

Please note that modifications made in response to the comments of the Referee 1 (A. Regaudie-de-Gioux) are indicated on the document with the added parts highlighted **in yellow** and deleted parts **crossed out in red**, and modifications made in response to the comments of the Referee 2 (T. Cibic) are indicated on the document with the added parts highlighted **in blue** and deleted parts **crossed out in purple**.

5 Simulated terrestrial runoff shifts the metabolic balance of a coastal Mediterranean plankton community to **ward** heterotrophy

Tanguy Soulié¹, Francesca Vidussi¹, Justine Courboulès¹, Marie Heydon¹, Sébastien Mas², Florian Voron², Carolina Cantoni³, Fabien Joux⁴, Behzad Mostajir¹

10

¹MARBEC (MARine Biodiversity, Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France

²MEDIMEER (MEDiterranean Platform for Marine Ecosystems Experimental Research), OSU OREME, CNRS, Univ Montpellier, IRD, INRAE, Sète, France

15 ³CNR-ISMAR (Istituto di Scienze Marine), Area Science Park, Basovizza, Ed. Q2, Trieste, Italy

⁴Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls/Mer, France

Correspondence to: Tanguy Soulié (tanguy.soulie@gmail.com), Behzad Mostajir (behzad.mostajir@umontpellier.fr)

Abstract. Climate change is projected to increase the frequency and intensity of extreme rainfall events in the Mediterranean region, increasing runoffs of terrestrial matter into coastal waters. To evaluate the consequences of terrestrial runoff on plankton key processes, an **in situ** mesocosm experiment was conducted for 18 days in the spring of 2021 in the coastal Mediterranean Thau Lagoon. Terrestrial runoff was simulated in replicate mesocosms by adding soil from an adjacent oak forest that had matured in water from the main river tributary of the lagoon. Automated high-frequency monitoring of dissolved oxygen, chlorophyll-a fluorescence, salinity, light, and temperature was combined with manual sampling of organic and inorganic nutrient pools, pH, carbonate chemistry and maximum quantum yield (Fv:Fm) of photosystem II (PSII). High-frequency data were used to estimate gross oxygen primary production (GPP), respiration (R), and phytoplankton growth (μ) and loss (L) rates. During the first half of the experiment (d2-d11), the simulated runoff reduced light availability (-52%), chlorophyll-a concentrations (-70%) and phytoplankton growth rates (-53%). However, phytoplankton maintained a certain level of primary production by increasing its photosynthetic efficiency. Meanwhile, the runoff enhanced R (+53%), shifting the metabolic status (GPP:R) of the system toward heterotrophy and increasing the partial pressure of carbon dioxide (pCO₂), potentially switching the direction of the air-sea CO₂ exchange. However, during the second part of the experiment (d11-d17), remineralised nutrients boosted phytoplankton growth (+299%) in the terrestrial runoff treatment, but not its loss rates, leading to phytoplankton biomass accumulation and suggesting a mismatch between phytoplankton and its predators. Our study

showed that a simulated terrestrial runoff significantly affected key plankton processes, suggesting that climate change-related
35 increases in runoff frequency and intensity can shift the metabolic balance of Mediterranean coastal lagoons to heterotrophy.

1 Introduction

Climate change is predicted to increase the frequency and intensity of short extreme rainfall events in the Mediterranean region
([Alpert et al. 2002](#), [Sanchez et al. 2004](#)). Consequently, the runoff of terrestrial matter will become more frequent in coastal
40 Mediterranean waters. These runoffs constitute a pulse input of organic and inorganic nutrients into the water column and decrease light penetration ([Nunes et al. 2009](#)), substantially impacting marine ecosystems, and notably plankton communities ([Deininger and Frigstad 2019](#), [Striebel et al. 2023](#)).

Plankton is crucial for aquatic ecosystems because it forms the basis of the aquatic food web and plays an important role in multiple biogeochemical cycles, notably that of oxygen ([Falkowski et al. 2003](#), [Falkowski 2012](#)). Indeed, phytoplankton
45 produces oxygen through its gross primary production (GPP), and all planktonic organisms consume it through aerobic respiration (R). Hence, assessing GPP and [provides a community metabolism index \(GPP : R\)](#) and determines the capacity of an aquatic ecosystem to serve as a net producer or consumer of oxygen, and [ultimately as a sink or source of atmospheric carbon dioxide \(Lopez-Urrutia et al. 2006\)](#). This community metabolism index considerably depends on the fate of phytoplankton, which is itself related to phytoplankton growth (μ) and loss (L) rates. Therefore, assessing μ and L provides a
50 trophic index ($\mu : L$) related to the performance of both phytoplankton and its predators ([Soulié et al. 2022a](#)).

The consequences of terrestrial runoffs on plankton communities and associated processes remain unclear. The inputs of terrestrial carbon and nutrients have been shown to promote phytoplankton and bacteria in Mediterranean coastal waters ([Pecqueur et al. 2011](#), [Liess et al. 2016](#)), possibly leading to higher GPP and R. However, this positive effect of nutrient enrichment can be mitigated by light attenuation resulting from the runoff, which can depress phytoplankton photosynthesis, and therefore GPP, as observed in the North Sea, Baltic Sea, and in a North Atlantic bay ([Mustaffa et al. 2020](#), [Paczkowska et al. 2020](#), [Soulié et al. 2022b](#)). The contradictory effects of light attenuation and nutrient enrichment induced by terrestrial runoffs on plankton metabolism can change the structure of planktonic communities and, ultimately, their related processes. They can favour bacteria over phytoplankton ([Meunier et al. 2017](#), [Andersson et al. 2018](#), [Courboulès et al. 2023](#)), large phytoplankton at the expense of smaller cells ([Deininger et al. 2016](#), [Mustaffa et al. 2020](#)), and [protozooplankton \(Courboulès et al. 2023\)](#). Consequently, these shifts can alter plankton processes because the structure and functions of aquatic communities are closely related ([Giller et al. 2004](#)).

Although the consequences of terrestrial runoffs have been well-studied in freshwater systems, an important knowledge gap exists regarding the impacts of terrestrial runoffs on coastal marine ecosystems ([Blanchet et al. 2022](#)). In this regard, evaluating the consequences of terrestrial runoffs on plankton communities and processes in ecologically and economically important
65 areas, such as coastal lagoons ([Soria et al. 2022](#)), enclosed systems that are often subject to inputs from [the](#) land, is of

fundamental concern. In the present study, we conducted an *in situ* mesocosm experiment in the Mediterranean coastal Thau Lagoon, a shallow productive lagoon which hosts oyster farms and serves as a nursery for several wild fish species (La Jeunesse *et al.* 2015). Moreover, it is naturally subjected to storm-induced terrestrial runoffs (Pecqueur *et al.* 2011, Foulland *et al.* 2012), notably in fall during the ‘Cévenols’ events, a meteorological phenomenon characterized by storms and heavy rainfalls 70 that usually cause flash-flooding [] the Mediterranean coast (Ducrocq *et al.* 2008). Six mesocosms were used with half serving as control mesocosms and in the other half a terrestrial runoff was simulated by adding soil from an adjacent typical Mediterranean oak forest that matured over two weeks in water from the Vène River, the main river tributary of the Thau Lagoon (Plus *et al.* 2006). The responses of all plankton food web compartments in the present experiment have been detailed 75 by Courboulès *et al.* (2023). In the present study, high-frequency data from automated sensors immersed in the mesocosms were used to estimate GPP, R, μ and L in [] mesocosm, and assess how both the metabolic and trophic indices of the community responded to the simulated runoff. Manual sampling was performed to assess dissolved and particulate materials as well as photosynthetic efficiency and carbonate system parameters. We hypothesized that (1) the metabolic index would be 80 shifted by the runoff [] heterotrophy through light reduction and inputs of organic matter, and that (2) the terrestrial runoff would affect the trophic index by creating [] balance between phytoplankton and its factors of loss.

80

2 Material and Methods

2.1 In situ mesocosm experimental set-up

An *in situ* mesocosm experiment was performed for 18 days in May 2021 in the Thau Lagoon [] the facilities of the MEDIMEER platform for Marine Ecosystems Experimental Research (MEDIMEER, 43°24'53''N, 3°41'16''E). The 85 duration of the experiment was set [] days to be able to monitor the responses of plankton at medium-term (multiple days to weeks), as interesting dynamics were already reported in control treatments during [] experiments [] Thau Lagoon up to almost 3 weeks after the start of the experiment (Courboulès *et al.* 2021, Soulié *et al.* 2022a), [] coping with COVID-19 pandemics restrictions. [] Lagoon is a shallow coastal lagoon of 75 km² with a mean depth of 4 m and is located on the French coast of the Northwestern Mediterranean Sea (Derolez *et al.* 2020a). Six mesocosms were est [] ed in the lagoon. 90 Each mesocosm consisted of a bag, sealed at the bottom, made of nylon-reinforced 200 μ m thick vinyl acetate polyethylene film which was [] cm high and 120 cm wide (Insinööritoimisto Haikonen Ky, Sipoo, Finland). Each mesocosm was equipped with a sediment trap at the bottom. A schematic representation of the mesocosm set-up can be found in Soulié *et al.* (2021) and in **Supplementary Information**. Each mesocosm was covered with a dome of polyvinyl-chloride to avoid external inputs 95 and was equipped with a sediment trap. On May 3 (d0), all the mesocosms were filled simultaneously using a pump (SXM2/A SG, Flygt) with 2200 L of subsurface lagoon water preliminarily screened through a 1 [] m mesh to remove large particles and organisms. The water was pooled in a large container before being distributed simultaneously by gravity to the six mesocosms through parallel pipes. In each mesocosm, the water column was continuously homogenized with a [] pump (Rule,

Model 360) immersed at a depth of 1 m, resulting in a turn-over rate of approximately 3.5 d^{-1} . Three mesocosms served as controls, while in three [] matured soil was added [] mulate a terrestrial runoff event (these mesocosms are hereafter referred to as the “terrestrial runoff” treatment). Throughout the experiment, a total of 510 L was sampled [] each mesocosm, representing 23% of the initial volume of the mesocosms. For each treatment, one mesocosm displayed considerable differences in biological, physical, and chemical parameters compared to the two other replicates of the same treatment, most probably because of the malfunctioning of the mixing pumps, and it was therefore removed from the analysis. Data are therefore presented as the mean of the two replicates for each treatment \pm the range of observations. Thus, any interpretation of the presented data must take into account the low number of replication and be done cautiously.

2.2 Soil extraction, preparation, and maturation

Two weeks before the beginning of the mesocosm experiment, soil was extracted from the Puéchabon state forest, a fully preserved typical Mediterranean oak forest located approximately 30 km north of the Thau Lagoon ($43^{\circ}44'29''\text{N}$, $3^{\circ}35'45''\text{E}$) (Allard *et al.* 2008). The soil was then roughly screened over a 1 cm mesh. On the same day as soil extraction, water was collected from the Vène River, the main tributary of the Thau Lagoon, which is known for its episodic flash floods (Pecqueur *et al.* 2011). Water was screened over a 200 μm mesh to remove large particles and organisms. The soil and river water were then mixed to reach a concentration of $416 \text{ g soil L}^{-1}$, which represents natural flash flood events occurring in the lagoon (Fouilland *et al.* 2012). This mixture was then left to mature for two weeks in transparent Nalgene carboys placed in an outdoor pool continuously supplied with natural water from the Thau Lagoon. During the maturation step, each carboy was homogenised and aerated daily. This maturation was performed to mimic the degradation process of the most labile compounds that naturally occurs during their transportation from the soil to coastal waters during natural runoff events (Müller *et al.* 2018). After the manual meso [] sampling on May 4 (d1), 7 L of the soil solution was added to each of the three “runoff” mesocosms, representing a final concentration of $1.3 \text{ g soil L}^{-1}$. Further details regarding the choice and description of the soil addition protocol can be found in Courboulès *et al.* (2023).

2.3 Acquisition, calibration, and correction of the high-frequency sensor data

In each mesocosm, a set of high-frequency sensors was immersed to a depth of 1 m. Each set consisted of a fluorometer (ECO-FLNTU, Sea-Bird Scientific, United States) for Chl-*a* fluorescence, from which Chl-*a* concentration was derived, an oxygen optode (3835, Aanderaa, Bergen, Norway) for dissolved oxygen (DO) concentration and saturation, an electromagnetic induction conductivity sensor (4319, Aanderaa, Bergen, Norway) for salinity, a spherical underwater quantum sensor (Li-193, Li-Cor, United States) for the incident photosynthetically available radiation (PAR), and three water temperature probes (Thermistore Probe 107, Campbell Scientific, United States) installed at three different depths (0.5, 1 and 1.5 m). Each sensor recorded measurements every minute during the entire experiment. In the results section, the high-frequency data are presented

130 as daily averages. The fluorometers, oxygen optodes, conductivity sensors, and temperature probes were calibrated before and
131 after the experiment. In addition, Chl-*a* fluorescence and oxygen sensor data were corrected using discrete high-performance
132 liquid chromatography (HPLC) Chl-*a* and Winkler Chl-*a* and DO measurements, respectively. To do so, three borosilicate
133 bottles (120 mL) were filled with water sampled from each mesocosm using a 5 L Niskin water sampler at a depth of 1 m every
134 other day in the morning. DO was immediately fixed by adding Winkler reagents (Carritt and Carpenter 1966). After at least 6
135 hours of fixation during which bottles were kept under water and in the dark, the DO concentration in each bottle was measured
136 with an automated Winkler titrator (Mettler 916-Ti-Touch) using a potentiometric titration method. Similarly, a
137 polycarbonate bottle (2 L) was filled with water that was sampled every morning from each mesocosm using a Niskin water
138 sampler at a depth of 1 m. Samples were then immediately filtered under light conditions using a vacuum pump on glass-fibre
139 filters (Whatman GF/F, 0.7 μ m pore size). Filters were then stored at -80 °C until analyses with HPLC (Shimadzu) following
140 the method of Zapata *et al.* (2000). Details of the calibration procedure can be found in the **Supplementary Information** and
141 in Soulié *et al.* (2023).

2.4 Manual mesocosm sampling and monitoring for chemical variables

142 Each mesocosm was sampled daily using a 5 L Niskin water sampler at a depth of 1 m to monitor dissolved inorganic nutrients
143 (nitrate + nitrite $[NO_2^- + NO_3^-]$, ammonium $[NH_4^+]$, and orthophosphate $[PO_4^{3-}]$, and silicate $[SiO_2]$), dissolved organic carbon
144 (DOC), particulate organic carbon (POC), and nitrogen (PON) concentrations; and every second day to measure pH and total
145 alkalinity (TA). For dissolved inorganic nutrient analyses, 50 mL sub-samples of mesocosm water were placed in acid-washed
146 polycarbonate bottles. Directly after, these samples were filtered over 0.45 μ m filters (Gelman Sciences, United States) and
147 stored in high-density polyethylene tubes at -80 °C until further analyses that were performed within 48 hr. Nitrate, nitrite, and
148 orthophosphate analyses were performed with an automated colorimeter (Skalar Analytical, The Netherlands, Aminot and Kérouel 2007), and ammonium analyses were performed using the fluorometric method (Turner Design, module
149 7200-067-W, United States, Aminot *et al.* 1997, Holmes *et al.* 1999). For DOC analyses, 30 mL subsamples of mesocosm
150 water were filtered through two pre-combusted (4 h, 450 °C) glass-fibre filters (Whatman GF/F), 90 μ L of phosphoric acid
151 (85% concentration) was then added and sub-samples were then stored at -80 °C in the dark until further analyses, which were
152 performed by high-temperature catalytic oxidation (HTCO) on a total organic carbon analyser (TOC-L-CSH, Shimadzu). For
153 POC and PON analyses, sub-samples (0.5-1 L) of mesocosm water were filtered over pre-combusted (4h, 450 °C) glass-fibre
154 filters (Whatman GF/F). Filters were then placed in a stove at 60 °C for at least 12h. The POC and PON concentrations were
155 then measured using a CHN analyser (Unicube, Elementar). The samples for pH and TA determinations were collected in 300
156 mL borosilicate glasses bottles according to standard sampling methods for carbonate chemistry (Dickson *et al.* 2007). Samples
157 for TA determination were filtered immediately on glass-fibre filters (Whatman GF/F, 0.45 μ m pore size), spiked with 50 μ L
158 of $HgCl_2$ saturated solution and stored for later analysis. Samples for pH analysis were spiked with $HgCl_2$ and were analysed
159 within 36 hr.

165 was measured spectrophotometrically (LAMBDA 365 UV/Vis, Perkins Elmer), on a “total scale” at 25.0°C (pH₂₅) with
166 CaCO_3 as an indicator (reproducibility ± 0.002), according to [Clayton and Byrne \(1993\)](#) and [Dickson *et al.* \(2007\)](#) with r
167 analysis for control and triplicate for treated mesocosms. TA was measured in the laboratories of CNR-ISMAR in Trieste
(r
168 CaCO_3 analysis), using an open-cell potentiometric titration with a derivative determination of the end point, according to
169 [Hernandez-Ayon *et al.* \(1999\)](#) (reproducibility $\pm 0.1 \mu\text{mol kg}^{-1}$). Certified reference seawater for carbonate chemistry (provided
170 by Prof A. G. Dickson, Scripps, California) was used for CaCO_3 and TA analysis. The dissolved inorganic carbon (DIC)
171 concentration, CO₂ partial pressure (pCO₂), and pH at *in situ* temperature (pH) were calculated using the CO2SYS program
(Microsoft Excel version 2.5; [Lewis and Wallace 1998](#), [Pierrot *et al.* 2006](#)), using the carbonate constants from [Lueker *et al.*](#)
(2000), alkalinity constants from [Dickson \(1990\)](#) and parameterization of borate from [Lee *et al.* \(2010\)](#).

2.5 Estimation of the Daily Light Integral from the high-frequency PAR sensor data

PAR measurements were used to calculate the Daily Light Integral (DLI). This value corresponds to the average quantity of
175 light available for photosynthesis received by a 1 m² surface over a 24-h period ([Soulié *et al.* 2022b](#)). DLI was calculated using
Eq. 1 as follows:

$$DLI = \frac{\text{mean PAR} \times \text{day length} \times 3600}{1 \times 10^6}, \text{ (Equation 1)}$$

where DLI is expressed in mol m⁻² d⁻¹, mean PAR between sunrise and sunset in $\mu\text{mol m}^{-2} \text{ s}^{-1}$, and day length in hr.

180 2.6 Estimation of μ and L from the high-frequency Chl-*a* sensor data

The high-frequency Chl-*a* data were used to estimate phytoplankton growth (μ) and loss (L) rates following a method detailed
181 by [Soulié *et al.* \(2022a\)](#). First, the high-frequency Chl-*a* data were corrected for non-photochemical quenching as detailed in
182 **Supplementary Information**. Then, each Chl-*a* cycle was separated into an “increasing period” and a “decreasing period”.
183 The “increasing period” started at sunrise until the maximum Chl-*a* fluorescence was reached, generally a few minutes to a
184 few hours after sunset. The “decreasing period” started from this maximum until the next sunrise. For each period, an
185 exponential fit was applied to the Chl-*a* data, and L was estimated from the decreasing period. Then, μ was estimated from the
increasing period. The detailed calculations are presented in the **Supplementary Information**.

2.7 Estimation of GPP and R from the high-frequency DO sensor data

190 DO data were used to estimate daily GPP, R during the day (R_{daytime}) and the night (R_{night}), and daily R following the
method detailed by [Soulié *et al.* \(2021\)](#). This method is derived from the free-water diel oxygen technique ([Staehr *et al.* 2010](#)),
and was specially developed for mesocosm experiments and to consider variability in both the coupling between day-night

and DO cycles and in the respiration occurring during the day and at night. Briefly, each DO cycle was separated into a “positive instantaneous net community production period” (during which DO increases) and a “negative instantaneous net 195 community production period” (during which DO decreases). For each period, the DO was smoothed using a 5-point sigmoidal model. These smoothed data were then used to estimate oxygen metabolic parameters in two major steps. First, the oxygen exchange term between water and the atmosphere was calculated, considering its dependence on temperature and salinity. Then, instantaneous and daily metabolic parameters were estimated. A precise description of the method is provided by [Soulie et al. \(2021\)](#) and the **Supplementary Information**.

200

2.8 Maximum photosystem II quantum yield measurements

Phytoplankton photosynthetic performance was estimated based on the fluorescence of the photosystem II (PSII). Subsamples of 1.5 mL from the Niskin water sampler were collected daily and analysed using a portable Pulse Amplitude Modulation fluorometer (Aquapen C AP 110 C, Photon System Instruments, Czech Republic). The maximum quantum yield of 205 photosynthesis ($F_v : F_m$) was measured after a 30-min acclimation period in the dark to ensure that all photosystem-II reactional centres were open. The measurement was done using the ‘OJIP’ protocol and an excitation wavelength of 450 nm ([Strasser et al. 2000](#)).

2.9 Heterotrophic bacterial abundance measurements

210 Heterotrophic bacterial abundance was assessed daily using flow cytometry. For this purpose, 1.5 mL samples were collected from the Niskin water sampler and fixed using glutaraldehyde (Grade I, Sigma; 4% final dilution), and then frozen into liquid nitrogen before being maintained at -80°C until further analyses. The samples were stained with SYBR Green I (S7563, Invitrogen; 0.25% final dilution) ([Marie et al. 1997](#)). Analyses were performed using a FACSCanto2 flow cytometer (Becton- 215 Dickinson; set at low speed for 3 min), and internal cell size standards (cytometry fluorescent beads, Polysciences Inc.) of 1 and 2 μm diameter were added to each run. Bacterial populations were identified and counted via stained green fluorescence (530/30 nm) and relative side scatter ([Courboulès et al. 2021, 2023](#)).

2.10 Statistical analyses

To test the difference between the control and terrestrial runoff treatments, we performed Repeated-Measures Analyses of 220 Variances (RM-ANOVA) with the treatment as a fixed factor and time as a random factor (*nlme* package, R software) over the entire experiment (after the addition of soil, d2-d18) and over shorter periods to assess specific trends. Data from d1 were not included in the statistical analyses as sampling was performed before adding the soil, simulating the terrestrial runoff, in the runoff mesocosms. Statistical significance was set at $p < 0.05$. Before performing the RM-ANOVAs, the assumptions of

homoscedasticity and normality were checked using the Levene and Shapiro-Wilk tests, respectively. When these assumptions were not met even after transforming the data (log- or square-root transformation), a non-parametric Kruskal-Wallis test was performed instead of RM-ANOVA. The non-parametric Spearman's correlation coefficient was used to assess significant ($p < 0.05$) relationships between the Logarithm Response Ratio (LRR) of the variables. All data management and statistical analyses were performed using the R software (version 4.0.1).

230 **3 Results**

3.1 Effects of the terrestrial runoff treatment on physical and chemical conditions

In the control treatment, the water temperature varied from 16.68 ± 0.16 °C to 17.95 ± 0.65 °C (Fig. 1a), and was not significantly different in the terrestrial runoff treatment compared to the control (Table 1). The salinity was on average 38.42 ± 0.11 in the control treatment, increasing almost continuously throughout the experiment (Fig. 1b). In the terrestrial runoff treatment, the salinity was significantly reduced by 0.7% (Table 1). Similarly, the DLI was, on average, 18.65 ± 1.45 mol m⁻² d⁻¹ in the control treatment (Fig. 1c). The terrestrial runoff drastically decreased it, by 76% on d2 and by, on average, 43% over the entire experiment. This negative effect was stronger during the first half of the experiment (52% from d2 to d11), and was attenuated during the second half of the experiment (27% from d12 to d18) (Table 1). In the control treatment, pH varied 8.10 ± 0.05 to 8.19 ± 0.01 (Fig. 1d), decreasing from d1 to d10 before stabilisation until the end of the experiment. In the runoff treatment, it was significantly reduced by (8.06 ± 0.01 to 8.19 ± 0.01) (Table 1). In addition, pCO₂ ranged from 292.49 ± 0.45 to 368.27 ± 43.97 µatm in the control treatment (Fig. 1e). In the runoff treatment, it was significantly higher by 9% compared to the control, despite returning to the control level by the end of the experiment (Table 1). DOC concentrations were on average 1.70 ± 0.10 mg L⁻¹ in the control treatment (Fig. 1f). In the terrestrial runoff treatment, DOC concentrations were not immediately enhanced after the addition of soil, reaching higher concentrations only in the middle and end of the experiment. However, no significant differences were observed between the treatments (Table 1). The DIC concentrations ranged from 2184.04 ± 14.89 to 2230.44 ± 0.76 µmol L⁻¹ (Fig. 1g). They were significantly higher by 1% in the runoff treatment than in the control, with the highest difference between treatments on d2 (3%) (Table 1). The POC + PON concentrations displayed similar dynamics over time. The POC concentrations ranged from 0.26 ± 0.01 mg L⁻¹ to 0.55 ± 0.09 mg L⁻¹ (Fig. 1h), whereas the PON concentrations ranged from 0.04 ± 0.01 mg L⁻¹ to 0.07 ± 0.01 mg L⁻¹ (Fig. 1i). They were both significantly enhanced by 32-50% by the terrestrial runoff at the beginning of the experiment (d2 to d12), then decreased to the level of the control (Table 1). The concentrations of dissolved inorganic nutrients exhibited different trends. The nitrate + nitrite concentrations ranged from 0.29 ± 0.03 µM to 0.50 ± 0.01 µM in the control treatment, and were not significantly affected by the terrestrial runoff (Fig. 1j, Table 1). Conversely, while the ammonium concentrations remained relatively constant in the control treatment, ranging from 0.02 ± 0.01 µM to 0.12 ± 0.07 µM, they increased significantly in the terrestrial runoff treatment, reaching 0.96 ± 0.04 µM on d10, before decreasing to the control level on d16 (Fig. 1k, Table 1). The

orthophosphate concentrations ranged from $0.03 \pm 0.01 \mu\text{M}$ to $0.07 \pm 0.01 \mu\text{M}$ in the control treatment, with peaks at the beginning and the end of the experiment (Fig. 1l). They were significantly higher in the terrestrial runoff treatment, but only in the middle of the experiment (63% from d10 to d13) (Table 1). ~~Finally, the silicate concentrations ranged from $0.52 \pm 0.15 \mu\text{M}$ to $0.79 \pm 0.19 \mu\text{M}$ in the control treatment, they decreased on d2 before remaining relatively constant throughout the experiment (Fig. 1m). They were significantly higher in the terrestrial runoff treatment during the entire experiment by 214% (Table 1).~~

260

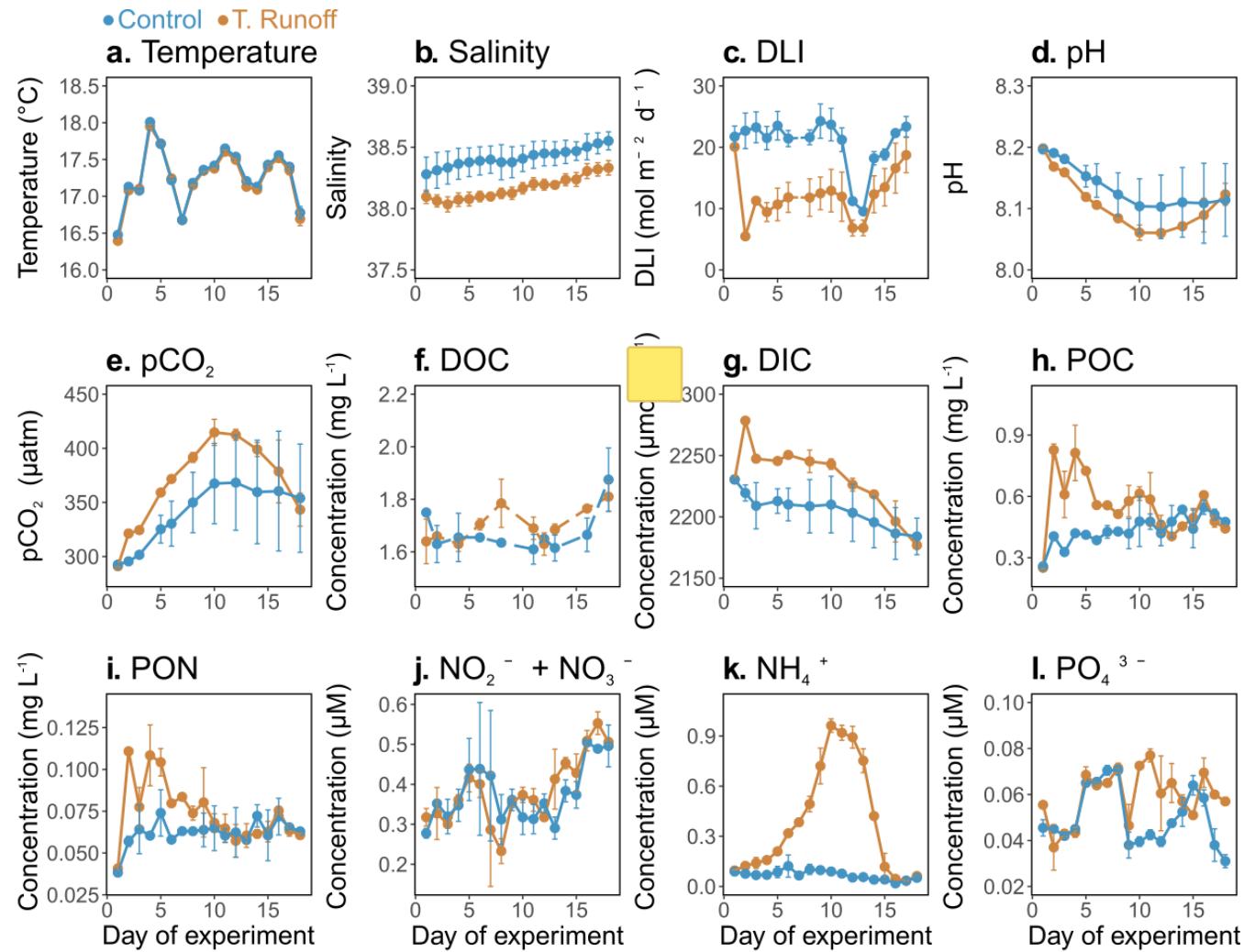
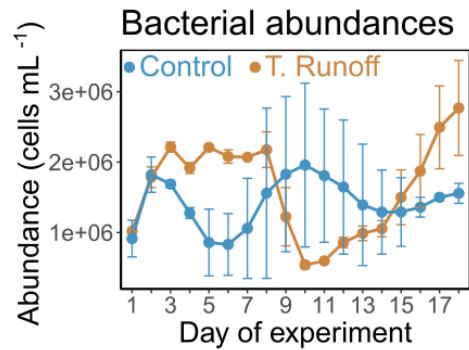


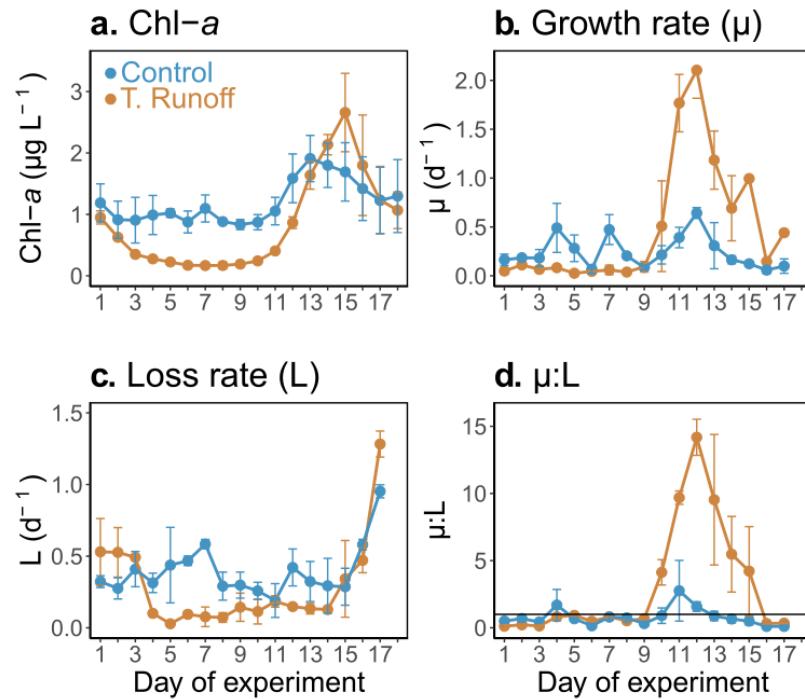
Figure 1. Daily average temperature (a), salinity (b), daily light integral (DLI, c), pH (d), pCO_2 (e), dissolved organic carbon concentrations (DOC, f), dissolved inorganic carbon concentrations (DIC, g), particulate organic carbon concentrations (POC, h), particulate organic nitrogen concentrations (PON, i), nitrate + nitrite concentrations ($\text{NO}_2^- + \text{NO}_3^-$, j), ammonium concentrations (NH_4^+ , k), and orthophosphate concentrations (PO_4^{3-} , l), and silicate concentrations (SiO_4^{4-} , m) in the control (blue) and terrestrial runoff (gold) treatments. bars represent the range of the observations.

265

3.2 Effects of the terrestrial runoff treatment on bacterial abundances

270 In the control treatment, bacterial abundances ranged from $0.8 \times 10^6 \pm 0.3 \times 10^6$ to $1.9 \times 10^6 \pm 0.8 \times 10^6$ cells mL^{-1} (Fig. 2). They were significantly higher in the f treatment from d2 to d8 (59%) and from d15 to d18 (51%), whereas they were significantly lower in the middle of the experiment (-47% from d9 to d14) (Table 1). As a consequence, no significant differences were observed ghout the entire experiment.




Figure 2. Daily average bacterial abundances in the control (blue) and terrestrial runoff (gold) treatments. Error bars represent the range of the observations.

3.3 Effects of the terrestrial runoff treatment on phytoplankton: Chl-a, growth and loss rates

280 In the control treatment, the Chl-a concentrations ranged from $0.83 \pm 0.30 \mu\text{g L}^{-1}$ to $1.91 \pm 0.45 \mu\text{g L}^{-1}$ (Fig. 3a). They remained vely constant during the first half of the experiment, before increasing from d11 to d13, and then decreasing until the end of the experiment. In the terrestrial runoff treatment, they were significantly lower particularly during the first part of the experiment (from d2 to d11) (Table 1). However, at the end of the experiment, they increased rapidly from d11 to d15, even surpassing the control level.

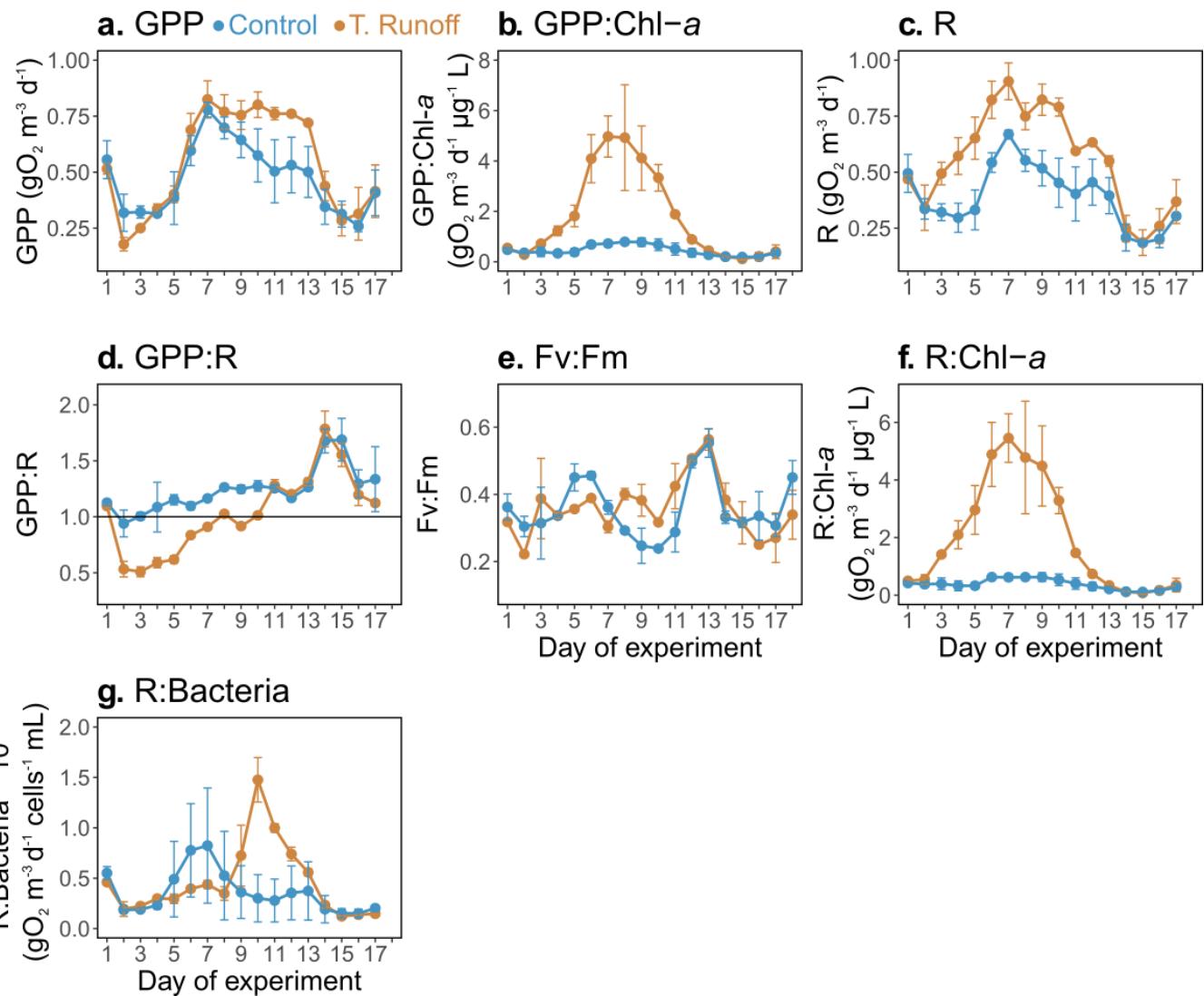
285 In the control, μ ranged from $0.06 \pm 0.04 \text{ d}^{-1}$ to $0.64 \pm 0.06 \text{ d}^{-1}$, peaking on d4, d7 and d12 (Fig. 3b). In the terrestrial runoff treatment, it was significantly lower than in the control by an average of 53% from d2 to d10 (Table 1). However, it increased drastically during the second half of the experiment, and was significantly almost three times higher than in the control from d12 to d17. L varied from $0.19 \pm 0.12 \text{ d}^{-1}$ to $0.95 \pm 0.05 \text{ d}^{-1}$ in the control treatment, and was really constant and generally higher than o (Fig. 3c). In the terrestrial runoff treatment, it was significantly lower than in the control by an average of 32% throughout the experiment, and by 60% from d3 to d14 (Table 1). However, it was higher than in the control from d3, and came back to the control level at the end of the experiment. As a consequence of the generally higher L than μ in the control, the $\mu:L$ ratio was below 1 on 13 out of the 16 days (Fig. 3d). It ranged from 0.10 ± 0.06 to 2.76 ± 2.26 . The terrestrial

runoff significantly increased the μ :L ratio by an average of 305% over the entire experiment (**Table 1**). The greatest difference between treatments was found on d13, when the ratio was almost 11 times higher in the terrestrial runoff than in the control treatment.

Figure 3. Daily average chlorophyll- α (Chl- α , a), phytoplankton growth rate (μ , b), phytoplankton loss rate (L, c), and growth : loss ratio (μ :L, d) in the control (blue) and terrestrial runoff (gold) treatments. Error bars represent the range of the observations. Note that μ and L could not be estimated on d18 owing to the lack of a complete fluorescence cycle.

3.4 Effects of the terrestrial runoff treatment on primary production, respiration, and photosynthetic efficiency

In the control treatment, GPP ranged from 0.26 ± 0.02 to 0.78 ± 0.03 $\text{gO}_2 \text{ m}^{-3} \text{ d}^{-1}$ (**Fig. 4a**). After decreasing from d1 to d2, it increased until it reached its maximum on d7, and then decreased re continuously until the end of the experiment. In the terrestrial runoff treatment, it increased significantly by an average of 37% at the middle of the experiment, from d9 to d14 (**Table 1**). When ~~the~~ GPP was normalised by the daily Chl- α concentration, it was significantly higher in the terrestrial runoff treatment than in the control by an average of 312% throughout the experiment (**Fig. 4b**).


In the control treatment, R ranged from 0.18 ± 0.01 to 0.67 ± 0.02 $\text{gO}_2 \text{ m}^{-3} \text{ d}^{-1}$, and it showed a similar dynamic as GPP (**Fig. 4c**). It was significantly enhanced in the terrestrial runoff treatment by an average of 46% over the entire experiment (**Table 1**).

The GPP : R ratio ranged from 0.94 ± 0.12 to 1.69 ± 0.19 in the control treatment, and it was higher than 1 on 16 out of 17 days (**Fig. 4d**). In the terrestrial runoff treatment, it decreased significantly by an average of 32% during the first half of the experiment (d2-d10), before increasing and reaching the control level during the second half of the experiment (**Table 1**). Consequently, it was higher than 1 only on 10 out of the 17 days.

- 315 In the control, the maximum PSII quantum yield, an indicator of the maximum potential photosynthetic capacity, ranged from 0.24 ± 0.01 to 0.55 ± 0.04 (**Fig. 4e**). It was not significantly different between the treatments over the entire experiment; however, it increased significantly by 43% in the terrestrial runoff treatment from d8 to d11 (**Table 1**).

When the R was normalised by the daily Chl-*a* concentration, it was significantly higher in the terrestrial runoff treatment than in the control by an average of 420% throughout the experiment (**Fig. 4f**).

- 320 Finally, when R was normalised by total bacterial abundance (**Fig. 4g**), it was not significantly different between treatments apart from d9 to d14 during which it was significantly higher by an average of 154% in the terrestrial runoff treatment than in the control (**Table 1**).

325 **Figure 4.** Daily average gross primary production (GPP, a), GPP normalised by chlorophyll-a (GPP:Chl-a, b), community respiration (R, c), GPP : R ratio (d), and maximum quantum yield ($F_v : F_m$) of photosystem II (PSII) (e), R normalised by chlorophyll-a (R:Chl-a, f), and R normalised by bacterial abundance (R:Bacteria, g) in the control (blue) and terrestrial runoff (gold) treatments. Error bars represent the range of the observations. Note that GPP and R could not be estimated on d18 owing to the lack of a complete oxygen cycle.

330

335 **Table 1.** Summary table of the statistical comparison and the % relative change between the terrestrial runoff and the control treatments. The significance level was set to 0.05 and significant P-values, as well as their corresponding relative change, were highlighted in bold. When a RM-ANOVA was performed, its F value was given in brackets, and when a Kruskal-Wallis was performed instead, “KW” was indicated.

Parameter	Period	P-value	% difference
Temperature	2-18	0.64 (KW)	-0.2
Salinity	2-18	< 1×10⁻⁴ (F _{1,16} =1035)	-0.7

	2-18	1.4×10⁻³ (KW)	-43.3
DLI	2-11	9.1×10⁻⁴ (KW)	-51.6
	12-18	1.4×10⁻³ (F_{1,6}=32.9)	-27.3
pH	2-18	3×10⁻⁴ (F_{1,9}=32.4)	-0.4
pCO ₂	2-18	4×10⁻⁴ (F_{1,9}=30.5)	8.9
C	2-18	0.27 (KW)	0.4
	2-18	7×10⁻⁴ (F_{1,9}=25.3)	1.3
	2-18	2.2×10⁻⁶ (F_{1,16}=11.5)	27.8
POC	2-12	1.1×10⁻⁸ (F_{1,10}=27.9)	49.3
	12-18	0.621 (KW)	-2.0
	2-18	0.001 (KW)	18.8
PON	2-12	1.6×10⁻⁵ (F_{1,10}=12.9)	32.3
	12-18	0.474 (F _{1,6} =0.7)	-2.7
NO ₂ ⁻ + NO ₃ ⁻	2-18	0.75 (F _{1,16} =0.1)	1.3
NH ₄ ⁺	2-18	3.2×10⁻⁴ (KW)	486.5
PO ₄ ³⁻	2-18	0.02 (F_{1,16}=6.8)	18.0
	10-13	8.4×10⁻³ (F_{1,3}=38.7)	62.7
SiO₂	2-18	5.4×10⁻⁷ (KW)	213.7
GPP	2-17	0.37 (KW)	16.1
	9-14	1.1×10⁻³ (F_{1,5}=44.7)	36.6
	12-17	0.08 (F _{1,15} =4.8)	24.5
GPP : Chl- <i>a</i>	2-17	0.02 (KW)	312.1
R	2-17	<1×10⁻⁴ (F_{1,15}=38.4)	45.7
	2-11	2×10⁻⁴ (F_{1,10}=32.7)	52.5
GPP : R	2-17	7×10⁻⁴ (F_{1,15}=18.4)	-17.6
	2-10	<1×10⁻⁴ (F_{1,15}=82.5)	-32
F _v : F _m	2-17	0.94 (F _{1,17} =0.01)	0.4
	8-11	3.7×10⁻³ (F_{1,5}=68.7)	43.0
R : Chl-<i>a</i>	2-17	7.5×10⁻⁴ (KW)	419.9
R : Bacteria	2-17	0.16 (KW)	26.9
	9-14	2×10⁻⁴ (F_{1,5}=22.1)	154.2
terial abundances	2-18	0.183 (KW)	15.0
	2-8	1.3×10⁻⁴ (F_{1,6}=37.2)	59.0
	9-14	2.5×10⁻³ (F_{1,5}=24.2)	-47.0
	15-18	6.7×10⁻³ (F_{1,3}=22.7)	51.0
Chl- <i>a</i>	2-18	1.2×10⁻³ (F_{1,17}=14.9)	-30.2
	2-11	1.6×10⁻⁴ (KW)	-70.2
	12-18	0.89 (F _{1,8} =0.02)	4.2
Growth rate (μ)	2-17	0.86 (F _{1,15} =0.03)	110.6
	2-11	0.02 (F_{1,8}=7.5)	-52.8
	12-17	3.0×10⁻⁴ (F_{1,5}=77.9)	298.7
Loss rate (L)	2-17	4.7×10⁻³ (F_{1,15}=11)	-32.1
	3-14	6×10⁻⁴ (F_{1,11}=22.3)	-60.0
μ : L ratio	2-17	0.02 (F_{1,15}=7.3)	305.4

3.5 Correlation matrix between the responses of phytoplankton processes, community metabolism, and environmental variables

To assess the relationships between the effects of the terrestrial runoff on various variables, Spearman's correlations were calculated between the LRR of phytoplankton processes, community metabolism and environmental variables. All significant correlations are shown in the matrix (Fig. 5). GPP was positively correlated with NH₄⁺ and PO₄³⁻ concentrations, and negatively correlated with bacteria abundance and POC+PON concentrations. R was positively correlated with pCO₂ and POC+PON concentrations, while being negatively correlated with μ , Chl-*a*, salinity, DLI and pH. In addition, μ was positively correlated to L, Chl-*a*, salinity, DLI, NO₂⁻+NO₃⁻, and negatively to bacterial abundances and POC+PON concentrations. Similarly, L was positively correlated with Chl-*a* and salinity, and negatively correlated with pCO₂. In addition, Chl-*a* was positively correlated with salinity, DLI and NO₂⁻+NO₃⁻, and negatively correlated with POC+PON, while bacterial abundances were positively correlated with DOC, and negatively correlated with NO₂⁻+NO₃⁻, NH₄⁺ and PO₄³⁻. Among environmental variables, it should be noted that DLI and POC+PON concentrations were negatively correlated, and NH₄⁺ and PO₄³⁻ were positively correlated.

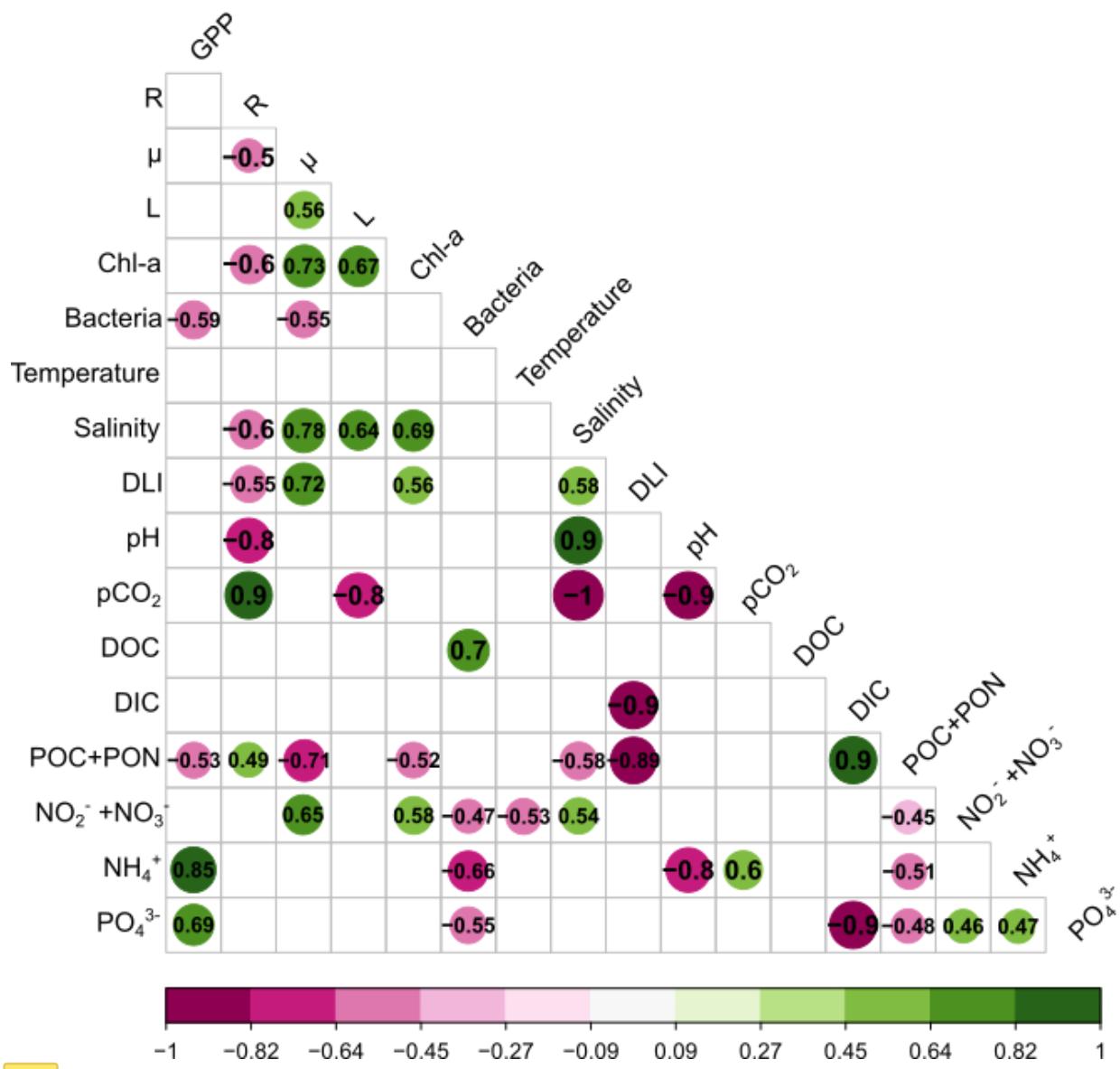


Figure 5. Correlation matrix based on Spearman's correlations between the log response ratio (LRR) of phytoplankton processes, community metabolism, and environmental variables. Only significant ($p < 0.05$) correlations are shown in the matrix. Green illustrates positive correlations and purple negative correlations. (GPP: Gross Primary Production, R: Respiration, Chl-a: Chlorophyll-a, μ : Growth rate, L: Loss rate, DLI: Daily Light Integral, DOC: Dissolved Organic Carbon, Dissolved Inorganic Carbon, POC + PON: Particulate Organic Carbon + Nitrogen)

4 Discussion

4.1 The terrestrial runoff depressed phytoplankton processes and shifted the metabolic balance of the system to heterotrophy during the first half of the experiment

360 The present study aimed to evaluate the effects of a simulated terrestrial runoff on key plankton processes in a coastal Mediterranean lagoon. During the first half of the experiment (d2-d11), the simulated terrestrial runoff strongly decreased available light (-52%), consequently depressing phytoplankton biomass (-70%) and growth rate (-53%), as highlighted by the strong positive correlations between light availability, Chl-*a* and phytoplankton growth. The phytoplankton community investigated in the present study was typical of the Thau Lagoon in spring (Trombetta *et al.* 2019), mainly composed of diatoms, 365 cryptophytes, and small nano- and picophytoplankton (Courboulès *et al.* 2023). The This negative effect of light limitation induced by the runoff on phytoplankton biomass is consistent with a mesocosm experiment performed in the Baltic Sea where terrestrial organic matter addition reduced phytoplankton biomass through light attenuation (Mustaffa *et al.* 2020) and, generally, with a meta-analysis conducted on 108 studies reporting an average 23% reduction in photoautotroph biomass in response to experimentally reduced light across various freshwater and coastal ecosystems (Striebel *et al.* 2023). However, in 370 the Thau Lagoon, a previous experiment reported a positive effect of soil addition, simulating a terrestrial runoff, on phytoplankton (Deininger *et al.* 2016). Nevertheless, sinking of the added soil during the experiment performed by Deininger *et al.* (2016) might have rapidly lessen light attenuation, possibly releasing phytoplankton from the negative effect of light limitation. In addition, the experiment was conducted in late spring / early summer, when light is oversaturating (Trombetta *et al.* 2019), whereas our experiment was performed in spring, when light could be naturally more limiting for 375 phytoplankton metabolism. Finally, Deininger *et al.* (2016) used a resin in their soil extraction procedure, yielding higher inorganic and organic nutrient concentrations in their extract compared to the protocol performed in the present study but being farther from natural terrestrial runoffs (Scharnweber *et al.* 2021). In the present experiment, a maturation step of the soil in 380 river water of 14 days was performed, aiming at mimicking processes naturally occurring during the transportation of soil to coastal waters during terrestrial runoffs, such as the degradation of the most labile organic compounds (Müller *et al.* 2018). The duration of maturation can be considered as a long residence time in river water, regarding the fact that flash floods in the Mediterranean region are usually faster. Therefore, it can be supposed that the terrestrial matter added in the present study contained lower levels of labile organic compounds than what can be found during flash floods. This emphasises the need for extreme caution when comparing experimental studies investigating terrestrial runoff effects because protocols are often different from one study to another.

385 In the present study, the lower phytoplankton biomass and growth rate in the runoff treatment were coupled with an overall decrease in phytoplankton loss rate from d3 until d14 (-60%). Phytoplankton loss could be caused by multiple factors that occur concomitantly, including: grazing by predators, viral lysis, sedimentation and natural death (Landry and Hassett 1982, Brussaard 2004). As the terrestrial runoff induced a negative effect on phytoplankton biomass during the first half of the experiment, it may have led to lower prey availability for its predators, resulting in a lower phytoplankton loss rate. This is

390 supported by the negative effect of the simulated runoff on protozooplankton abundances reported in the present experiment (Courboulès *et al.* 2023), which may be due to both lower phytoplankton abundance and higher grazing pressure from metazooplankton. Finally, the lower phytoplankton loss rate suggests that terrestrial runoffs could have important consequences for the entire plankton food web of coastal Mediterranean waters by disrupting phytoplankton loss processes, including grazing which is the first link in the herbivorous food web (Legendre and Rassoulzadegan 1995, Mostajir *et al.* 2015).
395 In contrast to phytoplankton biomass and growth, the gross primary production returned quickly to the control level (d4), and was even enhanced by the terrestrial runoff after a few days. This result was unexpected considering that oxygen production strongly depends on light, which was reduced by the runoff. However, we showed that the primary production to Chl-*a* ratio increased by more than three times in the runoff treatment, suggesting a strong enhancement of the phytoplankton photosynthetic efficiency to cope with lower light availability. Supporting this, the maximum PSII quantum yield, an indicator 400 of the maximum potential photosynthetic activity (Strasser *et al.* 2000), increased significantly in the middle of the experiment in the terrestrial runoff treatment, further suggesting an increase in photosynthetic efficiency under light attenuation induced by the runoff. Moreover, this mismatch between oxygen production and carbon fixation, which has already been reported in a mesocosm experiment in Antarctic coastal waters (Deppele *et al.* 2018), might be explained by the fact that photosynthetic carbon fixation is a two-stage process. The first is the conversion of light to energy in the chloroplast which produces oxygen 405 as a by-product, and the second is the use of the produced energy to convert carbon dioxide into sugars through the Calvin cycle with the RuBisCO enzyme. Under stress conditions, the energy produced can also be used in alternative pathways other than carbon dioxide conversion, mainly respiration and photoacclimation (Behrenfeld *et al.* 2004, Halsey *et al.* 2010). Hence, we hypothesised that in the runoff treatment, a significant part of the energy produced by photosynthesis was not converted to growth, but was used instead in alternative pathways, explaining the observed mismatch between oxygen production and 410 phytoplankton biomass. An alternative hypothesis is that the high quantity of particulate matter added through the simulated runoff induced a strong sedimentation of a part of the phytoplankton community toward the bottom of the mesocosm enclosures (Kiorboe *et al.* 1990). This sedimentation could have partly contributed to the mismatch between GPP and Chl-*a*, as sedimented phytoplankton could have continued to produce oxygen, while being undetected by both manual and sensor monitoring of Chl-*a*. Such sedimentation has already been suggested after heavy loadings of terrestrial matter during a natural flash flood event 415 in Thau Lagoon, during which most of the microbial production may have been exported through sedimentation (Fouilland *et al.* 2012). Nonetheless, it should be noted that the samples of sedimented material in the sediment traps are not fully analysed yet, thus preventing to characterize the role of sedimentation in the responses of GPP and Chl-*a* with certainty. Simultaneously, community respiration was strongly enhanced (+53%) by the simulated terrestrial runoff. In marine waters, 420 planktonic bacterial respiration is generally assumed to represent a major part of community respiration (Robinson 2008). In the present study, bacterial abundance was significantly enhanced by the runoff during the first part of the experiment (d2-d9), which is congruent with the higher respiration at that time. This suggests that higher bacterial abundances are certainly responsible for the higher R reported in the runoff treatment during the first part of the experiment. However, bacterial abundances then significantly decreased during the middle of the experiment (d9-d14) in the runoff treatment, while respiration

remained significantly higher than in the control treatment, resulting in a positive response of R normalised by bacterial abundance at this time of the experiment. This suggests suggesting that respiration was mostly not sustained by bacteria at that time of the experiment, but by other biological compartments instead. Because Chl-*a* was still strongly depressed by the runoff during this period of the experiment, resulting in extremely high R:Chl-*a* rates, the hypothesis of an increase in phytoplankton respiration is not plausible. An increase in zooplankton respiration might instead explain the positive effect on community respiration, as the abundance of some groups of metazooplankton was significantly enhanced by the runoff treatment (Courboulès *et al.* 2023), and the concomitant increase in PO₄³⁻ suggests a strong phosphorus excretion from zooplankton (Andersen *et al.* 1986, Vadstein *et al.* 1995).

As a consequence of the faster and greater increase in respiration compared to that in gross primary production, the terrestrial runoff resulted in a decrease in the production to respiration ratio and a shift toward heterotrophy of the metabolic index of the planktonic system during the first half of the experiment, as similarly reported after simulating a terrestrial runoff in a tropical reservoir (Trinh *et al.* 2016). Concomitantly, pCO₂ was significantly higher in the terrestrial runoff treatment, certainly because of the higher respiration as the responses of both variables were strongly correlated. These results are consistent with a study of 15 Swedish lakes that reported higher respiration leading to switches to a heterotrophic metabolic index and increased pCO₂ in response to increased terrestrial carbon runoffs (Ask *et al.* 2012). Therefore, the present experiment shows, for the first time to our knowledge in Mediterranean coastal lagoons, that terrestrial runoffs could potentially shift coastal Mediterranean lagoons, such as **Leu Lagoon**, from being net oxygen producers in spring to net oxygen sink. Therefore, the respiration-driven gain in CO₂ can temporarily change the magnitude and direction of the air-sea CO₂ exchange, potentially switching the ecosystem from a CO₂ sink to a CO₂ source for the atmosphere.

4.2 Enhanced nutrient availabilities boosted phytoplankton processes during the second half of the experiment

During the second half of the experiment (d12-18), the phytoplankton biomass and processes increased in the terrestrial runoff treatment, in contrast to what occurred during the first half of the experiment. This might be explained by the higher dissolved inorganic nutrient availability in the runoff treatment, as NH₄⁺ and PO₄³⁻ concentrations were significantly higher in the terrestrial runoff treatment in the middle of the experiment, before being consumed and returning to the control level. The higher NH₄⁺ concentrations possibly resulted from bacterial remineralization, as NH₄⁺ is mostly produced by bacterial remineralisation of organic matter in coastal waters (Nixon 1981, Glibert 1982). In contrast, the higher PO₄³⁻ availability could be linked to grazing on bacteria, as grazers feeding upon bacteria generally show high phosphorus excretion rates (Andersen *et al.* 1986).

Enhanced nutrient availability may have fuelled phytoplankton growth to such an extent that the positive effect of nutrient availability surpassed the negative effect of light attenuation. This result suggests a trade-off mechanism between light and nutrient availability, whereby phytoplankton metabolism is enhanced or depressed depending on the extent of nutrient enrichment compared to the light attenuation associated with terrestrial runoffs. This mechanism has already been reported for

northern lakes (Klug 2002, Isles *et al.* 2021) and even during mesocosm experiments evaluating the addition of dissolved organic matter into coastal waters of various regions (Deininger *et al.* 2016, Traving *et al.* 2017, Andersson *et al.* 2023). The present study provides additional support for this mechanism in Mediterranean coastal waters, and highlights the importance 460 of considering it when modelling their response to terrestrial runoffs.

As mentioned earlier, Chl-*a* strongly increased during the second part of the experiment in the runoff treatment. This positive response was mainly due to an increase in the abundance of diatoms, mainly *Chaetoceros sp.* and *Cylindrotheca sp.*, cyanobacteria, [] autotrophic dinoflagellates (Courboulès *et al.* 2023). In addition, the pico- and nanophytoplankton abundances counted with flow cytometry also increased at this time of the experiment (Courboulès *et al.* 2023). Overall, a very 465 good agreement was found between the response of the Chl-*a* concentration and phytoplankton abundances, measured by both microscopy and flow cytometry, during the entire experiment (Courboulès *et al.* 2023). This The accumulation of phytoplankton biomass during the second part of the experiment in the runoff treatment was related to the strong increase in phytoplankton growth rate from d10, while the phytoplankton loss rate remained low until the end of the experiment. Consequently, the growth to loss ratio was significantly enhanced by more than ten times compared to that of the control. This 470 suggests an uncoupling between phytoplankton growth and its loss factors, such as zooplankton and/or viruses, at that time in the experiment, possibly because phytoplankton grew too quickly compared to its predators. Nonetheless, this emphasises the potentially substantial structural impacts of terrestrial runoff on plankton communities and their intricate interactions within aquatic food webs, as recently documented in lakes (Strandberg *et al.* 2023).

The results of the present experiment suggest that the climate-change related intensification of terrestrial runoffs could 475 temporarily alter metabolic and trophic interactions of the water column of the lagoon during productive seasons (Trombetta *et al.* 2019), potentially shifting it to [] heterotrophy and disrupting its trophic balance. Coupled with terrestrial runoff-induced shifts of microbenthic net community production to [] heterotrophy (Liess *et al.* 2015), these alterations could interact with ongoing shifts occurring in the lagoon, such as the changes in trophic functioning to [] mixotrophy and heterotrophy related to oligotrophication (Derolez *et al.* 2020b). Such consequences may also be seen in other Mediterranean lagoons, as turbidity 480 and extreme flood events were reported to control phytoplankton abundance and phenology in oligotrophic Mediterranean coastal lagoons in Southern France and Corsica (Bec *et al.* 2011, Ligorini *et al.* 2022). Even though the results of the present study come from a single mesocosm experiment, implying that their generalisation should be implemented with care, they emphasise the importance of considering the effects of terrestrial runoffs on plankton-mediated processes in modelling projections of Mediterranean coastal waters under future climate scenarios.

485

5 Data availability

The data used in this paper are openly available in the SEANOE repository at <https://www.seanoe.org/data/00861/97260/> (Soulié *et al.* 2023).

6 Acknowledgements

490 We thank David Parin, Romain Michel, Hervé Violette, Kilian Terrier, Inès Garcia, Valentin Kempf, and Paul Verzele, from
MEDIMEER, for their help with the mesocosms and sensors setup, daily sampling, and analyses of chemical variables. We
acknowledge Eftihis Nikiforakis for his help with discrete oxygen measurements and daily sampling. We also thank David
Pecqueur, the SU/CNRS BioPIC Imaging and Cytometry platform and Barbara Marie, from the Observatoire Océanologique
de Banyuls/Mer, for the cytometric and the dissolved organic carbon analyses, respectively. We are grateful to Valerio Caruso
495 from CNR-ISMAR for his valuable help in performing the total alkalinity analysis. We also thank the staff from the Puéchabon
state forest for their help with practicalities during the sampling of soil. This work was part of the RESTORE project, funded
by the French National Research Agency under the grant n°ANR-19-CE32-0013. C.C. was funded by the Transnational Access
of the AQUACOSM-Plus project, which received funding from the European Union's Horizon 2020 research and innovation
program under grant agreement n° 871081. As C.C. is a member of the JERICO-S3 project, which received funding from the
500 European Union's Horizon 2020 research and innovation program under grant agreements n° 871153 and n° 951799, her
contribution to this work is also part of her contribution to JERICO-S3. A CC-BY public copyright license has been applied
by the authors to the present document and will be applied to all subsequent versions up to the Author Accepted Manuscript
arising from this submission, in accordance with the grant's open access conditions.

505 7 Author contribution

F.Vi. and B.M. designed the mesocosm experiment, and F.Vi., S.M., and B.M. managed it. F.Vi., J.C., M.H., S.M., F. Vo.,
C.C., F.J. and B.M. participated in the daily sampling of the experiment. C.C. performed the analysis of pH, pCO₂, and
dissolved inorganic carbon, with the help of F.Vo. T.S. processed the sensor data, made all related analyses, and wrote the
original draft of the manuscript, with inputs from all authors. All authors read and approved the final version of the manuscript.

510

8 Competing interests

The authors declare that they have no conflict of interest.

9 References

515 Allard, V., Ourcival, J. M., Rambal, S., Joffre, R., and Rocheteau, A.: Seasonal and annual variation of carbon exchange in
an evergreen Mediterranean forest in southern France. *Glob. Change Biol.* **14**: 714-725,
<https://doi.org/10.1111/j.1365-2486.2008.01539.x>, 2008.

- Aminot, A., Kirkwood, D. S., and Kéroutel R.: Determination of ammonia in seawater by the indophenol-blue method: Evaluation of the ICES NUTS I/C 5 questionnaire. *Mar. Chem.* **56**(1-2): 59-75. [https://doi.org/10.1016/S0304-4203\(96\)00080-1](https://doi.org/10.1016/S0304-4203(96)00080-1), 1997.
- 520 Aminot, A. and Kéroutel R.: *Dosage automatique des nutriments dans les eaux marines. Méthodes en flux continu*. Ed. Ifremer; 336 p. ISBN 2-84433-133-5, 2007.
- Andersen, O. K., Goldman, J. C., Caron, D. A., and Dennett, M. R.: Nutrient cycling in a microflagellate food chain: III. Phosphorus dynamics. *Mar. Ecol. Prog. Ser.* **31**: 47-55, 1986.
- 525 Andersson, A., Brugel, S., Paczkowska, J., Rowe, O. F., Figueroa, D., Kratzer, S., and Legrand, C.: Influence of allochthonous dissolved organic matter on pelagic basal production in a northerly estuary. *Est. Coast. Shelf Sci.* **204**: 225-235. <https://doi.org/10.1016/j.ecss.2018.02.032>, 2018.
- Andersson, A., Griniené, E., Berglund, A. M. M., et al.: Microbial food web changes induced by terrestrial organic matter and elevated temperature in the coastal northern Baltic Sea. *Front. Mar. Sci.* **10**:1170054. <https://doi.org/10.3389/fmars.2023.1170054>, 2023.
- 530 Alpert, P., Ben-Gai, T., Baharad, A., et al.: The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values, *Geophys. Res. Lett.* **29**(11). <https://doi.org/10.1029/2001GL013554>, 2002.
- Ask, J., Karlsson, J., and Jansson, M.: Net ecosystem production in clear-water and brown-water lakes. *Glob. Biogeochem. Cyc.* **26**(1). <https://doi.org/10.1029/2010GB003951>, 2012.
- 535 Bec, B., Collos, Y., Souchu, P., Vaquer, A., Lautier, J., Fiandrino, A., Benau, L., Orsoni, V., and Laugier, T.: Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. *Aquat. Microb. Ecol.* **63**:29-45. <https://doi.org/10.3354/ame01480>, 2011.
- Behrenfeld, M. J., Prasil, O., Babin, M., and Bruylants, F.: In search of a physiological basis for covariations in light limited and light saturated photosynthesis. *J. Phycol.* **40**(1): 4-25. <https://doi.org/10.1046/j.1529-8817.2004.03083.x>, 2004.
- 540 Blanchet, C. C., Arzel, C., Davranche, A., Kahilainen, K. K., Secondi, J., Taipale, S., Lindberg, H., Loehr, J., Manninen-Johansen, S., et al.: Ecology and extent of freshwater browning – What we know and what should be studied next in the context of global change. *Sci. Tot. Env.* **812**: 152420. <https://doi.org/10.1016/j.scitotenv.2021.152420>, 2022.
- Brussaard, C. P. D.: Viral control of phytoplankton populations – a review. *J. Euk. Microb.* **51**:125-138. <https://doi.org/10.1111/j.1550-7408.2004.tb00537.x>, 2004.
- 545 Carrit, D. E., and Carpenter, J. H.: Comparison and evaluation of currently employed modifications of the Winkler method for determining oxygen in seawater. A NASCO report. *J. Mar. Res.* **24**: 286-318, 1966.
- Clayton, T. D., and Byrne, R. H.: Spectrophotometric seawater pH measurements: Total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. *Deep Sea Res. I: Oceanogr. Res. Papers* **40**(10): 2115-2129. [https://doi.org/10.1016/0967-0637\(93\)90048-8](https://doi.org/10.1016/0967-0637(93)90048-8), 1993.
- 550 Courboulès, J., Vidussi, F., Soulié, T., Mas, S., Pecqueur, D., and Mostajir, B.: Effects of experimental warming on small phytoplankton, bacteria and viruses in autumn in the Mediterranean coastal Thau lagoon. *Aquat. Ecol.* **55**:647-666. <https://doi.org/10.1007/s10452-021-09852-7>, 2021.
- Courboulès, J., Vidussi, F., Soulié, T., Nikiforakis, E., Heydon, M., Mas, S., Joux, F., and Mostajir, B.: Effects of an experimental terrestrial runoff on the components of the plankton food web in a Mediterranean coastal lagoon. *Font. Mar. Sci.* **10**:1200757. <https://doi.org/10.3389/fmars.2023.1200757>, 2023.
- 555 Deininger, A., Faithfull, C. L., Lange, K., Bayer, T., Vidussi, F., and Liess, A.: Simulated terrestrial runoff triggered a phytoplankton succession and changed stoichiometry in coastal lagoon mesocosms. *Mar. Env. Res.* **119**:40-50. <https://doi.org/10.1016/j.marenvres.2016.05.001>, 2016.
- Deininger, A., and Frigstad, H.: Reevaluating the role of organic matter sources for coastal eutrophication, oligotrophication, and ecosystem health. *Front. Mar. Sci.* **6**. <https://doi.org/10.3389/fmars.2019.00210>, 2019.
- 560 Deppeler, S., Petrou, K., Schulz, K. G., Westwood, K., Pearce, I., McKinlay, J., and Davidson, A.: Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO₂ tolerance in phytoplankton productivity. *Biogeosciences* **15**: 209-231. <https://doi.org/10.5194/bg-15-209-2018>, 2018.
- Derolez, V., Soudant, D., Malet, N., Chiantella, C., Richard, M., Abadie, E., et al.: 2020. Two decades of oligotrophication: evidence for a phytoplankton community shift in the coastal lagoon of Thau (Mediterranean Sea, France). *Estuar. Coast. Shelf Sci.* **241**:106810. <https://doi.org/10.1016/j.ecss.2020.106810>, 2020a.

- Derolez, V., Malet, N., Fiandrino, A., Lagarde, F., Richard, M., Ouisse, V., Bec, B., and Aliaume, C.: Fifty years of ecological changes: Regime shifts and drivers in a coastal Mediterranean lagoon during oligotrophication. *Sci. Tot. Env.* **732**:139292. <https://doi.org/10.1016/j.scitotenv.2020.139292>, 2020b.
- 570 Dickson, A. G.: Standard potential of the reaction: $\text{AgCl}(\text{s}) + 1 \text{H}_2\text{O}(\text{g}) = \text{Ag}(\text{s}) + \text{HCl}(\text{aq})$, and the standard acidity constant of the ion HSO_4^- in synthetic sea water from 273.15 to 318.15 K. *J. Chem. Thermodyn.* **22**(2): 113–127. [https://doi.org/10.1016/0021-9614\(90\)90074-Z](https://doi.org/10.1016/0021-9614(90)90074-Z), 1990.
- Dickson, A. G., Sabine, C. L., Christian, J. R., and North Pacific Marine Science Organization.: Guide to best practices for ocean CO_2 measurements. *North Pacific Marine Science Organization*. <https://www.oceanbestpractices.net/handle/11329/249>, 2007.
- 575 Ducrocq, V., Nuissier, O., Ricard, D., Lebeaupin, C., and Thouvenin, T.: A numerical study of three catastrophic precipitating events over southern France. II: Mesoscale triggering and stationary factors. *Q.J.R. Meteorol. Soc.* **134**:131–145. <https://doi.org/10.1002/qj.199>, 2008.
- Falkowski, P. G., Laws, E. A., Barber, R. T., and Murray, J. W.: Phytoplankton and their role in primary, new and export production. In: Fasham, M. J. R. (Eds). *Ocean Biogeochemistry. Global Change – The IGBP Series* (closed). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55844-3_5, 2003.
- 580 Falkowski, P.: Ocean science: the power of plankton. *Nature* **483**, S17–S20. <https://doi.org/10.1038/483S17a>, 2012.
- Fouilland, E., Trottet, A., Bancon-Montigny, C., et al.: Impact of a river flash flood on microbial carbon and nitrogen production in a Mediterranean lagoon (Thau lagoon, France). *Est. Coast. Shelf Sci.* **113**:192–204. <https://doi.org/10.1016/j.ecss.2012.08.004>, 2012.
- 585 Giller, P. S., Hillebrand, H., Berninger, U.-G., Gessner, M. O., Hawkins, S., Inchausti, P., Inglis, C., Leslie, H., Malmqvist, B., et al.: Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. *Oikos* **104**:423–436. <https://doi.org/10.1111/j.0030-1299.2004.13253.x>, 2004.
- Glibert, P. M.: Regional studies of daily, seasonal and size fraction variability in ammonium remineralization. *Mar. Biol.* **70**:209–222. <https://doi.org/10.1007/BF00397687>, 1982.
- 590 Halsey, K. H., Milligan, A. J., and Behrenfeld, M. J.: Physiological optimization underlies growth rate-independent chlorophyll-specific gross and net primary production. *Photosynth. Res.* **103**: 125–137. <https://doi.org/10.1007/s11120-009-9526-z>, 2010.
- Hernández-Ayón, J. M., Belli, S. L., and Zirino, A.: pH, alkalinity and total CO_2 in coastal seawater by potentiometric titration with a difference derivative readout. *Analytica Chimica Acta* **394**(1): 101–108. [https://doi.org/10.1016/S0003-2670\(99\)00207-X](https://doi.org/10.1016/S0003-2670(99)00207-X), 1999.
- 595 Hillebrand, H., Langenheder, S., Lebret, K., Lindström, E., Östman, Ö, and Striebel, M.: Decomposing multiple dimensions of stability in global change experiments. *Ecol. Lett.* **21**:21–30. <https://doi.org/10.1111/ele.12867>, 2018.
- Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A., and Peterson, B. J.: A simple and precise method for measuring ammonium in marine and freshwater ecosystems. *Can. J. Fish. Aq. Sci.* **56**(10): 1801–1808. <https://doi.org/10.1139/f99-128>, 1999.
- 600 Isles, P. D. F., Creed, I. F., Jonsson, A., and Bergström, A.-K.: Trade-offs between light and nutrient availability across gradients of dissolved organic carbon lead to spatially and temporally variable responses of lake phytoplankton biomass to browning. *Ecosystems* **24**: 1837–1852. <https://doi.org/10.1007/s10021-021-00619-7>, 2021.
- Kiorboe, T., Andersen, K. P., and Dam, H. G.: Coagulation efficiency and aggregate formation in marine phytoplankton. *Mar. Biol.* **107**:235–245. <https://doi.org/10.1007/BF01319822>, 1990.
- 605 Klug, J. L.: Positive and negative effects of allochthonous dissolved organic matter and inorganic nutrients on phytoplankton growth. *Can. J. Fish. Aquat. Sci.* **59**(1): 85–95. <https://doi.org/10.1139/f01-194>, 2002.
- La Jeunesse, I., Cirelli, C., Sellami, H., Aubin, D., Deidda, R., and Baghdadi, N.: Is the governance of the Thau coastal lagoon ready to face climate change impacts? *Ocean Coast. Manag.* **118**:234–246. <https://doi.org/10.1016/j.ocecoaman.2015.05.014>, 2015.
- 610 Landry, M. R., and Hassett, R. P.: Estimating the grazing impact of marine micro-zooplankton. *Mar. Biol.* **67**: 283–288. <https://doi.org/10.1007/BF00397668>, 1982.
- Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.-M.: The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. *Geochimica et Cosmochimica Acta* **74**(6): 1801–1811. <https://doi.org/10.1016/J.GCA.2009.12.027>, 2010.

- Legendre, L., and Rassoulzadegan, F.: Plankton and nutrient dynamics in marine waters. *Ophelia* **41**(1): 153-172. <https://doi.org/10.1080/00785236.1995.10422042>, 1995.
- Lewis, E., and Wallace, D. W. R.: Program Developed for CO₂ System Calculations, ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center. Oak Ridge, TN: Oak Ridge National Laboratory. U.S, Department of Energy. 620
- Liess, A., Faithfull, C., Reichstein, B., et al.: Terrestrial runoff may reduce microbenthic net community productivity by increasing turbidity: a Mediterranean coastal lagoon mesocosm experiment. *Hydrobiologia* **753**:205-218. <https://doi.org/10.1007/s10750-015-2207-3>, 2015.
- Liess, A., Rowe, O., Francoeur, S. N., et al.: Terrestrial runoff boosts phytoplankton in a Mediterranean coastal lagoon, but 625 these effects do not propagate to higher trophic levels. *Hydrobiologia* **766**:275-291. <https://doi.org/10.1007/s10750-015-2461-4>, 2016.
- Ligorini, V., Malet, N., Garrido, M., Derolez, V., Amand, M., Bec, B., Cecchi, P., and Pasqualini, V.: Phytoplankton dynamics 630 and bloom events in oligotrophic Mediterranean lagoons: seasonal patterns but hazardous trends. *Hydrobiologia* **849**:2353-2375. <https://doi.org/10.1007/s10750-022-04874-0>, 2022.
- Lopez-Urrutia, A., Martin, E. S., Harris, R. P., and Irigoien, X.: Scaling the metabolic balance of the oceans. *Proc. Natl. Acad. Sci. U. S. A.* **103**: 8739-8744. <https://doi.org/10.1073/pnas.0601137103>, 2006.
- Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO₂ calculated from dissolved inorganic carbon, alkalinity, and 635 equations for K₁ and K₂: validation based on laboratory measurements of CO₂ in gas and seawater at equilibrium. *Mar. Chem.* **70**(1): 105-119. [https://doi.org/10.1016/S0304-4203\(00\)00022-0](https://doi.org/10.1016/S0304-4203(00)00022-0), 2000.
- Marie, D., Partensky, F., Jacquet, S., and Vaulot, D.: Enumeration and cell cycle analysis of natural populations of marine 640 picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. *Appl. Environ. Microbiol.* **63**:186-193. <https://doi.org/10.1128/AEM.63.1.186-193.1997>, 1997.
- Meunier, C., Liess, A., Andersson, A., Brugel, S., Paczkowska, J., Rahman, H., Skoglund, B., and Rowe, O. F.: Allochthonous 645 carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff. *Mar. Env. Res.* **129**:236-244, <https://doi.org/10.1016/j.marenvres.2017.06.008>, 2017.
- Mostajir, B., Amblard, C., Buffan-Dubau, E., de Wit, R., Lensi, R., and Sime-Ngando, T.: Microbial food webs in aquatic and 650 terrestrial ecosystems. In: Bertrand J-C., Caumette P., Lebaron P., Normand P., Sime-Ngando T. (Eds): *Environmental Microbiology: Fundamentals and Applications*. Springer. The Netherlands. Chapter 13: 458-509, 2015.
- Müller, O., Seuthe, L., Bratbak, G., and Paulsen, M. L.: Bacterial response to permafrost derived organic matter input in an 655 Arctic fjord. *Front. Mar. Sci.* **5**. <https://doi.org/10.3389/fmars.2018.00263>, 2018.
- Mustaffa, N., Kallajoki, L., Biederick, J., Binder, F., Schlenker, A., and Striebel, M.: Coastal ocean darkening effects via 660 terrigenous DOM addition on plankton: an indoor mesocosm experiment. *Front. Mar. Sci.* **7**. <https://doi.org/10.3389/fmars.2020.547829>, 2020.
- Nixon, S. W.: Remineralization and nutrient cycling in coastal marine ecosystems. In: Neilson B. J., Cronin L. E. (eds) 665 Estuaries and nutrients. Contemporary Issues in Science and Society. Humana Press. https://doi.org/10.1007/978-1-4612-5826-1_6, 1980.
- Nunes, J. P., Seixas, J., Keizer, J. J., and Ferreira, A. J. D.: Sensitivity of runoff and soil erosion to climate change in two 670 Mediterranean watersheds. Part I: model parameterization and evaluation. *Hydrol. Process* **23**, 1202e1211. <https://doi.org/10.1002/hyp.7247>, 2009.
- Paczkowska, J., Brugel, S., Rowe, O., Lefébure, R., Brutemark, A., and Andersson, A.: Response of coastal phytoplankton to 675 high inflows of terrestrial matter. *Front. Mar. Sci.* **7**. <https://doi.org/10.3389/fmars.2020.00080>, 2020.
- Pecqueur, D., Vidussi, F., Fouilland, E., Le Floc'h, E., Mas, S., Roques, C., Salles, C., Tournoud, M.-G., and Mostajir, B.: 680 Dynamics of microbial planktonic food web components during a river flash flood in a Mediterranean coastal lagoon. *Hydrobiologia* **673**:13-27. <https://doi.org/10.1007/s10750-011-0745-x>, 2011.

- Pierrot, D. E., Lewis, D., and Wallace, W. R.: *MS Excel Program Developed for CO₂ System Calculations. ORNL/CDIAC-105a*. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a, 2006.
- Plus, M., La Jeunesse, I., Bouraoui, F., Zaldivar, J.-M., Chapelle, A., and Lazure, P.: Modelling water discharges and nitrogen inputs into a Mediterranean lagoon: Impact on the primary production. *Ecol. Model.* **193**(1-2): 69-89, <https://doi.org/10.1016/j.ecolmodel.2005.07.037>, 2006.
- 665 Robinson, C.: Heterotrophic bacterial respiration. In: *Microbial Ecology of the Oceans*, 2nd Edn, ed. D. L. Kirchman (Hoboken, NJ: Wiley). 299-334, 2008.
- 665 Sanchez, E., Gallardo, C., Gaertner, M. A., Arribas, A., Castro, M.: Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. *Glob. Planet. Change* **44**, 163e180. <https://doi.org/10.1016/j.gloplacha.2004.06.010>, 2004.
- 670 Scharnweber, K., Peura, S., Attermeyer, K., *et al.*: Comprehensive analysis of chemical and biological problems associated with browning agents used in aquatic studies. *Limnol. Oceanogr. Methods* **19**: 818-835. <https://doi.org/10.1002/lom3.10463>, 2021.
- 675 Soria, J., Pérez, R., and Soria-Pepinya, X.: Mediterranean coastal lagoons review: Sites to visit before disappearance. *J. Mar. Sci. Eng.* **10**(3): 347. <https://doi.org/10.3390/jmse10030347>, 2022.
- Soulié, T., Mas, S., Parin, D., Vidussi, F., and Mostajir, B.: A new method to estimate planktonic oxygen metabolism using high-frequency sensor measurements in mesocosm experiments and considering daytime and nighttime respirations. *Limnol. Oceanogr. Methods* **19**:303-316. <https://doi.org/10.1002/lom3.10424>, 2021.
- 680 Soulié, T., Vidussi, F., Mas, S., and Mostajir, B.: Functional stability of a coastal Mediterranean plankton community during an experimental marine heatwave. *Front. Mar. Sci.* **9**:831496. <https://doi.org/10.3389/fmars.2022.831496>, 2022a.
- Soulié, T., Stibor, H., Mas, S., *et al.*: Brownification reduces oxygen gross primary production and community respiration and changes the phytoplankton community composition: an *in situ* mesocosm experiment with high-frequency sensor measurements in a North Atlantic Bay. *Limnol. Oceanogr.* **67**(4): 874-887. <https://doi.org/10.1002/lno.12041>, 2022b.
- 685 Soulié, T., Vidussi, F., Courboulès, J., Heydon, M., Mas, S., Voron, F., Cantoni, C., Joux, F., and Mostajir, B.: Dataset from a mesocosm experiment testing the effects of a terrestrial runoff on a Mediterranean plankton community. *SEANOE*. <https://doi.org/10.17882/97260>, 2023.
- 690 Staehr, P. A., Bade, D., de Bogert, M. C. V., Koch, G. R., Williamson, C., Hanson, P., *et al.*: Lake metabolism and the diel oxygen technique: state of the science. *Limnol. Oceanogr. Methods* **8**:628-644. <https://doi.org/10.4319/lom.2010.8.0628>, 2010.
- Strandberg, U., Hiltunen, M., Creed, I. F., Arts, M. T., and Kankaala, P.: Browning-induced changes in trophic functioning of planktonic food webs in temperate and boreal lakes: insights from fatty acids. *Oecologia* **201**: 183-197. <https://doi.org/10.1007/s00442-022-05301-w>, 2023.
- 695 Strasser, R. J., Srivastava, A., and Tsimilli-Michael, M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P. (Eds.). *Probing photosynthesis: Mechanisms, regulation and adaptation*. Taylor and Francis, UK, pp445-483, 2000.
- Striebel, M., Kallajoki, L., Kunze, C., Wollschläger, J., Deininger, A., and Hillebrand, H.: Marine primary producers in a darker future: a meta-analysis of light effects on pelagic and benthic autotrophs. *Oikos* e09501. <https://doi.org/10.1111/oik.09501>, 2023.
- 700 Traving, S. J., Rowe, O., Jakobsen, N. M., Sorensen, H., Dinasquet, J., Stedmon, C. A., Andersson, A., and Riemann, L.: The effect of increased loads of dissolved organic matter on estuarine microbial community composition and function. *Front. Microbiol.* **8**. <https://doi.org/10.3389/fmicb.2017.00351>, 2017.
- Trinh, D. A., Luu, T. N. M., Trinh, Q. H., *et al.*: Impact of terrestrial runoff on organic matter, trophic state, and phytoplankton in a tropical, upland reservoir. *Aquat. Sci.* **78**: 367-379. <https://doi.org/10.1007/s00027-015-0439-y>, 2016.
- 705 Trombetta, T., Vidussi, F., Mas, S., Parin, D., Simier, M., and Mostajir, B.: Water temperature drives phytoplankton blooms in coastal waters. *Plos ONE* **14**(4): e0214933. <https://doi.org/10.1371/journal.pone.0214933>, 2019.
- Vadstein, O., Brekke, O., Andersen, T., and Olsen, Y.: Estimation of phosphorus release rates from natural zooplankton communities feeding on planktonic algae and bacteria. *Limnol. Oceanogr.* **40**(2): 250-262. <https://doi.org/10.4319/lo.1995.40.2.0250>, 1995.

710 Zapata, M., Rodriguez, F., and Garrido, J. L.: Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. *Mar. Ecol. Prog. Ser.* 195: 29-45, <https://doi.org/10.3354/meps195029>, 2000.