1 Supplementary material

23 Climatic Controls on Metabolic Constraints in the Ocean

- 5 Precious Mongwe¹, Matthew Long², Takamitsu Ito³, Curtis Deutsch⁴ and Yeray Santana-
- 6 Falcón⁵

4

- 7 ¹Southern Ocean Carbon Climate Observatory (SOCCO), CSIR, Cape Town, South Africa
- 8 ²Oceanography Section, Climate and Global Dynamics Laboratory, National Center for Atmospheric Research,
- 9 Boulder, CO, United States of America
- 10 ³School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia United States of
- 11 America
- 12 ⁴Department of Geosciences, Princeton University, Princeton, NJ, United States of America
- 13 ⁵CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, 31057, France
- 14
- 15

16 17

Figure S1. Physiological traits probablity density function for the activation energy (E_o) and the ecological hypoxic tolerance (A_c) based on the Penn et al. (2018) physiological data. It shows that E_o is represented by a normal distribution and A_c by a lognormal distribution function.

2021 References

22

Penn, J. L., Deutsch, C., Payne, J. L., and Sperling, E. A.: Temperature-dependent hypoxia
explains biogeography and severity of end-Permian marine mass extinction, Science (1979),
362, https://doi.org/10.1126/science.aat1327, 2018.

- 26
- 27
- 28
- 29