

1 **Review:**

2
3 **Nogovitcyn, A., Shakhmatov, R., Morozumi, T., Tei, S., Miyamoto, Y., Shin, N., Maximov, T. C., and**
4 **Sugimoto, A.: Historical variation in normalized difference vegetation index compared with soil**
5 **moisture at a taiga forest ecosystem in northeastern Siberia, EGUsphere [preprint],**
6 <https://doi.org/10.5194/egusphere-2023-279>, 2023.

7
8 In "Historical variation in normalized difference vegetation index compared with soil moisture at a
9 taiga forest ecosystem in northeastern Siberia" the authors investigated the variation in NDVI among
10 forest conditions (typical mature, TF; regenerating-1, RF-1; regenerating-2, RF-2; and damaged
11 forests, DF) and field-observed parameters (from 1998 to 2019) such as RWI, soil moisture, changes
12 of larch needles (δ 13C, δ 15N, C/N), air temperature, and precipitation. The authors determined
13 that prior to the 2007 extreme wet event, wet areas like DF and RF had higher NDVI values than dry
14 TF sites due to greater water availability. However, following 2007, the TF had a greater NDVI than
15 the DF and RF, although being visibly unaffected by the wet event.

16 Studying historical variations in NDVI compared with soil moisture at a taiga forest ecosystem in
17 north-eastern Siberia is important for several reasons. Firstly, NDVI data can provide valuable
18 information about temporal and spatial changes in vegetation distribution, productivity, and
19 dynamics, which allows for the monitoring of habitat degradation and fragmentation. Secondly, the
20 comparison of historical variations in NDVI with soil moisture can provide insights into the impact of
21 extreme weather events on vegetation, such as the extreme wet event in 2007, which resulted in
22 high tree mortality and a decrease in NDVI at affected sites. Understanding the ecological effects of
23 climatic disasters such as drought or fire can be assessed using NDVI data, making it a valuable tool
24 for monitoring changes in vegetation due to climate change. Overall, studying historical variations in
25 NDVI and soil moisture in a taiga forest ecosystem can provide valuable insights into the impact of
26 extreme weather events on vegetation and the effects of climate change on vegetation dynamics.
27 Therefore, this paper has the potential to make an important contribution to the body of knowledge
28 concerning the impacts of global change on sensitive and complex permafrost ecosystems.

29 It is my opinion that the authors used sound methods to address the study aims and presented the
30 research findings clearly and concisely and they used appropriate figures to illustrate the NDVI values
31 of the forest types and the trends in the transect and 10-km plot, which could be useful for
32 researchers and policymakers. However, I agree with referee 1 about their main points raised as well
33 as the minor comments provided. To avoid repetition and in the interest of brevity, I will not be going
34 over them again in this review, but I strongly advise the authors to make the corrections already

35 suggested. Instead, I will just add a few points concerning the discussion section that I would like to
36 see addressed before publication. When the authors revise these issues, I recommend the study for
37 publication in Biogeosciences.

38 In the discussion, the authors considered the probable reasons for the differences in NDVI values
39 among the forest types, such as the change in vegetation and the presence of surface water and
40 saturated soil. However, the section could benefit from a more critical evaluation of the results and
41 their implications. For example, the article does not address the limitations of using NDVI as a proxy
42 for vegetation health and productivity, which could impact the accuracy of the results. NDVI
43 measures the amount of chlorophyll in the uppermost layers of vegetation. This means that it may
44 not accurately represent the health and productivity of plants with lower canopies or those that are
45 hidden from view. The limitations of using NDVI as a proxy for vegetation health and productivity
46 may be particularly relevant in taiga/permafrost ecosystems due to their complex vegetation
47 structure and sensitivity to environmental changes.

48 Additionally, the article does not explore the broader ecological implications of these findings, such
49 as how changes in vegetation health and productivity may impact ecosystem services or the ability of
50 forests to sequester carbon. Finally, while the article notes the potential for using the observational
51 data for analyses of ecosystem changes at the plot and regional scales, it does not explicitly state
52 what these analyses might entail or why they would be valuable. A more explicit discussion of the
53 practical applications of the research could make the findings more accessible to a wider audience.