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Abstract. A surface debris layer significantly modifies underlying ice melt dependent on the thermal resistance of the de-

bris cover, with thermal resistance being a function of debris thickness and effective thermal conductivity. Thus these terms

are required in models of sub-debris ice melt. The most commonly used method to calculate effective thermal conductivity

of supraglacial debris layers applies heat diffusion principles to a vertical array of temperature measurements through the

supraglacial debris cover combined with an estimate of volumetric heat capacity of the debris as presented by Conway and5

Rasmussen (2000). Application of this approach is only appropriate if the temperature data indicates that the system is predom-

inantly conductive and even in the case of a pure conductive system, the method necessarily introduces numerical errors that

can impact the derived values. The sampling strategies used in published applications of this method vary in sensor precision,

and spatio-temporal temperature sampling strategies, hampering inter-site comparisons of the derived values, and their usage at

unmeasured sites. To address this, we use synthetic datasets to isolate the numerical errors of the temporal and spatial sampling10

interval, and the precision of sensor temperature and position in recovering known thermal diffusivity values using this method.

On the basis of this we can establish a sampling an analytical strategy to minimize the methodological errors. Our results show

that increasing temporal and spatial sampling intervals increase truncation errors and systematically underestimate calculated

values of thermal diffusivity. The thermistor precision, the shape of the diurnal temperature cycle, the debris thermal diffusiv-

ity and misrepresenting the vertical thermistor position also result in systematic errors, that show strong cross-dependencies15

dependent on signal to noise ratio with which spatio-temporal temperature gradients are captured. We provide an interactive

analysis tool and best-practice guidelines to help researchers investigate the effect of the sampling interval on calculated sub-

debris ice melt and plan future measurement campaigns. These findings can be used to plan optimal field sampling strategies

for future campaigns and as a guide for common reanalysis of existing datasets to allow intercomparison across sites.

1 Introduction20

Debris-covered glaciers can be found in tectonically active mountain regions such as Alaska, the European Alps, High Moun-

tain Asia, or New Zealand (Herreid and Pellicciotti, 2020), where large amounts of debris migrate into the ice via glacial and

periglacial processes (Shugar and Clague, 2011; Scherler et al., 2018; Anderson et al., 2018). Debris falling onto the ablation

zone contributes directly to any surface debris load, while debris added to the glacier surface in the accumulation zone or
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sourced subglacially is transported englacially to the ablation area of the glacier, where it melts out and contributes additional25

debris load (Nicholson and Benn, 2006; Kirkbride and Deline, 2013; Anderson et al., 2018), as shown in Figure 1a. In com-

parison to clean ice, thin or patchy debris amplifies ice melt due to its higher absorptivity of short-wave radiation while thicker

debris layers reduce ice melt due to the insulation and attenuation of the diurnal heating signal (Inoue and Yoshida, 1980;

Kayastha et al., 2000; Kirkbride and Dugmore, 2003; Mihalcea et al., 2006; Brock et al., 2010; Reznichenko et al., 2010; Fyffe

et al., 2014; Minora et al., 2015). The relationship between debris thickness and ablation rate varies for different debris layer30

compositions and prevailing climatological conditions but retains the same character (Fig. 1b). The critical debris thickness

beyond which sub-debris ice ablation is inhibited compared to clean ice ablation ranges from 15 to 115mm (Østrem, 1959;

Mattson, 1993; Nicholson and Benn, 2006) dependent on the debris optical and thermal properties and the ambient climate

(Inoue and Yoshida, 1980; Nakawo and Takahashi, 1982; Adhikary et al., 1997; Reznichenko et al., 2010). Therefore, in con-

trast to clean ice glaciers, where the melt increases towards the glacier tongue in response to typical environmental temperature35

lapse rates, the spatial pattern of melt of debris-covered glaciers depends more on the debris thickness than on the elevation

(e.g. Benn et al., 2012; Rowan et al., 2021; Nicholson et al., 2021). Herreid and Pellicciotti (2020) found that 7.3± 3.3% of

all mountain-glacier area is covered by a rock debris cover, which at a global scale delays the loss of debris-covered glaciers

for the coming decades (Rounce et al., 2023). With continued glacier decline debris-covered glacier surfaces are expected to

increase in absolute and percentage terms in the future (Deline and Orombelli, 2005; Kellerer-Pirklbauer et al., 2008; Quincey40

and Glasser, 2009; Bhambri et al., 2011; Bolch et al., 2012; Kirkbride and Deline, 2013; Thakuri et al., 2014; Scherler et al.,

2018; Tielidze et al., 2020), highlighting the need for accurate modeling of sub-debris ice melt to be included in future glacier

projections (Rounce et al., 2015a).

Although under certain circumstances heat can be transferred through the debris by convection, advection, and radiation,

observations (e.g. Conway and Rasmussen, 2000; Nicholson and Benn, 2012) show that the system often, and especially under45

dry stable meteorological conditions, approximates Fourier’s law of conduction q =−k∇T , where q represents the local heat

flux density, k the thermal conductivity, and T the temperature (Fourier, 1955; Cannon, 1984). Consequently, in models of

glacier ice melt, the energy supply for ice melt beneath the debris cover is typically treated as if it were heat conduction only

(e.g. Reid and Brock, 2010; Fyffe et al., 2014), driven by the surface temperature, debris thickness and a value of debris thermal

conductivity to be supplied as a model parameter. As a second consequence, Fourier’s law of conduction has also been used50

to derive representative parameter values of effective debris thermal conductivity for horizontally homogeneous debris layers

from field observations of spatio-temporal variations in debris temperature. To do this, the one-dimensional heat conduction

equation for a homogeneous, isotropic medium (Eq. 1) is used to derive the apparent thermal diffusivity, κ, from the spatio-

temporal variation of a vertical profile of temperature measurements, by finding the gradient of the regression line between the

first derivative of temperature with time and the second derivative of temperature with depth (Conway and Rasmussen, 2000).55

Effective thermal conductivity k can then be calculated from κ and the volumetric heat capacity of the debris, given by the

specific heat capacity cs and the material density ρ (Eq. 2), including the porosity for a granular material.

2



Figure 1. a) Schematic of a debris-covered glacier with debris transport of subglacially sourced rock debris from release area to melt out

area. The inset shows a classical thermal diffusivity measurement site, consisting of thermistors at several heights between the near-surface

and the debris-ice interface. b) Measurements of the so-called Østrem curves for different glaciers show a common pattern of variation of

daily melt rate versus the debris depth, with site-specific variations in maximum ablation and the debris thickness associated with it. Redrawn

from Mattson (1993).

∂T

∂t
= κ

∂2T

∂x2
+ const. (1)

κ=
k

ρ · cs
← thermal conductivity
← heat capacity

(2)

60

Application of this method therefore requires (1) a vertical array of temperature measurements through the supraglacial

debris cover (Fig. 1a) for conditions in which the debris heat transfer closely approximates that of a conductive system from

which the apparent κ is derived and (2) an estimate of the volumetric heat capacity of the debris used to convert the apparent κ

into effective conductivity.65
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To meet the first requirement a sample site must be chosen for which lateral heat transfer can reasonably be expected to be

negligible; so a site that is horizontally homogeneous in factors such as slope, debris type, thickness and without evidence of any

hydrological heat transfer. Then the observed temperatures must be evaluated to find specific time periods and vertical subsets

of debris temperature profile data that are identified as being ’well-behaved’ approximations of a conductive system; data that

show evidence of non-conductive processes can be excluded from subsequent analysis (Conway and Rasmussen, 2000). To70

meet the second requirement, estimates of the debris porosity, rock density thermal properties must be made. Commonly used

values for these terms are porosity of 0.3, rock density of 2700kg m−2 and rock specific heat capacity of 750J kg−1K−1, with

a 10% error applied to the combined terms (Conway and Rasmussen, 2000). Most studies assume that the pore spaces are

air filled when calculating the volumetric heat capacity, but in principle, if the debris cover is known to be fully saturated, a

water-filled case can be used to obtain the volumetric heat capacity of the sampled debris layer (Nicholson and Benn, 2006). In75

an ideal case, this workflow can yield a reliable estimate of effective thermal conductivity from a homogenous dry portion of

the debris with stable meteorological forcing conditions and minimal non-conductive processes. Onward use of these effective

dry debris thermal conductivity data in surface energy balance models can allow for non-conductive processes and non-uniform

debris layers to be included in the model structure by, for example, accounting for stratification in the debris porosity and air

flow through the debris (Evatt et al., 2015), stratification of moisture content and associated phase changes within the debris80

layer (Collier et al., 2014; Evatt et al., 2015; Giese et al., 2020).

As natural debris covers often show vertical variation in porosity, grain size and moisture content, recent studies have

explored multi-layered applications of the thermal diffusion representation of the debris layer. Laha et al. (2022) perform

multiple rather than single regression analysis to account for (i) unknown depth variation in κ in a two-layer model and (ii)

non-conductive heat sources/sinks. They apply various methods to synthetic datasets to highlight that applying the original85

method of Conway and Rasmussen (2000) produces large errors when trying to recover a target κ that varies with depth and

that unequally spaced temperature measurements introduce substantial truncation errors. If unequal spacing of measurements

cannot be avoided, their new Bayesian method of determining κ outperforms that of Conway and Rasmussen (2000). Petersen

et al. (2022) also included a term for depth varying κ into the heat conduction equation and perform multiple linear regression to

solve for its variation with depth in natural debris cover, identifying non-conductive processes as the residual from a comparison90

of the observed and modeled time-dependent temperature evolution. They find non-negligible heat transfer related air motion

and latent heat fluxes within the debris on Kennicott Glacier. These approaches offer solutions for the potential of vertically

varying debris properties and allow quantified assessment of non-conductive processes in measured field sites.

Despite these new developments, the method of Conway and Rasmussen (2000) has been historically widely used (e.g.

Nicholson and Benn, 2006; Haidong et al., 2006; Juen et al., 2013; Chand and Kayastha, 2018; Rounce et al., 2015a; Rowan95

et al., 2021), and has provided the majority of published debris thermal conductivity values used in generalized surface energy

balance models (Reid and Brock, 2010; Fyffe et al., 2014; Evatt et al., 2015), and for regional intercomparisons of supraglacial

debris properties (Fontrodona-Bach et al., 2025). Thus, many studies of debris covered glaciers rely upon the robustness

of debris thermal properties produced following Conway and Rasmussen (2000). The limited number of datasets used to

provide generalized values of effective thermal conductivity have deployed very different field and analytical strategies, with100

4



temporal and spatial sampling intervals, thermistor placement within the debris, debris depth of the sampled site, and sensor

precision all selected ad hoc in different studies and differing from measurement site to measurement site (e.g. Juen et al., 2013;

Chand and Kayastha, 2018; Rowan et al., 2021). For example, spatio-temporal temporal sampling intervals range from two to

tens of centimetres and from five minutes to six hours, sometimes including time-averaged rather than sampled temperatures

(Appendix B). The impact of these choices on the derived κ values are not well addressed in the published literature, but105

for example, the same data from Imja glacier in Nepal analyzed at 30 minute (Rounce et al., 2015a) and 60 minute (Rowan

et al., 2021) intervals yielded thermal conductivity values that differed by almost 40% despite using the same properties to

derive thermal conductivity from κ. This highlights that baseline literature values that are used in surface energy balance

modeling may be differently influenced by sensor, installation and numerical truncation errors, and indicates that care should

be taken when comparing across sites for which different instrumental and analytical choices have been made (e.g. Rowan110

et al., 2021; Miles et al., 2022). Therefore, a deeper exploration of the error sources of this method is warranted, and it would

be advantageous to develop a standardized field and analytical implementation strategies.

2 Aim of this study

This study explores the effect of measurement setup on κ values derived using the method of Conway and Rasmussen (2000)

in order to highlight the potential dependency of published values of thermal conductivity on the spatiotemporal intervals115

chosen for the analysis, and on the sensor precision and locational accuracy. To achieve this we apply the method of Conway

and Rasmussen (2000) to data generated using a forward diffusivity model for a purely conductive system with a specified

value of κ, and assess how closely the known κ is recovered when varying choices of instrumental and analytical setups.

Since the approach recommended by Conway and Rasmussen (2000) is only valid for conductive systems, we focus our

study on a purely conductive system to provide a baseline reference for individual method-related error sources, expanding120

the analysis of the impact of irregular spacings performed in Laha et al. (2022) to include assessment of a wider range of

field measurement choices. By isolating the individual roles of these different error sources, they can be quantified, and their

tendencies can be understood, thereby making a more critical reassessment of the extent to which differences in published

effective thermal conductivity values reflect real world differences in debris properties or instrumental and analytical choices

possible. We provide an interactive tool (https://github.com/calvinbeck/TC-DTD) to allow analysis of the combined errors for125

any given measurement procedure and a best practice guideline on how to minimize the systematic errors of using this method

(Appendix A).

3 Methods

3.1 Artificial data for benchmarking derived thermal diffusivity

To test the method of Conway and Rasmussen (2000) for different scenarios, we generate synthetic data for debris cover thick-130

nesses of 30cm and 100cm and κ values of 5 ·10−7m2 s−1, and 10 ·10−7m2 s−1, to represent a range of values obtained from
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Figure 2. Characteristics of the surface temperature forcing for the artificial data generation, which consists of 10-day timeseries of two

analytical sine curves and three experimental temperature measurements within the debris layer. The sine curves have a average temperature

of 7.5°C and the same amplitude. Surface forcing from field data is derived from the upper most thermistor which lies 1− 5cm below the

surface, as indicated in brackets. Field data 1 and 3 was recorded at Lirung glacier (Nepal) during September 2013 (5cm below surface) and

April 2014 (1cm below surface) respectively and was by provided by Chand and Kayastha (2018). Field data 2 was recorded at Vernagtferner

(Austria) during June 2010 (4cm below surface) and was provided by Juen et al. (2013). The color scheme of these forcings is used in

subsequent figures.

previous field studies from glaciers across the globe (Laha et al., 2022). The interactive tool allows users to perform analyses

for any alternative choice of debris thickness and κ. To generate data for a perfectly conductive system, we force the heat

equation with five 10-day surface temperature time-series (Fig. 2) and a 0◦C boundary condition for the debris ice interface.

The first two days of temperature forcing data are used to initialize the model, and the different debris layer thicknesses are135

represented by varying the number of vertical grid points in the domain while maintaining equidistant spacing.

We use the Crank and Nicolson (1947) method to solve the heat conduction equation for this set of given constraints.

This implicit finite difference method is convergent second-order in time and numerically stable. The method is based on the

trapezoidal rule and is a combination of the Euler forward and backward methods in time. For the thermal heat equation, it

results in the following equations:140

Tn+1
i −Tn

i

∆t
=

κ

∆x2
(Tn+1

i+1 − 2Tn+1
i +Tn+1

i−1 ) (forward Euler) (3)

Tn+1
i −Tn

i

∆t
=

κ

∆x2
(Tn

i+1− 2Tn
i +Tn

i−1) (backward Euler) (4)

Combining these results in the Crank-Nicolson scheme:

Tn+1
i −Tn

i

∆t
=

κ

2∆x2

(
(Tn+1

i+1 − 2Tn+1
i +Tn+1

i−1 )+ (Tn
i+1− 2Tn

i +Tn
i−1)

)
(5)

Because of the implicit nature of the Crank-Nicolson scheme, an algebraic equation or linearizing the equation is necessary145

to solve the next time step. In our case, we can use the boundary conditions T (x= 0, t) = f(t) and T (x=D,t) = 0, where
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f(t) represents the arbitrary temperature forcing function (Fig. 2). Although the method is unconditionally numerically stable

for the heat equation (Thomas, 2013), unwanted spurious oscillations can occur if the time steps are too long or the spatial

resolution is too small. To avoid this, we use the following stability criterion:

κ
dt

dx2
≤ 1

2
(6)150

Meeting this criterion (Eq. 6) for both tested values of κ and all five forcing datasets (Fig. 2), the simulated temperatures

are produced at five minute and two centimeter resolution with float-point precision. The resulting generated data (e.g. Fig. 3)

provides an ideal reference from which temperatures can be sampled in space and time to replicate field measurements from

’well-behaved’ portions of vertical temperature profiles within supraglacial debris, meaning subsets of the data that can be

shown to closely approximate a conductive system.155
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Figure 3. Five-day examples of the artificially generated debris layer temperature timeseries data for the skewed sine forcing (a) and the

field data 3 forcing (b) for a 30cm debris layer with κ of 5 · 10−7m2s−1 using Crank-Nicolson scheme. (c and d) Daily averaged debris

layer temperature profile for the full ten-day time series of the boundary conditions in the upper panels, show that the often-used steady-state

assumption (Evatt et al., 2015) of the daily mean debris layer temperature, shown by a linear temperature gradient, is only fulfilled for

periodic daily temperature forcings.

3.2 Experiments performed

We apply the Conway and Rasmussen (2000) method of deriving apparent κ for a selected range of analytical set ups as

described in the following subsections. When calculating κ from data resampled from the synthetic cases, we calculate a single

7



diffusivity value for the last eight days of each forcing dataset, although the interactive tool also offers the option to calculate

κ at a daily scale for assessment of field datasets. The calculation of the centered spatial derivatives is suitable for for unequal160

grid spacing, but we do not include analysis of unequal vertical thermistor spacings in this study as this was presented in a

previous study (Laha et al., 2022). The properties of the analytical set up that are varied are: ∆t,∆x, varying the precision

of the temperature data, and adding Gaussian noise to assess statistical uncertainty. The performance of each experiment at

recovering the known κ prescribed in the artificial data, is assessed by calculating the relative error:

Relative error =
κTrue−κEstimated

κTrue
(7)165

Positive relative error values thus correspond to an underestimation of κ compared to the known value. As effects of individ-

ual potential sources of error are contingent on other properties of the experimental set up, we present illustrative examples of

the error tendencies and their co-dependencies over a range of properties. The full potential parameter space can be explored

in the interactive tool. First the synthetic data is resampled without any added sensor or installation uncertainty to examine the

behaviour of numerical truncation errors. Subsequently the errors associated with the sensor and installation uncertainty are170

presented.

3.2.1 Quantifying truncation errors in space and time

In theory, the numerical solution to the diffusion problem should be equal to the analytical solution for infinitesimally small

spatial and temporal sampling intervals. Truncation errors are expected to scale with the temporal and spatial increment of the

analysis with respect to the diurnal forcing cycle (Laha et al., 2022). Higher-order approximations would reduce the truncation175

error, but errors due to measurement uncertainties would dominate, as described by Zhang and Osterkamp (1995).

lim
∆t→0

Tt+1−Tt−1

2∆t
= Ṫ & lim

∆x→0

Tx+1−Tx +Tx−1

(∆x)2
= T ′′ (8)

For ∆x,∆t= 0 the equations are not solvable.

For the temporal truncation error, we resample the artificial data both by skipping and by averaging over an increasing ∆t

(Fig 4) from 5 minutes (the native resolution of the artificial data) to 6 hour intervals, to encompass the highest and lowest180

resolution temporal sampling of published field data (Appendix B). When skipping, we select every n-th value and omit the

rest. When averaging, we take the mean temperature over n values. While most studies store samples of the thermistor data at

fixed ∆t, we include an assessment of this averaging approach as some published field data collection campaigns are based

on measurements of temperatures averaged over ∆t (e.g. Rowan et al., 2021). For the spatial truncation error, we resample by

skipping data points in space over a range of intervals to decrease the resolution of the 2cm resolution artificially produced185

data. For this analysis we use the highest resolution temporal forcing with ∆t of 5 minutes and calculate κ for the center of the

debris layer, expanding ∆x symmetrically around this point. For assessing truncation errors due to both temporal and spatial

resampling, the temperature values are used with their float point accuracy from the generated data, which implies perfect

sensor precision.
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Figure 4. Illustrating the two different temporal resampling methods by displaying the temporal grid for different sampling intervals. We

compare the method by skipping every n-th gridpoint (a - blue background) or by averaging over n gridpoints (b - orange background).

3.2.2 Quantifying sensor and installation errors190

Thermistors used to record supraglacial debris temperature profiles over time have varying manufacture stipulated sensor

precision, and there may be uncertainty around their exact location in the debris cover as this can be challenging to measure

with a high degree of accuracy in the field and can change if the debris moves.

To simulate the effect of temperature measurement precision, we discretize the temperature data to correspond with the

measurement precision of 0.1 to 0.4◦C, which is representative of the precision of thermistors typically used in the field. The195

error properties of these differing sensor precisions are examined for a range of spatio-temporal resampling, in which we ensure

symmetrical resampling of ∆x by resampling from the center of the debris layer outwards. Because the observed temperature

changes and gradients are smaller at depth, it is expected that a higher precision of temperature measurement is required to

capture them. Therefore we also examine how the relative error due to sensor precision varies with the depth in the debris

layer at which the analysis is performed. For this we also consider the potential gain from even higher precision sensors by200

including a 0.01◦C temperature discretization, although this is more precise than any of the thermistor properties reported n

the literature.

To simulate cases where either the vertical location of the temperature measurement is inaccurate, or the thermistor is

displaced vertically over time, we use the sampled temperatures at float precision and add a time invariant vertical offset to

each temperature measurement position. Each offset value is randomly sampled from a Gaussian distribution with standard205

deviation of 0.5 centimeters around the true vertical measurement position, to represent an inaccurate field measurement of the

vertical position. If thermistors move within the debris due to settling or debris migration, the positional inaccuracy could be

even be larger, but this would likely be discernible from evidence of debris movement or identified when the thermistors were

removed from the debris layer, allowing affected data to be excluded from further analysis. For both analyses of the effects of

sensor precision and location accuracy we present only the idealised sinusoidal forcing data to best isolate the systematic error210

patterns and how they co-vary with the truncation errors established by the first analysis steps (Section 3.2.1).
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3.3 Statistical uncertainty estimation

The method of Conway and Rasmussen (2000) is only valid in well-behaved conductive systems, and therefore the aim is

to only apply the method to a time period and vertical section where this assumption is largely fulfilled. Therefore our error

analysis so far assumes the debris to be a purely conductive, vertically and horizontally homogeneous system, while in nature,215

the debris cover will not be perfectly homogeneous and some non-conductive processes are expected to be contributing even

in ’well-behaved’ sections to temperature data.

To show that the model related studied error sources remain relevant despite additional external error sources we add random

statistical noise to the data time-series that we perform our analysis on. For this we use the pure sine curve forcing for a

100cm thick debris layer, with ∆x of 2cm and ∆t of 5 resolution for a κ of 5 ·10−7m2s−1. Subsequently each individual float220

precision temperature value of the generated temperature time-series is modified by a value randomly sampled from a Gaussian

distribution with a mean value of 0◦C and a standard deviation of 0.1◦C. This procedure is repeated 20 times to generate a

small ensemble of individually perturbed temperature time-series. The introduction of this statistical noise of σT = 0.1◦C does

not account for any specific physical processes, since non-conductive processes and effects due to spatial inhomogeneity would

produce systematic temperature shifts on a multi-hourly to seasonal time-scale, as observed in some field data sets (Conway and225

Rasmussen, 2000; Nicholson and Benn, 2012; Petersen et al., 2022). The σT = 0.1◦C is rather selected to statistically perturb

the model system and simulate the effect of additional errors. By increasing or decreasing the selected σT value the effect of

the perturbation is respectively amplified or attenuated, but the general impact remains the same. The data is analyzed as in

the previous sections by varying the temporal sampling interval and the vertical position in the debris layer for three selected

vertical grid spacings ∆x (4cm, 8cm, 16cm) to capture the co-dependencies of the error properties with these measurement230

choices. The temporal resampling is performed by skipping to preserve the maximum temperature perturbations to illustrate the

effects of a maximum perturbation. When resampling by averaging, the perturbed values would equal out for longer temporal

averaging periods. For each parameter combination the mean of κ is calculated from the ensemble with a respective standard

deviation to display the value spread.

4 Results235

While the interactive tool provided allows a full range of sampling strategies to be explored, here we present results for selected

cases within the range of realistic instrumental set ups. Our focus is to provide illustrative examples that characterize the error

properties of each individual source.

4.1 Error due to temporal truncation

We illustrate the behaviour of the temporal truncation error calculated for a 100cm thick debris layer with κ of 5 ·10−7m2 s−1,240

for up to 6 hours sampling intervals for both skipping and averaging resampling methods. As few field studies use ∆x as small
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as our 2cm resolution artificial data, we show an example with ∆x of 6cm to better represent field observations. We show the

behavior at two depths within the debris layer to illustrate the depth dependency of the error behavior.

Figure 5. Relative temporal truncation error of recovering κ using different temporal sampling intervals: Comparison of different temperature

forcing for skipping (a,b - blue boundary) and averaging (c,d - orange boundary) re-sampling methods for two different depths in the 1.0m

debris layer with a target κ of 5 · 10−7m2 s−1.

The relative error in κ due to temporal truncation error shows a general pattern of monotonic increase with increasing ∆t

for the skipping method (Fig. 5a,b). Consistently positive relative errors indicate that increasing temporal sampling interval245

systematically underestimate κ. At shallow depths, the less sinusoidal the temperature forcing is, the larger the error at all

sampling intervals (illustrated by the 8cm depth cases shown in Fig. 5a, c). A greater depths, the error for the sinusoidal

forcing remains similar to that in the near surface, while the noisy surface diurnal signals are smoothed at depth and the

associated error tends to be more similar to those of the sinusoidal surface forcing (illustrated by the 50cm depth cases shown

in Fig. 5b, d). When data is resampled by averaging, the temporal truncation error is very similar for the sine curve but, for the250

noisy field forcing data, averaging reduces the error compared to the skipping resampling method (Fig. 5c, d). These patterns

of error behavior are also seen for κ of 10 · 10−7m2 s−1.

Considering the maximum relative error produced by typical field installations, we can take the case of calculating diffusivity

at a point as close to the surface as is reasonably possible at 4cm, requiring a thermistor spacing of 2cm, combined with the

longer typical time sampling interval of 1 hour, and calculating over a period with noisy surface forcing. This combination255

yields a maximum temporal truncation relative error of 25%. To minimize the error from a truncation perspective, a minimum
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temporal resolution is desirable, and selecting days with surface temperature forcing that is closer to sinusoidal will decrease

errors that may otherwise be significant at shallow depths.

4.2 Error due to spatial truncation

We illustrate the behaviour of the spatial truncation error calculated for a 100 cm thick debris layer with κ of 5 and 10 ·260

10−7m2 s−1, for ∆x up to 50cm, using a sample of the five surface forcing datasets at ∆t of 5 minutes.

Figure 6. Comparison of the spatial truncation error for two different κ values and forcing types, calculated for the central position in a 1.0m

debris layer for symmetrically increasing ∆x. For clarity we show only one curve for the higher diffusivity value, as all curves are shifted

similarly when varying the target κ. The forcing datasets are at float precision with ∆t of 5 minutes.

Spatial truncation error values (Fig. 6) remain quasi-constant for low ∆x, up to when the centered differencing scheme spans

more than 20cm, and thereafter increase rapidly with increasing ∆x. The spatial truncation error is relatively insensitive to

the different surface temperature forcings, and in contrast to the temporal truncation error does not vary markedly with debris

depth. Instead the κ imposes a strong influence, with higher κ having smaller errors, shifting the respective curves to the right as265

shown for the case of the sinusoidal forcing in Fig. 6. Given that the diffusivity is the target of sensor installations, this parameter

cannot be known in advance and the results suggest that ∆x of below 14 cm is desirable to minimise spatial truncation errors

across a range of potential κ. The consistently positive error values mean that the spatial source of truncation error also has the

tendency to systematically underestimate κ, and increasingly so with more widely spaced temperature measurements.

4.3 Error due to thermistor precision270

To illustrate the role of temperature sensor precision, we first focus on the range of sensor spacings that are not affected by

the spatial truncation error, i.e. for ∆x up to 14cm (Fig. 7), and show the relative error for a ∆t ranging from 5 minutes to

several hours. The error due to temperature discretization is generally less pronounced for smaller temperature discretizations,

representing greater thermistor precision. Maximum errors occur for small values of ∆x, decreasing to stable relative errors of
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Figure 7. Relative error of estimated κ due to thermistor temperature discretisation of 0.1°C and 0.4°C for vertical sampling intervals up

to 0.14m and ∆t resampled by skipping (a, b) and averaging (c,d)) for the intervals shown in the legend, such that the 5 minute dataset is

identical for both methods. The case presented is a centered sampling of a 0.3m thick layer with target κ of 5 · 10−7m2 s−1 forced with a

sinusoidal surface forcing.

< 25% for ∆x > 6cm, above which the error also decreases systematically with decreasing temporal sampling interval. Values275

of ∆x between the dominant spatial truncation error (Section 4.2) and the error due to the sensor precision are desirable, so

between ca. 6 and 14cm for the representative parameter space explored in our analyses.

The depth dependency of the error associated with discretization indicates the importance of high precision sensors for

sampling the debris at depth (Fig. 8). For a ∆x of 2cm, only measurements with a maximum thermistor uncertainty of 0.01◦C

would produce correct values, and then only for the first 20cm of debris. Increasing ∆x to 6cm, the relative error decreases for280

all curves. Still, the thermistors used in most field experiments, which have reported precision ranging from 0.1 to 0.4◦C would

13



Figure 8. Relative error of estimated κ due to thermistor discretization by depth for a 1.0m debris layer, with 5 minute sinusoidal surface

forcing for ∆x of (a) 2cm and (b) 6cm, with the different color lines corresponding to different values of temperature discretization.

not produce correct values at depth. For the case shown it would become difficult to obtain reliable values at depths beyond

60cm even with high-precision thermistors. The error behavior is dependent on capturing temperature gradients sufficiently

well, so the specific error limits are dependent on the amplitude of the surface forcing fluctuations and the diffusivity as well

as the chosen discretization and spatio-temporal sampling. For a given discretization, meaningful values can be obtained at285

greater depth by enlarging the ∆x, but higher precision sensors are always an advantage. As for both types of truncation error,

the sensor precision error systematically underestimates the target κ.

4.4 Error due to vertical thermistor position inaccuracy

Conway and Rasmussen (2000) report that a vertical error of 0.5cm would result in a marginal temperature difference of 0.1◦C

and 0.02◦C for their measurement setups. They and others (e.g. Nicholson and Benn, 2012) interpret this to mean that a vertical290

thermistor displacement would not affect the results as long as this value does not change in time.
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Figure 9. Illustrating the influence of thermistor displacement on estimated κ, by randomly displacing locations by a normal distribution

with standard deviation of 0.5cm over a range of vertical spacing intervals. The true/target thermal diffusivity is shown by the horizontal

black line, showing that for small temperature sampling intervals sensor displacement results in large inaccuracies in κ.

Our analysis, however, shows that low accuracy knowledge of the temperature measurement location could produce a sys-

tematic error for smaller ∆x. For example, in the relatively rare case that sensors are installed with a ∆x of two centimeters,

the resultant error on calculated values of effective thermal diffusivity is so large that the data would become unusable. With

increasing ∆x, the relative error decreases, such that the mean κ over the depth of the layer recovers the target value. This error295

source is the only one of this study that has the potential to increase κ values, as shown in Fig. 9 by the spread of κ above the

known reference value.

4.5 Statistical uncertainty estimation

In contrast to the noise-free case shown in Figure 5, with the addition of statistical noise, the relative temporal truncation error

now increases with depth and the predominance of relative errors < 25% in the sub-hourly ∆t range can now only be recovered300

in the near-surface portion of the debris layer. The standard deviation of the error curves nearer the surface is less than a few

percent of the relative error therefore showing a minimal ensemble spread, while at depth the ensemble spread is larger. From

this we can see that where the random noise introduced is large compared to the spatio-temporal temperature gradients, as is

the case at greater depths in the debris layer, the method essentially is no longer applicable. Increasing the ∆x decreases the

relative error found at depth but has little impact on the smaller errors nearer the surface. At larger ∆x even the near surface305

values now have non-zero relative error for short ∆t; this is due to the spatial truncation error of the vertical sampling interval

as displayed in Fig. 6 coming into play, while at greater depth in the debris the larger ∆x decreases the relative error although

this still remains > 0.6 with a large relative error standard deviation values of ∼10%. In our example, the combination with

the most precise recovery of the target κ, with relative error approaching zero, was for ∆x= 8cm at a 18cm depth and at a

5 min. temporal sampling interval. For this combination the relative error due to temporal truncation error increases to ∼10%310

and ∼20% at ∆t of 120 min. and 240 min. respectively.

Displaying the noise-induced relative error of κ more explicitly in relation to the depth in the debris over the span of the

shared calculation range (0.18−0.82cm), highlights that there are characteristic transition zones between where the method is

still applicable and where it is not and, as these scale with the relative magnitude of the noise, the transition location is dependent

15



Figure 10. Relative errors of thermal diffusivity of statistically perturbed ensemble data for a 1.0m debris layer varied by temporal sampling

interval for three different depths in the debris layer and three different ∆x (4cm, 8cm, 16cm). The ensemble consists of 20 cases with each

individual temperature value being perturbed by a Gaussian distribution with a standard deviation of σT = 0.1◦C. The solid line is the mean

relative error value and the shaded background represents the standard deviation of the relative error.

Figure 11. Relative errors of thermal diffusivity of statistically perturbed ensemble data for a 1.0m debris layer varied by the depth in the

debris layer for three different sampling intervals and vertical grid-spaces ∆x (4cm, 8cm, 16cm). The ensemble consists of 20 individual runs

of each 8 days with each individual temperature value being perturbed by a Gaussian distribution with a standard deviation of σT = 0.1◦C.

The solid line is the mean relative error value and the shadowed background represents the standard deviation of the relative error.

on the ∆x used in the analysis (Fig. 11), as well as the amplitude of the surface forcing, the diffusivity and the temperature315

discretization. For example, for the upper-most section of the artificial debris layer all curves with 5min. and 60min. sampling

intervals provides relative errors below 10%, while in the data combination we show, the transition to relative error > 20%
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for these sampling intervals is 0.3m, 0.45m, 0.65m depth for vertical grid-spacings of 4cm, 8cm and 16cm respectively.

Therefore, as is the case for the depth dependence of temperature discretization (Fig. 8), increasing the ∆x increases the depth

at which meaningful values to be recovered when noise is present. However the increasing grid-spacing also results in a ∆x320

truncation error which is visible in Fig. 11c as a vertical displacement in relative error values additional to the displacement

caused by the temporal truncation error.

5 Discussion

In previously published values, most apparent thermal diffusivity derived using the method of Conway and Rasmussen (2000)

are below 10 · 10−7m2 s−1, typically ranging from 1 to 30 with some outlier values exceeding 100 · 10−7m2 s−1 (see Table325

2 in Laha et al. (2022)). The implementation errors that our analysis reveals are often comparable to this range of published

values, highlighting how relevant it is to correctly consider the numerical errors in choosing how to apply this method.

While the interactive tool accompanying our analysis allows a wider range of the parameter space to be explored, the cases

we present were chosen to characterize the main numerical error sources inherent in the method within the parameter space of

published values (B). The numerical and measurement implementation error sources investigated here all tend to systematically330

underestimate κ, while the relative error associated with uneven thermistor spacing (tested for a 3 thermistor cases by Laha

et al. (2022)) was previously identified to systematically overestimate κ by up to 50% at thermistor spacing rations of 1:5.

In general the numerical errors associated with applying this method are all related to how well the temperature gradients in

space and time within the debris cover can be captured by the instrumental set up. Temporal truncation errors in the absence of

statistical noise are typically < 25% in most expected deployment settings, at sampling intervals of≤ 60 minutes. Near-surface335

measurements suffer more error because the diurnal temperature cycle at the surface is most non-sinusoidal and therefore

produces larger temporal truncation errors. Consequently, conditions that more closely approximate sinusoidal conditions (i.e

clear sky stable atmospheric conditions) reduce the errors in the near surface layers, but this becomes less relevant at depth, as

surface noise introduced by weather is progressively smoothed out at greater depth in the debris. Spatial truncation due to the

choice of thermistor spacing is not very sensitive to the non-sinusoidal forcing, but becomes ≥ 25% at ∆x above ∼ 25cm for340

the range of κ reported in the literature, and the error is larger for smaller κ. The ∆x range at which errors are small and similar

regardless of the forcing and κ is≤ 14cm, providing a conservative upper bound to limit spatial truncation errors. Even though

a ∆t or ∆x −→ 0 would produce a minimal truncation error, too small sampling intervals also can produce erroneous results

because for a ∆t −→ 0, the linear regressions coefficient of determination decreases strongly. In practice, this is not a problem

for the temporal sampling since short temporal sampling intervals can always be resampled afterwards. A more significant345

problem occurs if low precision thermistors are positioned too close to each other, especially if the profile is comprised of only

a few thermistors, making it impossible to spatially resample the temperature data. While this effect diminishes to a stable

value of relative error ≥ 25% for ∆x above ∼ 6cm, with increasing depth, the thermistors must be further apart otherwise the

thermistor measurement uncertainty dominates the measurement. Therefore, although the highest precision thermistors should

always be chosen if possible, using thermistors with maximum precision becomes even more important at greater depths in350
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the debris layer. The only error source investigated here that has the potential to overestimate κ is that due to inaccurate

temperature measurement location. This can happen due to poorly measured positions, or due to debris settling after sensor

installation of if the thermistor profiles are installed on a slope, that is subject to gradual gravitational sliding or reworking.

In contrast to Conway and Rasmussen (2000), who showed that a constant error in the thermistor position was not important

to the analysis, we find that, at least for very small ∆x the calculated κ does depend on the thermistor positions relative to355

each other being correctly known and sustained over the measurement period. However, thermistors are typically placed more

a than a few centimeters apart this error source might be expected to have little effect if the κ is calculated at several levels int

he debris cover, as the mean value of the location perturbed cases recover the target diffusivity. Introducing a statistical noise

term highlights the manner in which noise degrades the temperature gradients that the method relies on, particularly at greater

depths in the debris where temperature variations in space and time are small compared to the introduced noise term. Thus care360

must also be taken to assess if the method is being applied to portions of the debris layer where the gradients are well captured.

In the best practice guidelines (Appendix A) we address all sources of methodological error discussed in this paper sug-

gesting optimal implementation strategies for future field studies that wish to deploy these methods of analysing representative

thermal conductivity of natural debris layers following the method of Conway and Rasmussen (2000). Our recommendations

differ somewhat from those of Laha et al. (2022), as the purpose is different. While Laha et al. (2022), sought to determine the365

optimal method to determine sub-debris ablation rates directly from temperature sensors, using a minimal number of thermis-

tors, we seek to understand the best way to determine a representative κ, from which effective thermal conductivity suitable

for onward use in generalized surface energy balance models can be derived. For their purpose, they propose to "set the sensor

spacing to be 1/5th of the debris thickness at the location", however the non-linear nature of the single error sources presented

in this paper indicates that we cannot generalize such statements if the goal is parameter determination, rather than direct370

ablation determination. Furthermore, they stated "the top sensor should be placed approximately at the middle of the debris

layer", as this captures the relevant flux being delivered to the underlying ice. Our analysis indicates that while it is true that

thermistors too close to the surface produce large truncation errors, the same is valid for too deep thermistors as the temperature

gradient is to small relative to the thermistor precision. By providing an open source interactive tool that can be used to explore

all the methodological sources of error in implementing the most widely-used method of determining κ we offer a ready-to-use375

means for determine the field set up that minimises these numerical methodological errors. The intention is that, prior to a new

field deployment, the error response of the expected conditions of debris thickness, surface forcing amplitude, sensor number

and precision can be explored and the best possible field deployment of sensors can be made.

In addition to the errors related to measurement set up and analysis procedure investigated in this study, non-conductive

processes within the debris layer (e.g. rain, phase changes) can also be present(Conway and Rasmussen, 2000; Nicholson and380

Benn, 2012; Petersen et al., 2022). Unfortunately, it is not always clear in the published literature that the thermal diffusivities

and associated thermal conductivity values were derived from optimal conditions sampled within the dataset. The suitability

of the sampled debris temperature profiles for determining debris thermal parameters must be carefully evaluated on a case-

by-case basis using meteorological data and closely evaluating the measurements and their gradient functions (Petersen et al.,

2022) in order to establish that the data sub-set represents predominantly conductive conditions, before applying the method385
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of Conway and Rasmussen (2000). Once a suitable effective thermal conductivity is established based on ’well-behaved’

conditions these base values can be modified in implementation within a surface energy balance model to account for changes

in the pore fluid type to allow simulation of varying wet/dry debris conditions (Collier et al., 2014; Giese et al., 2020).

The recently published database of supraglacial debris properties, DebDab v1 (Fontrodona-Bach et al., 2025), reveals that

from the 176 values of debris thermal conductivity, only 33 report an associated uncertainty, and while 121 include the debris390

layer thickness, only 23 report on details such as the thermistor depth. To facilitate intercomparison of these data it would be

valuable to include the temporal sampling used, as well as the rock properties and porosity used to convert κ to thermal con-

ductivity. Deeper consideration and potential common reanalyses of these data would require the original thermistor data to be

publicly available, which is not always the case. Reanalyzing previously published vertical temperature profiles with common

resampling strategies, based on the findings of this study, would facilitate intercomparison of κ values, while reanalysis using395

the methods of Petersen et al. (2022) and/or Laha et al. (2022) might yield more robust and representative global values by pro-

viding respectively a more rigorous assessment of non-conductive processes and inclusion of multilayered thermal properties

within the natural debris layers that have been sampled.

6 Conclusion

Conway and Rasmussen (2000) provide a practical method to estimate thermal diffusivity values from a vertical array of400

thermistors in supraglacial debris layer, which is applicable for spatially homogenous debris which is behaving as a close

approximation to a purely conductive system. Although this method has become the standard method for determining effec-

tive thermal conductivity to be used in surface energy balance models of sub-debris ice ablation (e.g. Nicholson and Benn,

2006, 2012; Juen et al., 2013; Rounce et al., 2015a; Chand and Kayastha, 2018; Rowan et al., 2021), our analysis demonstrates

several ways in which the derived κ is sensitive to numerical errors related to instrumental set up and analysis choices, even405

when solving for a pure conduction case. The method has regularly been used without considering these error sources, making

it difficult to robustly compare published values derived using this method.

To address this we provide an open source tool (https://github.com/calvinbeck/TC-DTD) where researchers can investigate

the combined opportunities and limitations of applying the method by Conway and Rasmussen (2000) to glaciology and

beyond. We hope this facilitates more consistent and rigorous experimental design in future field measurements determining410

debris thermal properties, by allowing users to simulate their own artificial data, that most closely approximates their planned

field site, and repeat all our analyses presented here with their own artificial or field datasets.

In this paper we used this tool to provide illustrative examples of the magnitude and tendencies of the systematic errors

associated with individual instrumental and analytical choices. Based upon our findings we provide a set of best-practice

guidelines (A) to minimize systematic errors in applying the method of Conway and Rasmussen (2000). While recent publi-415

cations highlight limitations of the simplest deployment of the heat diffusion equation in natural debris layers due to the role

of non-conductive processes and internal debris stratification (Laha et al., 2022; Petersen et al., 2022), our analysis and best

practice guidelines show the sampling strategies that will yield the best results, provided that the temperatures underpinning
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the analyses demonstrably sample conditions that closely approximate a homogeneous conductive system. Our analysis also

highlights that it is challenging to interpret derived debris thermal properties if the sensor and analysis system is not reported420

and accounted for. In the light of this we encourage more rigorous reporting of implementation strategies and uncertainty in

order to facilitate cross-comparison of reported results.

Code availability. Publicly available under: https://github.com/calvinbeck/TC-DTD
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Appendix A: Best practice guidelines

Our analysis leads us to the following best practice guidelines to help other researchers to get as much as possible out of their

measurements.

435

Thermistor precision:

As small as possible, but not larger than 0.1 K.
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Debris layer thickness:

To determine a representative thermal diffusivity from which robust, generally applicable, thermal conductivity values

can be derived, sampling a minimum of 40cm but ideally deeper (e.g. 100 cm) debris thickness is advised. The max-

imum depth that can be meaningfully sampled is limited by the thermistor precision and temperature gradients in the

debris layer, which can be simulated beforehand using the provided tool.

Number of thermistors:

The method requires at least three thermistors, but more thermistors make it possible to calculate diffusivity values for

different depths and therefore makes it possible to identify non-conductive processes or other inconsistencies within

the debris layer. With only three temperature sensors it is difficult to assess if the sampled debris meets the requirement

of closely approximating a conductive system. A second redundant set of thermistors can also be helpful to rule out

measurement errors.

Thermistor installaton:

Choose a site that is not expected to be subject to gravitational reworking or sliding of the debris, and where lateral heat

fluxes are expected to be minimal. Place thermistors at equal vertical intervals of 8 to 20cm. Even though the upper-

most layer often does not produce ideal results, it can be helpful to place a thermistor at or near the debris-surface to

provide surface forcing data. Depending on the depth, the thermal diffusivity, and temperature gradient of the debris

layer, the method produces more significant errors with a greater depth limiting the depth where it makes sense to

place thermistors. The sweet spot can be determined by simulating the debris layer of interest beforehand with model

parameters from previous measurements or other estimations.

Thermistor recovery:

Thermistors have to be carefully extracted, and their vertical positions recorded, at the end of the measurement period

to make sure the thermistors haven’t moved in the debris while deployed. In case the thermistors moved, it might be

necessary to discard the dataset. Therefore mounting thermistors to a thermally insulated rod or set of rods so that their

positions are fixed is a valuable approach to eliminate this potential error source.
440

Temporal sampling interval:

Sample with a temporal resolution as short as possible and then average over a 5 minute period. Over such a short

period, the temperature is assumed to be nearly constant and therefore not to reduce gradients. By averaging the

temperature over a short interval, discretization is reduced.
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Measurement duration and conditions:

It depends on the scientific objective and seasonality, but at least a week of suitable stable meteorological conditions

are needed. Therefore, if one has unlucky conditions, a measurement duration of several months could be necessary.

A shorter period of predominantly sinusoidal surface temperature forcing and evidence that non-conductive processes

are minimal is the best way to obtain robust values, so avoiding periods of precipitation, seasonal change and phase

change is advised.

Appendix B: Field measurement overview
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