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Abstract. An artificial neural network (ANN) algorithm, employing several Aqua MODerate-resolution Imaging 7 
Spectroradiometer (MODIS) channels, the retrieved cloud phase and total cloud visible optical depth, and temperature and 8 
humidity vertical profiles is trained to detect multilayer (ML) ice-over-water cloud systems identified by matched 2008 9 
CloudSat and CALIPSO (CC) data. The trained MLANN was applied to 2009 MODIS data resulting in combined ML and 10 
single layer detection accuracies of 87% (89%) and 86% (89%) for snow-free (snow-covered) regions during the day and 11 
night, respectively. Overall, it detects 55% and ~30% of the CC ML clouds over snow-free and snow-covered surfaces, 12 
respectively, and has a relatively low false alarm rate. The net gain in accuracy, which is the difference between the true and 13 
false ML fractions, is 7.5% and ~2.0% over snow-free and snow/ice-covered surfaces. Overall, the MLANN is more accurate 14 
than most currently available methods. When corrected for the viewing-zenith-angle dependence of each parameter, the ML 15 
fraction detected is relatively invariant across the swath.  Compared to the CC ML variability, the MLANN is robust seasonally 16 
and interannually, and produces similar distribution patterns over the globe, except in the polar regions. Additional research is 17 
needed to conclusively evaluate the VZA dependence and further improve the MLANN accuracy. This  approach should 18 
greatly improve the monitoring of cloud vertical structure using operational passive sensors. 19 

1 Introduction 20 

Passive remote sensing with polar-orbiting and geostationary passive imagers is currently the only approach suitable for nearly 21 
continuous monitoring of clouds day and night around the globe. While cloud remote sensing is well established and the 22 
methodologies are abundant (e.g., Stubenrauch et al., 2013), detecting and characterizing multilayered clouds remains a 23 
continuing challenge. Typically, algorithms employed to retrieve properties, such as cloud optical depth or phase, treat the 24 
radiances for a given cloudy imager pixel as emanating from a single plane-parallel cloud sheet. Rarely, if ever, will an actual 25 
cloud entirely satisfy the plane-parallel assumptions. Instead, the sizes and densities of the hydrometeors vary vertically and 26 
horizontally within the atmospheric column corresponding to a cloudy imager pixel. The top and side surfaces of clouds, even 27 
stratus, typically have bumps and troughs that deviate to various degrees from the uniformity implicit in the plane-parallel 28 
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model (e.g., Loeb and Coakley, 1998). Simply having vertical extent can cancel the plane-parallel assumption when viewing 29 
parts of a cloud side (e.g., Liou and Ou, 1979). Multilayered clouds also violate the model.  30 

Accounting for variations in single-layer-cloud morphology with a non-plane-parallel type of model is too complex for 31 
use in operational retrieval algorithms and likely requires information that is currently unavailable in most imager radiance 32 
datasets. Moreover, radiative transfer calculations used in weather and climate models are based on the same plane-parallel 33 
premise, although methods are being developed to account for some 3D structure (e.g., Schäfer et al., 2016).  For single-layer 34 
(SL) clouds, the nonuniform geometry is the predominant deviation from the plane-parallel ideal. It mostly affects retrievals 35 
of cloud optical depth (COD) and particle effective radius (CER), but, less so, cloud-top phase and height (CTH). The presence 36 
of two water phases and separation of the upper and lower layers in ice-over-water multilayer (ML) systems can also produce 37 
large errors in COD and CER, and significantly diminish the accuracies of thermodynamic phase and cloud-top height (CTH) 38 
retrievals (e.g., Minnis et al., 2007; Yost et al., 2023). Reducing uncertainties in the retrievals due to nonconformance with the 39 
SL plane-parallel ideal, particularly for ML clouds, is critical to increasing the value of imager cloud retrievals for a variety of 40 
applications.  41 

Reliable determination of cloud characteristics is critical to the Clouds and the Earth’s Radiant Energy System (CERES, 42 

Loeb et al., 2016) for converting broadband radiance measurements to reliable shortwave and longwave fluxes at the top of 43 
the atmosphere, within the atmosphere, and at the surface. Cloud properties extracted from satellite imagery are also exploited 44 
in a wide variety of applications. These include, among others, verifying climate model cloud parameters (e.g., Zhang et al., 45 
2010; Stanfield et al., 2014), enhancing aviation safety (Mecikalski et al., 2007; Smith et al., 2012), improving short-term 46 
weather forecasts (e.g., Kurzock et al., 2019; Benjamin et al., 2021), and estimating surface radiative fluxes (e.g., Rutan et al., 47 
2015; Ryu et al., 2018). All of these applications and others (e.g., Chen and Zhang, 2000; Morcrette and Christian, 2000) will 48 
benefit from more accurate cloud properties, especially for ML systems.  49 

Active instruments such as the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar on the Cloud-Aerosol 50 
Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite (Winker et al., 2009) and the Cloud Penetrating 51 
Radar (CPR) on CloudSat (Stephens et al., 2008) together have produced the most detailed depictions of cloud vertical structure 52 
on a global scale. These satellites are part of the A-Train, the Afternoon Constellation of sun-synchronous orbiters that, for 53 
years, flew nearly the same tracks (13:30 Equatorial crossing time) separated by only a few minutes. Other satellites with 54 
imagers, particularly Aqua with the MODerate-resolution Imaging Spectroradiometer (MODIS), are also members of the A-55 
Train. The CALIOP and the CPR are both near-nadir viewing instruments that generate profiles of atmospheric particles only 56 
in a narrow curtain along the satellite track. Those profiles, which often include overlapping clouds, are valuable for many 57 
uses, especially when combined with other instruments on the A-Train. Because they sample only a tiny fraction of the globe 58 
at two local times each day, the current active instruments have limited utility for many of the applications served by 59 
operational satellite imager products. 60 
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Efforts to accurately identify and unscramble ML clouds from passive imagery have yielded a variety of methods that 61 
have either been demonstrated as efficacious or are being applied routinely. They are based on interpreting radiances from 62 
either multiple instruments or from a single instrument with multiple channels. To identify ML clouds, Lin et al. (1998) 63 
matched microwave radiometer (MWR) retrievals of cloud liquid water path (LWP) from polar-orbiting satellites with 64 
retrievals of COD from geostationary satellites. Minnis et al. (2007) used MWR retrievals of LWP matched with imager 65 
retrievals of COD and CER to detect and retrieve ML cloud properties over water surfaces. By combining Aqua MODIS CTP 66 
and COD with the optical centroid cloud pressure retrieved from the Ozone Monitoring Instrument on the Aura satellite, Joiner 67 
et al. [2010] discriminated between vertically extended and ML clouds.  68 

The single-instrument approach, which is more viable for monitoring ML clouds from a greater number of satellites, often 69 
relies on discrepancies between the visible (VIS, ~0.65 µm) channel COD and that determined from other channels. For 70 
example, COD derived from infrared radiances is limited to values of less than ~5 because the usable signal diminishes for 71 
thicker clouds. Thus, the two COD retrievals can be used to detect thin cirrus over a thicker lower cloud. Pavolonis and 72 
Heidinger (2004) identified ML clouds by comparing the COD retrieved from the brightness temperature differences from the 73 
11 and 12-µm channels, BTD1112, with the VIS COD. They suggested that the MODIS 1.38-µm and 1.63-µm reflectances 74 
could be combined with BTD1112 to retrieve the cirrus optical depths for comparison with the VIS COD. The MODIS CO2 75 
channels were used by Chang and Li [2005] to retrieve IR COD for ML cloud detection. Their method was simplified by 76 
Chang et al. [2010] to employ brightness temperatures from CO2 and 11-µm channels to identify high clouds and ultimately 77 
to detect ML clouds in the CERES MODIS Edition 4 products (CM4; Minnis et al., 2021). Similarly, Wind et al. [2010] 78 
contrasted the cloud top pressure (CTP) derived with a CO2 method to that based on absorption in the MODIS 0.94-µm channel 79 
along with other tests to identify ML clouds in MODIS pixels. To further improve ML detection, this technique was enhanced 80 
with additional tests, including the Pavolonis and Heidinger (2002) method (Platnick et al., 2017; Marchant et al., 2020).  81 

Desmons et al. (2017) exploited multi-angle polarized spectral reflectances and two different retrievals of CTP from the 82 

Polarization and Directionality of the Earth’s Reflectance (POLDER) instrument on another A-Train satellite. Instead of using 83 

COD retrievals, Wang et al. (2019) utilized a series of tests applied to three spectral reflectances and two infrared brightness 84 
temperatures measured by the Visible Infrared Imaging Radiometer Suite (VIIRS) to classify clouds as single-layer ice or 85 
water, multilayer, probable multilayer, or uncertain phase and layering. Their technique yielded results similar to those from 86 
Platnick et al. (2017). For detecting ML clouds in VIIRS data, CERES replaced the CO2 channel with the 12-µm channel in 87 
the Chang et al. (2010) approach. It found fewer ML clouds than the method using the CO2 channel (Minnis et al. 2023). 88 

These physically based approaches to ML detection are limited in many respects by a priori knowledge and ambiguous 89 
spectral signals in the imager radiance complement, problems that affect many cloud remote sensing approaches. To minimize 90 
these limitations, artificial neural networks (ANNs) are increasingly employed to characterize clouds from passive imager 91 
data. By training with a select set of relevant input parameters and a known output value, the ANN has the potential to better 92 
interpret several subtle, but often ambiguous radiative signals that are difficult to reconcile in physically based retrievals. Kox 93 
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et al. (2014) and Strandgren et al. (2017) employed an ANN to determine cirrus COD and CTH, while Cerdena et al. (2007) 94 
used it to estimate liquid water cloud COD and CER and Taravat et al. (2015) detected the presence of clouds with it. Using 95 
an ANN, Minnis et al. (2016) retrieved thick ice cloud COD at night and Håkansson et al. (2018)  more accurately determined 96 
CTP and CTH than available physical methods. Stengel et al. (2020), Wang et al. (2020), and White et al. (2021) use ANNs 97 
for cloud detection and phase discrimination. Machine learning techniques were employed by Haynes et al. (2022) to detect 98 
low clouds in both single- and multilayered conditions for geostationary satellites. Tan et al. (2022) found that a random-forest 99 
technique was highly accurate in detecting multilayered clouds from geostationary satellite imager data. These and other 100 
examples have clearly demonstrated that ANNs have significant potential for advancing the characterization of global 101 
cloudiness from passive imager radiances.  102 

To improve the CERES ML detection, Sun-Mack et al. (2017) began developing a multi-layer cloud detection ANN 103 
(MLANN) to distinguish between SL and ML clouds using MODIS radiance data matched to CALIPSO and CloudSat vertical 104 
profiles of clouds.  Minnis et al. (2019) further enhanced the MLANN by including more input parameters and additional 105 
output variables such as upper layer CTH, COD, and cloud-base height (CBH). They also used only high-confidence CloudSat 106 
and CALIPSO data for training. They found that, for nonpolar clouds, the MLANN correctly identified ML and SL clouds 107 
together 80.4% and 77.1% of the time during day and night, respectively, using CALIPSO data averaged over an 80-km 108 
distance. While those results are quite encouraging, the approach needs further refinement and complete seasonal and global 109 
coverage.  110 

This paper reports on continued development of the MLANN to detect ML clouds. Revisions to the previous training are 111 
made using newer versions of CALIPSO and CloudSat products with constrained horizontal resolution. In addition to the 112 
separate day/night training used in previous versions, the MLANN herein is trained separately for CERES ice and water cloud 113 
pixels separately for snow-free and snow/ice-covered surfaces using an entire year of data. Input to the MLANN is also 114 
enhanced with some new variables. Finally, because the MLANN is trained with near-nadir data, its utility for full swath 115 
MODIS data is examined. 116 

 117 
2 Data 118 
 119 
The MLANN is trained with input taken from Aqua MODIS imager data and cloud products, and numerical weather model 120 
reanalyses. Different datasets are used for daytime and nighttime. Daytime corresponds to all measurements taken when the 121 
solar zenith angle, SZA < 82°. Active sensor data serve as the output. 122 
 123 
2.1 C3M and MODIS 124 
 125 
MODIS on Aqua, the CALIOP, and the CPR, took measurements continuously within ±3 min of each other over a given 126 

location until 2011, when CloudSat suffered battery problems and thereafter only collected data during the day. CloudSat 127 
exited the A-Train during February 2018. The CALIOP and the CPR were aligned to view nearly the same area along their 128 
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respective orbits. Because their flight tracks are typically close to the Aqua nadir path, MODIS scans the same scene at viewing 129 
zenith angles, VZA < 18°. Vertical profiles of clouds from the CALIPSO Version 4 (Vaughan et al., 2016) and the CloudSat 130 
2B-CLDCLASS_R05 (Sassen and Wang, 2008), 2B-CWC-RO (Austin et al. 2009), and 2C-ICE (Deng et al., 2015) datasets 131 
were collocated with 1-km Aqua MODIS Collection 6.1 radiances and CERES-retrieved cloud properties to produce an 132 
updated version of the CloudSat, CALIPSO, CERES, and MODIS (C3M) product (Kato et al., 2010). The C3M also includes 133 
CERES MODIS cloud properties, such as cloud-top phase, cloud particle effective radius (RCM), and COD (τCM), which were 134 
retrieved from the MODIS radiances using an interim CERES Edition 5 algorithm, CM4+. Those retrievals assumed that all 135 
of the clouds were single-layered. 136 
 The CM4+methodology is the same as the that of the CM4 algorithms except for two changes. In CM4+, τCM is retrieved 137 
over snow and ice surfaces using a combination of 1.61-µm and 1.24-µm reflectances, as suggested by Minnis et al. (2021). 138 
The former channel is used for thinner clouds (COD < 8 for ice clouds, COD < 32 for water clouds) and the latter for thicker 139 
clouds. The Aqua MODIS 1.6-µm channel consists of 10 sensors. Of those ten, only six operate properly. To obtain full 1.6-140 
µm imagery, the 1.6-µm reflectance for each bad pixel was replaced with that from the nearest good detector. That method 141 
was applied to the 101-pixel-wide MODIS swath of the C3M. The other change for CM4+ is the use of the two-habit ice 142 
crystal model of  Loeb et al. (2018) for retrieving ice cloud properties. 143 

A separate dataset is the full-swath Aqua CM4+ cloud product and the Aqua MODIS Collection 6.1 radiances, which are 144 
sampled every other scan line and every fourth pixel. Note that the 1.6-µm channel is only available from 3 of the five sensors 145 
on the CERES sampled Aqua MODIS Collection 6.1 data. The corrections applied to faulty 1.6-µm sensors for C3M have not 146 
yet been implemented for CERES Aqua MODIS data prior to 2019. Therefore, the sampling is reduced and all data from the 147 
faulty sensors are excluded in the full-swath 2009 and 2013 data.  148 

To produce a complete vertical profile of cloud-filled layers in a given pixel, the C3M converts the CloudSat CLDCLASS 149 
high-confidence cloud profiles from 240–m to 60-m vertical resolution, then merges them with the CALIPSO cloud profile 150 

and vertical feature mask. The nominal horizontal footprint of a CALIOP shot at the Earth’s surface is 330 m in diameter. To 151 

detect fainter clouds, the CALIPSO processing system computes horizontal averages (HA) of the lidar signals from multiple 152 
shots corresponding to increasing distances along the track: 1, 5, 20, and 80 km. The last three HA values are for altitudes 153 
above 8 km. This analysis uses only those clouds detected at HA < 5 km to define the cloud profiles, because nearly all of the 154 
clouds identified solely at lower resolutions had COD < 0.1. Since the CM4 detection rate drops significantly for those 155 
extremely small optical depths (Trepte et al., 2019), few of those cirrus clouds are discernible and are less likely to be identified 156 
in ML conditions. Additionally, in the previous formulation (Minnis et al., 2019), all three CALIPSO 0.33-km pixels matched 157 
to a given MODIS pixel were required to be cloudy after the horizontal averaging was performed. Here, only two out of three 158 
0.33-km pixels are required to be cloudy and any cloud having τCM < 0.5 is assumed to be single-layered. The latter constraint 159 
assumes that the ML signal from such optically thin clouds is negligible, and any retrieval attempt will yield upper and lower 160 
cloud-layer properties that are, at most, highly uncertain. To perform additional analyses, the CC COD (τCC) was computed 161 
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for each ice-layer pixel identified as ML in the CALIPSO-CloudSat profiles. The value of τCC is equal to the CALIPSO ice 162 
COD, when the CALIOP signal shows a return from the lower layer cloud, otherwise it is equal to the combined CALIPSO-163 
CloudSat COD. To cover all seasons for snow-free surfaces and facilitate computer processing for training, the C3M data were 164 
sampled every fourth pixel of 2008 for snow/ice-free (SF) areas, while all pixels were used for the snow/ice-covered (SC) 165 
scenes. This full-year training set is more comprehensive than the 1-month dataset of Minnis et al. (2019). The complete, 166 
upsampled 2009 C3M data were employed as an independent dataset for validating the MLANN. 167 

The C3M data were merged with the relevant surface skin temperature and vertical profiles of relative humidity taken 168 
from the CERES Meteorology, Ozone, and Aerosol (MOA) product (Gupta et al., 1997). The latest MOA product is the result 169 
of regridding and interpolating spatially and temporally the version 5.4 reanalysis produced by the Global Modeling 170 
Assimilation Office Global Earth Observing System (GEOS-5.4), an update of the versions described by Rienecker et al. 171 
(2008). These are the same data employed in the CM4+ retrievals. 172 

 173 
2.2 Input variables 174 
The MODIS input variables are listed in Table 1. Both daytime and nighttime MLANN input include latitude, longitude, 175 
surface type (land or water), surface elevation, brightness temperatures Tl and brightness temperature differences, BTDl1l2 = 176 
Tl1 – Tl2, where l is the wavelength in µm abbreviated to the first two digits. Here, brightness temperatures at 3.7, 6.7, 8.5, 177 
11, 12, and 13.3 µm are used together with BTD3711, BTD6711, BTD8511, BTD1112, and BTD1113. The parameters involving the 178 
13.3-µm channel were not used over snow-covered surfaces because of striping in the 13.3-µm images over Greenland and 179 
Antarctica. Also included are tCM and the GEOS-5.4 input data. During the day, tCM is retrieved using solar reflectances and 180 
corresponds to the total cloud optical depth. At night, it is estimated from three infrared channels and typically represents the 181 
uppermost cloud COD (e.g., Minnis et al., 2021). Nocturnal values exceeding ~5 are often not vey accurate, but serve to 182 
indicate that the cloud is not optically thin. The GEOS input data comprise the surface skin temperature and the relative 183 
humidities at the surface and at 850, 700, 500, 400, 300, 200, and 100 hPa. Relative humidity can indicate the presence of a 184 
cloud at a given altitude depending on the quality of the source (e.g., Minnis et al., 2005).  185 

 During the day, the additional input data consist of the SZA, the 1.38-µm reflectance (r1.38), the reflectance difference 186 
between 1.6 and 2.1 µm, r1.38 - r1.38. CM4+ retrievals of RCM are also employed for the MLANN formulation. The reflectances 187 
and RCM were not used by Minnis et al. (2019). 188 

 189 

2.3 Output: Single or multilayered 190 

According to Kato et al. (2010), approximately 51% of cloud systems identified by the CPR and CALIOP consist of two or 191 
more layers separated by at least 200 m. Of that 51%, atmospheric columns having 2, 3, 4, 5, and 6+ layers account for 57, 28, 192 
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10, 4, and 1% of the pixels, respectively. Those statistics include liquid-over-liquid, ice-over-ice, water-over-ice as well as ice-193 
over-water cloud overlap. Unscrambling this variety of layering is a daunting task. 194 

To simplify ML detection and later retrievals, only those clouds having the greatest differences in properties are assumed 195 
to be multilayered. Thus, only systems having ice-over-liquid clouds are considered because they differ in phase, scattering 196 
properties, and altitude, and are more common than liquid-over-ice clouds. Thus, multilayered clouds are defined here as any 197 
combination of ice-cloud layers above one or more water cloud layers with the constraint that the top of the uppermost water 198 
layer must be at least 1 km below the bottom of the lowest ice cloud layer. All ice cloud layers together are considered to 199 
constitute a single cloud layer. Similarly, all liquid layers are considered together as a single layer.  200 

Selection of 1 km as the minimum separation distance is based on the need to ensure complete separation between the ice 201 
and water layers and to maximize the number of detected ML clouds. Using a smaller separation would likely diminish 202 
detection accuracy significantly, as demonstrated by Tan et al. (2022). Sun-Mack et al. (2017) and Minnis et al. (2019) found 203 
that a larger separation distance can result in greater accuracy but at the expense of missing a significant number of actual ML 204 
clouds. 205 
 An ice-cloud layer is assumed to be present in the profile, if  206 
 207 

(1) the CALIPSO VFM cloud phase is either ice clouds or mixed phase clouds, or  208 

(2) at least, one layer with extinction occurs at a height above the altitude corresponding to 253 K and no temperature 209 
inversion exists in the atmospheric layer between the altitudes corresponding to 273 K and 253 K. This constraint is used 210 
to eliminate the possibility of warm clouds occurring above the assumed ice threshold of 253 K. 211 

For training, all C3M pixels having an ice-cloud layer over a water cloud layer are assigned an output value of 1, while all 212 
other cloudy pixels are assumed to be single-layered and are assigned a value of zero. 213 

 214 

3.0 Methodology 215 

The MLANN is trained using the MathWorks Patternnet software (https://www.mathworks.com/help/deeplearning/gs/pattern-216 
recognition-with-a-shallow-neural-network.html). The scaled conjugate gradient training function was employed here because 217 
it seemed best suited to handling very large training datasets with many iterations. This is a switch from the Levenberrg-218 
Marquardt method used in the previous version of MLANN. Only one hidden layer is used for this shallow neural network. It 219 
was found that a second layer yielded no significant increase in accuracy, but greatly increased training time. Each layer 220 
employed the logarithmic sigmoid and hyperbolic tangent sigmoid functions [logsig, transig] as the activation type.In the 221 
hidden layer, the number of neurons varies from 50 to 70 depending on the data category (e.g., snow-free daytime ice clouds). 222 
The exact number was determined by adding neurons until gains in accuracy ended. An epoch of 2000 was used for ending 223 
the fitting but it was not always reached. Mean squared error was used to measure performance. For final training, the sampled 224 
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2008 data for each category were divided into 60%, 20%, and 20% each for training, testing, and validation, respectively. All 225 
other training parameters are determined by the Patternnet program. 226 

 To avoid local minima in the neural network, the training runs were repeated many times using different samplings of the 227 
dataset (e.g., every 3rd pixel or every 5th pixel); different random initial weights; and various percentages for training, testing, 228 
and validation. Local minima were identified when the training convergence time was abnormally short or long. Overfitting 229 
was avoided by using a very large dataset (typically more than a million datapoints), which forces the net to generalize. It was 230 
also avoided by using a minimal number of neurons. Additionally, unreasonable data, such as fill values, were filtered out to 231 
minimize the noise. A set of range limits was used to eliminate any obviously errant data. Leaving such data in the input set 232 
prevents the training from generalizing. Unnecessary input parameters were also removed by trial and error to streamline the 233 
training. Finally, similar performances of the MLANN with the 2008 training and 2009 independent validation datasets ensured 234 
that the trained network was producing global minima without overfitting.  235 

 The input variables in Table 1 were selected by adding in parameters suspected of enhancing ML detectability and 236 
computing the accuracy for each addition. If no gain in accuracy occurred, the parameter was not used. Each predictive 237 
parameter’s influence on the final MLANN formulation was assessed by computing the relative decrease in recall (defined in 238 
section 4.1) when a given parameter was removed from the training. The decrease for each parameter was divided by the sum 239 
of all of the values to produce a relative ranking of importance. The ranks ranged from 0.038 for BT11 to 0.082 for the relative 240 
humidity profiles, which were treated as a single input for these purposes. The second highest ranked parameter is latitude, 241 
followed in the daytime by SZA and r1.38. In general, the brightness temperatures were ranked lower than the BTDs, similar 242 
to the rankings reported by Tan et al. (2023) for their random forest method.   243 

 Output from the trained MLANN is a probability between 0 and 1 for each pixel. The latter value denotes certainty that 244 
the pixel includes ML clouds as defined here. For practical purposes it is necessary to select a threshold probability above 245 
which a pixel is designated as multilayered. A threshold value of 0.5 was chosen based on analysis of the accuracy of the 246 
results for probabilities between 0.3 and 0.60. The accuracies (risks) were found to be greatest (least) for thresholds between 247 
0.50 and 0.55.  248 

4 Results  249 

The results presented here consist of comparisons of the MLANN and corresponding CC parameters for the 2008 training 250 
dataset along with data from 2009 to ensure robustness of the estimates. Weights and constants were determined by training 251 
for each category and parameter and then applied to the independent datasets. The MLANN was trained using the C3M data 252 
for the four categories in Fig. 1 to obtain four sets of weights and constants for each surface type. 253 
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4.1 Multi-layer cloud detection  254 

Figure 2 plots the CC cloud profiles retrieved over six areas during 25 December, 2009. The CC layering classification uses 255 
gray for SL and blue for ML. In addition to the cloud profiles, the MLANN selection of SL (gray) and ML (blue) is indicated 256 
by the lines of dots across the top section of each panel. The surface elevation is denoted by the black dashed line in each 257 
panel. On the left are daytime observations over the tropical Atlantic (Fig. 2a), eastern Europe (Fig. 2b), and eastern Antarctica 258 
(Fig. 2c). Nocturnal profiles are given on the right for passes over the tropical Indian Ocean (Fig. 2d), the south Pacific (Fig. 259 
2e), and northern Russia (Fig. 2f). In the tropical overpasses, the MLANN detects a large fraction of the ML clouds, but also 260 
misses a noticeable number of ML pixels. For example, only a few of the intermittent ML clouds between 2.5°N and 6.1°N 261 
are identified by the MLANN in Fig. 2a and a segment of continuous ML clouds near 12°S in Fig. 2d is missed by the MLANN. 262 
Similar results are seen for the mid-latitude SF areas, where a few ML clouds are missed around 59°N in Fig. 2b and near 35°S 263 
in Fig. 2e.  264 

Some false ML clouds are also found in these panels. In Fig. 2b, for example, false ML clouds are evident at 51°N and 265 
also in two areas between 56 and 58°N. In the latter case, there are ML clouds in the profile but they were not classified as 266 
such by the CC constraints, possibly due to the 253 K liquid cloud temperature threshold. Thus, some of the false ML may 267 
actually be ML clouds. The detection rates for the two SC profiles are much reduced. During the daytime case (Fig. 2c), only 268 
one stretch of ML clouds is detected, while even fewer ML clouds are detected at night around 76°N (Fig. 2f). The unidentified 269 
ML clouds are more common in both cases.    270 

To summarize the results for all of the data, a confusion matrix was constructed for each category. Referring to Table 2, 271 
agreements between the MLANN and CC SL and ML classifications are denoted as SS and true negative (SM), respectively, 272 
while false SL and ML pixels are given by SM and MS, respectively. Each classification is defined as the number of pixels 273 
satisfying the agreement condition divided by the total number of pixels. Those percentages are used to define the following 274 
metrics. 275 

 276 
 Accuracy: ACC = SS +MM.        (1) 277 
 Real Risk:  RR = MS +SM = 1 - ACC.       (2) 278 
 False ML rate: FM = MS / (MS + MM).       (3) 279 
 Precision: PR = MM / (MS + MM)        (4) 280 
 Recall: RC = MM / (SM +MM).        (5) 281 
 Single-layer Confidence: CoS = SS / (SS + SM).      (6) 282 
 F1 Score: F1 = 2 * PR * RC/(PR + RC)       (7) 283 
 Net Gain of Accuracy: NGA = MM - MS.       (8) 284 
 285 
These parameters facilitate the reporting and discussion of the results and the comparisons with other algorithms. 286 
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The training results in Table 3 include the confusion matrices for all eight categories with ACC in bold along with the 287 
number of CC SL and ML pixels and their sum. During the day, ACC is 84.1% for CM4 ice clouds over SF areas, with the 288 
fraction of ML correctly identified, i.e., RC = 49%. The classification during the day is a bit better for CM4 liquid clouds: 289 
ACC = 88.7% and RC = 63%. The real risk for ice clouds is 15.9% compared to 11.3% for the liquid clouds. At night the 290 
results are similar, although a little worse for ice clouds, with ACC = 81.3%. However, the ice clouds yield a larger fraction, 291 
RC = 55%, of true ML pixels than during the day.  Fewer ML clouds are found for liquid clouds at night. More of the ML 292 
clouds are classified as ice because the nocturnal cloud temperature retrieval is based strictly on infrared radiances (Yost et al. 293 
2021, 2023).  Nevertheless, ACC is the same for both times of day for liquid phase clouds. At night, RR for ice clouds increases 294 
to 18.7% and drops slightly for water clouds. A total of ~12 million pixels was used in the SF training.  295 

As suggested by Fig. 2, the efficacies of the MLANN for detecting ML clouds over snow-covered areas are considerably 296 
reduced relative to their snow-free counterparts. While the ACC values are actually greater than those during the day (Table 297 
3), recall drops to 35% and 45% for ice and liquid clouds, respectively, during the day. The fraction detected, RC~ 22%, is 298 
even lower at night. Nevertheless, because fewer pixels qualify as ML clouds over SC surfaces, according to the definition 299 
used here, the MLANN RR values are smaller than those over SF surfaces. It is notable that, for both SF and SC surfaces, the 300 
ML false alarm rate is less than 55%.  301 

4.2 Independent evaluation  302 

The results from the training are encouraging, but they are not based on an independent dataset. To evaluate the robustness of 303 
the MLANN, all 2009 Aqua MODIS data were processed with the trained algorithm. In general, the statistics for the eight 304 
categories are all very similar to those in Table 3. To summarize the effectiveness of the MLANN, the 2009 ice and liquid ML 305 
results for the SF/SC and day/night categories are combined in Table 4. Over SF surfaces, ACC is 87.0% and 85.6% for day 306 
and night, respectively, while the corresponding values over SC surfaces are 89.3% and 88.7%. Despite the large ACC values, 307 
the MLANN underestimates the ML fraction over SF surfaces by 5.8% and 4.8% during night and day, respectively, for the 308 
matched CC and MODIS cloudy pixels. A total of 80 million SF pixels were processed, compared to 26 million for SC surfaces. 309 
Over SF areas, RR is 13% for day and 15% at night. Real risks drop to 11% for SC regions. It should be noted that the ML 310 
fractions reported here are for the number of multi-layer MODIS pixels divided by the total number of  cloudy matched CC 311 
and MODIS pixels. Since the CERES MODIS mean cloud fraction is ~0.66, the actual fraction of MODIS pixels that are 312 
classified as ML would need be multiplied by 0.66. 313 

The net gain of accuracy relative to the SL assumption is an important parameter to consider in any ML detection scheme. 314 
Using the SL assumption in cloud retrievals, the accuracy would be equal to the sum of SS and MS. Introducing a multilayer 315 
detection method yields both false and true ML pixels. Thus, a new source of error comes with the additional information. The 316 
net gain of accuracy is not simply equal to ACC - SS; it must account for the newly introduced error, represented in MS. The 317 
falsely detected ML clouds are a potentially worse source of error than the SL assumption for ML clouds. Multi-layered cloud 318 
property retrievals for a false ML pixel require the creation of a second cloud layer and inference of its properties, whereas a 319 
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single-layered retrieval for a true ML pixel results in a cloud with properties somewhere between the upper and lower layer. 320 
Thus, including a ML detection algorithm in a retrieval may not be reasonable if FM is too large. Based on Table 3, the 321 
MLANN NGA = 7.6% and 7.3% during day and night, respectively, over SF surfaces. The corresponding values over snow-322 
covered surfaces are 3.4% and 1.0%. While the MLANN provides a nearly negligible amount of information over SC areas at 323 
night, elsewhere it clearly represents an improvement over simply assuming that all clouds are single-layered.  324 

Global distributions of the mean 2009 ML cloud fraction from the validation results are plotted in Fig. 3. While  the 325 
daytime MLANN means (Fig. 3b) are noticeably smaller than the average CC ML fractions (Fig. 3a), the two datasets have 326 
similar distributions. At night (bottom), the patterns are much like those during the daytime, except in the polar regions. More 327 
CC pixels (Fig. 3c) are classified as ML in the tropics than during the daytime. A comparable increase occurs in the MLANN 328 
nocturnal results (Fig. 3d), which have ML fractions over much of the Amazon Basin and central Africa that are comparable 329 
to their CC counterparts, although they are smaller elsewhere. As expected from Table 4, the MLANN ML fractions in the 330 
polar regions are relatively small during the day and negligible at night.  331 
 The latitudinal variations of the mean ML fractions are plotted in Fig. 4. As expected from Fig. 3, the zonal patterns 332 
are much the same with the MLANN values (triangles) being consistently less than their CC counterparts (circles). In the 333 
tropics, the daytime differences generally fall between -0.06 to -0.04 and drop to as low as -0.08 in the polar regions. During 334 
the night, the minimum of -0.10 is found over the polar regions, but the differences are comparable to the daytime values 335 
between 45°S and 45°N. The MLANN is clearly less effective during the night over snow and ice-covered areas, especially at 336 
night. Overall, the MLANN underestimates the 2009 ML cloud amount by 0.05 and 0.06 relative to the CC ML cloud fraction 337 
during day and night, respectively. The non polar MLANN zonal night-day ML mean fractional differences from Fig. 4 are 338 
plotted against their CC counterparts in Fig. 5 to determine how well the MLANN captures the changes in ML fractions from 339 
day to night. The MLANN and CC differences are well correlated as indicated by the squared correlation coefficient, R2 = 340 
0.88. While the absolute differences are quite comparable when small, the absolute night-day differences from MLANN tend 341 
to be greater than their CC counterparts at the extremes. The greatest MLANN night-day differences are found in the deep 342 
tropics and north of 45°N. 343 

5 Discussion 344 

These results represent a significant improvement over the previous MLANN formulation (Minnis et al. 2019), which only 345 
attained accuracies of 80.4% and 77.1% during the day and night, respectively over SF surfaces. Much of the increased 346 
accuracy is due to use of shorter CALIPSO horizontal averaging distances here. By employing CALIPSO averages over 347 
distances up to 80 km, Minnis et al. (2019) attempted to detect ML cloud systems that included many cirrus clouds having 348 
optical depths smaller than 0.2. Such clouds are difficult to detect with passive remote sensing even when they are single-349 
layered. According to Yost et al. (2021), systems having tCC < 0.2 account for ~42% of all ML clouds for CALIPSO data using 350 
HA < 80 km compared to only 18% for HA < 5 km. A majority of those low-optical-depth ML clouds were not detected in 351 
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Minnis et al. (2019), resulting in lower accuracies. Typically, cloud identification or multilayered cloud detection methods that 352 
use CALIPSO for validation or training employ data with HA < 1 or < 5 km (e.g., Desmons et al., 2017; Marchant et al., 2020; 353 
Tan et al., 2022; White et al., 2021). By using that smaller averaging distance in this study, the fraction of CC ML clouds is 354 
~25% less than that used by Minnis et al. (2019), but a larger portion of them is detected. Other sources for the improvement 355 
arise from utilizing additional input parameters, including those based on the 13.3-µm channel and r1.38, and r1.61 - r2.13. 356 
Additionally, the assumption that all pixels having tCM < 0.5 are automatically SL, regardless of the CALIPSO classification, 357 
probably removed some difficult but less important cases.  358 

5.1. Dependence on cloud properties 359 

Much like other retrievals, the MLANN is sensitive to various cloud conditions, such as the altitudes of the two layers and 360 
their respective optical depths. Because the MLANN uses a minimum separation distance of 1 km between the ice and liquid 361 
cloud layers, the dependence on separation distance is not explicitly considered here. Its impact on MLANN, examined by 362 
Sun-Mack et al. (2017) and Minnis et al. (2019), is similar to that from other studies. Tan et al. (2022), for example, found that 363 
the probability of ML detection using a random forest method was greatest for separation differences of 3 km or more and that 364 
it dropped from values exceeding 0.8 to less than 0.5 for cloud gaps smaller than 1 km. Greater discrepancies in altitude 365 
between the upper and lower clouds increase the differences in the layer temperatures yielding stronger signals in the thermal 366 
channels. It is assumed that this type of dependency, found in the aforementioned MLANN studies, is operative for this version 367 
of the MLANN. Despite the apparent increase in accuracy using wider separation in the training, Minnis et al. (2019) found 368 
that NGA was 60% greater for 1-km separation compared to the 3-km separation dataset. Moreover, the smaller separation 369 
yielded nearly 50% more actual ML clouds than the greater separation. The increase in apparent accuracy in the dataset using 370 
a minimum 3-km gap relative to its 1-km counterpart is primarily due to assuming that a significant fraction of the ice-over-371 
water systems is single-layered, even though there is separation and two different phases in the column.    372 

As formulated here, the MLANN assumes that all clouds with tCM < 0.5 are SL. To examine this assumption, the MLANN 373 
was also trained without any minimum COD limit. On average, ACC dropped by 1.2% and the total fraction of ML clouds 374 
from CC increased by 1.8%. Despite the drop in ACC, NGA rose by 0.1%. Thus, the net impact is small and the downstream 375 
task of unscrambling the upper and lower cloud properties from a cloud system with such a small COD will be eased somewhat.  376 

For the radiation budget, some of the most important factors are the CODs associated with the detected and missed ML 377 
systems. To determine the efficacy of the MLANN as a function of COD, the MLANN recall is plotted in Fig. 6 for each (tCC, 378 
tCM) bin for 2009. In the plots, tCC is the ice COD for ML clouds, i.e., the upper layer COD. Irregular scales are used for the 379 
axes to provide more detail for the lower COD values. Because of large uncertainties and reduced sampling, bins having tCC 380 
> 20 are not reliable. During the day, RC is greatest (~90%) for the bins having tCC ~1.7 and tCM ~11 for both ice (Fig. 6a) and 381 
water clouds (Fig. 6b). Recall exceeds 0.5 for ice clouds having tCM > 3 and 0.3 < tCC < 5. When 1.5 < tCM < 3 and 0.3 < tCC 382 
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< 1.3, RC remains above the halfway mark. The shape of the 50th percentile envelope for the water clouds differs from the ice 383 
clouds as a result of more upper-cloud CODs being smaller than for ML clouds identified as ice (Yost et al. 2021). Thus, the 384 
training for liquid clouds produces better ML detection when the ice clouds have small CODs.    385 

At night, tCM is based only on thermal channels and, therefore, is mostly constrained to values of 8 or less. Default values 386 
of 8, 16, and 32 are employed whenever the cloud is assumed to be optically thick. The particular default value depends on 387 
the circumstances (Minnis et al., 2021). Sometimes, the CM4 and CM4+ analytical COD retrievals produce a value exceeding 388 
8. Typically, tCM is closer to the upper-cloud COD at night, being influenced little by the lower cloud when the separation 389 
distance is large. Ignoring the high tCC bins, the nocturnal RC maxima are found around bins (1.1, 2.0) and (1.3, 4.5) for ice 390 
(Fig. 6c) and water clouds (Fig. 6d), respectively. True ML clouds are found more often than false SL clouds for 1 < tCM < 5, 391 
when the phase is ice and 0.1 < tCC < 3. The halfway COD bounds narrow to 0.2 < tCC < 0.4 for greater values of tCM. For 392 
water-phase clouds, RC > 50% occurs mostly for 1.5 < tCM < 8 and 1.5 < tCC < 4. It is clear that the thermal channel method 393 
is sensitive to thinner upper clouds compared to the daytime methods when the solar channel signal is overwhelmed by the 394 
lower cloud reflectances. Conversely, the daytime method detects more ML clouds when  tCC > 3 or so.  395 

This is more evident in Fig. 7, which shows histograms of the matrix parameters as a function of upper-layer tCC for MM 396 
and SM and tCM for SS and MS over SF surfaces. For water phase clouds (Fig. 7a) the relative frequency of true ML pixels 397 
(TN), shown as solid lines, is greater at night than during the day when tCC < 0.5, but the occurrence of daytime MM pixels 398 
exceeds their nighttime counterparts when tCC > 0.9. Similar behavior is seen for the ice phase pixels (Fig. 7b), but the 399 
thresholds shift from 0.5 to 1.4 and from 0.9 to 1.9. The false SL or missed ML clouds (MM), shown as dashed lines, vary 400 
differently. For the ice phase pixels (Fig. 7b), the MM pixel frequency rises with increasing tCC  up to ~8% at tCC = 3.5 before 401 
decreasing to 5-7% , then dropping toward zero at tCC = 25. This peak for the thick ice clouds reflects the difficulty of inferring 402 
a lower layer under a nearly opaque cloud. For water-phase clouds (Fig. 7a), MM is most common for tCC < 0.3  and diminishes 403 
steadily to near zero around tCC = 30. As tCC increases, the ML system is more likely to be identified as ice phase, so fewer 404 
cases of ML systems having large upper-layer COD will be included in this population. In both cases, the night and day MM 405 
frequencies track each other relatively closely with tCC. Similar variations are found over the SC surfaces (not shown). 406 
Cumulative probability distribution functions  based on the SF and SC results, presented in Fig. S1, show that 50% of the 407 
missed ML clouds have tCC < 0.25 for SF water clouds and < 0.5 for SC water clouds. 408 

Figures 7c and 7d show the frequency histograms of SS and MS for CC SL liquid and ice clouds, respectively, as a 409 
function of tCM. As expected, the peak SS (true SL) frequency occurs for tCM < 0.5 for both phases, day and night. During the 410 
day, a secondary true SL maximum is found around tCM ≈ 25 for ice and water clouds. At night, that secondary peak is around 411 
tCM ≈ 14 for ice pixels and near tCM ≈ 9 for liquid clouds. Nocturnal false ML clouds (MS) are found mostly between CODs 412 
of 1 and 5 at night for ice pixels and between 2 and 6 for water clouds. During the day, MS occurs most often for tCM ≈ 14 for 413 
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water clouds. In fact, the MS frequency seems to follow the SS values, except for tCM < 0.5. The daytime MS occurrence is 414 
relatively flat for ice clouds with tCM > 1.0. 415 

Another factor that can influence ML detection is the assumption that the lower cloud layer is composed of liquid water 416 
whenever the cloud temperature is less than 253 K. While that is true for most clouds, a small fraction of ice clouds have top 417 
temperatures above 253 K (e.g., Hu et al., 2010). In those instances, the ML signal would likely be reduced because of 418 
similarities in the optical properties of the two layers. Mixed-phase clouds, which often occur in the supercooled temperature 419 
range, would have a similar effect, but to a smaller degree depending on the amount of ice in the cloud. On the other hand, 420 
supercooled clouds globally account for about half of the clouds having an infrared CTT between 243 K and 253 K. If only 421 
snow and ice surfaces are considered, the range is 239 K to 242 K (see Fig. 6 of Hu et al., 2010). Thus, some systems with 422 
cold (CTT < 233 K) ice clouds over supercooled liquid clouds with CTT < 253 K could be identified as SL ice by the definition 423 
used here. These complementary effects due to supercooled clouds could produce some confusion in the training of the 424 
MLANN, particularly in polar regions.   425 

The CODs used in the training would not be the same as those determined using the standard CM4 algorithms employed 426 
for the 2009 retrievals because the CM4+ algorithms used a different ice crystal model and a new method for retrieving COD 427 
over snow. This change in COD retrieval apparently had minimal impact on the detection as the 2008 training and 2009 428 
validation results are nearly identical.  429 

5.2 Comparisons with other results 430 

As noted earlier, multilayered cloud detection has been the subject of many different algorithmic studies, so it is important to 431 
better understand how the current approach compares to those other algorithms. Direct comparisons are not straightforward 432 
because each algorithm was developed with its own specific constraints and ML definitions. The CERES Ed4 ML algorithm 433 
(Chang et al., 2010a, Minnis et al., 2021) was applied only when a cloud with pressure below 500 hPa was detected using a 434 
CO2-absorption method (Chang et al., 2010b). The MODIS science team algorithm (Wind et al. 2010) was applied to a 5-km 435 
cloud product and was only used when the MODIS optical depth exceeded 4. The latest version, MYD06 C6.1 (Platnick et al., 436 
2017), adds the BTD1112 technique developed by Pavolonis and Heidinger (2004). Desmons et al. (2017) used data from the 437 
Polarization and Directionality of the Earth’s Reflectance (POLDER) to detect ML clouds of all types, but only for t > 5. Ice-438 
over-water multilayered clouds were detected by Wang et al. (2019) during daytime using Suomi-NPP (SNPP) Visible Infrared 439 
Imager Radiometer Suite (VIIRS) data in a thresholding method. Tan et al. (2022) placed no restrictions on either t or the 440 
number of layers, but they applied their random forest algorithm and other machine learning techniques only to geostationary 441 
Himawari-8 data. Because of its orbit, the Himawari-8 observations are taken over a full range of VZA when matched with 442 
the CC profiles, but the VZA is constant for a given location. Other published methods have either not produced extended 443 
datasets or performed only case-study evaluations with objective data. Despite the sampling disparities, it is informative to 444 
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compare some of the statistics to provide some context to the performance of the MLANN. These comparisons are summarized 445 
in Table 5. 446 

Comparing with CC data, Desmons et al. (2017) found that for overcast clouds with t > 5, ACC =  70% and CoS = 74%. 447 
For the same conditions, they determined that MYD06 C6.1 yields ACC = 67% and CoS = 73%. Additional parameters 448 
computed from their Table 4 are listed in Table 5.  Precision and recall from MYD06 are 54% and 47%, respectively, while 449 
they are 58% and 47% from POLDER. These can be compared to the MLANN daytime validation results (Table 5), which 450 
combine the SC and SF daytime data in Table 4 weighted by 0.13 and 0.87, fractions that roughly correspond to the areal 451 
coverage of the respective surface types (e.g., Yost et al., 2023). All of the MLANN parameter values exceed their restricted 452 
MYD06 and POLDER counterparts. Wang et al. (2019) only reported validation results in terms of percent of CALIOP ML 453 
and SL. Thus, only RC and CoS could be determined from their results. For t > 1, the recall is about the same as the daytime 454 
MLANN value, if the ML and probably ML categories from their algorithm are combined. Similarly, their CoS is ~10% 455 
smaller than the MLANN value. If clouds with t < 1 are included, both CoS and RC drop substantially. Note that Wang et al. 456 
(2019) did not include CloudSat retrievals in their evaluation, so ML clouds with an optically thick upper cloud are not included 457 
in the statistics. 458 

Although no value for ACC was given, the values of certain parameters can be estimated for all clouds with an unrestricted 459 
optical depth from the figures in Desmons et al. (2017). From their Fig. 8, RR ≈ 38%, so ACC = 62%. The value of CoS is the 460 
same for restricted and all clouds. The MODIS parameters change only negligibly for all clouds compared to the restricted 461 
case because the MYD06 algorithm only uses clouds with t > 4. Marchant et al. (2020) also compared the MYD06 to the 2B-462 
CLDCLASS-lidar products and found that for clouds with t > 4, ACC = 63% with the Pavolonis and Heidinger (2004) 463 
algorithm and 65% without it. If it assumed that all clouds with t < 4 are SL, then ACC jumps to 80% and 81% for the two 464 
algorithm options. But that assumption excludes 45% of the ML clouds as defined by Marchant et al. (2020).  465 

Except for the definition of what constitutes a ML cloud (ice over water, water over water, etc.), NGA is the one parameter 466 
that is not too dependent on cloud optical depth assumptions. From Desmons et al. (2017), the daytime POLDER and MYD06 467 
C6.1 cases yield NGA = 4.4% and 2.2%, respectively. Presumably, some of the POLDER results include water-over-water 468 
clouds. Nevertheless, the POLDER algorithm yields a net gain in information. The results of the Marchant et al. (2020) analysis 469 
yield slightly lower numbers for the MODIS C6.1 NGA, 0.2% and 1.4%, with and without the Pavolonis and Heidinger (2004) 470 
method. In either case, the MLANN daytime NGA exceeds those of the MYD06 and POLDER techniques. Moreover, it greatly 471 
exceeds the CERES Ed4 ML results (not shown). The F1 scores track the relative NGA rankings with the Himawari training 472 
values at the top followed by the MLANN, POLDER, and MODIS C6.1 in diminishing order. 473 

The random forest results from Tan et al. (2022), confined to 60°S - 60°N and 80°E and 160°W, were trained with 1-km 474 
matched 2B-CLDCLASS-LiDAR profiles using the product’s layer flag to determine if a given pixel is SL or has more than 475 
one layer, regardless of layer phase. That training dataset produced ACC = 85% and 79%, respectively, for the daytime and 476 
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all-hours algorithms. The latter method included no reflectance input from solar channels so it can be used for both day and 477 
night conditions. It is included in the bottom section of Table 5 for comparison to the MLANN night version. For this technique, 478 
PR = 81% and 73% for day and all-hours, respectively, with corresponding RC values of 72% and 64%. While ACC is less 479 
than that found with the MLANN for both day and night, the random forest PR and RC results are greater than their MLANN 480 
counterparts. At night, the MLANN PR is nearly equal to the Himawari-All value.  The Himawari CoS and NGA daytime 481 
values were deduced from the values in their Table V and their equations (1) - (3). The MLANN CoS values exceed their 482 
Himawari counterparts, but the MLANN global NGAs are less than half of those from the random forest training results. Those 483 
larger values arise, in part, from including many more types of ML clouds in the random forest training than used for the 484 
MLANN.  485 

A fairer comparison would use independent validation sets from both algorithms. While a complete summary of the 486 
validation comparisons was not provided in Tan et al. (2022), several parameters can be determined from their Fig. 5, which 487 
utilized a dataset independent of the training data. The resulting values of PR are 70% and 64% for day and all-hours, 488 
respectively, while CoS = 89% and 85%. The MLANN SL confidences are slightly greater at 90% and 88% and its PR values 489 
exceed the Himawari validation results, especially for night/all-hours. Without further information it is not possible to 490 
determine the values of ACC and RC for the geostationary validation dataset. However, because CoS is the same or larger for 491 
the validation dataset and PR dropped by 11 points from the training results, it can be inferred that the fraction of false ML 492 
clouds increased considerably. This would reduce ACC and substantially diminish NGA.  493 

Interestingly, the best results from the Tan et al. (2022) validation analysis are for ice-over-liquid and ice-over-mixed 494 
clouds. The former corresponds to conditions that the MLANN was developed to detect, while at least some of the latter were 495 
included in the MLANN analysis. Approximately 30% of the actual ML clouds detected in the Tan et al. (2022) validation 496 
analysis are for single phase or upper-layer mixed phase ML clouds that MLANN was not designed to identify. Assuming that 497 
the portion of the ice-over-water/mixed is the same for the training dataset, the correctly detected ice-over-water cloud amount 498 
is 0.10. Adding the ice-over-mixed would yield 0.17. Reducing that by the ratio of PRs from the validation and training sets 499 
would drop the range to 0.09 - 0.15, which bounds the correct ML fraction from the SF cases in Table 4.  500 

5.3 Full-swath detection 501 

The MLANN training is based on near-nadir measurements from both the CC and MODIS instruments. Increasing optical path 502 
lengths due to increasing VZA modify the radiances emanating from a given location through absorption and scattering. This 503 
is particularly true for radiances at solar wavelengths. Thus, the near-nadir-based MLANN coefficients are not necessarily 504 
valid for observations taken at other VZAs. For operational use with Aqua MODIS data, the MLANN must be reliable across 505 
all viewing angles.  506 
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5.3.1 Angular dependence 507 

The VZA dependency is examined by first computing the mean radiances for each viewing angle across the full scan for data 508 
taken during JAJO 2019. It was found that the radiance VZA dependence is sensitive to the forward or backward portion of 509 
the scan cycle. The former view is toward the sun, while the latter is directed away from the sun. Figure 8 plots the reflectance 510 
averages for each VZA bin in the forward (positive) and backward (negative) directions. From near-nadir to 65°, the 1.60-µm 511 
reflectance (solid lines) for water cloud pixels increases by 11% and 25% in forward and back directions, respectively. For ice 512 
clouds, the corresponding increases are 22% and 37%. Similar changes are seen for the 2.13 µm reflectances (dashed lines). 513 
The 1.38-µm reflectance for ice behaves in much the same manner (Fig. S2), but is nearly constant with VZA for water clouds. 514 
The daytime 3.75-µm radiances (Fig. S3) are relatively flat in the back direction, but increase with VZA for liquid clouds. At 515 
night, the radiances show the classic limb-darkening behavior of thermal radiation. This can be seen in Fig. 9. During the day 516 
(solid lines), the water-cloud 10.8-µm radiances are relatively flat in the forward direction and drop a little at the higher VZAs 517 
in the back direction. Ice cloud radiances decrease in both directions, but more so in the forward view where the 10.8-µm 518 
radiances are lower than their back-direction counterparts. The forward scan views more shadowed areas that could affect the 519 
thin cloud and partly cloudy scenes over land (Minnis et al., 2004). At night (dashed lines), the limb-darkening is more 520 
apparent. No back and forward differences are considered at night. Similar variations in radiance are seen at 8.55-µm (Fig. S5) 521 
and 11.90-µm (Fig. S6). There are only minor radiance differences between the forward and back directions during the day 522 
for the 6.70-µm channel (Fig. S4), presumably because it is mostly unaffected by the layers below the cloud. Additional plots 523 
of radiances as a function of VZA (Figs. S6 -S14) are provided in the Supplemental Material. 524 

To adjust the MODIS radiances, ice and water correction factors were determined for each waveband, day and night, 525 
separately over SF and SC surfaces. For daytime, the correction factors were computed for both forward and back scans. These 526 
factors were developed for both the channel radiances and reflectances and each of the BTD parameters. The correction factor 527 
is simply the ratio of the mean radiance for VZA between -3° and -18° divided by the mean radiance at a given VZA. Thus, 528 
the observed radiance is adjusted to the near-nadir view of MODIS by simply multiplying it by the correction factor.       529 

To test the impact of these factors on the retrievals, the MLANN was applied to the uncorrected and corrected full-swath 530 
MODIS data for April 2009. Figure 10 shows the variation of mean ML fraction as a function of VZA for SF ice and water 531 
clouds, day and night. During the day (Fig. 10a), the uncorrected and corrected ML fractions are nearly identical suggesting 532 
that the correction factors for water phase clouds have minimal effect on the radiances. This is not surprising, given the 533 
relatively flat daytime curves in Fig. 9 and for other thermal channels. In contrast to the daytime results, the nocturnal ML 534 
fractions have a nonmonotonic variation with VZA for the uncorrected radiances and a significant steady decrease to a value 535 
near zero for the corrected case. The uncorrected radiances for daytime ice clouds (Fig. 10b) yield a rise in ML detection in 536 
the forward direction with a much smaller rise in the back direction.  At night, the ice cloud ML amounts drop for |VZA| > 537 
40°. When the correction factors are applied to the radiances, the ML amounts are relatively constant with VZA for both time 538 
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periods. To obtain the most consistent product across the swath, the adjustments are applied to all of the radiances, except for 539 
water cloud pixels observed during the night.   540 

5.3.2 Example images 541 

Figure 11 shows the results of applying the MLANN with VZA correction to an Aqua MODIS image taken over the Southern 542 
Ocean centered near 57°S, 165°E at ~3:50 UTC, 16 April 2019. The pseudo color RGB image (Fig. 11b) shows an extensive 543 
area of stratocumulus on the left side that is apparently overlaid with thin cirrus that blurs the view of the underlying clouds. 544 
A second extensive liquid cloud deck appears near the top center that might overlay some StCu clouds, but is itself covered 545 
by thicker ice clouds. The CM4 cloud phase results (Fig. 11a) highlight those contiguous dense ice clouds, which likely obscure 546 
lower clouds. Thin cirrus also appear to overlie parts of the second liquid deck. The MLANN (Fig. 11c) determines that a large 547 
portion of the image consists of ice-over-water clouds. In general, the outline of the cloud effective heights (CEH) above 1 km 548 
correspond to the ML pixels (Fig. 11d) except where the ice cloud is very thick, or perhaps, the ice cloud is in close proximity 549 
to or contiguous with the lower deck, as over parts of the white clouds in top center part of the image. Other higher, SL liquid 550 
clouds are seen near the top left corner and bottom right of center. Cloud phase is very mixed over the thin cirrus areas, yet 551 
the MLANN determines most of the pixels as ML. 552 

Multilayered clouds detected with the nighttime MLANN are shown in Fig. 12 for a MODIS image taken around 4:45 553 
UTC the same day over the North Atlantic. The scene (Fig. 12b) contains extensive but variable cirrus coverage (white) and 554 
broken stratus clouds typically between 1 and 3 km (Fig. 12d). Thicker cirrus clouds are identified as ice (Fig. 12a) while many 555 
of faintest ones, primarily those over the low clouds, are classified as liquid.  Denser ice clouds and those over open water 556 
appear to be at altitudes between 9 and 14 km, while the thin Ci over St range from 3 to 7 km, which is expected, given the SL 557 
cirrus altitudes. The MLANN appears to identify many of those ML clouds (Fig. 12c), but tends to miss those with overlying 558 
thick cirrus. There may be some false ML clouds in the upper right, but it is difficult to tell because the thinnest Ci is not 559 
always discernible in the RGB image. 560 

The final example shown here (Fig. 13) is taken the same day around 01:50 UTC over the polar ice cap centered near 561 
80°N, 155°E.  Snow and ice cover provide the scarlet background (Fig. 13b), which is overlaid with low clouds in various 562 
shades of white to gray and a slightly higher deck in the center with thin Ci covering much of the top half of the image. That 563 
cirrus appears as blurry pinkish gray and identified as ice or liquid depending on the thickness (Fig. 13a), while most of the 564 
cirrus over the deck in the middle is designated as liquid. Those clouds are identified as ML by the MLANN along with the 565 
small area at the bottom and in the upper left (Fig. 13c). Only a few parts of the cloud left of center are classified as ML, while 566 
it appears more ML clouds should have been detected.  Most of the SL ice cloud CEHs are only between 3 and 6 km (Fig. 567 
13d), while those over the middle deck are less than 3 km. The low CEH values are likely due to overestimation of the COD 568 
by the CM4 retrieval for SL clouds and to the presence of the thick lower cloud for the ML retrievals. Detection of the ML 569 
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clouds will allow reclassification of the cloud tops as ice and recalculation of the cloud properties, when the components of a 570 
two-layer retrieval system are in place. 571 

These three examples and the two additional cases shown in Figs. S15 and S16 demonstrate that MLANN performs 572 
reasonably well across the full swath. No wild false ML clouds are evident although some recognizable misses are seen, as 573 
expected from the analyses above. Quantifying the accuracy of the correction-factor approach to full swath application of the 574 
MLANN would ultimately require using the method on similar data taken by a different satellite, such as SNPP VIIRS, that 575 
overlapped with the CC data at various VZAs. Using VIIRS data, Wang et al. (2019) found that the ML clouds they detected 576 
showed minimal changes with VZA. That result is similar to the daytime curves in Fig. 10b. Developing and analyzing a 577 
comparable VIIRS-CC dataset is beyond the scope of this paper, but is planned for future research.  578 

5.3.3  Assessment of full swath results 579 

In the interim, more indirect approaches are available. For example, the off-nadir and near-nadir results should be spatially 580 
consistent if the swath approach is working properly. To examine this aspect, Figure 14 shows the distributions of ML cloud 581 
fractions averaged over the months of January, April, July, and October (JAJO) 2009 from three different data sources. These 582 
include daytime retrievals from all CC data (Fig. 14a), MLANN applied to Aqua MODIS radiances observed at the reference 583 
near-nadir (-3° < VZA < 18°) angles (Fig. 14b), and to Aqua MODIS data taken at all VZAs (Fig. 14c). The corresponding 584 
nocturnal results are plotted in Figs. 14d-f. These results are noisier than those in Fig. 3 because they are based on only 4 585 
months of data and they include all observations, not just those having good CC and C3M cloudy pixel matches. The MODIS 586 
results include both false and partially cloudy pixels.  587 

As in Fig. 3, the CC and near-nadir patterns are comparable although the MLANN means are often smaller than their CC 588 
counterparts. The areas with minimal ML amount in the near-nadir results (Fig. 14b) are in the same locations as those from 589 
the CC retrievals, but are more pronounced. Some CC maxima are reproduced by the MLANN, but the MLANN fractions 590 
near the maxima drop off more precipitously than their CC counterparts. For example, the maximum off the southern Chilean 591 
coast in Fig. 14b is nearly identical that in Fig. 14a, but the MLANN fractions in the surrounding areas are generally smaller 592 
than the CC values. While much smoother, the non-polar patterns in both all-VZA cases (Fig. 14c) are similar to those from 593 
the near-nadir results, but the Chilean maximum is diminished somewhat. Linear regression between the daytime CC and the 594 
MLANN regional means yields R2 values of 0.80 and 0.66 for the near-nadir and full-swath results, respectively. The smaller 595 
value for the full-swath data is not surprising given its greater sampling. For the matched near-nadir and full-swath means, R2 596 
= 0.81. 597 

Distributions of ML fractions from the same datasets appear to be more consistent at night. The maxima over northern 598 
South America, central Africa, and Indonesia are well defined in all three maps. Like the daytime results, the non-polar minima 599 
are much better delineated in Figs. 14e and 14f than in the CC data (Fig. 14d). The correlation coefficients are 0.71 and 0.64 600 
for the nocturnal CC regional means matched with their respective MLANN near-nadir and full-swath counterparts, while R2 601 
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is 0.89 for the matched near-nadir and full-swath averages. Overall, the distributions in Fig. 14 demonstrate that the full-swath 602 
MLANN does not yield spurious ML clouds in areas where they are not expected to occur and generally produce results similar 603 
to the near-nadir values. 604 

Another measure of robustness of the algorithm is its ability to reproduce the seasonal cycle. This is examined by 605 
computing the monthly mean ML anomaly, which is defined as the monthly mean minus the annual average divided by the 606 
annual average. It is clear that the SC results over snow miss many ML clouds, especially at night. Thus, to minimize the 607 
influence of SC regions on the seasonal cycle, only nonpolar (60°S - 60°N) data are considered. Figure 15 plots the ML fraction 608 
anomaly for each month of 2009 from CC and the MLANN applied to full-swath Aqua MODIS data. The MLANN day and 609 
night anomalies track their CC counterparts remarkably well, within a few percent in most cases. The values of R2 between 610 
the CC and MLANN monthly means are 0.92 and 0.90 for day and night, respectively. 611 

To further examine the reliability of the MLANN on longer time scales, it was applied to January, April, July, and October 612 
(JAJO) 2013 Aqua MODIS full swath data. The global distributions of the 2009 and 2013 results (Fig. S16) are similar, but 613 
reveal shifts in the locations of the maxima. Table 6 presents the global mean JAJO 2009 and 2013 ML fractions along with 614 
the land-ocean ratio, L/O, which is the global average ML fraction over land divided by that over water surfaces. Overall, ML 615 
fractions for all CC data are 3 - 5% greater than their MODIS-matched counterparts, a result comparable to the differences in 616 
Fig. 4. The 2009 MLANN near-nadir values are 0.01 smaller than those for all VZAs. ML fractions in Table 6 are all less than 617 
their counterparts in Fig. 4. This is due to the fact that the CC data in Table 6 include all cloudy pixels that the CERES cloud 618 
mask classified as clear and the MLANN results include many partly cloudy pixels that are not likely to be ML. The clouds 619 
detected by CALIPSO, but missed by CERES are mostly SL thin cirrus and SL low clouds (Yost et al. 2021, 2023), which 620 
would dilute the ML fraction determined using all of the CC data. The differences between the CC and near-nadir MLANN 621 
are reduced by ~2% compared to those using only the matched data. During daytime, the MLANN mean ML fractions from 622 
2013 are 0.5% greater than those in 2009, while at night the 2013 averages exceed their 2009 counterparts by 0.2% near nadir 623 
and 0.6% across the full swath. For both years, the nocturnal near-nadir values are ~1% less than for data taken at all VZAs.  624 

The CC land-ocean ratios, L/O, in Table 6 reveal that fewer ML clouds occur over land than over water surfaces. For CC, 625 
L/O is between 0.77 and 0.84, while it varies from 0.64 to 0.77 for the MLANN results, indicating that the MLANN is less 626 
efficient at detecting ML clouds over land than over water bodies. Together with the similarity of the CC and ML seasonal 627 
cycles, the consistency of the near-nadir and full-swath L/O values and small differences in ML amounts during both years 628 
are quite encouraging for using the MLANN on an operational basis. 629 

5.3.4 Operational considerations 630 

CERES is a long-term project that utilizes many different satellites and imagers to characterize cloud properties. The MODIS 631 
on Aqua and Terra and the VIIRS on SNPP and NOAA-20 are coincident with the CERES broadband radiometers and observe 632 
non-polar regions at fixed times each day. Any system designed to detect ML clouds should be applicable to both the VIIRS 633 
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and MODIS imagers and, ideally, to the geostationary imagers that are used to help assess the radiation budget at other times 634 
of day. Because the latter have had widely varying spectral channel complements since 2000, use of MLANN with them is 635 
beyond the scope of this discussion.  The VIIRS lacks certain channels used here (13.3 µm and 6.7 µm) and the channels 636 
common to MODIS and VIIRS differ in spectral coverage and filtering. Additionally, the VIIRS is a higher resolution 637 
instrument. Thus, it may be necessary to train VIIRS with CC data to obtain a consistent ML result. Another approach would 638 
require careful inter calibration of the VIIRS and MODIS channels using spectral corrections (e.g., Scarino et al., 2016) and 639 
the addition of radiances from the missing channels determined from a process that fuses data from VIIRS and the Crosstrack 640 
Infrared Sounder (e.g., Weisz et al., 2017). If those are not available, then the MLANN would need to be retrained with fewer 641 
input radiances, likely at the expense of accuracy. To that end, initial training tests indicate that without those channels, ACC 642 
decreases from 87.0% to 86.4% during the day and from 85.6% to 84.3% during the night over SF surfaces.. During the day, 643 
NGA drops from 7.6 to 7.1%, while at night NGA goes from 7.3 % to 6.2%. NGA is relatively unaffected by the loss of the 644 
13.3-µm channel; almost all of the diminished accuracy is due to the absence of the 6.7-µm channel, particularly at night. Even 645 
with the loss of those channels, the resulting detection capability would still represent a significant advancement over previous 646 
efforts. 647 

As in all retrievals, reliable and consistent calibration across platforms is essential to providing an accurate ML product. 648 
It may be even more important for the MLANN because the neural network relies on subtle radiance differences that may be 649 
lost in the noise of a physical retrieval. Thus, any small trend in the calibration of one channel may introduce a growing bias 650 
in the ML fraction. Similarly, inter platform calibration differences could cause a similar effect. Updated retrieval algorithms 651 
and input data are introduced into the CERES data processing whenever major improvements are developed and errors 652 
diminished. Since the MLANN relies on a few retrieval inputs such as COD and cloud phase, it would need to be retrained 653 
whenever a new CERES cloud algorithm edition is introduced.  654 

Further improvement of the MLANN itself, particularly over snow-covered areas, might be gained by using additional 655 
parameters or spatial context. For example, Tan et al. (2022) found that radiances from the 7.3-µm channel comprise a highly 656 
ranked predictor of ML clouds in their random forest approach. The MODIS equivalent channel was not considered here, but 657 
would have to be created for VIIRS using the fusion process noted above. Information about the pixels surrounding the pixel 658 
of interest increased the accuracy of ice water path retrieved from a Meteosat imager with a convolutional neural network 659 
(Amell et al., 2022). Including selected radiances or BTDs from surrounding pixels might also enhance the MLANN. 660 
Additional partitioning of the training categories might also raise ML detectability as it did when the original MLANN (Sun-661 
Mack et al, 2017) was divided into ice and water phase categories (Minnis et al. 2019). These and other approaches could lead 662 
to greater accuracies than found here.   663 
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6. Summary and Conclusions 664 

An artificial neural network method has been enhanced to more accurately identify ice-over-water ML cloud systems from 665 
multispectral MODIS observations. The algorithm requires as input a variety of radiances, brightness temperature differences, 666 
atmospheric profiles of temperature and humidity, and the CERES Edition 4 cloud phase and optical depths. Based on the 667 
definitions of single and multilayer clouds used here for CALIPSO-CloudSat profiles, the MLANN correctly identifies SL and 668 
ML clouds together 87.0% and 85.6% of the time over surfaces free of ice and snow during day and night, respectively. Over 669 
ice or snow-covered areas, the corresponding correct identifications are 89.3% and 88.7%. Despite the good overall agreement, 670 
the MLANN only detects 55% of the CC ML clouds over SF regions and only 40% and 20% over SC areas during day and 671 
night, respectively. The majority of the missed SF ML clouds are those having an upper-cloud COD < 0.3 (water) or COD > 672 
3 (ice), although ~35% and 20% of the water and ice-phase detected ML clouds meet those conditions. Over SC surfaces, the 673 
undetected ML pixels mainly have an upper-cloud COD < 0.5 or COD > 2.  674 

Despite its shortcomings, the MLANN, unlike many other techniques, yields a significant net gain in layering 675 
identification accuracy because the number of false ML pixels is substantially less than that for true ML pixels. Overall, the 676 
daytime MLANN evaluation metrics are more favorable than those based on physical retrievals or decision tree algorithms, 677 
even with the differences in sampling, ML cloud definitions, and optical depth constraints. Few methods have been developed 678 
for nocturnal application. Comparisons with results from a machine learning algorithm applied to geostationary satellite data 679 
have yielded a more ambiguous assessment. The accuracy and SL confidence from MLANN are greater than those from the 680 
Tan et al. (2022) random forest training results for day and night. Yet, the MLANN precision, recall, and NGA values are 681 
smaller. If the validation results from Tan et al. (2022) are considered, the MLANN precision values are greater. It is not 682 
known how much the MLANN recall and NGA would fare relative to the random forest validation results. Even if it were 683 
known, the relative merits of the two methods would be difficult to quantify without accounting for the discrepancies in ML 684 
definition and sampling areas and time periods. However, it can be concluded from the comparisons that the MLANN is among 685 
the most capable of current ML detection methods. 686 

Operationally, the MLANN, trained with near-nadir MODIS views, must be applicable to all the MODIS viewing angles. 687 
To account for the variation of radiances with viewing zenith angle, the MODIS-based input parameters are normalized to the 688 
nadir view using empirical correction factors. The adjustments yield ML cloud amounts that are mostly invariant with VZA 689 
and produce visually reasonable ML detection across the MODIS swath. Spatial distributions of ML cloud fractions from full-690 
swath results are consistent with the near-nadir results and manifest similar detection efficiencies over land and water surfaces 691 
that are the same as their near-nadir counterparts. Temporally, the MLANN produces the same seasonal cycle in ML clouds 692 
as the active sensor data, albeit with the noted bias. Moreover, the results are similar in magnitude and distribution for different 693 
years with shifts in maxima. While more detailed pixel-to-pixel comparisons should be performed using CC data matched to 694 
imagery taken at off-nadir VZAs, the analyses performed here indicate that the MLANN should be as successful off of nadir 695 
as it is in the near-nadir mode.  696 
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Applying the MLANN to other imagers should be performed with caution as sensors on other satellites can differ 697 
spectrally and spatially (e.g., VIIRS) or may observe at other times of day (e.g., Terra MODIS). Platforms that are not in Sun-698 
Synchronous orbits, for example geostationary satellites, will observe a given scene at times of day and at viewing and 699 
illumination angles that are not seen by Aqua MODIS and hence not in the training complement. Adapting the MLANN to 700 
different types of orbits or times of day presents a challenge as there are few options for global training and validation. Current 701 
and future cloud radar and lidar combinations are confined to afternoon Sun-synchronous satellites (e.g., Heliere et al. 2017). 702 
Lidars that can be used for cloud detection have flown on the International Space Station (e.g., Pauly et al., 2019) in a 703 
precessing orbit and on Aeolus in a sunrise/sunset Sun-synchronous orbit (Straume et al., 2020). CALIPSO has been slowly 704 
moving away from its 1330 LT orbit  covering several more hours of the day since 2018. Without the cloud radar, any and all 705 
of those lidars could be used to define ML clouds to some extent, depending on their penetration depths, and may be of value 706 
for training and validating ML clouds for geostationary imager data. Regardless of the particular satellite, the MLANN would 707 
need to be retrained or the spectral channels normalized to MODIS.  708 

With layer detection accuracies below 90%, there is clearly room for future improvement, especially over polar regions 709 
covered with snow and ice. Use of additional channels or subsets of the current training categories may add a few more points 710 
to the overall accuracy.  Combining physical retrievals with the neural network may also be the means for detecting more ML 711 
pixels. The definition of ML clouds used here is rather restrictive in that it is nominally confined to ice over liquid water 712 
clouds. It is also somewhat ambiguous because 253 K serves as the threshold between ice and water clouds for the underlying 713 
cloud deck. In lieu of any better information to define the lower cloud phase, the threshold should be altered to account for 714 
variability of the 50th percentile ice phase in the supercooled temperature range. Other cloud combinations such as liquid over 715 
liquid could be included in the MLANN but they might reduce the accuracy and would probably be more resolvable if treated 716 
separately from the ice over water clouds.  717 

Detecting multilayer clouds is a first step toward improving the characterizations of global vertical cloud structure using 718 
passive sensors. Once identified, the upper and lower layer cloud properties need to be estimated. A number of approaches 719 
have been suggested for estimating the top heights of the upper and lower clouds. These include physical retrievals (e.g., Chang 720 
et al. 2010) and machine learning (e.g., Minnis et al. 2019). Similarly cloud optical depth and particle effective size could be 721 
derived with a physical retrieval (e.g., Chang et al. 2010), a neural network (e.g., Cerdeña et al. 2007), or an optimal estimation 722 
method that requires the cloud heights (e.g., Sourdeval et al., 2016). Having a reliable detection method, like the MLANN, 723 
should serve as motivation for formulating a robust technique for unscrambling the upper and lower cloud layer properties in 724 
future research.   725 

 726 

Data availability. 727 
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The MLANN training data used in here can be obtained from CERES Ordering Tool: https://ceres.larc.nasa.gov/data/. 728 

Selecting the CCCM-Level 2 product will provide the C3M data, which also include the MOA data.   729 
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 922 

 923 

 Table 1. Input parameters for MLANN. 924 

Regional Parameters GEOS-5.4 MODIS Thermal Data (K) MODIS Solar Data† 

Latitude (°), Longitude (°) Surface skin temp (K) T37, T67, T85, T11, T12, T13
@ RCM, tCM 

Surface type, elevation Relative humidity (%) at 8 
levels* 

BTD3711, BTD6711, BTD8511, 
BTD1112, BTD1113

@ r1.38 

Solar zenith angle (°)†  tCM r1.61 - r2.13 
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 925 

 926 
* levels: surface, 850, 700, 500, 400, 300, 200, 100 hPa 927 
† day only 928 
@ snow/ice free only 929 

 930 

  931 
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 932 

Table 2. Confusion matrix definition. 933 

 934 

 CC Single CC Multi Total 

MLANN Single SS SM SS+SM 

MLANN Multi MS MM MS+MM 

Total SS+MS MM + SM SS+MM 

  935 



 

33 

 936 
Table 3. Confusion matrices (each bounded by dashed lines) for MLANN applied to Aqua MODIS 937 
relative to layer identification from CloudSat-CALIPSO, 2008, from the training set. The bold numbers 938 
indicate the percent correct for each matrix.                  939 

 

CloudSat and CALIPSO 

Snow-free, Day                     Snow-free, Night Snow-cover, Day *                    Snow-cover, Night* 

MLANN SL ML Total SL ML Total SL ML Total SL ML Total 

Ice SL,% 73.2 11.3 84.5 65.9 12.7 78.6 86.6 7.8 94.4 86.4  9.4 95.8 

Ice ML,%   4.6 10.9 15.5  6.0 15.4 21.4   1.8 3.9 5.7   1.5  2.7  4.2 

Total, % 77.8 22.2 84.1 71.9 28.1 81.3     88.4 11.7 90.4 87.9 12.1 89.1 

# pixels x 103 3,748 1,070 4,818 4,097 1,599 5,696 2,549 390 2,884 1,141 1,500 1,291 

Liquid SL, % 76.3 7.4 83.7 79.5 7.9 87.4 82.7 8.2 90.9 87.3 9.0 96.3 

Liquid ML, %   3.9 12.4 16.3   3.3  9.3 12.6  2.5   6.6 9.1   1.3 2.4 3.7 

Total, % 80.2 19.8 88.7 82.8 17.2 88.8 85.2 14.8 89.3 88.6 11.4 89.7 

# pixels x 103  4,502 1,112 5,614 5,297 1,100 6,397 5,647 996 6,643 844 319 3,941 

 940 
 941 
 942 

  943 
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 944 

Table 4. Same as Table 3, but for combined liquid and ice results from applying MLANN to the 2009 validation dataset.                  945 

 

CloudSat and CALIPSO 

Snow-free, Day                     Snow-free, Night Snow-cover, Day                     Snow-cover, Night 

MLANN SL ML Total SL ML Total SL ML Total SL ML Total 

SL,% 75.3 8.9 84.2 74.0 10.1 84.1 83.6 8.4 92.0 86.2 9.8 96.0 

ML,%   4.1 11.7 15.8 4.3 11.6 15.9 2.3  5.7 8.0 1.5 2.5 4.0 

Total, % 79.4 20.6 87.0 77.3 21.7 85.6     85.9 14.1 89.3 87.7 12.3 88.7 

# pixels x 103 28,883 7,493 36,376 33,739 9,908 43,647 8,235 1,352 9,587 14,277 2,002 16,279 

 946 
 947 

 948 

 949 
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Algorithm ACC PR RC CoS F1 NGA 

MYD06 C6.1, t > 5 67 54 46 73 0.50 2.2 

POLDER 95, t > 5 70 58 47 74 0.52 4.4 

VIIRS, t > 1 (t < 1) - 65 (53) 65 (53) 79 (64)  - 

Himawari Training Day 85 81 72 87 0.76 18.3 

Himawari Validation Day - 70 - 89  - 

MLANN day 87 74 55 90 0.63 7.6 
Himawari Training All 79 73 64 82 0.68 14.3 

Himawari Validation All - 64 - 85  - 

MLANN Night 86 72 52 88 0.60 6.5 

 951 

Table 5. Confusion matrix metrics in % for various multilayer algorithms. MYD06 and POLDER 95 are based on Table 4 of 952 
Desmons et al. (2017). VIIRS results are from Wang et al. (2019). Himawari results are based on Tan et al. (2022) random 953 
forest results. MLANN results based on the 2009 validation parameters in Table 4. Dotted line separates results for day (top) 954 
and night (bottom). 955 

 956 
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 958 

 959 

Table 6. Average ML fractions from CC and Aqua MODIS MLANN for JAJO. 960 

Time CC 
2009 

MLANN 
near-nadir, 2009 

MLANN 
 all VZA, 2009 

MLANN 
near-nadir, 2013 

MLANN 
 all VZA, 2013 

Day, ML (%) 15.4 12.1 11.8 12.6 12.3 

Night, ML (%) 17.7 12.6 13.5 12.8 14.1 

Day, L/O 0.77 0.64 0.65 0.63 0.64 

Night, L/O 0.84 0.74 0.75 0.76 0.77 
 961 
 962 

 963 

 964 
 965 

  966 
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 967 
 968 

 969 

Figure 1. CALIPSO-CloudSat classification frequency of occurrence for matched 2008 CERES-MODIS cloud phase selection, ice (left) 970 
and liquid (right) for snow-free surfaces (top) and snow/ice-covered surfaces (bottom).  971 
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 972 

 973 

 974 

Figure 2. CALIPSO-CloudSat cloud profiles from C3M for 25 December 2009 with CC ML clouds indicated in blue and CC SL 975 
denoted in gray. The MLANN ML identification for each profile is indicated as a blue dot at the top of each figure. MLANN SL 976 
clouds are indicated with a gray dot. Surface elevation is given as the dotted line at the bottom of each panel. Tropical, 977 
midlatitude, and polar cloud profiles are given in the top, middle, and bottom profiles, respectively. SF and SC indicate snow-978 
free and snow/ice-covered surfaces, respectively. 979 

 980 

 981 
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 983 

 984 

 985 

 986 

Figure 3. Fraction of matched 2009 CC and Aqua MODIS pixels classified as multilayer clouds. CALIPSO-CloudSat and Aqua 987 
MODIS ML classifications on left and right, respectively. Day and night pixels on top and bottom, respectively. 988 
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 993 

 994 

 995 

Figure 4. Zonal mean 2009 ML cloud fraction from matched CALIPSO-CloudSat and Aqua MODIS as in Fig. 4. Zonal differences, 996 
MLANN - CC, are also plotted. Global averages are indicated in the legend.  997 

 998 

 999 
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 1002 

 1003 

 1004 

Figure 5. Scatterplot and correlation of MLANN and CC night-day differences in non polar zonal mean ML cloud fractions in Fig. 4. 1005 
Dashed line indicates 1:1 correspondence. Solid line is linear regression fit. 1006 
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43 

Figure 6. Recall or fraction of ML clouds detected within a given CC and CM cloud optical depth bin, 2009. Note, the irregular axis 1010 
scales. The tick marks for the x-axis are 0, 0.0025, 0.05. 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9, 1.1, 1.3, 1.5, 1.8, 2.1, 2.5, 3, 4, 1011 
5, 6, 8, 10, 15, 20, 30, 40, 60, 80, and 150. 1012 

  1013 
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 1014 

 1015 

Figure 7. Probability distributions of 2009 false SL and true ML clouds from MLANN as functions of upper-layer cloud optical 1016 
depth over SF surfaces for MODIS (a) water phase and (b) ice phase. Probability distributions of 2009 false ML and true SL 1017 
clouds from MLANN as functions of total column cloud optical depth over SF surfaces for MODIS (c) water phase and (d) ice 1018 
phase. The major tick marks for the x-axes on the top panels are 0, 0.0025, 0.05. 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9, 1.1, 1019 
1.3, 1.5, 1.8, 2.1, 2.5, 3, 4, 5, 6, 8, 10, 15, 20, 30, 40, 60, 80, and 150. The major tick marks for the x-axes on the bottom panels 1020 
are 0, 0.025, 0.5. 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4, 5, 6, 7, 8, 10, 12, 16, 32, and 150. 1021 

  1022 
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 1023 
 1024 

 1025 
 1026 
Figure 8. Mean reflectance from Aqua MODIS as a function of VZA for CERES water and ice-phase clouds, JAJO 2019. 1027 
  1028 
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 1029 
 1030 
 1031 

 1032 
 1033 
Figure 9. Mean 10.8-µm radiance from Aqua MODIS as a function of VZA for CERES water and ice-phase clouds, JAJO 2019. 1034 
  1035 
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 1036 
 1037 

 1038 
 1039 
 1040 
Figure 10. Mean MLANN multilayer cloud fraction from Aqua MODIS as a function viewing zenith angle, April 2009. MLANN 1041 
was run with the MODIS data as observed (without correction) and after applying a VZA correction (with correction). 1042 
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 1045 

 1046 
 1047 
Figure 11. Cloud parameters derived from Aqua MODIS data between 62°S (top) and 52°S (bottom) around 165°E, at ~3:50 UTC, 16 April 1048 
2019. (a) CM4 pixel scene classification, (b) Pseudocolor RGB image, red: 0.64 µm reflectance, green: BT37, green; blue: reverse BT11. (c) 1049 
MLANN classification, and (d) CM4 cloud effective height.  1050 
 1051 
  1052 
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 1053 
 1054 

 1055 
 1056 
 1057 
Figure 12. Cloud parameters derived from Aqua MODIS data between 42°N (top) and 24°N (bottom) around 50°W, at ~4:45 UTC, 16 April 1058 
2019. (a) CM4 pixel scene classification, (b) Pseudocolor RGB image, red: reverse BT11, green: reverse BT12, green; blue: BTD3711. (c) 1059 
MLANN classification, and (d) CM4 cloud effective height.  1060 
  1061 
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 1063 
 1064 
 1065 
Figure 13. Cloud parameters derived from Aqua MODIS data between 77°N (top) and 83°N (bottom) around 155°E, at ~1:50 UTC, 16 1066 
April 2019. (a) CM4 pixel scene classification, (b) Pseudocolor RGB image, red: 0.64 µm reflectance, green: BT37, green; blue: reverse 1067 
BT11. (c) MLANN classification, and (d) CM4 cloud effective height. 1068 
 1069 
  1070 
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 1073 

Figure 14. Multilayer fraction of total cloud cover for JAJO 2009 using all CC data from 2009 (top), and using Aqua MODIS 1074 
MLANN retrievals (middle) at near-nadir (-18° < VZA , 3°), and (bottom) for all VZAs. Daytime on left, nighttime on right. 1075 
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 1079 

 1080 

Figure 15.  Monthly mean anomaly of multilayer fraction relative to total cloud cover for 2009 using all CC data and full-swath 1081 
MODIS data. 1082 


