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Abstract.  

 

Hydro-meteorological hazard is often estimated by academic and public sector researchers using publicly funded climate 

models, whilst the ensuing risk quantification uses proprietary insurance sector models, which can inhibit the effective 

translation of risk-related environmental science into modified practice or policy.  For co-occurring hazards, this work proposes 15 

as an interim solution open R-code that deploys a metric (i.e., inter-hazard correlation coefficient r) obtainable from scientific 

research, usable in practice without restricted data (climate or risk) being exposed. This tool is evaluated for a worked example 

that estimates the impact on joint financial risk at an annual 1-in-200 year level of wet and windy weather in the UK co-

occurring rather than being independent, but the approach can be applied to other multi-hazards in various sectors (e.g. road, 

rail, telecommunications) now or in future climates. 20 
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1 Introduction 

Translating scientific work into improved policy or practice is widely accepted to be desirable yet challenging (Cordner, 2015; 

Dowling, 2015; Evans, 2006; Margalida et al., 2015; Scott et al., 2018). For hydro-meteorological natural hazards such as 

flooding or wildfire (Berghuijs et al., 2019; Finney et al., 2011) caused by extreme weather, two main restrictions on data 
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inhibit the effective translation of risk-related environmental science into modified practice in the insurance sector (e.g., Hillier 30 

and Van Meeteren, 2024). Firstly, open datasets output by publicly funded weather and climate models (e.g., from Met Office, 

ECMWF) are large (10s of terrabytes), with users required to have the capability to translate the variables provided into metrics 

related to extremes. Data might also be released to academics on non-commercial licenses. Secondly, financial risk is 

quantified using proprietary models and sensitive data (e.g. insurance claims).   

 35 

During February 2022 the storm sequence ‘Dudley’, ‘Eunice’ and ‘Franklin’ inflicted several hydro-meteorological hazards 

(snow, landslips, flooding, extreme winds) across the UK and Northwest Europe (Mühr et al., 2022; Volonté et al., 2023a, b), 

resulting in multi-sector impacts (e.g. road, power distribution) and ~€3-4 billion in insured losses (Kendon, 2022; Saville, 

2022).  These losses illustrate the importance of considering multi-hazard risk (Kappes et al., 2012; Ward et al., 2022; 

Zscheischler et al., 2018). In Northwest Europe, flooding and extreme wind cause the largest losses (Mitchell-Wallace et al., 40 

2017), co-occuring on timescales from (sub-)daily to seasonal (Bloomfield et al., 2023; De Luca et al., 2017; Hillier and Dixon, 

2020; Owen et al., 2021b, a). This dependency exists in meteorological variables such as precipitation (e.g., Martius et al., 

2016) and in impact data: insurance losses and railway delays (Hillier et al., 2015, 2020). Yet, the potential for this multi-

hazard relationship is not always considered in (re)insurance risk analysis. Like almost all hazards, European flooding and 

wind risk are currently modelled separately by catastrophe models (Mitchell-Wallace et al., 2017). Tropical cyclones are the 45 

recent exception, with hazards derived from the same climate model (Stalhandske et al., 2024; Verrisk, 2024). 

 

Prior to such a full joint modelling workflow, this paper proposes and evaluates a statistical approach to combine flooding and 

wind risk models using their per-event hazard values and losses they output. These are small and obtainable datasets. It is the 

first open code for this task, intended for use by any researcher or practitioner. The approach was developed during a 50 

collaborative project ‘TOGETHER’ (Bank of England, Verrisk, Aon, Met Office, Loughborough University), which led to a 

modification to the Insurance Stress Tests that regulate UK insurers (Bank of England, 2022).  

 

Research questions: 

 55 

1. What is the impact of co-occurring wet and windy weather in the UK on insurers’ joint annual 1-in-200 year financial 

risk? 

2. How useful is the proposed approach in translating scientific research into insurance industry practice?  

2 Methods & Data 

The innovation is that our approach uses climate science to link risk models via Severity Indices (SI) recording the magnitude 60 

of each hazard, such as ∑𝑣! for wind (Bloomfield et al., 2023; Klawa and Ulbrich, 2003; Nordhaus, 2010). High and low 
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inter-hazard correlation cases derived from a climate model (Figure 1a) are applied to SI values available within risk models 

(Figure 1b) from the reinsurance industry, without exposing commercial sensitive data.  

 

Correlation is applied at a seasonal timescale because the annual 1-in-200 year return period (RP) loss after reinsurance (i.e. 65 

‘net’ of insurance companies’ own insurance) is a key metric used to calculate insurers’ solvency (Hadzilicos et al., 2021). 

Four statistical methods (e.g. copula) are used exactly as in the Hillier et al. (2023). The calculations are detailed in the R-code 

provided (Supplementary material). The only inputs needed are a 3-column text file for each model (date, SI, monetary loss), 

with one row per event. No changes are need to the R-code to apply it to other regions of the world or hazard pairs, assuming 

a correlation coefficient can be determined for the user’s data of choice (reanalysis, climate model, emissions pathway). 70 

 

We use data from two independently derived catastrophe risk models available from Aon.  A time-series of 4,731 years is 

used, with fluvial flood events that have non-zero losses in the UK more frequent (~7 per year) than wind events (~3 per year), 

and UK-aggregated event losses are approximately log-Normal with tail end wind losses (RP > 100 years) approximately twice 

that of flood. For wind, correlation r between SI (sum v3) and loss per year is in the range ~0.5-0.8, and about half this for 75 

flooding (r ~0.2-0.3, SI is number of events). To test-run the R-code, events derived from the UKCP (Bloomfield et al., 2023; 

Griffin et al., 2022) have been created to approximate this configuration, but are illustrative only and these outputs should not 

be interpreted. 

 

To understand the utility of this approach in translating scientific research into reinsurance industry practice, statements were 80 

elicited from TOGETHER’s collaborators. These data are in Supplementary Material, referenced by company name(s) for 

quotes or syntheses: illustratively ‘The Bank of England’s statements are a means of staff sharing views that challenge – or 

support – prevailing policy orthodoxies. The views expressed here are those of the authors, and are not necessarily those of 

the Bank of England or its policy committees’ [Bank].   

3 Quantitative Results 85 

Figure 1d shows the estimated effect that flood-wind co-occurrence has on annual 1-in-200 year financial risk, reporting the 

difference between the typical assumption (i.e., independence) and a correlated case. As in the Bank of England report (Hillier 

et al., 2023) the ‘high' correlation, Gaussian copula case is considered most realistic, and net of reinsurance (i.e. ‘after’, light 

green) is most relevant. Lower gross, yet higher net losses are mainly caused by the flood hazard metric available. The principal 

result, visually synthesising results from the studies, is that uplift might be as high as ~10-14% for the very specific scenario 90 

analysed. It is vital to realise however, that this result should not be over-interpreted, specifically should not be taken to 

necessarily indicate ‘under-capitalisation of any particular firm nor of the sector in general’ [Aon].   
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4 Discussion & Reflections 

Quantifying tail risk, severe but rare circumstances, is desirable for a general insurer’s risk management. There are potential 

benefits in shared effort in addressing this complex task yet there is simultaneously the potential for commercial tensions that 95 

stem from organisations’ differing roles (e.g. insurer, broker, regulator), analogous to many global industries (Ritala, 2012).  

Such beneficial cooperation between organisations potentially in competition has been labelled ‘co-opetition’ in ‘paradox 

studies’ (Brandenburger and Nalebuff, 1996; Gnyawali and He, 2008; Smith et al., 2017). Various ways of handling this exist 

(e.g., Stadtler and Van Wassenhove, 2016) although a critical part can be succinctly summarised as ‘Partnerships require good 

networks, time, and trust to develop’ [Met Office]. TOGETHER is seen as a successful example of a co-opetition project 100 

(Hillier and Van Meeteren, 2024). The finding that co-occurrence might plausibly raise annual joint UK flood-wind losses net 

of reinsurance by up to ~10% (Figure 1d) is only applicable in this particular analysis but as an indicator that correlated hazards 

are worth considering it is seen as a valuable contribution [Aon, Met Office, Bank], and developing the open source R-code 

‘tool’ is also considered a benefit: 

 105 

‘An important step in bringing together publicly funded climate model data and industry-based modelling in a transparent 

way’ [Aon] 

 

But, to what extent is it useful?  It is a valuable first step [Aon], which can be an informative tool for those insurers who haven’t 

previously captured these dependencies because it is prudent to explore rather than ignore potential dependencies 110 

[Bank](Hillier et al., 2023). The approach can be applied to any sets of events (e.g., hail, wildfire) from existing models [Aon], 

making it quickly implementable. However, whilst it accounts for uncertainty in one key choices (i.e., dependency structure) 

there are many other variables, such as in the reinsurance structure or risk model used. Hence, critically, careful interpretive 

judgement is needed: 

 115 

‘Where tools such as this R-code are applied to inform a view of risk, caveats and assumptions should be considered; 

users should be satisfied a tool is being used in appropriate circumstances.’ [Bank] 

 

Illustratively, it would be unwise to apply the headline result to an insurer’s unique portfolio.  For this reason ‘open-source’ 

and ‘transparent’ are highlighted as key benefits of this approach [Aon, Met Office]. Possible applications include exploring 120 

the sensitivity of peril co-occurrence to different financial structures (e.g. number of reinstatements) [Bank]. As independent 

and open source it also provides a means to benchmark future similar work in this field [Aon], and can be applied to different 

hazards. 
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Overall, we conclude that our approach is one useful interim solution prior to, and perhaps justifying, more extensive 125 

modelling. It is a bridge, deploying a metric (inter-hazard correlation coefficient) obtainable from scientific research, which is 

usable in practice without restricted data being exposed. More generally, it is an example of embedding environmental science 

in to practice and policy by identifying a simple, pragmatic means (i.e., r) of estimating the impact on a critical industry-

relevant metric. It paves the way for similar methods to be applied within other sectors (e.g. rail, road, power distribution, 

telecommunications), perhaps for physical climate risk disclosure. 130 

 

 
Figure 1 – Pathway from hazard to impact, i.e. effect on losses for very severe events. (a) Wintertime correlation, Spearman’s Rank 
(rs) within various multi-hazard episode durations for the Oct-Mar season, using severity indices for flooding and extreme wind in 
Great Britain (Bloomfield et al., 2023). Rain (purple) and river flow (yellow) are related to wind hazard for climate model (UKCP, 135 
solid lines) and historical (ERA5, dashed) and rain (purple). Error bands are 95% confidence. (b) Illustration of the method, i.e. 
statistically linking two independent risk models (red / blue) via their hazard severity indices. (c) Illustrative exceedance probability 
curves for correlated (dark grey) and independent (light grey) cases, the difference between which is the effect of co-occurrence, 
with the 1-in-200 return period (p = 0.005) of particular interest in insurance (d) Indicative impact of a correlation between flooding 
and wind hazards on annual losses for the whole UK market at a 1-in-200 year return period. Box plots illustrate the range of 140 
answers generated by the five different types of correlation (see b) for each of the four cases analysed: low-gross, high-gross, low-
net, high-net. As in Hillier et al (2023) the Gaussian is ‘best’ and highlighted (black dot) as it best fits annualized hazard data at Site 
W of Hillier & Dixon (2020). Open circles are from that 2023 study, which used two different catastrophe models. 
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