributions and M = 4 for

fraction remaining with Laplace prior on coefficients

3.1 Influence of the chosen prior distribution for the fraction remaining r

Using a uniform prior for the fraction reacted π(r)∝ 1 is the natural choice used as standard by all models. This was compared

to the Jeffreys prior, which was derived to be π(r)∝ 1
r and thus is an improper prior (see Sections 2.2 and Fischer (2023) for

details). A middle ground between these two choices was given by the beta prior r ∼B( 12 ,1), which has π(r)∼ 1√
r

. The first360
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argument of the beta distribution can also be used as a free parameter α ∈ (0,1] alongside a uniform hyperprior to construct

the hierarchical model r ∼B(α,1),α∼Uni(0,1).
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Figure 4. Comparison of different priors for the fraction remaining r. a) Dual isotope plot for the simulated data, constructed with two

sources and different values of r. Data points are coloured by the ‘true’ value of r. b) Posterior densities of the fractionation weight r

averaged across simulations for ‘true’ r values of 0.05, 0.5 and 0.95 using different prior distributions. c) Mean absolute error of Bayesian

models using different prior distributions of r, shown for different ‘true’ values of r and f . Vertical lines indicate the standard deviation over

Q= 64 repetitions. The performance on source contributions is identical for both sources (Ni and bD), since they are perfectly correlated,

so only one panel is shown for f .

Each data point was supplied to the model individually and S = 5000 posterior samples were generated. The samples were

combined for each value of r to marginalize over the distributions of the auxiliary parameters (Figure 4b). The source S2

(bD) has a wide prior distribution (Table 1) which confounds with the effect of fractionation and introduces high uncertainty.365

Since this uncertainty is proportional to the logarithm of r, the effect on the posterior distribution is much more pronounced

when r is high. The Jeffreys prior introduces a shift towards lower values compared to the uniform prior with the beta prior
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being in between the two. Inference performance was compared by taking the posterior means f̂ (q) = 1
S

∑S
s=1 f

(q,s) and r̂(q) =

1
S

∑S
s=1 r

(q,s) and comparing them against the true values (Figure 4c). Clearly, the Jeffreys prior performs worst for source

contributions f , with the uniform prior performing best, closely followed from the beta and hierarchical prior. Regarding the370

fraction remaining r, the Jeffreys prior performs best for low values of r, with the uniform prior performing worst, however

this relationship switches at about r = 0.4 to the opposite. Therefore, choosing any prior can be justified if one expects the

fractionation index to be in a certain range. The standard deviation between different repetitions however clearly shows that

the effect of prior choice is overwhelmed by the variation introduced through the distribution of the sources and consumption,

due to the large uncertainty in the source and fractionation factor priors.375

3.2 Comparison of overall model performance

The examples described in subsection 2.5.1 were sampled for Q= 64 repetitions. Measurements were simulated with Gaussian

measurement error of magnitude η = 5. The posteriors were sampled for a total of S = 10000 steps using four parallel

chains. Goodness of estimation was quantified with estimates computed as the posterior means f̂ (q) = 1
S

∑S
s=1 f

(q,s) and

r̂(q) = 1
S

∑S
s=1 r

(q,s) and taking the mean absolute error (Eq. 21) to the ground truth (Figure 5a). Conclusions using the root380

mean squared error or with posterior medians were similar. All models using fixed hyperparameters use default values that are

not specifically tuned for the examples at hand. Therefore the reported performance is not indicative of best case performance

and only shows the quality of the chosen values. Hierarchical models do not have this problem since they can estimate the

hyperparameters for each example specifically.

Overall performance was best for hierarchical DGP models and spline GLMs (Figure 5a). Estimation of fraction reacted r is385

relatively poor in most cases (MAE > 0.4), however spline models perform well for all cases (MAE usually < 0.3), particularly

for extremal fractionation amounts (all examples except AvgF). The default number of degrees of freedom that spline models

use seems surprisingly robust in all examples, whereas the default correlation length of Gaussian processes does not. Gaussian

process priors on measurements appear to be slightly worse than DGP priors and spline-based priors, especially for examples

SlowS and ExtrS. Independent time step models have worse performance than the rest for all examples and the hierarchical390

extension to it only has good performance in examples SlowS and ExtrS, which represent cases where concentration to sources

is either very low or very high. In other cases using flat priors as default values seems to work best.

Spline GLMs have very small errors on fraction consumed r whenever the value is slowly changing and close to 0 or 1.

This could suggest that the chosen hyperparameters are suitable for all examples. Another plausible explanation is the fact that

the spline bases used have an intercept term, which allows the center of estimation to freely move, whereas DGP models do395

not. For the source contributions this likely does not matter, but allowing the Gaussian process to have non-zero mean could

be beneficial for estimating r. An additional spline model was added with Laplace priors on the coefficients, which seems to

be beneficial in cases where parameters are close to their boundaries since the prior allows for values farther from zero. The

model using Gaussian process priors on measurements was implemented using both formulations with latent variables and with

analytically computed likelihood. Performance is identical in all cases, strongly indicating that the formulations are equivalent400
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a)

b)

Figure 5. Model performance for different configurations (see Table 2 for details: fast changing source contributions (FastS), slow changing

source contributions (SlowS), extremal source contributions (ExtrS), high fractionation (HighF), average and variable fractionation (AvgF)

and low fractionation (LowF)). a) Mean absolute errors for all examples averaged over Q= 64 dataset simulations with standard deviations

shown as vertical lines. The results for the two source contributions were identical since they are perfectly correlated, so the plots only show

one result for f in addition to the fraction remaining r. b) Log variance ratio of first differences of the estimated time series against the true

values for source contributions f . The time series for fraction remaining r are linear or constant in most examples and are thus not suitable

to be used for model comparison with this metric.

for parameter estimation. Additionally, using CLR or ILR transformations for DGP models and Spline GLMs does not make a

difference in estimation accuracy, as is to be expected from their derivations.

Time series models are not only expected to give accurate estimates of mean source contributions and fractionation, but the

resulting time series should also have similar properties to the ground truth. The variance ratio of first differences (Eq. 25)
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measures accuracy of the estimated curvature (Figure 5b). Clearly, the hierarchical Gaussian process and DGP models estimate405

the correlation length well, resulting in a time series with similar rates of change than the true values. Spline GLMs perform

well, especially for the examples FastS, SlowS and ExtrS. Independent time step models result in high variation which is due

to the fact that the measurement noise is not adequately filtered. The fixed correlation length Gaussian processes seem to have

misspecified hyperparameters, since they also overestimate the rates of change in the time series.

Fitting times ranged from 20 seconds to 72 seconds on average for the S = 10000 posterior samples generated by each410

model, split into 2 500 over 4 chains (see Fischer (2023) for details). Hierarchical models tend to be slowest due to the additional

parameters and repeated matrix decompositions that need to be computed, whereas fixed parameter models, especially independent

time steps and spline GLMs, are sampled fastest. Spline models using the Laplace prior have long fitting times which could

indicate that the high parameter values - which are allowed due to weaker regularization of of parameter ranges far from zero

- are not sufficiently identifiable, resulting in slow sample generation.415

3.3 Influence of fractionation extent on model performance

Models can have varying performance at different reaction extents and thus different levels of fractionation. For this reason,

a timeseries of source contribution values f∗t was taken and paired with different constant fractionation values r∗t = r∗ to

generate measurements and monitor performance. In total, 17 equally spaced fractionation values ranging from r∗ = 0.02 to

0.98 were used and a total of Q= 32 datasets were generated per value. True values for source contributions were taken from420

the general example GenE (Section 2.5.1) and a measurement error magnitude of η = 5 was used. This experiment was done

only with representative models of the four main model classes in order to reduce the number of comparisons. The model

configurations used were the independent time step model, the Gaussian process prior on measurements with hierarchical

estimation of correlation length, DGP prior with hierarchical estimation of correlation length, and spline-based GLM with

fixed hyperparameters for degrees of freedom.425

Overall performance is best when r∗ is close to 0.5 (Figure 6a). Estimation is also more accurate with very low values of r∗,

because small r∗ values have large impacts on isotopic measurements and thus estimation can become more accurate. Spline

models are expected to perform well here because the time series of fraction remaining is constant, which can be reflected in

the low degrees of freedom used. The different model classes seem to be equally affected by changes in r∗ otherwise, showing

that the choice of hyperparameters to reflect the situation of interest is more important than selecting a particular model.430

Spans of 95% credible intervals can give additional insight into the pattern observed for the estimation accuracy over different

values of r∗ (Figure 6b). If parameter estimation is good, then a smaller credible interval span shows a narrow posterior around

the correct mean. DGP prior models have the smallest credible interval span for source contributions and fraction remaining.

All other models have an interval width of over 0.75 for large values of fraction remaining, thus spanning over half of the

possible domain. Clearly, due to the Rayleigh fractionation equation being non-linear in r, it is difficult to estimate large values435

of r (resulting in low fractionation) with high accuracy. If the amount of remaining substrate is larger than 0.1, the data does not

give sufficient information regarding r, so estimates of r group around the prior mean of 0.5 and show large credible interval

spans.
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a)

b)

Figure 6. Impact of the fraction remaining r on model performance. Each reported value is the average over Q= 32 dataset simulations

with vertical lines indicating standard deviations. a) Mean absolute error of the four main model classes over different values of the fraction

remaining r. b) 95% credible interval spans of the four main model classes over different values of the fraction remaining r.

3.4 Influence of measurement noise on model performance

The main advantage that smooth models such as Gaussian processes and splines have over the independent time step assumption440

is that they promise to filter measurement noise and thus produce estimates that are more accurate and have a narrower posterior

distribution. For this reason an experiment was conducted using values of source contributions f∗t and fraction remaining r∗t

from the general example GenE (Section 2.5.1) to simulate datasets with different levels of measurement noise. Noise values

range from η = 0.5 to η = 20, and for each separate value of η, a total of Q= 32 data sets were generated.

Performance of all models generally decreases with increased measurement noise as expected (Figure 7a). However, below445

η = 5, reduction in noise does not lead to further improvement in performance: Most of the estimation error at this noise

level comes from the source endmember uncertainty rather than the measurement noise. The variance ratio of first differences

(Figure 7b) can be used to assess the quality of the estimated timeseries in the presence of high frequency changes due to

measurement noise. Variance ratios of the independent time series model gradually increase with increasing measurement

noise magnitude. All other models seem to filter the noise well, having much lower overestimations of the first difference450
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a)

b)

Figure 7. Impact of measurement noise on model performance. Each reported value is the average over Q= 32 dataset simulations with

vertical lines indicating standard deviations. a) Mean absolute error of estimation of the four main model classes over different measurement

noise levels η. b) Log variance ratio of first differences for the estimated time series against the true values for source contributions over

different measurement noise levels η.

variance. The hierarchical DGP model seems to be less equipped to deal with very high noise, which could simply be due to

the fact that the weakly informative hyperprior on the correlation length is not suitable here. The spline GLM appears to have

constant low values for the ratio of first difference variance, due to the fact that the fixed degrees of freedom predetermines the

smoothness of the estimates independent of measurement noise. Moreover, the model run time for the spline model was close

to the run time for the independent model, and less than half the run time for the GP and DGP models across all noise levels.455

These results show that use of the spline model can be particularly advantageous for data featuring high statistical uncertainty.

3.5 Potential impact of improvements in data quality

Estimation accuracy can be improved not only by choosing the right model but also by improving the quality of the data

available to the model. Several ways of adding more or higher quality data exist and the effects on model performance were

studied in order to find what would be most beneficial. The above examples use two sources with two isotopic measurements,460

making the system well-determined. If additional isotopic measurements are available they can be added to make the system
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overdetermined and thus eliminate some noise. To investigate this approach, the additional isotopic measurement δ18O was

added with source endmembers and uncertainty from Yu et al. (2020) (Table 1). The same dataset generation procedure as in

Section 3.2 was used with a total of Q= 64 datasets generated. Resulting improvement in estimation accuracy for the same two

sources is shown in Figure 8a. It is worth noting that the additional measurement is not ideal in quality, with large uncertainty465

for the fractionation factor ϵ. An improvement can clearly be seen for estimation of the fraction reacted r, especially in the

examples HighF and AvgF. Very little improvement is seen for estimation of f . Spline GLMs improved the most, especially in

their already good ability to estimate the fraction reacted. The addition of δ18O to this model did not strongly improve results,

due to large uncertainty in source endmembers and fractionation factors. However, the addition of isotopic dimensions with

low uncertainty or strong differences to existing information could improve results, for example clumped isotopes, or δ18O for470

determination of fungal denitrification.

Instead of adding additional measurements, efforts could be put into determining the endmembers of the sources and the

fractionation factors more accurately, thus reducing uncertainty in the input data. To study this case an idealized set of sources

and fractionation factors were selected to have the mixing and reduction line exactly perpendicular with an uncertainty of

10% in each dimension respective to the mean. This renders the mixing and fractionation components independent, since they475

cannot confound each other. We therefore set the endmembers for S1 to −1± 0.2 and 1± 0.2‰ for δ15Nbulk and δ15NSP

respectively, and for S2 to 1± 0.2 and −1± 0.2‰ for δ15Nbulk and δ15NSP respectively. The fractionation factor was set to

1±0.1‰ for both isotopes. Measurements sampled in this setting follow exactly the same procedure as in Section 3.2, but only

use a Gaussian measurement error with magnitude η = 0.1. For each example Q= 64 datasets were generated and the mean

absolute error of estimation is shown in Figure 8b.480

Improving all uncertainties involved to a minimum has a great impact on model performance. Almost all mean absolute errors

of estimation are below an error margin of 0.05 for source contributions and below 0.1 for fraction remaining. Furthermore,

model choice becomes less relevant, and even the independent time step models perform similarly to the other more sophisticated

ones. Interestingly, the DGP model with fixed hyperparameters as well as the spline GLM with fixed spline basis underperform

in source contribution estimation for example HighF. This could be evidence that the default parameters become less robust485

when noise is removed and they should be selected more carefully. This experiment is an extremely idealised case and natural

variability likely precludes this level of precision in endmembers for microbial N2O production in soil, however it shows the

high potential for improvements in input data to enhance results, and moreover to make results more robust towards model

configuration. Currently, the level of uncertainty in direct anthropogenic N2O and CH4 source endmembers (eg. industrial

production, energy and transport emissions) is very high due to the scarcity of measurements (Eyer et al., 2016; Röckmann490

et al., 2016; Harris et al., 2017) - further investigation of the isotopic range of these sources, as well as consideration of

endmembers for novel isotopes such as clumped species, may lead to the level of uncertainty reduction required to achieve

accurate source partitioning.
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a)

b)

Figure 8. Model performance considering different improvements to the input data. The original model performance is shown in grey. a)

Mean absolute error for all models on Q= 64 generated datasets using one additional isotopic measurement (δ18O). b) Mean absolute

error for all models on Q= 64 generated datasets using the idealized sources and fractionation factor with 10% uncertainty in isotopic

endmembers.

4 Application of TimeFRAME to real and simulated datasets495

In this section, we will present use of the TimeFRAME package for the analysis of simulated and real datasets, to illustrate

aspects of model configuration choice and output data under different scenarios.
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4.1 Model selection and application

TimeFRAME allows different models to be applied with minimal effort, meaning that data can be analysed with several

different model set ups to investigate the robustness of results. The independent time step model does not incorporate timeseries500

information, thus it is recommended only for datasets with independent measurements. The DGP and spline models both

perform well, reproducing the input data values and timeseries properties - the spline model was better able to estimate r. All

models estimate f of different sources across the full range with similar accuracy, however when the fraction remaining r is

very low or high the results show much larger error (Figure 8). This is compounded by the difference between MR and RM

models at low values of r (SI Section 1). We therefore recommend users test both DGP and spline models for timeseries data,505

and take results with caution when these models differ strongly. Estimates of very low fraction remaining should also be treated

with caution. Despite these points, we find that TimeFRAME offers a strong improvement on previously available methods:

Accounting for information contained within timeseries significantly reduces the uncertainty in estimates of f and r, and the

package application is simple and fast, and easy to document and reproduce.

The testing here focuses on interpretation of N2O isotope data to unravel production and consumption pathways. TimeFRAME510

can also be applied to other scenarios, for example trace gases such as CO2 or CH4, or datasets with many more isotopic

dimensions through clumped isotope measurements. The number of sources is indefinite as the model can be extended by

the user; however, when the number of sources is larger than the number of isotopic dimensions the model will be poorly

constrained. The model can currently only include one consumption pathway applied after mixing - future versions will include

more complex set ups, however, the uncertainty in input data currently precludes this level of complexity. The examples shown515

here use time as the dimension of autocorrelation, as timeseries are the most common kind of data. However, other dimensions

could be used, such as temperature in the case of measurements across a gradient of temperature-dependent processes, or

soil moisture for a set of incubations across a moisture gradient. TimeFRAME’s set up allows simple adaptation to different

user-defined mixing and fractionation models and fast and reproducible interpretation of these models.

4.2 Application to the general simulated timeseries520

The main purpose of the time series models is to provide estimates of source contribution and fractionation weights with

uncertainty. In the sections above, only the performance metrics aggregated over many simulations have been shown. To

illustrate the modeling capabilities the representative general example (GenE) was simulated from fixed parameter values and

the inference results are shown in comparison to the true values.

In order to run the Bayesian models and estimate source contributions and fractionation over time, the auxiliary distributions525

of the source isotopic signatures S and the fractionation factor ϵ as well as the noise magnitude η must be supplied in addition

to the dataset. Three different model classes were run to illustrate the computed output: i) the independent time step model

described in Eq. 12, ii) the spline GLM described in Eq. 18, and iii) the hierarchical DGP prior model described in Eq. 17.

From the output that the models produce, either summary statistics of the posterior (such as its mean and quantiles) can be

gathered, or the mean and credible intervals from all posterior time series sampled can be extracted as shown in Figure 9 .530
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Figure 9. Posterior means of the three model types compared to the true parameter values. Shaded areas indicate 95% credible intervals and

the true parameter values used to simulate the measurements are shown as black lines.

The independent time step model clearly shows poorer performance due to the large effect of measurement error on the

estimated parameters. Nevertheless, the credible interval covers the true parameter values well and is reasonably narrow.

Estimation of the fraction remaining r seems to be biased toward higher values, which could be due to overlap with the

variation in source isotopic signatures. The B-spline basis for the GLM seems to have default values for degrees of freedom

that are fairly optimal in this case. The time series of parameter estimates is now similarly smooth to the actual parameter535

series. Estimation using the hierarchical DGP prior model gives the best results: The time series are adequately smooth and

estimates are close to the true values with narrow credible intervals.

4.3 Comparison of TimeFRAME and a dual isotope mapping approach on a stationary dataset

The samples used to compare the TimeFRAME model with the traditional dual isotope mapping approach were taken from

Kenyan livestock enclosures (Kiswahili ‘bomas’) at Kapiti Research Station and Wildlife Conservancy of the International540

Livestock Research Institute (ILRI) located in the semi-arid savanna region (1◦35.8’ W - 1◦40.9’ W, 36◦6.4’ E - 37◦10.3’ E).

The different samples represent the isotopic composition of N2O taken from boma clusters of varying age classes (0-5 years

after abandonment). At Kapiti, bomas are setup in clusters of 3-4, which are used for the duration of approximately one month

before setting up a new cluster. The sampling campaign was conducted in October 2021 in order to understand the underlying

mechanisms of the huge N2O emissions observed in these systems (Butterbach-Bahl et al., 2020), and the findings will be545

published in a separate paper (Fang et al., submitted). The dataset contains measurements of δ15Nbulk, δ15NSP and δ18O of

N2O as well as δ15N of soil. Stable isotope analysis of these samples had been done using a IRMS as described in (Verhoeven

et al., 2019) and (Gallarotti et al., 2021). A dual isotope mapping approach was used to extract the production pathways and
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reduction extent for this dataset based on δ15NSP and δ18O using the scenarios of mixing following by reduction (MR) and

reduction followed by mixing (RM), described in detail in Fang et al., (submitted) and Ho et al. (2023) .550

As the boma dataset is a set of independent measurements, TimeFRAME was applied to the data using the independent

time steps model. The time axis was replaced by numbering of points in the dataset. The standard deviation of all isotope

measurements was set to 1‰ as the measurement uncertainty was not quantified, however this may be a low estimate given

the many sources of uncertainty from measurement error to international scale calibration. TimeFRAME was applied in two

configurations:555

1. Using only δ15NSP and δ18O and Ni and bD pathways, to closely mimic the configuration of the dual isotope MR

approach, and

2. Using δ15Nbulk, δ15NSP and δ18O with Ni, bD and fD (fungal denitrification) pathways, which is the most detailed

configuration available with this data.

The agreement between the dual isotope method and the analogous TimeFRAME 2-isotope implementation is very good560

(mean absolute deviation of 8% and 15% for bD/Ni and reduction respectively for the MR method, Figure 10). The dual isotope

method results are not significantly different for the MR and RM implementations, supporting the assumptions made in Eq. 3 as

the basis for the TimeFRAME package: These models only deliver significantly different results in cases where N2O reduction

is very high (see SI Section 1). TimeFRAME offers the major advantage that uncertainty bounds for the prior are incorporated

and thus calculated for the posterior. Moreover, using the TimeFRAME package functions, the calculations are reproducible,565

can be performed in just two lines of code, and can be easily adapted to consider different endmembers and model set ups. The

TimeFRAME 3-isotope implementation shows very different results to the other estimates due to the inclusion of δ15Nbulk and

the fungal denitrification pathway. This pathway has high δ15NSP (Table 1) and thus strongly impacts the model estimates of

nitrification and reduction, which are also evidenced by high δ15NSP.

Table 3. RMSE (‰) for isotopic data estimated using pathway contributions from the two TimeFRAME and the two dual isotope model

configurations, compared to the measured isotopic data used as input for the models.

δ15Nbulk δ15NSP δ18O

TimeFRAME, 2-iso., 2 source - 6 19

TimeFRAME, 3-iso., 3 source 36 22 17

Dual isotope, MR - 7 23

Dual isotope, RM - 7 23

The pathway estimates were used to reconstruct the isotope measurements, and the RMSE between true measurements and570

reconstructed measurements was found as an estimate of model performance in the absence of true knowledge of pathways

(Table 3). The TimeFRAME 2-isotope implementation is able to reproduce the isotopic data more accurately than the dual

isotope plot due to the Bayesian optimization of the fit. The TimeFRAME 3-isotope implementation shows poorer RMSE due

to the additional challenge of fitting δ15Nbulk as well as the fD pathway. The difference between MR and RM implementations
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Figure 10. Comparison of TimeFRAME results with pathways estimates from a dual isotope plot approach. TimeFRAME was applied in

two configurations, i) using only δ15NSP and δ18O and Ni and bD pathways, and ii) using δ15Nbulk, δ15NSP and δ18O with Ni, bD and fD

pathways. The dual isotope approach used δ15NSP and δ18O and Ni and bD pathways, in configurations MR (mixing then reduction) and

RM (reduction then mixing). a) A 1:1 comparison of estimates from the two TimeFRAME configurations and the dual isotope plot MR and

RM methods. b) A plot of the estimates for each pathway from the two TimeFRAME configurations and from the dual isotope MR method.

of the dual isotope approach is minimal, showing that model configuration and uncertainty in endmembers is far more important575

for results than the specific formulation of the fractionation and mixing equation.
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These results show the importance of considering different pathways and model configurations. TimeFRAME users should

aim to include as much isotopic data as possible, and to use other complementary approaches such as microbial ecology to

constrain potential production and consumption pathways; for example, to decide whether it is appropriate to include fungal

dentrification. Users should consider both the estimated uncertainty for a particular model set up, provided by the TimeFRAME580

package, as well as the variation between estimates for different plausible scenarios.

4.4 Comparison of timeseries analysis with existing approaches

TimeFRAME was applied to two irregularly time-spaced datasets from soil incubations at different soil moisture levels (L1

= drier = 55-66% WFPS; L2 = wetter = 69-82% WFPS). The L1 and L2 incubations were sampled on eight and eleven

dates respectively with between one and seven duplicate measurements taken on each sampling date, and a total of 41 and585

24 measurements made respectively. The incubations are described in detail in Lewicka-Szczebak et al. (2020). TimeFRAME

was compared to results from the 3DIM/FRAME model (Lewicka-Szczebak et al., 2020; Lewicki et al., 2022), with both

models considering four pathways (bacterial denitrification, nitrifier denitrification, fungal denitrification, nitrification) as well

as N2O reduction using the endmembers and fractionation factors reported in Lewicka-Szczebak et al. (2020). FRAME solves

the isotopic equations independently for each sampling date, whereas TimeFRAME spline and DGP implementations are able590

to consider temporal correlations between sampling times. Additionally, dual isotope mapping and 15N labelling approaches

were compared, as described in Lewicka-Szczebak et al. (2020).

The agreement was good between pathway estimates from TimeFRAME and FRAME, although the spline implementation

estimated lower reduction than other methods (Figure 11). Agreement with the mapping approach was very poor for bD

and good for reduction, reflecting the low ability of the mapping approach to unravel pathway contributions with similar595

endmembers. Agreement with the 15N gas flux method was good for reduction and acceptable for bD, considering the

denitrification contribution being quantified is not identical. The results clearly showed the influence of WFPS on bD and

reduction, with both pathways increasing by 2% for every 1% increase in WFPS (Figure 11).

5 Conclusions

The TimeFRAME data analysis package uses Bayesian hierarchical modelling to estimate production, mixing and consumption600

pathways based on isotopic measurements. The package was particularly developed for the analysis of N2O isotopic data and

contains default isotopic endmembers and fractionation factors for N2O, but the flexible implementation means it can also be

applied to other trace gases such as CH4 and CO2. TimeFRAME provides a simple and standardised method for analysis of

pathways based on isotopic datasets, which has previously been lacking. The package will contribute strongly to reproducibility

and uncertainty quantification in the analysis of these datasets.605

TimeFRAME has four main classes of model which have been extensively tested in a range of scenarios. For timeseries data,

the Dirichlet-Gaussian process and spline GLM priors show very good results. These models are able to smooth timeseries to

reduce the impact of noisy data, and deliver good pathway quantification compared to the ground truth for simulated datasets.
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Figure 11. Using TimeFRAME to understand the impact of WFPS on N2O production and consumption. a) Comparison of TimeFRAME

pathway estimates (independent, spline (M = 6 and Mr = 3) and DGP (ρ = 0.2 and ρr = 0.5) implementations) with estimates from the

FRAME model, from an SP-δ18O mapping approach, and from a 15N-labelled gas flux approach. Comparisons are only shown for bD

(bacterial denitrification) and reduction as other pathways are not estimate by the mapping and gas flux approaches. The gas flux approach

does not strictly estimate bD, but the proportion of N2O arising from NO−
3 substrate. The lines show the linear regression and the legends

show the mean absolute deviation for each comparison. b) Impact of WFPS on bD and reduction estimated using TimeFRAME spline and

DGP results. The error bars show the estimated standard deviation at each point from the TimeFRAME fit. The legend shows details of the

weighted linear regression (R lm() function weighted by 1
σ

) for each dataset.

The independent timestep model is strongly impacted by measurement noise, but delivers good performance compared to the

dual isotope mapping approach, with simpler and more reproducible implementation as well as uncertainty quantification.610

Model application and testing showed that uncertainty in endmembers and fractionation factors was the major source of

uncertainty in pathway quantification. Reduction of uncertainty in these parameters will strongly improve the insights that can

be gained from isotopic data. Model set up is also critical: The sources/pathways chosen in the model strongly affect results,

and should be informed based on any other relevant sources of information, for example profiling of the microbial community

present at a measurement site. TimeFRAME provides a robust and powerful analysis tool but the accuracy of results gained615

from TimeFRAME depend on careful definition of the model set up and configuration by the user.
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Code and data availability.

The TimeFRAME code and application data shown in the manuscript can be accessed at:

– https://gitlab.renkulab.io/eliza.harris/timeframe

The TimeFRAME package for direct installation with devtools is located at:620

– https://github.com/elizaharris/TimeFRAME

The TimeFRAME user interface (Shiny app) is useful for first interactions with the mode. The TimeFRAME shiny app can be directly started:

– https://renkulab.io/projects/fischphi/n2o-pathway-analysis/sessions/new?autostart=1

Alternatively, session settings for the Renku platform deployment can be chosen before the app is initialised:

– https://renkulab.io/projects/fischphi/n2o-pathway-analysis/sessions/new625

The development version of TimeFRAME, including the different edge scenarios explored in this manuscript as well as tools and examples

to assist in the implementation of different fractionation equations, can be accessed at:

– https://gitlab.renkulab.io/fischphi/n2o-pathway-analysis

In particular, code used for the experiments can be found:

– https://gitlab.renkulab.io/fischphi/n2o-pathway-analysis/-/tree/main/experiments630
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