

1	Future reduction of cold extremes over East Asia due to
2	thermodynamic and dynamic warming
3	Donghuan Li ^{1, 3} , Tianjun Zhou ^{2, 3, 5*} , Youcun Qi ^{1, 3} , Liwei Zou ² , Chao Li ⁴ , Wenxia
4	Zhang ² , Xiaolong Chen ²
5	¹ Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic
6	Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
7	² LASG, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China
8	³ University of Chinese Academy of Sciences, Beijing, China
9	⁴ Max Planck Institute for Meteorology, Hamburg, Germany
10	⁵ CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences
11	(CAS), Beijing, China
12	
13	Corresponding author:
14	Dr. Tianjun ZHOU
15	LASG, Institute of Atmospheric Physics
16	Chinese Academy of Sciences
17	Beijing 100029, China.
18	Phone: 86-10-8299-5279
19	Fax: 86-10-8299-5172
20	E-mail: zhoutj@lasg.iap.ac.cn
21	

23

24	Cold extremes have large impacts on human society. Understanding the physical
25	processes dominating the changes of cold extremes is crucial for a reliable projection
26	of future climate change. The observed cold extremes have been decreased during last
27	several decades and this trend will continue under the future global warming. Here, we
28	quantitatively identify the contributions of dynamic (changes in large-scale atmospheric
29	circulation) and thermodynamic (rising temperatures resulting from global warming)
30	effects to East Asian cold extremes in the past several decades and in a future warm
31	climate by using two sets of large ensemble simulation of climate models. We show
32	that the dynamic component accounts for over 80% of the cold-month (coldest 5%
33	boreal winter months) surface air temperature (SAT) anomaly in the past five decades.
34	However, in a future warm climate, the thermodynamic change is the main contributor
35	to the decreases in the intensity and occurrence probability of East Asian cold extremes,
36	while the dynamic change is also contributive. The intensity of East Asian cold
37	extremes will decrease by around 5°C at the end of the 21st century, in which the
38	thermodynamic (dynamic) change contributes approximately 75% (25%). The present-
39	day (1986-2005) East Asian cold extremes will almost never occur after around 2035,
40	and this will happen eight years later due solely to thermodynamic change. The upward
41	trend of a positive Arctic Oscillation-like sea level pressure pattern dominates the
42	changes in the dynamic component. The finding provides a useful reference for
43	policymakers in climate change adaptation activities.

Abstract

44 Key words: East Asian cold extreme, dynamic adjustment, global warming

45 **1 Introduction**

46	Extreme events are widely concerned because of their high destructive power and
47	great social impacts. Cold extremes have great impacts on agriculture, transportation,
48	people's health and even cripple power supplies and led to rolling blackouts (Steponkus,
49	1979; Andreescu and Frost, 1998; Sheridan et al., 2015; Thornton et al., 2016). The
50	global mean surface air temperature (SAT) has been increasing in the past century due
51	to the increase of anthropogenic greenhouse gas concentration in the atmosphere (Jones
52	et al., 2008; IPCC, 2021). While warm extremes continue to attract considerable
53	attention from the scientific community and ordinary people (e.g. Alexander et al., 2006;
54	Rahimzadeh et al., 2009; Donat et al., 2012; Sun et al., 2014; Ma et al., 2017b), the cold
55	extremes have also gained wide attention (e.g. Overland et al., 2011; Mori et al., 2014;
56	Li et al., 2015; McCusker et al., 2016; Sun et al., 2016; Trenary et al., 2016; Ma et al.,
57	2018; Qian et al., 2018) due to the mid-latitude cold extremes happened in recent
58	several years.

A strong cold surge related to the negative phase of Arctic Oscillation (AO) and 59 intensified Siberian High attacked North China during 6-8 January 2021. The 60 61 temperatures reached or broke the records in more than 50 cities and counties. Beijing experienced the coldest day since 1951 on 7 January, with a daily minimum temperature 62 of -19.6°C. (Wang et al., 2021; Zhou et al., 2022). The North America evidenced a 63 widespread cold extreme in February 2021, which was caused by the distorted and 64 weakened polar vortex (Lee, 2021; Lu et al., 2021). The temperatures were 15°C to 65 25°C lower than normal in large areas and caused huge impacts on the energy supplies 66

and transportation (Zhou et al., 2022). Cold extreme occurs from time to time under
global warming in recent years. Will it continue to occur if the global warming
continues in the future?

70 The model simulations indicate that the anthropogenic influences have reduced the occurrence probability of cold extremes over eastern China with intensity stronger 71 than the record-breaking cold extreme in January 2016 (Qian et al., 2018). The 72 wintertime East Asian SAT is projected to increase significantly as a response to the 73 future global warming (IPCC, 2021). Cold months defined based on the 20th century 74 will be rarer under the future global warming (Räisänen and Ylhäisi, 2011) and the 75 future warming will continuously reduce the intensity and occurrence probability of the 76 77 cold extreme events (annual minimum daily minimum temperature) over East Asia 78 (Kharin et al., 2013; 2018).

79 Previous studies demonstrated that the SAT is influenced by both the dynamic 80 (changes in large-scale atmospheric circulation) and thermodynamic effects (Thompson et al., 2009; Cattiaux et al., 2010; Wallace et al., 2012; Smoliak et al., 2015; 81 Deser et al., 2016). The dynamic effect, for example, the Arctic amplification, which 82 83 reduces the polar-to-equator temperature gradient, can further modify the atmospheric 84 circulation. There is a positive AO-like SLP (sea level pressure) changing pattern under the global warming (Fyfe et al., 1999; Yamaguchi and Noda, 2006; Kitoh, 2017) and 85 the East Asian winter monsoon will be weakened in the warmer future conditions 86 87 according to the multi-model simulations of the CMIP3 and CMIP5 models (Jiang and Tian, 2013; Xu et al., 2016). However, there is a lack of quantitative research on the 88

89 contributions of the dynamic and thermodynamic effects to the future changes of the

90	East Asian cold	extremes if t	he global	mean SAT	continues to	increase.
----	-----------------	---------------	-----------	----------	--------------	-----------

91 The "dynamic adjustment" approaches (Wallace et al., 2012; Smoliak et al., 2015; 92 Deser et al., 2016) have been proposed to divide the SAT anomaly into dynamic component (solely associated with circulation changes) and thermodynamic component 93 94 (associated with thermodynamic processes). The dynamic adjustment of the North Hemisphere SAT field based on SLP can be used to investigate both the short-term 95 climate fluctuations and long-term trends of SAT (Smoliak et al., 2015). Deser et al. 96 97 (2016) indicates that the internal circulation trends accounts for over 30% of the North American wintertime warming trend in the past 50 years. The variability of circulation 98 99 plays a critical role in the evolution of the East Asian winter temperature trends during 100 1961-2018 and the internally induced dynamic component offsets the forced warming by over 70% in northern East Asia over the time period of 1979-2018 (Gong et al., 101 102 2019; 2021). The dynamic adjustment approach has also been used to investigate the wintertime precipitation changes and summertime SAT changes over East Asia (e.g., 103 Guo et al., 2019; Hu et al., 2019). However, these studies mainly focus on the mean 104 temperature and mean precipitation changes in the past several decades, our knowledge 105 on the contributions of the dynamic and thermodynamic effects to the future changes 106 107 of the East Asian cold extremes associated with global warming remains quite limited. By using two sets of grand ensemble simulations combined with observational 108 109 data and reanalysis data, we aim to answer the following questions: (1) What are the relative contributions of the dynamic and thermodynamic effects to the East Asian cold 110

115	2 Data and Methodology
114	East Asian cold extremes in the warmer future?
113	quantitative contributions of the dynamic and thermodynamic effects to the changes of
112	probability of East Asian cold extremes change in the warmer future? (3) What are the
111	extremes in the past several decades? (2) How will the intensity and occurrence

at asympt decades? (2) Herry will the intensity and assume

116 **2.1. Model Data**

The 100-member Grand Ensemble generated by the Max Planck Institute Earth 117 System Model version 1.1 (MPI-GE; Maher et al., 2019) with horizontal resolution of 118 $1.8^{\circ}{\times}1.8^{\circ}$ and the 40-member Community Earth System Model Large Ensemble 119 (CESM-LE; Kay et al., 2015) with horizontal resolution of 1°×1° are applied in this 120 study to investigate the contributions of dynamic and thermodynamic components to 121 the East Asian cold extremes in recent decades and the future warm climate. The 122 historical simulations integrated from 1850 to 2005 in the MPI-GE and from 1920 to 123 2005 in the CESM-LE were driven by the observed forcings. The Representative 124 125 Concentration Pathway 8.5 (RCP8.5) scenario simulations were performed from 2006 126 to 2099 in the MPI-GE and from 2006 to 2100 in the CESM-LE. In addition, the 2000yr MPI pre-industrial (PiCTL) simulation and 1800-yr CESM PiCTL simulation are 127 also used in this study. For more detailed information of the MPI-GE and the CESM-128 LE, please refer to Maher et al. (2019) and Kay et al. (2015), respectively. 129

130 2.2 Observation Data

131 The following datasets are used in this study: (1) monthly mean SAT from the

140

132	Climatic Research Unit (CRU) version 4 with a horizontal resolution of $0.5^{\circ} \times 0.5^{\circ}$
133	(Harris et al., 2014). (2) Monthly mean three-dimensional circulation fields derived
134	from the 20 th Century Reanalysis (20CR) version 2 with a horizontal resolution of $2^{\circ} \times 2^{\circ}$
135	(Compo et al., 2011). The time period for these two datasets used in this study is from
136	1920 to 2012.
137	2.3 Dynamic Adjustment Approach
138	The dynamic adjustment method presented by Deser et al. (2016) is based on the
139	constructed circulation analogue using SLP. This method empirically divides SAT

141 and thermodynamic component (the residual part). The dynamic adjustment method is summarized below and please refer to Deser et al. (2016) for more details. 142

variability into dynamic component (associated with atmospheric circulation changes)

2.3.1 Application to the MPI-GE and CESM-LE 143

For a given month and year (e.g. December 1990) in each ensemble member, we 144 rank the 2000 (1800) December SLP fields in the PiCTL simulation by their similarity 145 146 with the target SLP pattern according to Euclidean distance. Then, we randomly select 100 SLP fields from the 150 closest SLP fields with smallest Euclidean distance to 147 construct a best estimation of the target SLP pattern by linear combination. The same 148 set of linear coefficients is applied to the accompanying SAT fields. We repeat the above 149 procedure for 100 times and average the 100 linear combinations to derive the 150 dynamically-induced SAT field in the target month. The multi-member mean of the 151 dynamic component is regarded as the forced dynamic component and the internal 152

- 153 dynamic component is obtained by subtracting the forced part from the total dynamic
- 154 component. Thermodynamic components are obtained as residuals (total minus
- 155 dynamic) for both forced and internal components.
- 156 **2.3.2 Application to the observation**
- There is no PiCTL simulation in the observation. Therefore, the quadratic trend of the SAT during 1920-2012 is first subtracted to obtain SAT series without anthropogenic forcing. For a given month and year, 40 SLP fields from 60 closest SLP fields are first selected (excluding the target month). Dynamic adjustment procedure is then applied to derive the dynamically-induced SAT fields in the observation.
- To obtain the internal dynamic contribution to the observed SAT anomaly, a 162 163 separate dynamic adjustment based on the internal component of the observed SLP anomalies is performed. The internal component of the observed SLP anomalies is 164 obtained by subtracting the model ensemble-mean SLP anomaly from the observed SLP 165 anomaly at each time step. Then, the forced dynamic component is calculated by 166 subtracting the internal dynamic component from the total dynamic component. 167 168 Thermodynamic components are obtained as residuals (total minus dynamic) for both 169 forced and internal components.

170 **2.4 Baseline period and the study region**

The baseline period of 1986-2005 boreal winter is referred as the historical (present-day) climatology to investigate the SAT anomalies and contributions of dynamic and thermodynamic effects to future changes of East Asian cold extremes. The

- 174 certain region (the black box in Figure 2) from 20°N to 55°N and from 105°E to 130°E
- 175 is regarded as East Asia in this study.

176 **2.5 The definitions of cold extreme and cold month**

- 177 The definition of East Asian cold extreme is as follows: in the models, the regional
- 178 averaged monthly SAT anomaly of East Asia is firstly calculated. Then cold extremes
- are defined as the months in which the regional mean SAT is lower than the statistical
- 180 5th percentile of the climatological monthly SAT series during DJF in a certain time
- 181 slice. A month when cold extreme happens is defined as cold month. Similarly, the cold
- 182 months in the observation are the 8 coldest months (5% of 150 winter months) during
- 183 1962-2011 boreal winter (Table 1).

All the anomalies shown in this study are calculated relative to the climatological values of 1986-2005 boreal winter unless mentioned otherwise. Student's t test is applied to indicate the 5% significance level.

187 2.6 The intensity and occurrence probability ratio of cold extreme

188 The intensity of a cold extreme is the SAT deviation relative to the present-day189 boreal winter SAT climatology.

190 The occurrence probability ratio of the present-day cold extremes is calculated as191 follows (Ma et al., 2017a):

$$PR = \frac{P1}{P0}$$
(1)

193 where PR is the occurrence probability ratio. The value of P0 is 5%, and P1 is the

194	probability of monthly SAT lower than the present-day cold extreme threshold in other
195	time periods. For example, if the value of $P1$ is 2% during a future period, then the
196	value of PR is 0.4. For the calculation of occurrence probability ratio, we pull all the
197	members together ratio rather than calculate it for each member.
198	3 Results
199	3.1 Dynamic and thermodynamic processes to East Asian cold extremes in recent
200	decades
201	The winter temperature in East Asia shows obvious variability during 1962-2011
202	boreal winter, and this is mainly caused by the dynamically-induced internal component.
203	Moreover, this variability is the main cause of cold extremes over East Asia in the past
204	five decades (Figure 1).
205	The decomposition of the observed East Asian cold-month SAT anomalies during
206	1962-2011 boreal winter is shown in Figure 2a-c. The SAT is significantly lower than
207	the present-day winter SAT climatology (more than 3°C) across the East Asian
208	landmass (Figure 2a). The decomposition of SAT anomaly indicates that the cold
209	extremes in recent decades are mainly caused by the dynamic component (Figure 2b
210	and c), especially for the cold extremes happened in recent years. For example, the East
211	Asian regional mean SAT anomaly in January 2011 is -3.47°C, in which, the dynamic

- 212 component is -3.81°C, accounting up to 110% of the total SAT anomaly (Table 1).
- 213 It is worth noting that these cold extremes are mainly caused by the internally-
- 214 generated components, and the forced dynamic component shows little trend in the past

215	five decades and has little contribution to the observed cold extremes (Figure 1c and d).
216	The two sets of large ensemble model simulations can well reproduce the relative
217	contributions of the dynamic and thermodynamic components to the cold extremes
218	during 1962-2011 boreal winter (Figure 2d-i). The SAT is significantly lower than the
219	winter SAT climatology throughout East Asia (Figure 2d and g) and the dynamic
220	component is the main contributor to the cold extremes (Figure 2e, f, h and i). It should
221	be noted that there are much more cold extreme samples in the MPI-GE and the CESM-
222	LE, and the contribution of the dynamic component to the cold extremes are more
223	evident in the two model ensembles than in the observation (Figure 2). The dynamic
224	component accounts up to 85% and 82% of the total East Asian cold-month SAT
225	anomaly during 1962-2011 boreal winter in the MPI-GE and the CESM-LE,
226	respectively.

The results shown above indicate that the observed cold extremes in the past 227 228 decades are mainly caused by the internal variability of atmospheric circulations. The 229 cold extremes are often associated with strong East Asian winter monsoon flows, which are often accompanied with the blockings in the Urals and the intensified Siberian high. 230 231 The composite circulation anomalies in the cold months during 1962-2011 boreal winter are further investigated (Figure 3). A ridge-trough pattern is seen over the 232 Eurasian continent in the upper troposphere and there is southeastward propagation of 233 wave activity flux (Figure 3a). The westerlies are weakened in the whole troposphere 234 around 45°N -75°N, and there is an enhanced meandering flow pattern (Figure 3b). The 235 weakened westerlies may favor the blocking events, which have strong relationship 236

- with the cold extremes over East Asia. The surface Siberian High is intensified, and
 low-level northerly winds lead cold Arctic air spread southward to East Asia (Figure
 3c).
- This typical type of circulation anomalies in cold months mentioned above are also well captured in the MPI-GE and the CESM-LE (Figure 3d-f). Namely, there is a ridge-trough pattern in the upper troposphere over the Eurasian continent and the surface Siberian High is enhanced. The westerlies are weakened in the whole troposphere and the cold air from the Arctic regions causes cold extremes over East Asia.

3.2 Dynamic and thermodynamic contributions to the projected changes in East Asian cold extremes

In the observations, the dynamic component is the main contributor to the East Asian cold extremes in the past five decades. The human induced global warming has little effects on the changes in dynamically-induced SAT anomalies during 1962-2011 (Figure 1). How will the dynamic and thermodynamic effects contribute to the future changes in cold extremes over East Asia?

We first examine the changes in the intensity of East Asian cold extremes (Figure 4a and c). The SAT anomaly will continuously increase along with the global warming under the RCP8.5 scenario. Compared with the present day, the East Asian regional mean cold-month SAT will increase by approximately 4.8°C at the end of the 21st century according to the best estimation of MPI-GE (Figure 4a). The large center

258	locates in Northeast China, over 6°C (Figure 5a). The dynamic and thermodynamic
259	components will also continually increase under the RCP8.5 scenario. The increases in
260	the dynamic and thermodynamic components are approximately 1.3°C and 3.5°C at the
261	end of the 21st century, respectively, in the MPI-GE (Figure 4a). Therefore, the
262	contribution of the increase in dynamic component to the total SAT increase is 27%.
263	The dynamic and thermodynamic components also increase faster in northern parts of
264	East Asia than in other regions (Figure 5b and c). The faster increase of thermodynamic
265	components in northern East Asia may be caused by the snow-albedo feedback, while
266	the reason for the faster increase in dynamic component in this region is that the
267	influence of East Asian Winter Monsoon on northern East Asia is more evident than on
268	other subregions. The results in the CESM-LE are generally consistent with those in
269	the MPI-GE. The East Asian regional mean SAT anomalies in cold months will increase
270	by approximately 5.2°C at the end of the 21st century (Figure 4c). The corresponding
271	increases in the dynamic and thermodynamic components are 1.3°C and 3.9°C,
272	respectively. From the perspective of spatial distribution, the changing patterns of the
273	total SAT and the dynamic component are similar in the two sets of large ensemble
274	model simulations (Figure 5a, b, d and e). The thermodynamic component shows some
275	differences (Figure 5c and f).

We extend the analysis from the changes in the intensity of cold extremes to the changes in the occurrence probability ratio of the present-day cold extremes in the future warm climate (Figure 4b). The 20-year running occurrence probability ratio of the present-day cold extremes will rapidly decrease under the RCP8.5 scenario in both

280	sets of the large ensemble model simulations. In the MPI-GE, the occurrence
281	probability ratio of the present-day cold extremes will decrease to 0.05 in the period
282	from 2034 to 2053 (Figure 4b), which means the present-day cold extremes will almost
283	never occur after 2034. We isolate the dynamic and thermodynamic contributions to the
284	changes of occurrence probability ratio of the present-day cold extremes. If we hold the
285	dynamic component constant at the present-day level, and allow the thermodynamic
286	component to evolve according to the model projection, the year when the occurrence
287	probability ratio of the present-day cold extremes will decrease to 0.05 is 2042, eight
288	years later than the time mentioned above (Figure 4b). Correspondingly, if we hold the
289	thermodynamic component constant at the present-day level, and allow the dynamic
290	component to evolve according to the model projection, the occurrence probability ratio
291	of the present-day cold extremes will decrease to 0.2 at the end of the 21st century.
292	From the perspective of spatial distribution, the occurrence probability ratio of the
293	present-day cold extremes will be decreased to 0.05 before 2040 in parts of southeastern
294	China, northeastern China and the Korean Peninsula (Figure 6a). The results in the
295	CESM-LE are generally consistent with those in the MPI-GE (Figures 4d and 6b). The
296	occurrence probability ratio of the present-day cold extremes will decrease to 0.05 in
297	2035-2054 (Figure 4d) and the occurrence probability ratio also decreases faster in
298	southeastern China, parts of northeastern China and the southern Korean Peninsula
299	(Figure 6b). Different from the MPI-GE, occurrence probability ratio of the present-
300	day cold extremes will decrease to 0.05 after 2060 in parts of North China and Northeast
301	China in the CESM-LE (Figure 6b).

302	The thermodynamic change is the main contributor to the decreases in the intensity
303	and occurrence probability of East Asian cold extremes, while the dynamic change is
304	also contributive. We further examine the changes in SLP anomalies associated with
305	East Asian cold extremes (Figures 7 and 8). Similar to the previous studies (Fyfe et al.,
306	1999; Cai et al., 2017; Kitoh, 2017), the projected changes in SLP exhibit a positive
307	AO-like pattern, particularly in the MPI-GE (Figure 7a and b). The winter-mean SLP
308	will be reduced in the Arctic regions and enhanced in the mid-latitude regions. The AO
309	shows highly positive correlation with the winter SAT anomaly over East Asia,
310	especially the northern part, and the positive phase of AO is favorable for warm winter
311	over East Asia (Gong et al., 2019; Wang et al., 2019). Similar SLP changing pattern
312	also occurs in cold months (Figure 7c and d) and this is possibly the reason for the
313	positive contribution of dynamic effects to the increase in SAT anomaly in cold months.
314	We also construct the changes in the dynamic component of SLP (Figure 8). Changes
315	in the dynamic component of SLP corroborates that the circulation changes are not
316	favorable for the occurrence of East Asian cold extremes (Figure 8c and d).

4 Summary and Discussion 317

318 4.1 Summary

319 Based on the dynamic adjustment approach, we utilized two sets of large ensemble model simulations in the MPI-GE and CESM-LE to investigate the contributions of the 320 background warming (thermodynamic effect) and circulation changes (dynamic effect) 321 to the East Asian cold extremes. The contributions of the two components to the East 322

000

323	Asian cold extremes are quantitatively evaluated in the recent decades and under the
324	future warming. The main conclusions are summarized as follows.
325	(1) The observed cold extremes in the past decades are mainly caused by the internal
326	variability of atmospheric circulations, especially for the cold extremes happened
327	in recent years. Both MPI-GE and the CESM-LE are consistent in revealing the
328	typical circulation anomalies associated with the East Asian cold extremes. The
329	relative contributions of the dynamic and thermodynamic components to the cold
330	extremes are well captured in the two model ensembles, and the dynamic
331	component accounts for more than 80% of the total cold-month SAT anomalies in
332	the past five decades.

A sign cald automage and auantitatively avaluated in the accent decades and under the

(2) In the future warm climate, the background warming is the main contributor to the 333 334 decreases in the intensity and occurrence probability of East Asian cold extremes, while the circulation changes are also contributive. Compared with the present day, 335 the mean intensity of the East Asian cold extremes will decrease by approximately 336 5°C at the end of the 21st century under the RCP8.5 scenario and the dynamic 337 component contributes to a quarter of this decrease. The occurrence probability 338 339 ratio of the present-day cold extremes will almost never occur after around 2035, and if we hold the dynamic component constant at the present-day level, this will 340 happen approximately 8 years later. 341

(3) Positive AO-like sea level pressure pattern upward trend is projected in both of the
 model ensembles, though there are a few differences between the two-ensemble

projection, and this change in large-scale circulation is unfavorable to the
 occurrence of East Asian cold extremes.

346 4.2 Discussion

Substantial efforts have been devoted so far to understand the response of climate 347 extremes to global warming (e.g. Alexander et al., 2006; Sanderson et al., 2017; Zhang 348 et al., 2018; AghaKouchak et al., 2020; Li et al., 2021), as well as their physical 349 350 mechanisms (Cattiaux et al., 2010; Peing and Magnusdottir, 2014; Westra et al., 2014; Boschat et al., 2015; Horton et al., 2015; Qian et al., 2018). In particular, the 351 thermodynamic processes (i.e., direct results of global warming) of changes in climate 352 353 extremes have been well demonstrated. However, it remains ambiguous regarding how the dynamic processes will change under global warming, which is an important source 354 of projection uncertainty for climate extremes (Shepherd, 2014; Norris et al., 2019). 355 356 Hence, it is of vital importance to understand the dynamic changes of climate extremes, 357 in order to improve the reliability of extreme climate projections.

In this study, we used two sets of large ensemble simulations data and dynamic adjust method to investigate the future change of cold extremes in East Asia, with a focus on understanding the thermodynamic and dynamic processes. Our results consistently show that the thermodynamic process is the dominant factor of future changes in East Asian cold extreme, with the contribution of dynamic process accounting for approximately one-quarter of the total change. In addition, the change in the dynamic component is attributed to the upward trend of a positive AO-like sea

level pressure pattern, and this has been supported by previous studies (Fyfe et al., 1999;

366	Cai et al,	2017;	Kitoh,	2017).
-----	------------	-------	--------	--------

367	AO is the main circulation mode in the non-tropical regions of the Northern
368	Hemisphere in winter (Thompson and Wallace, 1998), and has a significant impact on
369	the winter climate in East Asia (Gong et al., 2001). However, it is worth noting that
370	future winter temperature changes in East Asia may also be impacted by other large-
371	scale circulation factors (Zhou et al., 2007; Cheung et al., 2012; He and Wang, 2013).
372	The quantitative impacts of potential future changes of different circulation factors on
373	cold extremes in East Asia remain unclear and require further investigation in future
374	research.

375 Data availability

376	The MPI-GE experiment products can be downloaded from https://esgf-
377	data.dkrz.de/search/mpi-ge/. The specific experiments or variables can be selected
378	through the navigation bar on the left-hand side. The monthly sea level pressure (psl),
379	surface air temperature (tas), three-dimensional wind field (ua, va, wap), and
380	geopotential height (zg) from the piControl, historical and rcp85 experiments are used
381	in this work.
382	The CESM-LE experiment products can be downloaded from
383	https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.cesmLE.html.
384	
385	Author contribution
386	TJZ designed the study. DHL performed the data analysis, produced the figures
387	and wrote the manuscript draft. YCQ and CL collected the datasets. LWZ, WXZ and
388	XLC contributed to the analysis methods. All the authors contributed to the discussion,
389	writing, and editing of the manuscript.
390	
391	Competing interests
392	The authors declare that they have no conflict of interest.
393	
394	Acknowledgments
395	This work is jointly supported by the National Natural Science Foundation of
396	China (Grant Nos. 42105031, 41988101).
397	

398 References

- 399 AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni,
- 400 O., ... & Sadegh, M. (2020). Climate extremes and compound hazards in a
- 401 warming world. Annual Review of Earth and Planetary Sciences, 48, 519-548.
- 402 https://doi.org/10.1146/annurev-earth-071719- 055228.
- 403 Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M.
- 404 G., ... & Vazquez Aguirre, J. L. (2006). Global observed changes in daily climate
- 405 extremes of temperature and precipitation. Journal of Geophysical Research:
- 406 Atmospheres, 111(D5). https://doi.org/10.1029/2005JD006290
- 407 Andreescu, M. P., & Frost, D. B. (1998). Weather and traffic accidents in Montreal,

408 Canada. Climate research, 9(3), 225-230. https://doi.org/10.3354/cr009225

- 409 Boschat, G., Pezza, A., Simmonds, I., Perkins, S., Cowan, T., & Purich, A. (2015).
- 410 Large scale and sub-regional connections in the lead up to summer heat wave and
- 411 extreme rainfall events in eastern Australia. Climate Dynamics, 44, 1823-1840.
 412 https://doi.org/10.1007/s00382-014-2214-5.
- 413 Cai, W., Li, K., Liao, H., Wang, H., & Wu, L. (2017). Weather conditions conducive to
- Beijing severe haze more frequent under climate change. Nature Climate
 Change, 7(4), 257-262. https://doi.org/10.1038/nclimate3249
- 416 Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson Delmotte, V., & Codron, F.
- 417 (2010). Winter 2010 in Europe: A cold extreme in a warming climate. Geophysical
- 418 Research Letters, 37(20). https://doi.org/10.1029/2010GL044613

419	Cheung, H. N., Zhou, W., Mok, H. Y., & Wu, M. C. (2012). Relationship between Ural-
420	Siberian blocking and the East Asian winter monsoon in relation to the Arctic
421	Oscillation and the El Niño-Southern Oscillation. Journal of Climate, 25(12),
422	4242-4257. https://doi.org/10.1175/JCLI-D-11-00225.1
423	Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X.,
424	& Worley, S. J. (2011). The twentieth century reanalysis project. Quarterly Journal
425	of the Royal Meteorological Society, 137(654), 1-28.
426	https://doi.org/10.1002/qj.776
427	Deser, C., Terray, L., & Phillips, A. S. (2016). Forced and internal components of winter
428	air temperature trends over North America during the past 50 years: Mechanisms
429	and implications. Journal of Climate, 29(6), 2237-2258.
430	https://doi.org/10.1175/JCLI-D-15-0304.1
431	Donat, M. G., & Alexander, L. V. (2012). The shifting probability distribution of global
432	daytime and night - time temperatures. Geophysical Research Letters, 39(14).
433	https://doi.org/10.1029/2012GL052459
434	Fyfe, J. C., Boer, G. J., & Flato, G. M. (1999). The Arctic and Antarctic Oscillations
435	and their projected changes under global warming. Geophysical Research
436	Letters, 26(11), 1601-1604. https://doi.org/10.1029/1999GL900317
437	Gong, D. Y., Wang, S. W., & Zhu, J. H. (2001). East Asian winter monsoon and Arctic
438	oscillation. Geophysical Research Letters, 28(10), 2073-2076.
439	https://doi.org/10.1029/2000GL012311

440	Gong, H., Wang, L., Chen, W., &	& Wu, R. (20	19). Attribution of the E	East Asian winter
441	temperature trends during	1979–2018:	Role of external force	ing and internal
442	variability. Geophysical	Research	Letters, 46(19),	10874-10881.
443	https://doi.org/10.1029/201	9GL084154		

Gong, H., Wang, L., Chen, W., & Wu, R. (2021). Evolution of the East Asian winter
land temperature trends during 1961–2018: role of internal variability and external
forcing. Environmental Research Letters, 16(2), 024015. doi: 10.1088/17489326/abd586

- Guo, R., Deser, C., Terray, L., & Lehner, F. (2019). Human influence on winter
 precipitation trends (1921–2015) over North America and Eurasia revealed by
 dynamical adjustment. Geophysical Research Letters, 46(6), 3426-3434.
 https://doi.org/10.1029/2018GL081316
- Haarsma, R. J., Selten, F., Hurk, B. V., Hazeleger, W., & Wang, X. (2009). Drier
 Mediterranean soils due to greenhouse warming bring easterly winds over
 summertime central Europe. Geophysical research letters, 36(4).
 https://doi.org/10.1029/2008GL036617
- 456 Harris, I. P. D. J., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high -
- resolution grids of monthly climatic observations-the CRU TS3. 10
 Dataset. International journal of climatology, 34(3), 623-642.
 https://doi.org/10.1002/joc.3711
- 460 He, S., & Wang, H. (2013). Oscillating relationship between the East Asian winter

461	monsoon and ENSO. Journal of Climate, 26(24), 9819-9838.
462	https://doi.org/10.1175/JCLI-D-13-00174.1
463	Horton, D. E., Johnson, N. C., Singh, D., Swain, D. L., Rajaratnam, B., & Diffenbaugh,
464	N. S. (2015). Contribution of changes in atmospheric circulation patterns to
465	extreme temperature trends. Nature, 522(7557), 465-469.
466	https://doi.org/10.1038/nature14550
467	Hu, K., Huang, G., & Xie, S. P. (2019). Assessing the internal variability in multi-
468	decadal trends of summer surface air temperature over East Asia with a large
469	ensemble of GCM simulations. Climate Dynamics, 52(9), 6229-6242.
470	https://doi.org/10.1007/s00382-018-4503-x
471	IPCC. (2021). Climate Change 2021. The Physical Science Basis. Contribution of
472	Working Group I to the Sixth Assessment Report of the Intergovernmental Panel
473	on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C.
474	Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell,
475	E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and
476	B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and
477	New York, NY, USA, 2391 pp. doi:10.1017/9781009157896.
478	Jiang, D., & Tian, Z. (2013). East Asian monsoon change for the 21st century: Results
479	of CMIP3 and CMIP5 models. Chinese Science Bulletin, 58(12), 1427-1435.

481 Jones, G. S., Stott, P. A., & Christidis, N. (2008). Human contribution to rapidly

https://doi.org/10.1007/s11434-012-5533-0

482	increasing frequency of very warm Northern Hemisphere summers. Journal of
483	Geophysical Research: Atmospheres, 113(D2).
484	https://doi.org/10.1029/2007JD008914
485	Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., & Vertenstein, M.
486	(2015). The Community Earth System Model (CESM) large ensemble project: A
487	community resource for studying climate change in the presence of internal
488	climate variability. Bulletin of the American Meteorological Society, 96(8), 1333-
489	1349. https://doi.org/10.1175/BAMS-D-13-00255.1
490	Kharin, V. V., Flato, G. M., Zhang, X., Gillett, N. P., Zwiers, F., & Anderson, K. J.
491	(2018). Risks from climate extremes change differently from 1.5 C to 2.0 C
492	depending on rarity. Earth's Future, 6(5), 704-715.
493	https://doi.org/10.1002/2018EF000813
494	Kharin, V. V., Zwiers, F. W., Zhang, X., & Wehner, M. (2013). Changes in temperature
495	and precipitation extremes in the CMIP5 ensemble. Climatic change, 119(2), 345-
496	357. https://doi.org/10.1007/s10584-013-0705-8
497	Kitoh, A. (2017). The Asian Monsoon and its Future Change in Climate Models: A
498	Review. Journal of the Meteorological Society of Japan, 95(1): 7-33.
499	https://doi.org/10.2151/jmsj.2017-002
500	Lee, S. H. (2021). The January 2021 sudden stratospheric warming. Weather, 76(4),
501	135-136. https://doi.org/10.1002/wea.3966

502 Li, C., Stevens, B., & Marotzke, J. (2015). Eurasian winter cooling in the warming

503

 504 https://doi.org/10.1002/2015GL065327 505 Li, C., Zwiers, F., Zhang, X., Li, G., Sun, Y., & Wehner, M. (2021). Changes in annu
Li, C., Zwiers, F., Zhang, X., Li, G., Sun, Y., & Wehner, M. (2021). Changes in annu
506 extremes of daily temperature and precipitation in CMIP6 models. Journal
507 Climate, 34(9), 3441-3460. https://doi.org/10.1175/JCLI-D-19-1013.1

hiatus of 1998-2012. Geophysical Research Letters, 42(19), 8131-8139.

- Lu, Q., Rao, J., Liang, Z., Guo, D., Luo, J., Liu, S., ... & Wang, T. (2021). The sudden
 stratospheric warming in January 2021. Environmental Research Letters, 16(8),
- 510 084029. doi: 10.1088/1748-9326/ac12f4
- Ma, S., Zhou, T., Angélil, O., & Shiogama, H. (2017a). Increased chances of drought
 in southeastern periphery of the Tibetan Plateau induced by anthropogenic
 warming. Journal of Climate, 30(16), 6543-6560. https://doi.org/10.1175/JCLI-D-
- 514 16-0636.1
- 515 Ma, S., Zhou, T., Stone, D. A., Angélil, O., & Shiogama, H. (2017b). Attribution of the
- 516 July-August 2013 heat event in central and eastern China to anthropogenic
- 517 greenhouse gas emissions. Environmental Research Letters, 12(5), 054020. doi:
- 518 10.1088/1748-9326/aa69d2
- 519 Ma, S., Zhu, C., Liu, B., Zhou, T., Ding, Y., & Orsolini, Y. J. (2018). Polarized response
- 520 of East Asian winter temperature extremes in the era of Arctic warming. Journal
- 521 of Climate, 31(14), 5543-5557. https://doi.org/10.1175/JCLI-D-17-0463.1
- 522 Maher, N., Milinski, S., Suarez Gutierrez, L., Botzet, M., Dobrynin, M., Kornblueh,
- 523 L., ... & Marotzke, J. (2019). The Max Planck Institute Grand Ensemble: enabling

524	the exploration of climate system variability. Journal of Advances in Modeling
525	Earth Systems, 11(7), 2050-2069. https://doi.org/10.1029/2019MS001639
526	McCusker, K. E., Fyfe, J. C., & Sigmond, M. (2016). Twenty-five winters of
527	unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nature
528	Geoscience, 9(11), 838-842. https://doi.org/10.1038/ngeo2820
529	Mori, M., Watanabe, M., Shiogama, H., Inoue, J., & Kimoto, M. (2014). Robust Arctic
530	sea-ice influence on the frequent Eurasian cold winters in past decades. Nature
531	Geoscience, 7(12), 869-873. https://doi.org/10.1038/ngeo2277
532	Norris, J., Chen, G., & Neelin, J. D. (2019). Thermodynamic versus dynamic controls
533	on extreme precipitation in a warming climate from the Community Earth System
534	Model Large Ensemble. Journal of Climate, 32(4), 1025-1045.
535	https://doi.org/10.1175/jcli-d-18-0302.1
536	Overland, J. E., Wood, K. R., & Wang, M. (2011). Warm Arctic-cold continents:
537	climate impacts of the newly open Arctic Sea. Polar Research, 30(1), 15787.
538	https://doi.org/10.3402/polar.v30i0.15787
539	Peings, Y., & Magnusdottir, G. (2014). Response of the wintertime Northern
540	Hemisphere atmospheric circulation to current and projected Arctic sea ice decline
541	A numerical study with CAM5. Journal of Climate, 27(1), 244-264.
542	https://doi.org/10.1175/JCLI-D-13-00272.1

- 543 Qian, C., Wang, J., Dong, S., Yin, H., Burke, C., Ciavarella, A., ... & Tett, S. F. (2018).
- 544 Human Influence on the Record-breaking Cold Event in January of 2016 in

545	Eastern China. [in "Explaining Extreme Events of 2016 from a Climate
546	Perspective"]. Bulletin of the American Meteorological Society, 99(1), S118-S122.
547	https://doi.org/10.1175/BAMS-D-17-0095.1
548	Rahimzadeh, F., Asgari, A., & Fattahi, E. (2009). Variability of extreme temperature
549	and precipitation in Iran during recent decades. International Journal of
550	Climatology: A Journal of the Royal Meteorological Society, 29(3), 329-343.
551	https://doi.org/10.1002/joc.1739
552	Räisänen, J., & Ylhäisi, J. S. (2011). Cold months in a warming climate. Geophysical
553	Research Letters, 38(22). https://doi.org/10.1029/2011GL049758
554	Sanderson, B. M., Xu, Y., Tebaldi, C., Wehner, M., O'Neill, B., Jahn, A., & Lamarque,
555	J. F. (2017). Community climate simulations to assess avoided impacts in 1.5 and
556	2 C futures. Earth System Dynamics, 8(3), 827-847. https://doi.org/10.5194/esd-
557	8-827-2017
558	Shepherd, T. G. (2014). Atmospheric circulation as a source of uncertainty in climate
559	change projections. Nature Geoscience, 7(10), 703-708.
560	https://doi.org/10.1038/ngeo2253
561	Sheridan, S. C., & Allen, M. J. (2015). Changes in the frequency and intensity of
562	extreme temperature events and human health concerns. Current Climate Change

- 563 Reports, 1(3), 155-162. https://doi.org/10.1007/s40641-015-0017-3
- 564 Smoliak, B. V., Wallace, J. M., Lin, P., & Fu, Q. (2015). Dynamical adjustment of the
- 565 Northern Hemisphere surface air temperature field: Methodology and application

566	to observations. Journal of Climate, 28(4), 1613-1629.
567	https://doi.org/10.1175/JCLI-D-14-00111.1
568	Steponkus, P. L. (1979). Cold hardiness and freezing injury of agronomic
569	crops. Advances in Agronomy, 30, 51-98. https://doi.org/10.1016/S0065-
570	2113(08)60703-8
571	Sun, L., Perlwitz, J., & Hoerling, M. (2016). What caused the recent "Warm Arctic,
572	Cold Continents" trend pattern in winter temperatures?. Geophysical Research
573	Letters, 43(10), 5345-5352. https://doi.org/10.1002/2016GL069024
574	Sun, Y., Zhang, X., Zwiers, F. W., Song, L., Wan, H., Hu, T., & Ren, G. (2014). Rapid
575	increase in the risk of extreme summer heat in Eastern China. Nature Climate
576	Change, 4(12), 1082-1085. https://doi.org/10.1038/nclimate2410
577	Thompson, D. W., & Wallace, J. M. (1998). The Arctic Oscillation signature in the
578	wintertime geopotential height and temperature fields. Geophysical research
579	letters, 25(9), 1297-1300. https://doi.org/10.1029/98GL00950
580	Thompson, D. W., Wallace, J. M., Jones, P. D., & Kennedy, J. J. (2009). Identifying
581	signatures of natural climate variability in time series of global-mean surface
582	temperature: Methodology and insights. Journal of Climate, 22(22), 6120-6141.
583	https://doi.org/10.1175/2009JCLI3089.1
584	Thornton, H. E., Hoskins, B. J., & Scaife, A. A. (2016). The role of temperature in the
585	variability and extremes of electricity and gas demand in Great
586	Britain. Environmental Research Letters, 11(11), 114015. doi: 10.1088/1748-

587 9326/11/11/114015

- 588 Trenary, L., DelSole, T., Tippett, M. K., & Doty B. (2016). Extreme Eastern US Winter
- 589 of 2015 Not Symptomatic of Climate Change [in "Explaining Extreme Events of
- 590 2016 from a Climate Perspective"]. Bulletin of the American Meteorological
- 591 Society, 97(12), S31-S35. doi: 10.1175/BAMS-D-16-0156.1
- Wallace, J. M., Fu, Q., Smoliak, B. V., Lin, P., & Johanson, C. M. (2012). Simulated
 versus observed patterns of warming over the extratropical Northern Hemisphere
 continents during the cold season. Proceedings of the National Academy of
- 595 Sciences, 109(36), 14337-14342. https://doi.org/10.1073/pnas.1204875109
- 596 Wang, C., Yao, Y., Wang, H., Sun, X., & Zheng, J. (2021). The 2020 summer floods and
- 2020/21 winter extreme cold surges in China and the 2020 typhoon season in the
 western North Pacific. Advances in Atmospheric Sciences. 38, 896 904.
 https://doi.org/10.1007/s00376-021-1094-y
- 600 Wang, L., Deng, A., & Huang, R. (2019). Wintertime internal climate variability over
- 601 Eurasia in the CESM large ensemble. Climate dynamics, 52(11), 6735-6748.
- 602 https://doi.org/10.1007/s00382-018-4542-3
- 603 Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., ... &
- Roberts, N. (2014). Future changes to the intensity and frequency of short duration extreme rainfall. Reviews of Geophysics, 52(3), 522-555.
 https://doi.org/10.1002/2014RG000464
- 607 Xu, M., Xu, H., & Ma, J. (2016). Responses of the East Asian winter monsoon to global

608	warming in CMIP5 models. International Journal of Climatology, 36(5), 2139-
609	2155. https://doi.org/10.1002/joc.4480
610	Yamaguchi, K., & Noda, A. (2006). Global warming patterns over the North Pacific:
611	ENSO versus AO. Journal of the Meteorological Society of Japan. Ser. II, 84(1),
612	221-241. https://doi.org/10.2151/jmsj.84.221
613	Zhang, W., Zhou, T., Zou, L., Zhang, L., & Chen, X. (2018). Reduced exposure to
614	extreme precipitation from 0.5C less warming in global land monsoon
615	regions. Nature Communications, 9(1), 3153. https://doi.org/10.1038/s41467-
616	018-05633-3
617	Zhou, T., Zhang, W., Zhang, L., Clark, R., Qian, C., Zhang, Q., & Zhang, X. (2022).
618	2021: A Year of Unprecedented Climate Extremes in Eastern Asia, North America,
619	and Europe. Advances in Atmospheric Sciences. 39, 1598 - 1607.
620	https://doi.org/10.1007/s00376-022-2063-9

621 Zhou, W., Li, C., & Wang, X. (2007). Possible connection between Pacific oceanic 622 interdecadal pathway and East Asian winter monsoon. Geophysical Research 623 Letters, 34(1). https://doi.org/10.1029/2006GL027809

624

Time (Year	Total(°C)	Dynamic(°C)	Thermodynamic(°C)	Dynamic
Month)				ratio(%)
196402	-5.63	-3.30	-2.33	58.6
196902	-5.02	-2.77	-2.25	55.1
197701	-4.51	-2.52	-1.98	56.0
196802	-4.35	-1.16	-3.19	26.6
196712	-4.01	-2.02	-2.00	50.3
201101	-3.47	-3.81	0.34	109.9
197202	-3.39	-0.45	-2.93	13.4
196612	-3.30	-2.55	-0.75	77.1

626 **Table 1** The list of observed cold months in period of 1962-2011 boreal winter.

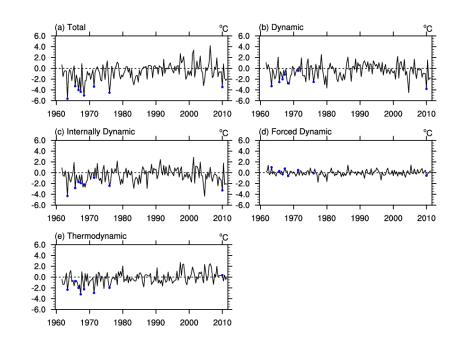


Figure 1 Time series decomposition of winter monthly surface air temperature (SAT)
anomalies averaged over East Asia (20°N-55°N and from 105°E-130°E) from the
observation into internal, forced, dynamic and thermodynamic components: (a) total,
(b) dynamic, (c) internally dynamic, (d) forced dynamic and (e) thermodynamic
components. The blue dots represent the cold months in the period of 1962-2011 boreal
winter.

635

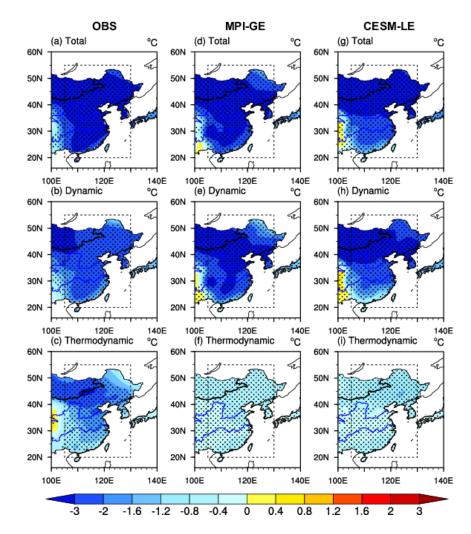


Figure 2 The composites of the cold-month SAT anomaly (relative to the 1986-2005 boreal winter climatology) in the observation during the period of 1962-2011 boreal winter: (a) total, (b) dynamically-induced and (c) thermodynamically-induced. The subplots (d)-(f) and (g)-(i) correspond to subplots (a)-(c), but for the results in the MPI-GE and the CESM-LE, respectively. The dotted areas are statistically significant at the 5% level according to Student's t test. The cold months are defined as months in which SAT is lower than the statistical 5th percentile of all the monthly SAT samples during

644 1962-2011 boreal winter.

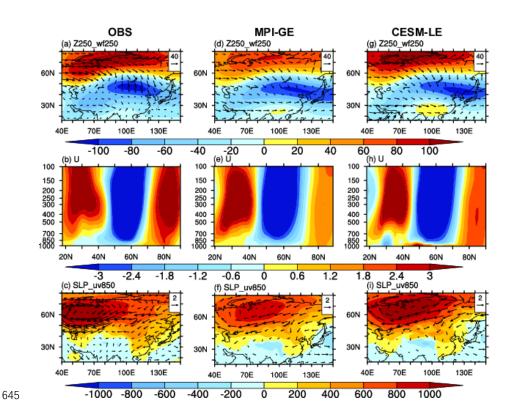


Figure 3 Observed composite circulation anomalies (relative to the 1986-2005 boreal winter climatology) for East Asian cold extremes during the period of 1962-2011 boreal winter: (a) Geopotential height (shading; unit: m) and horizontal components of the wave activity flux ($m^2 s^{-2}$) at 250-hPa. (b) Zonal mean zonal wind over the vertical cross section (zonally averaged over 70-120°E; unit: $m s^{-1}$;). (c) sea level pressure (shading; unit: Pa) and horizontal wind at 850-hPa ($m s^{-1}$). Subplots (d)-(f) and (g)-(i) correspond to subplots (a)-(c), but for the results in the MPI-GE and the CESM-LE, respectively.

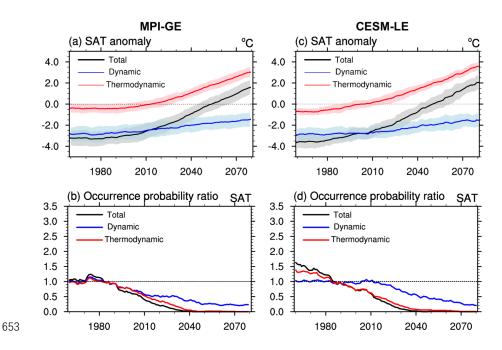
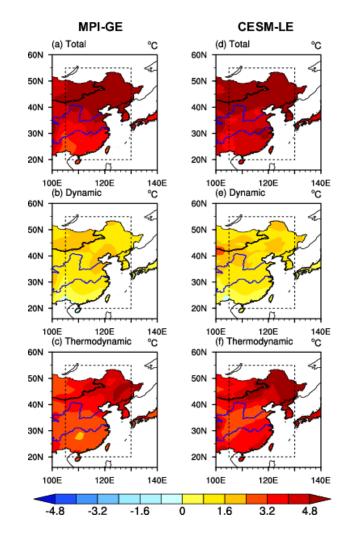
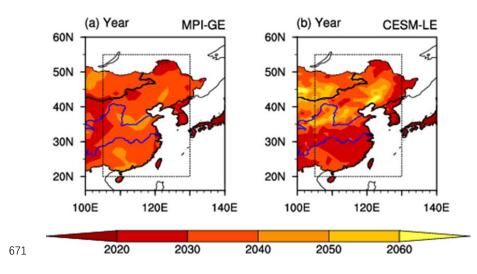



Figure 4 (a) Time series of the 20-yr running averaged cold-month SAT anomaly (black) 654 and its dynamically-induced (blue) and thermodynamically-induced (red) components 655 over East Asia relative to the 1986-2005 boreal winter climatology in the MPI-GE. The 656 shading shows the range of two standard deviations among the model members. (b) 657 Time series of the occurrence probability ratio of the present-day East Asian cold 658 659 extremes in the MPI-GE: both dynamic and thermodynamic components change 660 (black), only dynamic component changes (blue) and only thermodynamic component change (red). Subplots (c) and (d) correspond to subplots (a) and (b), but for the results 661 in the CESM-LE. cold months are defined as the months in which the regional mean 662 SAT is lower than the statistical 5th percentile of the climatological monthly SAT series 663 664 during DJF in a certain time slice.



665

Figure 5 Changes in East Asian cold-month SAT in the MPI-GE in 2079-2098 boreal
winter relative to 1986-2005 boreal winter: (a) Total, (b) dynamic component and (c)
thermodynamic component. Subplots (d)-(f) correspond to subplots (a)-(c), but for the
results in the CESM-LE.

672 **Figure 6** The year when the occurrence probability ratio of the present-day (1986-2005

- boreal winter) East Asian cold extremes decreases to zero in (a) The MPI-GE and (b)
- 674 the CESM-LE.

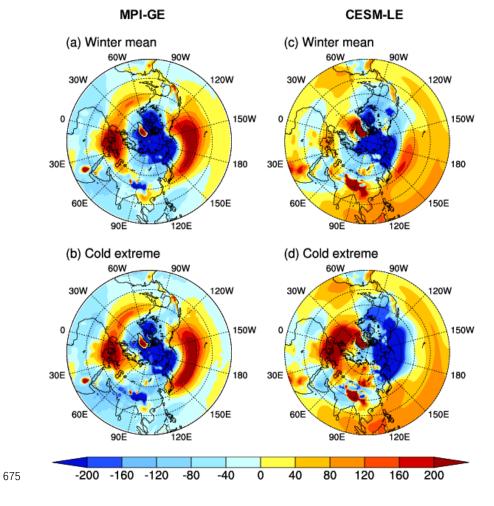


Figure 7 Changes in SLP for (a) total winter months and (b) cold months in 2079-2098
boreal winter relative to 1986-2005 boreal winter in the MPI-GE. Subplots (c) and (d)
correspond to subplots (a) and (b), but for the results in the CESM-LE.

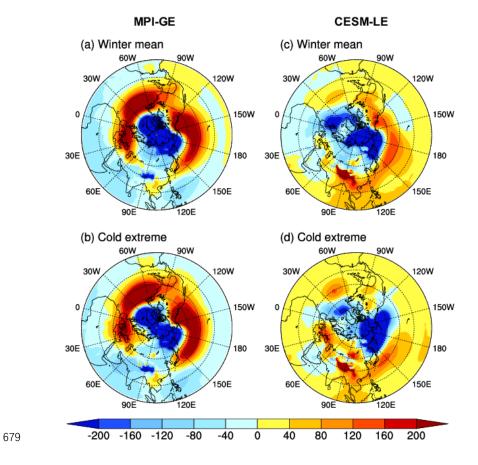


Figure 8 Changes in the dynamic component of SLP for (a) total winter months and (b)
cold months in 2079-2098 boreal winter relative to 1986-2005 boreal winter in the MPIGE. Subplots (c) and (d) correspond to subplots (a) and (b), but for the results in the
CESM-LE.