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Abstract. Ice-sheet models used to predict sea-level rise often neglect subglacial hydrology. However, theory and observations

suggest that ice flow and subglacial water flow are bidirectionally coupled: ice flow and geometry affects hydraulic potential,

hydraulic potential modulates basal shear stress via the basal water pressure, and ice flow advects the subglacial drainage

system. This coupling could impact rates of ice mass change, but remains poorly understood. We combine a channelized

subglacial hydrology model with a depth-integrated marine-ice-sheet model, incorporating each component of the coupling5

listed above, which yields a set of differential equations that we solve using a finite-difference, implicit time-stepping approach.

We conduct a series of experiments with this model, using either bidirectional or unidirectional coupling. These experiments

generate steady-state profiles of channel cross-sectional area, channel flow rate, channel effective pressure, ice thickness, and

ice velocity. We discuss how the steady-state profiles shape one another, resulting in the effective pressure reaching a local

maximum in a region near the grounding line. We also describe the impact of bidirectional coupling on the transient retreat of10

ice sheets through a comparison of our coupled model with ice-flow models that have imposed static basal conditions. We find

that including coupled subglacial hydrology leads to grounding-line retreat that is virtually absent when static basal conditions

are assumed. This work highlights the role time-evolving subglacial drainage may have in ice-sheet change and informs efforts

to include it in ice-sheet models.

1 Introduction

The Ice-Sheet Model Intercomparison for CMIP6 (ISMIP6) predicts between 7.8 and 30.0 cm of sea-level-equivalent ice-mass

loss from Antarctica by 2100 under the Representative Concentration Pathway 8.5 scenario (Seroussi et al., 2020). This wide

range of predictions for the same forcing scenario is associated with various uncertainties within and differences between the

ice-sheet models. A significant source of uncertainty is a limited understanding of how evolving subglacial hydrology could20

influence ice-sheet mass loss (Seroussi et al., 2020; De Fleurian et al., 2018; Flowers, 2015). A common approach to capturing

the effect of hydrology on ice dynamics in ice-sheet models is to use measured surface velocities to invert for a spatially

varying basal friction parameter (Arthern and Gudmundsson, 2010; Morlighem et al., 2013; Arthern et al., 2015; Lipscomb
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et al., 2021). This parameter encompasses all bed properties relevant for basal shear stress, including subglacial hydrology.

Usually, this parameter remains static in time during simulations and does not evolve with changes in hydrology or basal water25

pressure (e.g., Lipscomb et al., 2021; Gudmundsson et al., 2019; Arthern and Williams, 2017). However, subglacial hydrology

does evolve, and variations in basal water pressure have been linked to changes in ice dynamics (Fountain and Walder, 1998;

Bartholomew et al., 2010; Clarke, 2005; Bindschadler, 1983).

Another way to represent subglacial hydrology in ice-sheet models is with simple parameterizations or with simple models

(Kazmierczak et al., 2022; McArthur et al., 2023). These relate basal water pressure to the depth of the bed below sea level (e.g.,30

Tsai et al., 2015) or the hydrological connectivity to the ocean (e.g., Leguy et al., 2014), or use simple hydrology models to

estimate the depth of subglacial water (e.g., Le Brocq et al., 2009) or the till pressure (e.g., Bueler and Brown, 2009). However,

ice-sheet sensitivity to subglacial hydrology varies greatly based on the parameterization or simple model used. Kazmierczak

et al. (2022) showed that the range of sea-level-rise (SLR) predictions associated with these different parameterizations in a

single ice-sheet model is similar in magnitude to the difference in SLR predictions between models used in ISMIP6 (Seroussi35

et al., 2020). Additionally, some of these simple parameterizations are likely not representative of the entire ice-sheet bed, and

are only valid near the grounding line (Kazmierczak et al., 2022; Leguy et al., 2014).

Given that parameterizations of time-varying subglacial hydrology are often highly simplified, while basal friction parame-

ters determined through inversion techniques do not evolve in time, we explore an alternative approach to examine the effect

of evolving hydrology on ice-sheet retreat. We couple a physics-based subglacial hydrology model with an ice-sheet model,40

using a simple, one-dimensional approach. Our model avoids some of the common simple parameterizations for subglacial

hydrology and allows the hydrology and the ice sheet to evolve dynamically in a coupled way. We use this model to examine

how the coupling operates and investigate the assumption of holding basal friction parameters static in transient simulations.

Our work differs from previous coupled models of ice flow and hydrology by considering a marine-terminating setting, using

higher-order ice flow physics than some models, and using a simpler hydrology model. For example, Kingslake and Ng (2013)45

and Arnold and Sharp (2002) coupled multi-element subglacial hydrology models, including channels and distributed linked

cavities, to simplified ice-flow models, using an ice slab and the shallow ice approximation, respectively. In contrast, we use a

higher-order ice-flow model including longitudinal stresses. Several other models (Pimentel and Flowers, 2010; Hewitt, 2013;

Hoffman and Price, 2014; Gagliardini and Werder, 2018) couple similar multi-element hydrology systems to higher-order ice

flow models to study land-terminating glaciers. In contrast, we model marine-terminating glaciers. Finally, rather than using50

the multi-element hydrology models considered in other studies, we model a single, one-dimensional channel.

Application to marine-terminating glaciers necessitates a set of three couplings between the ice and hydrology models. The

first is a sliding law that depends on effective pressure. This is motivated by the idea that the water pressure underneath the ice

sheet can modulate the basal shear stress (Iken and Bindschadler, 1986). The second is allowing the ice geometry to modulate

the basal hydraulic gradient (Fowler, 1999). The third is allowing the velocity of the ice to advect the drainage system (Drews55

et al., 2017). These points of coupling are illustrated by the solid lines in Fig. 1.

We consider marine-terminating ice due to its importance for future ice-sheet mass balance, and a channelized drainage sys-

tem because observations and modeling suggest that there exist large, persistent channels underneath portions of the Antarctic
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Figure 1. Points of coupling illustrated for our full coupled model (solid lines; S1), and a model with imposed ice geometry and velocity

(dash-dot lines; S2).

Ice Sheet (Le Brocq et al., 2013; Drews et al., 2017; Dow et al., 2022). This motivates our choice to represent the hydrology

system as a subglacial channel.60

Section 2 describes our model and a set of steady-state and transient numerical experiments. Section 3 presents the results of

these experiments. A key result is that the coupling between water and ice flow generates a region of relatively high effective

pressure upstream of the grounding line in steady-state experiments. The transient experiments show the consequences of this

high effective pressure region for simulated retreat. Section 4 discusses and explains these results with the aid of a reduced

version of the hydrology model and Section 5 draws conclusions about how these findings may apply to real systems.65

2 Methods

Here, we describe the models of ice flow, basal sliding, and subglacial hydrology included in our coupled model. We also

describe our numerical experiments. We first conduct a suite of steady-state experiments to understand the effects of parameter

choices. We then examine a simulation in more detail to investigate the resulting effective pressure profiles. Next, we illustrate

the importance of coupling for ice sheet retreat through a set of transient experiments.70

2.1 Ice dynamics

The ice-flow component of our model describes a two-dimensional, symmetric, shallow, marine ice sheet (e.g., Schoof, 2007;

Muszynski and Birchfield, 1987; MacAyeal, 1989). It is depth-integrated and assumes rapid sliding, and its full derivation is
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described by Muszynski and Birchfield (1987). We use this model because it is one of the simplest models that accounts for

longitudinal stresses, which are important near the grounding line. Mass and momentum balance are described by75

∂h

∂t
+
∂(hu)
∂x

= a, (1)

∂

∂x

[
2A−1/nh

∣∣∣∣
∂u

∂x

∣∣∣∣
1/n−1

∂u

∂x

]
− τb− ρigh

∂(h− b)
∂x

= 0, (2)

where h is the ice thickness, u is the vertically uniform horizontal ice velocity, x is distance from the ice divide, t is time, a is

the ice-equivalent accumulation rate, τb is the basal shear stress, ρi is the density of ice, g is the acceleration due to gravity, n

is the Glen’s law exponent, and A is a depth-averaged Glen’s law coefficient. We use boundary conditions described by Schoof80

(2007). At the divide (x= 0) we impose symmetry, ∂(h−b)
∂x = 0 and u= 0, and at the grounding line (x= xg) we impose

flotation ρih= ρwb and a stress balance based on coupling to a downstream ice shelf,

2Ā−1/nh

∣∣∣∣
∂u

∂x

∣∣∣∣
1/n−1

∂u

∂x
=

1
2
ρi

(
1− ρi

ρw

)
gh2, (3)

where ρw is the density of water. This stress condition accounts for flotation and the lack of basal shear stress at xg , which is

consistent with the assumption described later that effective pressure is zero at the grounding line. The mass balance (Eq. 1)85

dictates that thickness changes in the ice are due to the imbalance between the accumulation rate a and the flux divergence.

The momentum balance (Eq. 2) describes the balance between the longitudinal stress (first term), vertical shear stress (second

term), and driving stress (third term). The hydrology influences the ice dynamics by modulating the basal shear stress, which

is represented by an effective-pressure-dependent sliding law.

2.2 Sliding laws90

Different choices of sliding law for representing the basal shear stress τb yield different behaviors in ice-sheet models, especially

near the grounding line (e.g., Brondex et al., 2017; Tsai et al., 2015; Barnes and Gudmundsson, 2022). Classically, models use

a power law (also known as a Weertman law) to describe the relationship between τb and the sliding velocity (Weertman, 1957):

τb = CWu
m, (4)95

where m is usually related to the exponent in Glen’s flow law, n (Paterson, 1994), and CW is a basal friction parameter that

describes the bed properties. Typically, m= 1
n = 1

3 (e.g., Weertman, 1974; Schoof, 2007). Equation (4) does not explicitly

consider the dependence that τb can have on the effective pressure, N , defined as the ice overburden pressure minus the

subglacial water pressure.

The first N -dependent sliding law we adopt is an adjusted power law proposed by Budd et al. (1979):100

τb = CBN
qum, (5)

where CB is another friction parameter with the subscript used to distinguish it from CW , and q is a positive constant. Present

models with this style of sliding law (which we refer to as a Budd sliding law) typically use a value of q = 1 (Brondex
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et al., 2017). One drawback associated with this sliding law is that the inclusion of N can result in large, nonphysical stresses

(Brondex et al., 2017).105

The second N -dependent sliding law we adopt is a regularized-Coulomb law (Helanow et al., 2021; Schoof, 2005):

τb = CCN

(
u

u+AsCnCN
n

)1/n

, (6)

where As and CC are parameters describing the bed that Helanow et al. (2021) use as fitting parameters. Sliding laws in this

form have been used to represent sliding with cavitation on hard beds and sliding over deformable glacial till (e.g., Schoof,

2005; Zoet and Iverson, 2020; Helanow et al., 2021). In the limit of high N , this law behaves like a power law, Eq. (4). In the110

limit of low N (typical near the grounding line), Eq. (6) reduces to a Coulomb plastic sliding law, τb ≈ CCN , and does not

have a strong dependence on ice velocity.

2.3 Subglacial hydrology

Our hydrology model describes the evolution of a subglacial channel and the balances of mass, momentum, and energy in the

channel, respectively, as follows:115

∂S

∂th
=
m

ρi
−K0SN

3−u∂S
∂x

, (7)

∂S

∂th
+
∂Q

∂x
=
m

ρw
+M, (8)

ψ+
∂N

∂x
= fρwg

Q|Q|
S8/3

, (9)

mL=Q

(
ψ+

∂N

∂x

)
. (10)

S is the channel cross-sectional area, N is the effective pressure, Q is the channel discharge, M is a constant and uniform120

supply term, m is the melt rate, th is the time for the hydrology system (which we distinguish from t for convenience when

nondimensionalizing later), f is a hydraulic friction factor, K0 is an ice flow parameter, and ψ is the basic hydraulic gradient.

The basic hydraulic gradient ψ is the hydraulic gradient that would exist if the water pressure in the channel were equal to the

ice overburden pressure pi, which is approximated as ρigh:

ψ = ρwg
∂b

∂x
− ρig

∂h

∂x
. (11)125

We impose N = 0 at the grounding line because the water pressure under the ice is expected to approximately equal the ice

overburden pressure in this location. We also force a channel discharge boundary condition at the divide, where we maintain a

constant small influx Qin (effectively a Neumann boundary condition on N ).

This formulation is based on the modification by Fowler (1999) of the model for a one-dimensional subglacial channel from

Nye (1976), with the addition of an ice advection term u∂S∂x in Eq. (7), following Drews et al. (2017). Equation (7) shows130

how the channel cross-sectional-area evolution ∂S
∂t grows with melt mρi

and closes with ice creep K0SN
3. The advection term

in Eq. (7) captures how ice sliding moves the roof of the channel over a given point on the channel floor. This is necessary
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for a steady state to be reached, as we will explain in our results. Equation (8) balances the flux associated with evolution

of the channel cross-sectional area, flux divergence along the channel, and water gained through either melt or additional

water sources represented by M . Equation (9) uses Manning’s equation (e.g., Chow, 1959; Röthlisberger, 1972) to describe135

the pressure gradient necessary to drive a flux Q through a channel with a cross-sectional area S. Equation (10) details the

assumption that all the energy dissipated by the turbulently flowing water is used locally to melt the channel walls.

The hydrology depends on the ice geometry and dynamics as the hydraulic gradient depends on the ice overburden pressure,

which in turn depends on the ice thickness h, while the velocity of the ice u advects the subglacial channel, as described in Eq.

(7). The hydrology in turn determines the effective pressure N , which enters the sliding laws used in Eq. (2) and affects the140

flow of the ice sheet.

2.4 Nondimensionalization and Numerics

To aid in numerically solving these equations and to understand the scales of each term, we nondimensionalize them (see

Appendix A for the full procedure). There are six unknowns (Q, N , S, h, u, m) and six equations, but for simplicity we

eliminate m between Eq. (7), (8) and (10), reducing this to five unknowns and five equations. The dimensionless forms of the145

model equations are:

∂S′

∂t′h
=
|Q′|3
S′8/3

−S′N ′3−βu′ ∂S
′

∂x′
, (12)

∂Q′

∂x′
= ϵ(r− 1)

|Q′|3
S′8/3

+ ϵ

(
S′N ′3 +βu′

∂S′

∂x′

)
+M ′, (13)

∂N ′

∂x′
=

1
δ

(
Q′|Q′|
S′8/3

−ψ′
)
, (14)

∂h′

∂t′
+
∂(h′u′)
∂x′

= a′, (15)150

α
∂

∂x′

[
h′
∣∣∣∣
∂u′

∂x′

∣∣∣∣
1/n−1

∂u′

∂x′

]
− τ ′b−h′

∂(h′− b′)
∂x′

= 0, (16)

and the associated parameters are: β ≡ th0
t0

, ϵ≡ x0m0
Q0ρi

, r ≡ ρi/ρw, δ ≡ N0
x0ψ0

, and α≡ 2u
1/2
0

ρigA1/nhg0x
1/n
0

.

τ ′b depends on the sliding law choice. Nondimensionalizing Eq. (5) gives

τ ′b =N ′u′1/n, (17)

while nondimensionalizing Eq. (6) gives155

τ ′b = γN ′
(

u′

u′+N ′n

)1/n

, (18)

with γ ≡ CN0x0
ρigh2

g0
. Dashes indicate dimensionless variables which can be returned to their dimensional forms by multiplying

with their scale (e.g., x= x0x
′). For clarity, we drop dashes for the remainder of the analysis; unless otherwise stated, all

variables referred to are their dimensionless forms. Constants for the experiments detailed in the subsequent sections are found

in Table 2, while the resulting parameter and scale values are found in Table 3.160
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Regardless of the sliding law used we find that β≪ 1 (Table 3), because the time scale for the hydrology, th0, is about four

orders of magnitude smaller than the time scale for the ice sheet, t0; th0 is on the order of months while t0 is on the order

of millennia. We interpret this as the hydrology being in a “quasi-steady” state, meaning that it quickly reaches a steady state

for whatever conditions the ice imposes as the ice evolves. β≪ 1 implies that the ice advection term in Eq. (12) has minimal

effect. Regardless, we retain that term in anticipation of it becoming important in cases when ∂S
∂x is large. Another insight165

stemming from these parameter values is that α≪ γ and α≪ 1 , which implies, for the regularized Coulomb and Budd cases,

respectively, that the basal shear stress has a much larger impact on the ice-sheet force balance than the longitudinal stresses in

Eq. (16). Regardless, to better represent the dynamics near the grounding line where the basal shear stress vanishes, we retain

the longitudinal stress term.

To solve these equations, we apply the finite-difference approximation following Schoof (2007). The ice velocity and thick-170

ness grids are staggered and split into two segments, one with coarse resolution and another with fine resolution near the termi-

nus. This split-grid approach is to preserve computational efficiency while properly resolving the stresses near the grounding

line. The different grids used in our experiments are described in Table 1. To account for a moving grounding line, we apply a

coordinate transformation (detailed in Appendix A) that allows for the “stretching” of the grids, also following Schoof (2007).

The grounding-line position is implicitly determined at each time step through enforcing continuity of thickness at the junction175

between the two segments of each grid and imposing the flotation condition. For the hydrology equations, we use a uniform

grid at an intermediate resolution. The hydrology equations also undergo the same coordinate stretching as the ice equations. In

each iterative step, the effective pressure is linearly interpolated onto the velocity grid while both the velocity and ice thickness

are linearly interpolated onto the hydrology grid. The spatial derivatives are approximated with centered differences, unless

they are at the boundary and not addressed by a boundary condition, in which case we use one-sided differences. The time180

derivatives are solved with a backwards Euler method. The system of nonlinear discrete equations is solved iteratively with

MATLAB’s fsolve function. This solution method is based on code from Robel (2021), which he used to solve the model

described by Schoof (2007).

2.5 Experimental design

Table 1 summarizes our suite of experiments. We conduct a series of steady-state simulations, followed by a series of transient185

simulations. In the sections below, we describe the detailed setup of these experiments.

2.5.1 Steady-state experiments

We run a suite of steady-state simulations by setting the time derivatives in the model equations to zero and solving the resulting

system of equations. First, to test model sensitivity, we vary the following constants across 100 uniformly spaced values

over ranges noted in the square brackets, while fixing the others: the depth-averaged flow law constant A ∈ [0.1,10]× 10−25190

s−1Pa−3, the accumulation rate a ∈ [0.1,10] m yr−1, the additional water source termM ∈ [0,10]×10−4 m2 s−1, and the water

flux at the divideQin ∈ [0.001,10] m3 s−1. Additionally, we examine the sensitivity to the sliding law parameters CC ∈ [0.1,1]

and As ∈ [0.01,100]× 10−21 m s−1Pa−3 for the version of the model using a regularized Coulomb law, and CB ∈ [3,15]

7
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Table 1. Experiments

name fixed ice shape/velocity (Y/N) fixed hydrology (Y/N) ice grid points hydrology grid points transience (Y/N)

sensitivity N N
coarse (95%): 100

fine (5%): 200
500 N

S1 N N 3000 3000 N

S2 Y N 3000 3000 N

T1 N N
coarse (85%): 100

fine (15%): 600
1000 Y

T2 N Y
coarse (85): 100

fine (15%): 600
1000 Y

m−1/3 s1/3 for the version using a Budd sliding law. In this suite of experiments (referred to as “sensitivity” in Table 1), we

use a linear bed with a slope of 0.001, which slopes downwards in the direction of ice flow from a depth of 100 m below sea195

level at the divide (x= 0). We impose Q0 = 1 m3 s−1, h0 = 1000 m, and x0 = 100 km, and all other scales are derived from

these values. When held fixed, the constants follow the values in Table 2. For the ice grid, we use 100 points along 95% of the

domain and resolve the remaining 5% with 200 points. The hydrology grid has a uniform spacing with 300 points. These grids

were chosen to properly resolve the region near the grounding line while preserving computational efficiency.

Outside of this suite of steady-state experiments, we also run a set of experiments at a higher spatial resolution with a specific200

parameter combination to examine the model behavior in more detail. These specific runs are referred to as S1 and S2 (Table

1), and are represented by the lines in Fig. 1. The relevant parameter values, constants, and scales used are detailed in Tables 2

and 3. We maintain the same bed slope described above. For these experiments, we use uniform grids at a high resolution. We

use 3000 grid points for the thickness, velocity, and hydrology grids. We use this finer grid to validate our grid spacing choices

from the larger suite of steady state experiments experiments.205

S1 consists of two steady-state experiments solving the full coupled model. S1.B uses a Budd sliding law (Eq. 5), while

S1.C uses a regularized Coulomb sliding law (Eq. 6). We follow this nomenclature for the remaining experiments that use

different sliding laws in our full coupled model. Note that although different sliding laws are used, the same points of coupling

are preserved, hence the collective usage of “S1”.

S2 describes a simplified scenario with an imposed ice geometry and velocity. We impose an ice sheet with a quadratic210

shape, with its thickness described by

h= 103×
(√

2.5× 105−x
2.5× 105

+ 0.3838

)
m, (19)

where x ∈ [0,2.5×105] m. The grounding line is defined to be 250 km away from the divide, as that is approximately its location

in our S1 results. The 0.3838 factor is to make sure that the ice thickness at the grounding line equals the flotation thickness.
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Table 2. Constants used in model experiments S1, S2, T1, and T2

constant description value

A depth-averaged Glen’s law coefficient* 2.9× 10−25 s−1Pa−3

As Coulomb law ice rheology and bed morphology coefficient 2.26× 10−21 m s−1Pa−3

a accumulation rate 1 m yr−1

CC Coulomb law fitting coefficient* 0.2

CB Budd law coefficient 7.624 m−1/3 s1/3

f channel friction factor 0.07 m−2/3 s2

g gravitational acceleration 9.81 m s−2

K0 flow parameter for inward ice deformation 1× 10−24 s−1Pa−3

L latent heat of fusion of water 3.3× 105 J kg−1

M additional water supply along channel 1× 10−5 m2 s−1

n Glen’s law exponent 3

Qin influx at divide 0.01 m3 s−1

ρi density of ice 917 kg m−3

ρw density of water 1028 kg m−3

*Note that for the transient experiments T1 and T2, we perturbedA from 0.9× 10−25 s−1Pa−3 to 2.9× 10−25 s−1Pa−3, and

used CC = 0.5. We also usedM = 1× 10−6 m2 s−1 andQin = 0.01 m3 s−1.

This scenario also imposes a uniform velocity of about 91.6 m yr−1, which is the scale u0 from Experiments S1. These velocity215

and thickness values were selected to be the same order of magnitude as the results from the coupled experiments. We hold

these velocity and thickness values constant and use them to solve only the hydrology equations for a steady state. Employing

this one-directional coupling in this experiment will help us understand how ice geometry drives the hydrology. As illustrated

in Fig. 1, imposing this ice geometry and velocity removes the point of coupling where the effective pressure modulates the

basal shear stress.220

2.5.2 Transient experiments

We also perform two suites of of transient experiments with the full coupled model, which we call T1 and T2. Like the

experiments in S1, this set of experiments uses both a Budd sliding law (T1.B, T2.B) and a regularized Coulomb sliding law

(T1.C, T2.C).

For all transient experiments, we run the model to a steady state, then perturb the ice flow constant A, in Eq. (2). To225

instigate ice-sheet thinning and grounding-line retreat, we instantaneously increaseA from 0.9×10−25 s−1Pa−3 to 2.9×10−25

s−1Pa−3. This approach follows Schoof (2007) and is equivalent to reducing the stiffness of the ice by, for example, increasing

its temperature. Also following Schoof (2007), we impose a bed topography with an idealized sill and overdeepening:

b=−
[
729− 2184.8×

( x

750km

)2

+ 1031.72×
( x

750km

)4

− 151.72×
( x

750km

)6
]
m. (20)
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Table 3. Scales and parameter values computed using the constants in Table 2

scale/parameter expression value

using Coulomb Law using Budd Law using Coulomb Law using Budd Law

Q0 imposed channel discharge scale 1 m3 s−1

h0 imposed ice thickness scale 1000 m

x0 imposed glacier length scale 100 km

ψ0 ψ0 = ρwg
h0
x0

101 Pa m−1

S0 S0 =
(
fρwg

Q2
0

ψ0

)3/8

2.07 m2

m0 m0 = Q0ψ0
L

3.06× 10−4 kg m−1 s−1

th0 th0 = ρiS0
m0

3.5× 106 s

M0
Q0
x0

1× 10−5 m2 s−1

N0 N0 = (K0th0)
−1/3 5.44× 105 Pa

u0 u0 =AsC
n
CN

n
0 u0 =

(
ρigh

2
0

(CBN0x0)

)n
2.90× 10−6 m s−1 1.02× 10−6 m s−1

t0 t0 = x0
u0

3.44× 1010 s 9.78× 109 s

a0
h0
t0

2.90× 10−8 m2 s−1 1.02× 10−7 m2 s−1

β β ≡ th0
t0

1.81× 10−4 6.37× 10−4

ϵ ϵ≡ x0m0
Q0ρi

0.033

r r ≡ ρi/ρw 0.892

δ δ ≡ N0
x0ψ0

0.065

α α≡ 2u
1/n
0

ρigA
1/nhg0x

1/n
0

0.010 0.016

γ γ ≡ CN0x0
ρigh

2
g0

N/A 1.21 N/A

Some constants and parameters are adjusted from values used in the steady-state experiments to generate an initial grounding-230

line position that is downstream of the over-deepening. Specifically, we use M = 1×10−6 m2 s−1 and Qin = 0.01 m3 s−1 for

all transient experiments. We also use CC = 0.5 for T1.C and T2.C. We run these experiments for 5000 years with 100 time

steps. To examine the early stages of the evolution, immediately after the perturbation in A, we also run a version of these

experiments at a higher temporal resolution for 10 years with 200 time steps. All transient experiments use a spatial grid of

100 grid points across 85% of the ice domain and 600 grid points for the remaining domain to resolve the boundary layer.235

The hydrology grid is evenly spaced across 1000 grid points. These adjusted grid resolutions are described in Table 1, and the

adjusted constants and parameters are described in Table 2.

In T1, we preserve all points of coupling in our model and observe the modelled grounding-line retreat after perturbing

A. In T2, we examine the impact of assuming static (unvarying in time) basal conditions on modelled grounding line retreat.

To do this, we eliminate the hydrology equations from the model and represent the static basal hydrology properties with an240
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Sensitivity of grounding line position, ice thickness, and effective pressure to model parameters
(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 2. The sensitivity of the coupled model steady state with a regularized Coulomb law to (each column, from left to right) the depth-

averaged flow law constant A, the accumulation rate a, the additional water source term M , the water flux at the divide Qin, and the

sliding-law-specific constants As and CC . The top row (a-f) shows the steady-state grounding line position, the middle row (g-l) shows the

ice thickness h, while the bottom row (m-r) shows the effective pressure N . The parameter values held constant in the other experiments are

marked by the dashed black lines.

unchanging effective pressure profile that is used in the basal shear stress term in Eq. (2). To define N , we use values from

the initial steady-state solutions of the coupled models in T1. This means that the initial ice-sheet profiles in T1 and T2 are

identical. However, unlike experiments in T1, which allow the hydrology to evolve actively with the ice after a perturbation

to A, experiments in T2 hold the effective pressure profile static in time. This emulates the approach, common in ice-sheet

modelling, of deriving bed parameters with inverse methods and keeping them constant in time. Note that we still use Eq. (3)245

as a boundary condition on u, so the assumption of N = 0 inherent in that expression remains.

3 Results

3.1 Steady-state experiments

Figure 2 shows steady-state grounding line positions, ice thickness profiles, and effective pressure profiles computed with the

coupled model with the regularized Coulomb law, for many values of A, a, M , Q, and the friction-law-specific parameters As250

and CC . In all cases, the grounding line reaches a stable position and the ice thickness decreases monotonically from the divide

to the grounding line (note that Fig. 2 only shows the downstream half of the domain). The effective pressure profiles are more
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Sensitivity of grounding line position, ice thickness, and effective pressure to model parameters

Figure 3. The sensitivity of the coupled model steady state with a Budd law to (each column, from left to right) the depth-averaged flow law

constant A, the accumulation rate a, the additional water source term M , and the water flux at the divide Qin, and the sliding-law-specific

constant CB . The top row (a-e) plots the steady-state grounding line position, the middle row (f-j) plots the ice thickness h, while the bottom

row (k-o) plots the effective pressure N . The parameter values held constant in the other experiments are marked by the dashed black lines.

complex. A ubiquitous feature in the effective pressure profiles is a maximum that forms relatively close to the grounding line.

The positions and magnitudes of the effective-pressure maxima, the grounding line positions, and the ice thickness profiles

depend to varying degrees on the five model parameters varied between simulations.255

Increasing the ice flow parameter, A, moves the steady-state grounding line position upstream (corresponding to thinner ice

at the grounding line), reduces the ice surface slope, and causes a higher peak in effective pressure. Increasing a moves the

grounding line downstream (corresponding to thicker ice at the grounding line), and reduces the maximum effective pressure.

Increasing the channel source term M or the influx of water at the divide Qin results in slightly thicker ice, significantly

larger effective pressures, and minimal (< 8.4%, < 1%, for M , Qin, respectively) changes in grounding-line position. For the260

regularized Coulomb law parameters, increasing As results in thinner ice with a lower maximum effective pressure, and does

not impact the grounding line position substantially (< 3.5%). Increasing CC moves the grounding line downstream, results in

thicker ice, and, when CC ≳ 0.4, decreases the maximum effective pressure. When CC ≲ 0.4, decreasing CC also decreases

the maximum effective pressure and the gradient in effective pressure adjacent to the grounding line.
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 4. The nondimensional steady-state profiles for: (a) channel discharge, (b) effective pressure, (c) channel cross-sectional area, (d) ice

thickness, and (e) ice velocity. The results of the coupled simulations with the regularized Coulomb law (S1.C) are in black, the results from

simulations using the Budd law (S1.B) are in red, and the results from the one-way coupled model with imposed thickness and velocity (S2)

are in black dash-dotted curves. The location of this simulation in parameter space is indicated by the vertical dashed lines in Fig. 2. Results

from S1.C and S1.B exhibit near overlap in (a).

Figure 3 displays the parameter sensitivities of the model while using a Budd sliding law. Changes to A and a result in265

similar changes to xg , h, and N as described above for the model with the Coulomb sliding law. Increasing the Budd sliding

law parameter CB causes the grounding line to move downstream, an increase in ice thickness, and an increase in effective

pressure. While our focus is not the intercomparison of models with different sliding laws (e.g., Brondex et al., 2017), we note

that sliding law choice does not change the general trends in model sensitivity to A, a, M , or Q. Regardless of the sliding law

or parameter values, the effective pressure profile peaks near the grounding line, and has a steep drop to zero at the grounding270

line. This steep gradient in N plays an important role in our transient experiments, so we turn to Experiments S1 and S2 to

examine this feature further.

Figure 4 shows the five key nondimensional steady-state model variables from S1.B and S1.C, which use the Coulomb and

Budd sliding laws respectively, and our one-way forcing experiment S2, which use an imposed ice thickness h and flow speed

u. We note that the grounding line position results on the high-resolution grid differ from those on the low-resolution split grid275

used in the sensitivity experiments by < 0.5% for both S1.B and S1.C.
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Examining first the results from experiments S1.B and S1.C, Q increases downstream (from left to right in Fig. 4a). The

effective pressure N gradually increases downstream before peaking near x= 0.96, then steeply decreasing towards the im-

posedN = 0 boundary condition at xg . Between the peak inN and xg ,N passes an inflection point near x= 0.98. This means

that the most negative effective pressure gradient is located upstream of the grounding line. The channel cross-sectional area S280

gradually increases downstream from the divide before reaching a maximum, then decreasing downstream and reaching a min-

imum near x= 0.96, and finally steeply increasing towards xg . We also see that S exhibits an inflection point approaching xg

near x= 0.99, where its curvature changes sign from positive upstream to negative downstream. The ice thickness h decreases

monotonically with x, while its gradient increases in magnitude for most of the domain until near the grounding line, where

it passes an inflection point near x= 0.96 and the gradient begins to decrease in magnitude, approaching zero at xg . The ice285

velocity u has an inverse relationship with h, increasing downstream. Like h, the gradient in u increases in magnitude before

reaching an inflection point near x= 0.96, then approaching zero at xg .

The results from S2, with the imposed quadratic geometry, follow similar trends to S1: Q increases monotonically, S de-

creases gradually with x then increases steeply towards xg , and N increases downstream from the divide before peaking then

decreasing rapidly to zero at xg . The main difference is that these variables do not have points of inflection around x= 0.96290

as seen in the results from the coupled model (S1). This highlights how the ice surface topography controls the hydrology: the

ice geometry in the coupled experiments exhibits an inflection point and this is reflected in the hydrology profiles, whereas the

quadratic ice geometry (Eq. 19) does not, and hence when this is used to drive the hydrological part of the model, the results

also lack these inflection points.

For each of the three experiments (S1.B, S1.C and S2), Fig. 5 shows the nondimensional values of each term in Eqs. (12, 14,295

16) to further illustrate how the ice and the hydrology influence one another. In the first column, we see the small but important

effect of ice flow advecting the subglacial channel. We anticipated this term to be small, as β≪ 1. However, across the three

experiments, as N approaches zero at the grounding line, creep closure (SN3 in Eq. 12) also approaches zero, as illustrated

by the red dashed curves in Fig. 5. In the absence of advection, this would need to be accommodated by a reduction in the

melt term |Q|3
S8/3 . Given that Q> 0, this would require S to grow to infinity. We see from the steady-state profile in Fig. 4c that300

S grows large, but does not grow to infinity, and that is due to the advection term growing near the boundary, contributing to

channel closure (because ∂S
∂x > 0), and therefore helping to balance the non-zero melt (insets, Fig. 5).

The middle column of Fig. 5 explains the relationship between effective pressure and ice geometry. This is most clearly

seen in the one-way experiment (S2; Fig. 5h). Consistent with δ≪ 1, for most of the domain Q|Q|
S8/3 follows ψ, which is set by

the ice geometry and bed topography. However, as we approach xg , Q|Q|
S8/3 and ψ diverge; as we approach the N = 0 boundary305

condition, S grows large and Q|Q|
S8/3 approaches zero. In contrast, h growing steeper near the grounding line causes ψ to grow

large. To balance this mismatch between the gradient required to drive flow (Q|Q|
S8/3 ) and the hydraulic gradient supplied by the

ice geometry (ψ), δ ∂N∂x grows large and negative. This explains the steep decrease in N just upstream of the grounding line

(Fig. 5h).

The same relationships hold for the results from the coupled experiments (S1), with some modification related to the inflec-310

tion points induced by the ice geometry, discussed above. In both S1 experiments, the Q|Q|
S8/3 drops below ψ near the grounding
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) 

Comparing steady state terms in key model equations

Figure 5. The terms in the nondimensional steady-state equation for channel evolution (left column: a, d, g), in the equation for channel

conservation of momentum (middle column: b, e, h), and in the equation for ice conservation of momentum (right column: c, f) for the

steady-state coupled model solution using a Budd sliding law (top row: a-c), the solution using a regularized Coulomb law (middle row: d-f),

and the one-way coupled solution using an imposed quadratic ice geometry (bottom row: g, h).

line, and the difference is made up by a negative δ ∂N∂x (just as in S2). In contrast to the results from S2, an inflection point

in the ice thickness influences the hydrology; ψ no longer grows to a maximum at xg , as it does with the imposed quadratic

geometry. Instead, ψ reaches a maximum upstream of the grounding line, causing the effective pressure gradient to reach a

minimum slightly upstream of the grounding line (c.f. the red curves in the middle column of Fig. 5 ). This minimum shows315

up as a point of inflection in the N profiles for the S1 results that is not seen in the S2 results.

Regardless of the whether the ice and hydrology are fully coupled (S1) or one-way coupled (S2), δ ∂N∂x is negative near the

grounding line in response to high ψ in this region. This results in N growing large as you move upstream from the grounding

line.

Figures 5c and 5f show the steady-state stress balance from S1.B and S1.C. As anticipated (due to α≪ 1), the longitudinal320

stresses are small for the majority of the ice sheet. However, they increase and have more effect near the grounding line where
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Final 
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Figure 6. (a) The grounding-line position and (b) the initial and final ice-thickness profiles of the coupled model with a regularized Coulomb

law (black curves) and a Budd law (red curves) over 5000 years of evolution after a perturbation to A from 0.9× 10−25 s−1Pa−3 to

2.9× 10−25 s−1Pa−3. The dashed curves show the evolution of the static-N model using a regularized Coulomb law (black curve) and a

Budd law (red curve). The upper boundary of lower shaded region is the ice-sheet bed.

the basal shear stress drops to zero. The basal shear stress profiles also illustrate the effect the hydrology has on ice flow, as

they mimic the N profiles, particularly near the grounding line.

In summary, regardless of variation in parameters (Figs. 2 and 3), as long as the gradient in ice thickness grows in the

downstream direction, the effective pressure grows to a maximum before dropping to zero at the grounding line. This steep325

negative gradient in N means that regions of much higher effective pressure exist just upstream of the grounding line. This in

turn causes a region of higher basal shear stress. Next, we explore the consequences of this high basal shear stress region for

grounding line retreat if basal properties are assumed static in time.

3.2 Transient Experiments

The solid curves in Fig. 6 show results from transient simulations using the coupled models with the regularized Coulomb law330

(T1.C) and the Budd law (T1.B). The ice sheet and hydrological system start in a steady state with the grounding line near the

top of the sill, found by solving the fully coupled model in a steady state using an ice flow parameterA of 0.9×10−25 s−1Pa−3.

The transient simulation starts with A being increased to 2.9×10−25 s−1Pa−3, which triggers ice thinning and grounding-line

retreat. The grounding line rapidly retreats past the overdeepening to reach a steady state on the upstream prograde slope, a

total retreat of about 626 km. In T1.C, the grounding line starts further past the sill, so it takes longer to get over the sill.335

Once over, it also undergoes rapid retreat of almost 670 km to a steady state on the prograde slope. Looking closely near the
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Comparing modeled transient evolution after 10 years

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 7. The grounding-line position over 10 years of evolution for the coupled model (T1, solid curves) and static-N model (T2, dashed

curves) using a (a) regularized Coulomb law (black curves) and (b) Budd law (red curves). The (c,d) ice thickness, (e,f) ice velocity, and

(g,h) effective pressure profiles after 10 years of evolution for the models described above. The vertical dotted lines show the position of the

static-N grounding lines after 10 years. For the static-N effective-pressure profiles, we plot the initial steady-state profiles and the crosses

indicate the effective pressure immediately upstream of the grounding line after 10 years of evolution.

grounding line of the T1 results in Fig. 7 (solid curves, bottom panels), we see the same peak inN and points of inflection in h,

u, andN that we saw in the steady-state solutions on the linear bed. This suggests that the relationships between these variables

discussed above in relation to the steady-state results also apply on this more complex bed topography and during retreat. Next

we compare this coupled evolution with the evolution of an uncoupled ice model that uses a static effective pressure profile.340

Figure 7 and the dashed curves in Figure 6a show results from T2.B and T2.C, where the effective pressure profiles are

held static throughout the simulations at their initial values, derived from the fully-coupled solution that provided the initial

steady-state conditions. Under these conditions the grounding line, instead of retreating past the overdeepening, approaches

a steady-state position on the sill only a relatively small distance upstream of its initial position. In the first ten years of the

simulations, the grounding line in T2.B approaches a new steady-state position about 3.5 km upstream of its starting position345

(Fig. 7a). In T2.C, the grounding line retreats only around 4.75 km in this ten year period (note however that it does not

approach a steady state in this time until later in the simulation). This minimal retreat is in stark contrast to the fully coupled

experiments (T1), which exhibit faster and larger magnitude grounding line retreat.
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We identify the following reasons for these contrasts. In the T2 experiments, the effective pressure is no longer near zero

immediately upstream of the terminus during retreat. After the grounding line begins to retreat, the basal shear stress near the350

terminus grows. The increasing shear stress slows ice flow (c.f. dashed and solid curves in Figs. 7e,f) and prevents further

grounding-line retreat. Further retreat results in even higher N values, producing a negative feedback on the ice flow, as the

basal shear stress increases further. The coupled model, on the other hand, allows N immediately upstream of the grounding

line to remain close to zero as the grounding line retreats; the hydrological system evolves in response to the changing ice

geometry to keep N (and therefore basal shear stress) low upstream of the grounding line, which in turn facilitates further355

retreat.

These differences between the T1 and T2 simulations can also be understood in terms of the ice stress balance, as follows.

The instantaneous increase inA reduces the longitudinal stress. BecauseN is near zero immediately upstream of the grounding

line, this reduction in the longitudinal stress forces the driving stress to drop to balance it. The drop in driving stress is accom-

modated by thinning and subsequent retreat of the grounding line. In contrast, in Experiment T2, when N does not change360

with time, the higher N near the boundary (and therefore higher basal shear stress) requires a higher driving stress to balance

the same perturbation in A, which results in thicker ice and less grounding-line retreat.

4 Discussion

We have developed a model of subglacial hydrology that is bidirectionally coupled to ice flow. In all solutions to the model,

the subglacial channel grows large in the region upstream of the grounding line, and an area of high effective pressure forms365

immediately upstream of this region. These features form independent of whether we use a Budd or regularized Coulomb

sliding law. A suite of sensitivity tests shows that the peak in channel size and N occurs across a wide parameter space. An

experiment using only one-way coupling between the ice and hydrology shows that imposed ice geometries can produce similar

profiles of N . Our plotting of terms in Fig. 5 demonstrates the roles different processes play in the effective-pressure profiles.

Next, to further explore what occurs near the grounding line, we create a reduced model for the effective pressure, and show370

that it cannot apply at the grounding line. We discuss the behaviour of channel size at the grounding line, and comment on how

a channel size increase feeds back on the effective pressure.

First, we reduce our coupled model by identifying parameters that are small in our dimensionless equations. δ is small, which

means that the flow of water is primarily driven by the basic hydraulic gradient rather than the effective pressure gradient, at

least in locations where effective-pressure gradients are not large. ϵ is small, which means that the water flow gradient is mostly375

influenced by additional water sources along the channel, rather than by melt or creep of the channel walls. As identified earlier,

the timescale for ice dynamics is much greater than that of the hydrology, meaning that β is small. Knowing that δ, ϵ, and β
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are small, Eqs. (12-14) can be reduced to:

N =
Q

S11/9
, (21)

∂Q

∂x
=M, (22)380

S =
Q3/4

ψ3/8
. (23)

Combining Eqs. (21) and (23) gives

N =Q1/12ψ11/24, (24)

which holds for most of the ice sheet far from the grounding line. Equation (22) indicates that Q increases downstream.

Assuming that the bed slope is small ( ∂b∂x ≪ 1) and that the ice sheet gets steeper further from the divide, meaning that −∂h
∂x385

grows downstream, Eq. (24) grows downstream from the divide. However, Eq. (24) does not satisfy N = 0 at the grounding

line. Consequently, a separate near-field solution would be required to describe a boundary layer in N near x= xg . This

requires a negative gradient in N within the boundary layer such that the upstream N represented by Eq. (24) will match with

the N = 0 boundary condition.

The N = 0 boundary condition also impacts the channel cross-sectional area, S. As we approach the grounding line, N ,390

and therefore the creep closure term SN3 in Eq. (12), approach zero. This drop in SN3 results in the melt-opening term in

Eq. (12) dominating, causing the channel cross-sectional area to grow large near the terminus. However, if we consider the

steady-state reduced model that applies far from the grounding line, Eq. (21) shows that, for a channel with nonzero water

flow, Q, enforcing N = 0 requires S to be infinite. This is not physical, so we recognize that the advection term βu∂S∂x must

grow large near the grounding line. This result highlights the importance of the ice velocity advecting the drainage system, as395

it allows the coupled model to reach a steady state (see also Drews et al., 2017).

The channel cross-sectional area S growing large at the grounding line in turn facilitates N dropping to zero. Specifically,

as discussed in Section 3, a large S results in the right side of Eq. (9) becoming small, which results in the effective pressure

gradient approximately equalling the negative of the basic hydraulic gradient, i.e. ψ ≈−∂Q
∂x . Integrating this expression using

the boundary condition N(xg) = 0 yields400

N ≈−ρwgb+ ρigh. (25)

This expression is consistent withN = 0 at the grounding line, because the flotation condition is ρigh= ρwgb. This expression,

which is derived simply by assuming S is large, thus provides the negative gradient required to bring N to 0 from its far-field

solution, as described by Eq. (24). Notably, this result is equivalent to assuming that the hydrology system is hydrostatically

connected to the ocean, as done in previous modelling studies (e.g., Tsai et al., 2015; Brondex et al., 2017). The above discus-405

sion provides physical justification for this assumption and highlights how this simplification can be justified by the channel

cross-sectional area growing large near the grounding line through ice-water coupling.

Consistent with previous work, we find that h and u pass inflection points in the region upstream of the grounding line,

with the ice-thickness gradient tapering towards zero at the grounding line. Tsai et al. (2015) examined this feature using an
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ice-sheet model that assumed full hydrostatic connectivity with a regularized Coulomb law (i.e. basal shear stress was assumed410

to be proportional to effective pressure near the grounding line). This assumption means that, like in our model, N and τb

vanished at the grounding line. They showed that these inflection points arise due to the vanishing basal shear stress (Tsai

et al., 2015).

One potential implication of our results is that, in areas with channelized subglacial drainage and relatively steep ice thickness

profiles, the region immediately upstream of the grounding line will experience high effective pressure and basal shear stress.415

Previous models and observations are consistent with such a spatial distribution of basal shear stress. Hayden and Dow (2023)

impose a realistic ice geometry on a two-dimensional multi-element subglacial-hydrology model, and their modelled effective

pressures show the same abrupt increase in effective pressure immediately upstream of the grounding line that we observe,

regardless of whether the water flow is channelized or distributed. McCormack et al. (2022) inferred high basal shear stresses

in the downstream region of Thwaites Glacier and find lower basal shear stresses further upstream. While (McCormack et al.,420

2022) discuss spatial variations in basal roughness (Schroeder et al., 2014) and in drainage-system configuration (Schroeder

et al., 2013) as contributors to this spatial pattern, we propose that it could also be explained by coupling between a channelized

drainage system and ice flow. Future efforts to discriminate the control that hydrology has on basal friction from other factors

will be valuable, particularly considering that the hydrologically controlled component of basal shear can potentially change

rapidly (e.g., Das et al., 2008; Joughin et al., 2013).425

Temporal evolution is the focus of our transient experiments. In the steady-state simulations, the ice thickness and velocity

control the hydrology more consequentially than the other way around; this is demonstrated by experiment S2, in which we

imposed the ice thickness and velocity. The transient experiments, by contrast, highlight the role hydrology can have on the

ice. The key takeaway from these experiments—designed to emulate the approach of inverting for bed properties and leaving

them unchanged that is used in most larger-scale ice-sheet models—is that holding the hydrology static severely impacts ice430

flow near the grounding line. In our model, this results in a significant reduction in grounding-line retreat. The evolution of

the hydrology system together with the ice facilitates faster, larger-magnitude retreat. This follows results from Brondex et al.

(2017), who use velocity and shear-stress profiles determined using a regularized Coulomb law to invert for a sliding parameter

CW in a Weertman sliding law that is held static. Their subsequent simulations with the Weertman sliding law result in minimal

grounding-line retreat (Brondex et al., 2017). Inverting for CW and holding it static is similar to our approach of holding N435

static. We confirm that this static assumption is what causes the lack of retreat, show that it also applies to Budd and regularized

Coulomb sliding laws, and reveal the processes that control N in the region upstream of the grounding line.

The stark difference in retreat accommodated by the coupled models compared to that of the static-N models has broader

implications for larger ice-sheet-modeling efforts. In many state-of-the-art ice-sheet models, it is common to invert for a spa-

tially variable basal shear-stress or sliding-law parameter that encompasses all basal variables, subglacial hydrology included,440

and keep this static in time (e.g., Arthern and Gudmundsson, 2010; Morlighem et al., 2013; Arthern et al., 2015). However,

these inversions are based on present-day measurements and holding the resulting bed properties constant does not account

for future ice-sheet evolution (Arthern et al., 2015). Some large-scale ice-sheet models evolve basal conditions, but it is done

through parameterizations (e.g., Leguy et al., 2021, 2014; Kazmierczak et al., 2022). Our work suggests a physical basis for
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one approach of assuming perfect hydraulic connectivity, but it is currently uncertain how good an approximation this is, par-445

ticularly away from the region immediately upstream of the grounding line. This uncertainty emphasizes the need for efforts

to better represent subglacial hydrology in ice sheet models.

Finally, although our coupled model includes the detailed physics of both a subglacial channel and a one-dimensional,

marine-terminating ice sheet, it employs many simplifying assumptions. For the ice component, we neglect vertical velocities

and vertical variability in horizontal velocities. We also neglect variation in ice temperature, ice-shelf buttressing effects, and450

lateral variability in the ice. This means that our model is applicable only to an ice sheet with relatively low basal shear

stress and a freely floating ice shelf (no buttressing). Variations in temperature would result in nonuniform A values and alter

ice dynamics, and variations at the ice-sheet base could result in ice freezing to the bed or in additional basal melt. For the

hydrology component, we model only a single subglacial channel, and do not consider distributed or multi-channel systems.

This simplification leads to another assumption that a region of the ice sheet large enough to control the ice dynamics has an455

effective pressure equal to the channel’s effective pressure. Kingslake and Ng (2013)’s results suggests that to a first order, the

effective pressure in a distributed linked cavity system connected to a channel follows that of the channel, but this will not be

true far from the channel. Our findings may therefore apply only to regions with channelized drainage. Additionally, we assume

a uniform and constant supply term M and input term Qin, when in reality the channel could be supplied by spatially and

temporally varying sources. We also assume a channel that is formed by incision upwards into the ice, whereas observations460

and models suggest that channels can also be form by incision downwards into sediments (Ng, 2000; Livingstone et al.,

2016). Including these processes in our model, along with sediment deposition (Drews et al., 2017), would significantly impact

its behavior. All these considerations make our model unlikely to quantitatively agree with observations, capture seasonal

changes in hydrology, or to be applicable in areas where drainage systems change their configuration between distributed and

channelized over space and time. Despite these limitations, the model’s simplicity allows a more complete understanding of465

the model’s behavior than would be possible if a more comprehensive model were used. This simplicity has allowed us to

qualitatively demonstrate, and understand in detail, some of the ways that active subglacial hydrology could impact long-term

ice-sheet retreat.

5 Conclusions and Outlook

We have developed a model that uses a novel combination of physical coupling points between a marine-terminating ice sheet470

and a subglacial channel. We allow the ice-sheet geometry to affect the hydraulic potential of our subglacial channel, the ice

velocity to advect the drainage system, and the subglacial water pressure to modulate the shear-stress boundary at the ice

base using different effective-pressure-dependent sliding laws. We use our model to investigate how these points of coupling

can influence ice dynamics, and we examine the implications of the assumption of holding subglacial properties fixed during

transient simulations. We find that the coupled ice–hydrology system creates a zone near the grounding line with high effective475

pressure. We then show that if the hydrology system is not allowed to evolve with the ice, the ice sheet is much less prone to

grounding-line retreat, due to retreat into this zone of high effective pressure. In Section 4, we use a simplified model to further
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illustrate how the high effective-pressure region develops, and how the transition from high to zero effective pressure at the

grounding line is coupled with a large increase in channel cross-sectional area. These results clarify the mechanisms underlying

the stark differences in ice-sheet retreat between our transient experiments and between experiments done by others using480

different sliding laws (Brondex et al., 2017). Our simplified model analysis also provides a physical basis for the assumption of

full hydrologic connectivity to the ocean for regions near the grounding line. Despite limitations to our approach related to the

simplifying assumptions discussed in Section 4, our findings highlight how potentially important actively evolving subglacial

hydrological systems could be for marine-terminating ice-sheet stability.

Our model limitations serve as motivation for future work to incorporate more physics into similar models, such that they485

can apply to greater range of settings. A first next step is including additional drainage elements, especially since a channel only

occupies a limited portion of the bed and the pressure in the channel may not accurately represent pressures across large areas

of the bed. Adding additional subglacial hydrology elements such as a coupled channel-cavity system would better represent

the full subglacial hydrology environment and could facilitate resolving seasonal effects (e.g., Pimentel et al., 2010; Kingslake

and Ng, 2013; Hewitt, 2013). Another step is including additional points of coupling between the ice and hydrology models, for490

example, basal frictional melting that is a function of basal sliding and influences water flux in the drainage system (Hoffman

and Price, 2014). Additional areas of investigation could include coupling the model with geothermal heat flux (Smith-Johnsen

et al., 2020), tidal forcing at the grounding line (Rosier et al., 2015), or groundwater aquifer flow and deformation (e.g., Li

et al., 2022; Robel et al., 2023).

Code availability. The code for the model and figures in this manuscript is found here: https://github.com/glugeorge/coupled_ice_hydrology495

22

https://doi.org/10.5194/egusphere-2023-2794
Preprint. Discussion started: 4 December 2023
c© Author(s) 2023. CC BY 4.0 License.



Appendix A: Additional model details500

A1 Nondimensionalization

In the following the scaling of the hydrology equations broadly follows Fowler (1999) and Kingslake (2013). The scaling of

the ice-sheet equation follows a similar approach. From Eqs. (1), (2), (7)-(10), we define the following scales:

S = S0S
′, t= t0t

′, th = th0t
′,m=m0m

′,N =N0N
′,u= u0u

′,x= x0x
′,Q=Q0Q

′,

M =M0M
′,ψ = ψ0ψ

′,h= h0h
′, b= h0b

′,a= a0a
′.

We use the same scale for b and h. Replacing the variables in Eq. (7) with their corresponding scales multiplied by their

dimensionless variables from above and setting the first three coefficients equal yields

S0

th0
=
m0

ρi
=K0S0N

3
0 , (A1)

which results in N0 = (K0th0)−1/3 and th0 = ρiS0
m0

. Setting β = u0
th0
x0

gives the nondimensional version of Eq. (7):505

∂S′

∂t′h
=m′−S′N ′3−βu′ ∂S

′

∂x′
. (A2)

Replacing the dimensional variables in Eq. (8) gives

S0

th0

∂S′

∂t′h
+
Q0

x0

∂Q′

∂x′
=
m0

ρi
rm′+M0M

′, (A3)

where r = ρi/ρw. Substituting th0 = ρiS0
m0

, we obtain

m0

ρi

∂S′

∂t′h
+
Q0

x0

∂Q′

∂x′
=
m0

ρi
rm′+M0M

′. (A4)510

We define M0 = Q0
x0

and the nondimensional parameter ϵ≡ x0m0
Q0ρi

, yielding the nondimensional form of Eq. (8):

ϵ
∂S′

∂t′h
+
∂Q′

∂x′
= ϵrm′+M ′. (A5)

We nondimensionalize ψ using Eq. (11), and choose ψ0 = ρwg
h0
x0

. Replacing the dimensional variables in Eq. (9) gives

ψ0ψ
′+

N0

x0

∂N ′

∂x′
= fρwg

Q2
0

S
8/3
0

Q′|Q′|
S′8/3

, (A6)

which we use to define S0 =
(
fρwg

Q2
0

ψ0

)3/8

and δ ≡ N0
x0ψ0

. This gives the nondimensional form of Eq. (9):515

ψ′+ δ
∂N

∂x
=
Q′|Q′|
S′8/3

. (A7)

Replacing the dimensional variables in Eq. (10) and equating the left side with first term on the right defines

m0 =
Q0ψ0

L
(A8)
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and yields the nondimensional form of Eq. (10):

m′ =Q′
(
ψ′+ δ

∂N ′

∂x′

)
. (A9)520

Turning to the ice flow equations, replacing the dimensional variables in Eq. (1) gives

h0

t0

∂h′

∂t′
+
h0u0

x0

∂(h′u′)
∂x′

= a0a
′. (A10)

We set t0 = x0
u0

. A balance of the accumulation flux with ice-flow over the grounding line leads to a0x0 = u0h0. Combining

these two expressions leads to a0 = h0
t0

. And these expressions for t0 and a0 lead to the nondimensional version of Eq. (1):

∂h′

∂t′
+
∂(h′u′)
∂x′

= a′. (A11)525

The nondimensionalization of Eq. (2) differs slightly depending on which sliding law we use; the ice velocity scale, u0,

is different in each case. Replacing the dimensional variables in Eq. (2) using the regularized Coulomb sliding law, τb =

CCN
(

u
u+AsCn

CN
n

)1/n

, gives

2Ā−1/nh0u
1/n
0

x
1/n+1
0

∂

∂x′

[
h′
∣∣∣∣
∂u′

∂x′

∣∣∣∣
1/n−1

∂u′

∂x′

]
−CCN0N

′
(

u0u
′

u0u′+AsCnNn
0 N

′n

)1/n

− ρig
h2

0

x0
h′
∂(h′− b′)
∂x′

= 0. (A12)

Defining u0 =AsC
nNn

0 , α= 2u
1/n
0

ρigA1/nh0x
1/n
0

, γ = CCN0x0
ρigh2

0
, the nondimensional version of Eq. (2) is530

α
∂

∂x′

[
h′
∣∣∣∣
∂u′

∂x′

∣∣∣∣
1/n−1

∂u′

∂x′

]
− τ ′b−h′

∂(h′− b′)
∂x′

= 0, (A13)

where τ ′b = γN ′
(

u′

u′+N ′n

)1/n

. Alternatively, when using the Budd sliding law, τb = CBN
qu1/n, replacing the dimensional

variables in Eq. (2) yields

2Ā−1/nh0u
1/n
0

x
1/n+1
0

∂

∂x′

[
h′
∣∣∣∣
∂u′

∂x′

∣∣∣∣
1/n−1

∂u′

∂x′

]
−CBN0N

′u1/n
0 u′1/n− ρig

h2
0

x0
h′
∂(h′− b′)
∂x′

= 0. (A14)

Dividing through by ρig
h2
0
x0

and setting u0 =
(

ρigh
2
0

CBN0x0

)n
allows α to remain the same as when using a regularized Coulomb535

law, so the nondimensional equation remains Eq. (A13), where τ ′b =N ′u′1/n.

We have now nondimensionalized all the equations. We assign values to Q0, x0, and h0, from which we determine the

remaining scales:

S0 =
(
fρwg

Q2
0

ψ0

)3/8

, t0 =
x0
u0
, th0 =

ρiS0

m0
,m0 =

Q0ψ0

L
,ψ0 = ρwg

h0

x0
,

N0 = (K0th0)−1/3,u0 =AsC
nNn

0 ,M0 =Q0/x0,a0 =
h0

t0
.

Additionally, we have five nondimensional parameters:

ϵ≡ x0m0

Q0ρi
, δ ≡ N0

x0ψ0
,β ≡ th0/t0,α≡

2u1/n
0

ρigA1/nh0x
1/n
0

,γ ≡ CN0x0

ρigh2
0

.
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To re-arrange the hydrology equations into 3 equations for our solver, we first take Eqs. (A7) and (A9) and combine to get

m′ = |Q′|3
S′8/3 . Then substituting into Eq. (A2), we get

∂S′

∂t′h
=
|Q′|3
S′8/3

−S′N ′3−βu′ ∂S
′

∂x′
. (A15)

Then, subbing this into Eq. (A5), we get our equation for ∂Q
′

∂x′ :540

∂Q′

∂x′
= ϵ(r− 1)

|Q′|3
S′8/3

+ ϵ

(
S′N ′3 +βu′

∂S′

∂x′

)
+M ′. (A16)

Finally, re-arranging Eq. (A7) for ∂N
′

∂x′ provides the third hydrology equation:

∂N ′

∂x′
=

1
δ

(
Q′|Q′|
S′8/3

−ψ′
)
. (A17)

A2 Coordinate Stretching

For the ice flow equations, we use the same coordinate stretching as Appendix A in Schoof (2007). We also apply the same545

coordinate stretching to the hydrology equations, which are solved on a uniform grid that stretches with the grounding line.

Using σxg = x and τ = th, we find that ∂
∂x and ∂

∂th
transform into 1

xg

∂
∂σ and ∂

∂τ − σ
xg

∂xg

∂τ
∂
∂σ , respectively. Applying these

coordinate transformations to the three hydrology equations gives

∂S′

∂τ
=
|Q′|3
S′8/3

−S′N ′3 +
1
xg

(
σ
∂xg
∂τ

−βu′
)
∂S′

∂σ
, (A18)

1
xg

∂Q′

∂σ
= ϵ(r− 1)

|Q′|3
S′8/3

+ ϵ

(
S′N ′3 +

βu′

xg

∂S′

∂σ

)
+M ′, (A19)550

∂N ′

∂σ
=
xg
δ

(
Q′|Q′|
S′8/3

−ψ′
)
. (A20)

A3 Discretizing hydrology equations

We follows the method described in Appendix A of Schoof (2007) to discretize and solve the ice-flow equations. We follow

a similar approach to discretize and solve the hydrology equations. We use centered differences for the spatial derivatives and

forward differences for the time derivatives. The discrete equations are as follows:555

Sji −Sj−1
i

∆τ
=
|Qji |3

S
j8/3
i

−SjiN j3
i +

1
xjg

(
σji
xjg −xj−1

g

∆τ
−βuji

)
Sji+1/2−S

j
i−1/2

2∆σ
, (A21)

1
xjg

Qji+1/2−Q
j
i−1/2

2∆σ
= ϵ(r− 1)

|Qji |3

S
j8/3
i

+ ϵ

(
SjiN

j3
i +βuji

Sji+1/2−S
j
i−1/2

2xjg∆σ

)
+M ′, (A22)

δ

xjg

N j
i+1/2−N

j
i−1/2

2∆σ
=
Qji |Qji |
S
j8/3
i

−ψji , (A23)

where i subscripts denote the grid point number and j superscripts denote the time step number.
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