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Abstract.

In tectonically active mountain regions, the thinning of alpine glaciers due to climate change favors the development of

debris covered glaciers. This debris layer significantly modifies a glacier’s melt depending on the debris thickness and therefore

modifies its evolution. Debris thermal conductivity is a critical parameter for calculating ice melt beneath a debris layer. The

most commonly used method to calculate apparent thermal conductivity of supraglacial debris layers is based on an estimate5

of volumetric heat capacity of the debris and simple heat diffusion principles presented by Conway and Rasmussen (2000).

The analysis of heat diffusion requires a vertical array of temperature measurements through the supraglacial debris cover. This

study explores the effect of the temporal and spatial sampling interval, and method on the thermal diffusivity values derived

using this method. Results show that increasing temporal and spatial sampling intervals increase truncation errors and therefore

systematically underestimate values of thermal diffusivity. Also, the thermistor precision, the shape of the diurnal temperature10

cycle, and vertical thermistor displacement result in systematic errors. Overall these systematic errors would result in an

underestimation of glacier ice melt under a debris layer. We have developed a best practice guideline to help other researchers

to investigate the effect of the sampling interval on their calculated sub-debris ice melt and better plan future measurement

campaigns.

1 Introduction15

A glacier’s response to climate forcing is drastically modified by its debris cover (Østrem, 1959; Rowan et al., 2015; Huo

et al., 2021; Mayer and Licciulli, 2021; Nicholson et al., 2021). However, debris cover has only recently been incorporated

into global scale glacier models (Rounce et al., 2015) because it was previously assumed to affect only a relatively small part

of the glacier (Hock et al., 2019). Newer studies (Herreid and Pellicciotti, 2020) show that 7.3± 3.3% of all mountain-glacier

area is covered by a rock debris cover. This value is likely to increase in the future as global studies conclusively show that a20

glacier retreat and thinning due to a warming climate results in a debris layer thickening and increase in surface area (Deline

and Orombelli, 2005; Kellerer-Pirklbauer et al., 2008; Quincey and Glasser, 2009; Bhambri et al., 2011; Bolch et al., 2012;

Kirkbride and Deline, 2013; Thakuri et al., 2014; Scherler et al., 2018; Tielidze et al., 2020). Therefore, the impact of these

debris-covered areas will become even more relevant in the future.

1

https://doi.org/10.5194/egusphere-2023-2766
Preprint. Discussion started: 27 November 2023
c© Author(s) 2023. CC BY 4.0 License.



Most of these debris-covered glaciers occur in tectonically active mountain regions such as Alaska, the European Alps,25

High Mountain Asia, or New Zealand (Herreid and Pellicciotti, 2020). Here, large amounts of debris migrate into the ice

through glacial and periglacial processes (Shugar and Clague, 2011; Scherler et al., 2018; Anderson et al., 2018). This debris is

transported englacially to the ablation area of the glacier, where it melts to the surface and forms a supraglacial debris cover or

thickens the existing layer (Nicholson and Benn, 2006; Kirkbride and Deline, 2013; Anderson et al., 2018), as shown in Figure

1.30

Figure 1. Scheme of a debris-covered glacier with debris transport due to bed-rock erosion from release area to melt out area. Zoom of

thermal diffusivity measurement site, consisting of thermistors at several heights between the near-surface and the debris-ice interface.

In comparison to clean ice, the debris layer strongly modulates the glacier’s melt. Below a certain critical debris thickness

or where debris is patchy, ice melt is amplified due to its higher absorptivity of short-wave radiation in comparison to clean

ice. On the other hand, thicker debris layers reduce ice melt due to the insulation and attenuation of the diurnal heating signal

(Inoue and Yoshida, 1980; Kayastha et al., 2000; Kirkbride and Dugmore, 2003; Mihalcea et al., 2006; Brock et al., 2010;

Fyffe et al., 2014; Minora et al., 2015). This debris-depth-dependent ablation rate varies for different debris layer compositions35

and prevailing climatological conditions but retains the same character (Fig. 2).

The critical debris thickness beyond which sub-debris ice ablation is inhibited compared to clean ice ablation ranges from 15

to 115mm (Østrem, 1959; Mattson, 1993; Nicholson and Benn, 2006). The specific value depends on the optical and thermal

properties of the debris such as lithology type, size, and color, as well as latitude and elevation and the prevailing meteorological

conditions (Inoue and Yoshida, 1980; Nakawo and Takahashi, 1982; Adhikary and Miyazaki, 1997; Reznichenko et al., 2010).40

Therefore in contrast to clean ice glaciers, where the melt is most significant at low elevations towards the glacier tongue, the

melt of debris-covered glaciers depends more on the debris depth than on the elevation (Shah et al., 2019). The diurnal energy

cycle creates a thermal imbalance within the debris layer, making estimations of sub-debris ice melt difficult on sub-diurnal

timescales (Reznichenko et al., 2010; Nicholson and Benn, 2012). This thermal instability can be seen in vertical temperature

profiles with a non-linear temperature gradient due to the prevailing meteorological conditions (Conway and Rasmussen, 2000;45

Reid and Brock, 2010; Foster et al., 2012; Rounce et al., 2015)). The supply of melt energy to the underlying ice is dependent

on the heat transfer through the debris cover, which, although it can occur by several processes is usually represented as an

apparent thermal conductivity. The method presented by Conway and Rasmussen (2000) is widely used in publications to
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Figure 2. Comparing different measurements of the so-called Østrem curves for different glaciers by displaying the daily melt rate versus

the debris depth. The figure is redrawn from Mattson (1993).

calculate the apparent thermal conductivity of supraglacial debris layers (e.g.: Nicholson and Benn, 2006; Haidong et al.,

2006; Rounce et al., 2015). It is based on an estimate of the volumetric heat capacity of the debris and simple heat diffusion50

principles. The analysis of heat diffusion requires a vertical array of temperature measurements (thermistors) through the

supraglacial debris cover (Fig. 1). The existing, and limited, sets of field data are used to provide generalized values for the

effective thermal conductivity of unmeasured glacier sites and to compare between sites. However, the parameters for temporal

or spatial sampling intervals, thermistor spacings, and debris depths used in the application of the standard method presented

by Conway and Rasmussen (2000) are selected ad hoc and differ from measurement site to measurement site (e.g. Juen55

et al., 2013; Chand and Kayastha, 2018; Rowan et al., 2021). Few publications report a robust uncertainty estimate alongside

the derived thermal conductivities. This study explores the effect of the chosen temporal and spatial temperature sampling

interval and other systematic measurement errors originating in the measurement setup on the derived thermal diffusivity

values. Artificially generated data is used to estimate the significance of each of the possible error sources. We present an

online tool to explore these errors interactively and a best practice guideline on how to minimize the systematic errors inherent60

in the standard methods of Conway and Rasmussen (2000).

2 Methods

Thermal conduction describes the flux of thermal energy within or between solids, liquids, or gases due to a temperature

gradient (e.g., Borgnakke and Sonntag, 2020). Thermal conductivity k is therefore the material property that describes how

quickly a material conducts thermal energy. While conducting energy the material also takes up thermal energy at a certain65

rate which is called the heat capacity c. This value is calculated by multiplying the specific heat capacity cs with the material

density ρ. Because we can not directly measure a glacier’s debris layers thermal conductivity we estimate the thermal diffusivity

κ instead (e.g., Salazar, 2003), which is the ratio of thermal conductivity and heat capacity.
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κ =
k

ρ · cs

← thermal conductivity
← heat capacity

(1)

Based on Fourier’s law of conduction q =−k∇T , the one-dimensional heat conduction equation for a homogeneous,70

isotropic medium can be derived (Fourier, 1955; Cannon, 1984). Here q represents the local heat flux density, k the thermal

conductivity, and T the temperature.

∂T

∂t
= κ

∂2T

∂x2
(2)

While supraglacial debris is not homogeneous and non conductive processes could also contribute to heat transfer, previous

research showing linear mean multi-day temperature profiles suggest that the application of 2 to supraglacial debris is generally75

justifiable (Conway and Rasmussen, 2000; Rowan et al., 2021). The heat equation allows us to calculate the thermal diffusivity

given a known temporal temperature gradient and a known second derivative of temperature with respect to space (Bozhinskiy

et al., 1986). We follow the approach by Conway and Rasmussen (2000), which has become a standard method for this task

(e.g., Nicholson and Benn, 2006; Juen et al., 2013; Chand and Kayastha, 2018; Rowan et al., 2021; Laha et al., 2022). This

approach requires a temperature time series from the debris layer with a vertical array of thermistors (Fig 1). From this, the80

discrete temporal and spatial derivatives of the heat conduction equation can be calculated individually (see section 2.1). We use

statistical analysis (see section 2.2) to estimate the value of ”apparent” thermal diffusivity κ (Conway and Rasmussen, 2000)

assuming a constant density and specific heat capacity. This value is only apparent since one assumes that all energy transfer

is by conduction, though subsequently, we will refer to it as thermal diffusivity for simplicity. To explore the capabilities and

limitations of this approach we apply this method to artificially generated data with a known value of thermal diffusivity (2.4),85

which allows us to individually quantify systematic and statistical errors by error source.

In some cases, analysis of field data to determine apparent thermal diffusivity at several levels within the debris cover, rather

than as a bulk analysis over all depths, reveals vertical variation in thermal conditions, consistent with stratification of grain

size and water content observed in natural debris covers and/or non-conductive processes (Conway and Rasmussen, 2000;

Nicholson and Benn, 2012; Petersen et al., 2022). This additional complexity has been addressed in some model studies of90

energy flux through debris cover that allow, for example, stratification of moisture content Collier et al. (2014); Evatt et al.

(2015); Giese et al. (2020). Related inhomogeneity of thermal properties in the debris cover has been accommodated in expan-

sions of the heat equation For example,Laha et al. (2022) perform multiple rather than single regression analysis to account for

unknown depth variation in thermal diffusivity in a two-layer model and non-conductive heat sources/sinks. Similarly, Petersen

et al. (2022) also included a term for depth varying thermal diffusivity into the heat conduction equation and perform multiple95

linear regression to solve for thermal diffusivity and its variation with depth in natural debris cover, identifying non-conductive

processes as the residual from a comparison of the observed and modelled time dependent temperature evolution. Laha et al.

(2022) compare the method of Conway and Rasmussen (2000), to their newly introduced Bayesian inversion method of deter-

mining debris thermal properties, for both homogenous and prescribed two-layer debris properties. For the homogenous debris
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case they highlight the importance of equal vertical spacings between thermistors to reduce truncation errors, and show that if100

unequal spacing cannot be avoided, the Bayesian method outperforms that of Conway and Rasmussen (2000). As expected, for

the two layer debris case they demonstrate that the model versions accommodating this structure outperform model versions

forced to solve for a single layer. They limit their multi-layer analysis to the case of three data points within the debris layer

and explore the impact of the sampled spacing and ratio of thermal diffusivity above and below the central point. Based on

theory and the analysis presented in these two papers, the new or modified methods appear to offer advances on the method of105

Conway and Rasmussen (2000), but further analysis with a wider selection of datasets would help establish the robustness of

the improvement. In this work, we nevertheless focus our analysis on the method of Conway and Rasmussen, as this has been

most widely applied in the literature, and understanding the sources of error allows a survey of the likely cross comparability

of various debris thermal conductivity values published in the literature. Furthermore, for equally spaced sampling in homoge-

nous debris layers, as in our experiments in this study, it has been shown to perform as well as the alternatives (e.g. Laha et al.,110

2022).

2.1 Numerical approximation

Since our measurement involves discrete values in time and space, we must apply a finite difference method to the one-

dimensional heat equation (eq. 2). Therefore we use a second-order accurate central differencing scheme (e.g., Strikwerda,

2004). This second order accurate scheme optimizes the differential approximation for the central of three gridpoints. The115

partial derivative for an arbitrary function f(n) towards a dependency n can be written as follows:

∂f(n)
∂n

≈ f(n + h)− f(n−h)
2h

+O(n2) (3)

This equation is only valid for equal grid spacing h. If we apply this scheme to the derivatives in the 1D heat equation (eq.

2), we get the following two equations:

∂Tn
i

∂t
≈ T i+1

n −T i−1
n

2∆t
+ O(t2) (4)120

∂2Tn
i

∂x2
≈ Tn

i+1− 2Tn
i + Tn

i−1

∆x2
+ O(x2) (5)

Field measurement sites often do not have equal thermistor spacings, so the second spatial derivative has to be transformed

to unequal grid spacings described by Sundqvist and Veronis (1970). Numerical approximation schemes result in truncation

error, such as using the central difference scheme with second-order accuracy. Truncation errors are expected to scale with

the temporal and spatial increment of the analysis with respect to the diurnal forcing cycle Laha et al. (2022). Higher-order125

approximations would reduce the truncation error, but errors due to measurement uncertainties would dominate, as described

by Zhang and Osterkamp (1995). In the analysis in this paper, we will analyze the effects of the combined truncation errors of

the spatial and temporal derivatives.
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2.2 Statistical analysis

Except for the boundary values, we obtain a value for the temporal temperature gradient and the second spatial derivative for130

each grid point. We plot these two values separately on the x-axis and y-axis and see a correlation for good measurement data.

This correlation becomes even better if we consider only calculated values for one height in the debris layer.

Due to the one-dimensional heat equation, we expect a linear correlation between both derivatives. Therefore, we fit a simple

linear regression to the data with only the two parameters slope and y-axis intercept (Weisberg (2005)).

∂T

∂t
= κ

∂2T

∂x2
+ const. (6)135

Here, the value for the slope corresponds to the value of the thermal diffusivity κ, and the intercept accounts in part for the

thermistor’s systematic temperature error (Conway and Rasmussen (2000)), which is why we can neglect these in our error

analysis. To obtain the best linear fit, we use the least-squares method (e.g. Lawson and Hanson, 1995). We look for the fit that

minimizes the sum of the distance squares (residuals) between the linear fit function and the measured data.

2.3 Measurement uncertainty140

To estimate the magnitude of statistical measurement uncertainties relative to the calculated value, we use propagation of uncer-

tainty based on the centered difference scheme equations (Ku et al., 1966). We identify the error in the thermistor temperature

accuracy and the vertical spacing in the debris as the two primary measurement-related uncertainty sources in the thermal heat

equation. The uncertainty on the distance between thermistors can be calculated using the single uncertainties of the vertical

spacings. Since the errors in vertical spacing of each thermistor are assumed to be equal we get the following equation:145

h =
xi+1−xi−1

2
→ σh =

√
2 ·σx (7)

The timing is assumed to be error-free because its accuracy is numerous orders of magnitude smaller than the set point. We

then receive the following errors σ on the respective derivative for the equal grid spacing case.

σ ∂T
∂t

=
σT√
2∆t

(8)

σ ∂2T
∂x2

=

√
6σ2

T

h4
+ 4 ·σ2

h

(
Tn

i−1− 2Tn
i + Tn

i+1

)
(9)150

In the analysis, the magnitude of the calculated measurement uncertainties on the derivatives will be compared to the calcu-

lated derivative values themselves.
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2.4 Artificial data

To test the method by Conway and Rasmussen (2000) for different scenarios, we need to generate artificial measurement

data with a known thermal diffusivity value. We use the method by Crank and Nicolson (1947) to solve the heat conduction155

equation. This implicit finite difference method is convergent second-order in time and numerically stable. The method is based

on the trapezoidal rule and is a combination of the Euler forward and backward methods in time. For the thermal heat equation,

it results in the following equations:

Tn+1
i −Tn

i

∆t
=

κ

∆x2
(Tn+1

i+1 − 2Tn+1
i + Tn+1

i−1 ) (forward Euler) (10)

Tn+1
i −Tn

i

∆t
=

κ

∆x2
(Tn

i+1− 2Tn
i + Tn

i−1) (backward Euler) (11)160

Combining the previous two schemes result in the Crank-Nicolson Scheme:

Tn+1
i −Tn

i

∆t
=

κ

2∆x2
((Tn+1

i+1 − 2Tn+1
i + Tn+1

i−1 ) + (Tn
i+1− 2Tn

i + Tn
i−1)) (Crank-Nicolson) (12)

Because of the implicit nature of the Crank-Nicolson scheme, an algebraic equation or linearizing the equation is necessary to

solve the next time step. In the case of our model, we can use the boundary conditions T (x = 0, t) = f(t) and T (x = D,t) = 0.

Here f(t) represents an arbitrary temperature forcing function (3). Although the method is unconditionally numerically stable165

for the heat equation (Thomas, 2013), unwanted spurious oscillations can occur if the time steps are too long or the spatial

resolution is too small. To avoid this, von Neumann stability conditions must be fullfilled (Charney et al., 1950):

κ
dt

dx2
≤ 1

2
(13)

2.5 Data generation forcing and parameters:

To numerically model representative scenarios for a glacier’s debris layer we have to select several parameters. For instance170

we can change the depth of the debris layer by increasing the number of vertical grid points given a constant spatial resolution.

Also, the spatial boundary conditions have to be defined. The boundary conditions at the debris-ice interface are set to zero as

we assume ice to be at its melting temperature.

For the surface, we use diurnal temperature signals and then force the second boundary condition. We used a sinusoidal

daily cycle of each 10 days to represent the most ideal case, then a skewed cycle, and then we forced the model with different175

types of actual measurement data from within the debris. The first two days of temperature forcing data are used to initialize

the model. The color scheme of these forcings will be used throughout this paper to indicate the corresponding forcing.
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Figure 3. Selected temperature forcings for surface layer consisting of two analytical sine curves and three experimental temperature mea-

surements within the debris layer. The sine curves have a average temperature of 7.5°C and the same amplitude. Experimental data 3 and 5

was recorded at Lirung glacier (Nepal) during September 2013 (@5cm) and April 2014 (@1cm) respectively and was by provided by Chand

and Kayastha (2018). Experimental data 4 was recorded at Vernagtferner (Austria) during June 2010 (@4cm) and was provided by Juen et al.

(2013).

For the value of thermal diffusivity, we investigate values of 5 · 10−7 m2 s−1, and 10 · 10−7 m2 s−1, because this is a repre-

sentative range of values obtained from field data (Laha et al., 2022). With these parameters, we execute the Crank-Nicolson

scheme to generate the artificial data (see section 2.4).180

Here, we display two examples of the generated data as a shortened time series as well as the debris layers’ mean daily

temperature function. We forced the model by the pure sine curve as well as for experimental data 3 with both a debris depth

of 30cm and thermal diffusivity of 5 · 10−7 m2 s−1.

0 2 4 0 2 4
days

-5

0

5

10

15

20

25

te
m

p
e
ra

tu
re

 (
°C

)

skewed sine field data 3

 0
10

20

30
cm

depth:

Artificial debris layer temperature timeline

a b

Figure 4. Artificially generated debris layer temperature timeseries data for the skewed sine forcing (a) and the field data 3 foricing (b) for a

30 cm debris layer and thermal diffusivity of 5 · 10−7m2s−1 using Crank-Nicolson scheme.

From Figure 6 we can see that the often-used steady-state assumption (Evatt et al., 2015) of the daily mean debris layer

temperature is only fulfilled for perfectly idealized datasets. A glacier’s debris layer is at a steady state when the debris layer’s185

temperature decreases linearly towards the debris-ice interface.

In the model, we can also select and de-selected errors and uncertainties to investigate their effect. To account for the fact

that measurement devices do not have a double float accuracy as does our model, we can discretize the data to correspond with

the measurement uncertainty of 0.1 to 0.4°C. This is the uncertainty range of thermistors most commonly used in the field.
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Figure 5. Daily averaged debris layer temperature profile based on figure 4.

Also, the vertical field deployment of the thermistors is not as exact as in our model. We accounted for that by using a Gaussian190

random error to displace the values by a Gaussian width of 0.25 and 0.5 centimeters. Additionally, the thermistors may drift

over time within the debris layer altering their relative distance.

2.6 Truncation error

The first analysis step is to calculate the truncation error due to the central difference scheme for different temporal and spatial

sampling intervals. In theory, the numerical solution should be equal to the analytical solution for infinitesimally small spatial195

and temporal sampling intervals.

lim
∆t→0

Tt+1−Tt−1

2∆t
= Ṫ & lim

∆t→0

Tx+1−Tx + Tx−1

(∆x)2
= T ′′ (14)

For ∆x,∆t = 0 the equations are not solvable.

We calculate the relative error as such:

Error =
κTrue−κEstimated

κTrue
(15)200

Here, positive relative error values in the graph correspond to negative errors in absolute values, therefore underestimating

thermal diffusivity values.

2.7 Resampling method

For the temporal resampling, we also compare sampling by skipping and sampling by averaging as displayed in Figure 6. When

skipping (method 1), we only select every n-th value and omit the rest. This is the method used by Conway and Rasmussen205

(2000), and we expect this to be the preferred method since it conserves gradients. The alternative (method 2) is to average

over n values. It has the result that gradients are reduced, and therefore the results are expected to be underestimated. To see

how this influences the calculations of the thermal diffusivity value, see the next section. A light blue background indicates
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sampling by skipping (method 1), and a light orange background indicates sampling by averaging (method 2) is used in the

following graphics.210

Figure 6. Comparing two different temporal resampling methods by displaying the temporal grid for different sampling intervals. We com-

pare the method by skipping every n-th gridpoint (method 1) or by averaging over n gridpoints (method 2).

3 Results

We start by using the artificial data without any uncertainty added to estimate the temporal truncation error.

3.1 Temporal truncation error

The relative temporal truncation error has a monotonous increasing trend for an increasing sampling time for the skipping

method (Fig. 7a,b).215

The exact function is heavily dependent on the forcing type. For less sinusoidal temperature forcings, a more significant

error already occurs at small sampling intervals. All curves collapse on the curve for the pure sinusoidal data at greater depths,

since the greater the depth, the more the diurnal signal approaches a sinusoidal shape. For even larger depths the temporal

truncation error of the experimental data decreases even more. However, at these large depths, the measurement uncertainty

becomes dominant. We will demonstrate this in subsection 3.3 by adding uncertainty to the artificial data. When switching to220

the averaging method, the temporal error is already less extreme for the example data but shows similar behavior as for the

skipping method (Fig. 7c, d).

The value for the sine curve is constant over different depths in the debris layer for different temperature forcings. Positive

relative truncation errors due to the temporal sampling interval systematically underestimate values of thermal diffusivity and

therefore systematically underestimate glacier melt. Therefore from a truncation perspective, a minimum temporal resolution225

is desirable.
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Figure 7. Relative temporal truncation error of thermal diffusivity estimation by sampling interval. We compare different temperature forcing

for averaging (a,b) and skipping (c,d) re-sampling methods for two different depths in the debris layer.

3.2 Spatial truncation error

We now analyze the spatial truncation error again without uncertainties added. Therefore we sample over the spatial grid size

with two times ∆x displayed on the x-axis and different temporal sampling intervals in minutes displayed in different colors

(Fig. 8). Values are constant for low ∆x, but the relative error then drastically increases for large ∆x. The spatial truncation230

error does not change with different model forcings or with debris depth. The main critical parameter is the value of thermal

diffusivity, because the truncation error increases for smaller values of thermal diffusivity. However, this value is not known

beforehand, so a range up to a ∆x of 0.1 meters is desirable. This error would systematically underestimate glacier melt.

3.3 Error due to thermistor uncertainty (spatial sampling)

Now we look at errors due to the measurement uncertainty to make our model more comparable to real-world data. Therefore235

we add a temperature discretization from 0.1 to 0.4 °C since these are the discretizations of the thermistors used to create our
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Figure 8. Comparing the spatial truncation error for different thermal diffusivity values and forcing types.

datasets. We again sample over the thermistor spacings but only focus on the region not affected by the truncation error (Fig.

9). Because we added temperature uncertainty, it now makes a difference how we sample the thermistor spacings. One can

either start at the top - so from the surface layer - and increase the ∆x from there. Alternatively, one starts in the middle of

the debris layer and selects ∆x symmetrically. The third option is to start at the debris-ice interface and go up from there with240

increasing measurement uncertainty. For small values of ∆x the relative error spikes and exponentially decreases for larger

values of ∆x. The averaging method produces different but similar results. We see that this error is less pronounced even for

lower thermistor uncertainties. Values of ∆x between the dominant spatial truncation error and the error due to the uncertainty

are desirable, so between 5 and 15 centimeters. This error would systematically underestimate glacier melt.

3.4 Error due to thermistor uncertainty (depth in debris)245

As demonstrated in subsection 3.2, the relative error increases with increasing thermistor spacing due to the smaller gradients.

We now investigate the depth dependence of constant vertical sampling intervals (Fig. 10).

The different color lines correspond to different values of temperature uncertainty. For a ∆x of two centimeters, only mea-

surements with a thermistor uncertainty of 0.1 ◦C would produce correct values for the first 20 centimeters of debris. Switching

to an ∆x of 6 centimeters, the relative error decreases for all curves. Still, the thermistors used in the field experiment range250

from 0.1 to 0.4◦C would not produce correct values. When increasing the sampling time to around 60 minutes, results improve

for the layers close to the surface before the temporal truncation error becomes relevant. For higher sampling intervals, the

averaging method here performs even better. This shows the importance of high-resolution thermistors even with larger spatial

sampling intervals. For deeper debris layers it is not possible to obtain correct values even with high-resolution thermistors.
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Figure 9. Relative error of estimated thermal diffusivity value due to thermistor temperature discretisation of 0.4°C while comparing the

sampling and averaging method. Sampled from the surface layer downward.

3.5 Error due to vertical thermistor position variability255

Conway and Rasmussen (2000) report that a vertical error of 0.5 cm would result in a marginal temperature difference of 0.1K

and 0.02K for their measurement setups. This is then interpreted by them and others (e.g. Nicholson and Benn, 2012) that a

vertical thermistor displacement would not affect the results as long as this value does not change in time. In their derivation

they assumed an error ϵ in the depth z, which should correspond to the mean error δ which should then be proportional to the

mean vertical temperature gradient:260

δ = ϵ
∂T̄

∂z
(16)

By averaging over the temperature, the temporal dependency is neglected. However, we are not interested in temperature

errors but the errors in the gradients, which are time-dependent.
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Figure 10. Relative error of estimated thermal diffusivity value due to thermistor discretization by depth in the debris up to 0.9 m.

We use a similar approach as Conway and Rasmussen with equation 16 without averaging over the vertical temperature

gradient and define this as the temperature error due to the vertical displacement of the thermistor. If we add this error to the265

true temperature we get the measured temperature Θ:

Θ(t) = T (t) + δ(t), with δ(t) = ϵ
∂T (t)

∂z
(17)

If we insert this equation into the heat equation (Eq. 2) we get the following equation:

∂T

∂t
+

∂δ

∂t
= κ

∂2T

∂x2
+ κ

∂2δ

∂x2
(18)
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Figure 11. Timeseries of temporal gradient and second spatial derivative of Ngozumpa glacier debris layer temperature data-set (Nicholson

and Benn, 2006)

Since δ is time-dependent, it does not vanish in the constant Y-intercept term during the linear regression. A better method270

of visualizing the error due to a vertical thermistor displacement is not to argue over an altered temperature, but instead of an

error in the distance between thermistors δx + δϵ. In this case, there is no error on the temporal gradients and we can purly

focus on the spatial derivative. For simplicity, we use the equal grid centered difference scheme equation for the second spatial

derivative (Eq. 5) and add the error ∆ϵ:

∂2Tn
i

∂x2
≈ Tn

i+1− 2Tn
i + Tn

i−1

(∆x + ∆ϵ)2
+ O(x2) (19)275

To get the relative error, we then divide the true derivative by the derivative with the added error:

Relative error =
∆x2

(∆x + ∆ϵ)2
= 1 +

∆ϵ

∆x
+

∆ϵ2

∆x2
(20)

Based on this equation, we can see that the relative error of the derivative depends not only on the displacement error but also

on the distance between the two thermistors.

We now plot this equation for different errors and ∆x combinations:280

It is clear that the larger the distance between thermistors, the smaller the relative error becomes, and the larger ∆ϵ, the more

the error increases. However, since this is just the relative error on the second spatial derivative, it is not yet that meaningful.

Therefore next, we simulate the vertical displacement of a thermistor (Fig. 13). Therefore we set the temperature uncertainty

back to zero and add a gaussian uncertainty on the vertical thermistor position of 0.25 and 0.5 centimeters. In reality, for
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Figure 12. Relative error on second spatial derivative due to different values of displacement errors on ∆x.

Figure 13. Relative error on debris thermal diffusivity value due to vertical thermistor displacement. The thermistors are randomly displaced

with a normal distribution with standard deviation 0.25cm and 0.5cm for different spatial thermistor sampling intervals I of 2cm, 6cm, and

12cm respectively.

moving thermistors in the debris layer, the value can even be larger. For an ∆x of two centimeters, the data would be completely285

unusable. This error source is the only one in the complete analysis that has the potential to increase thermal diffusivity values

shown here by the negative relative error values. As expected, with increasing ∆x, the relative error decreases until a distance

is reached where the the spatial truncation error becomes relevant again (see section 3.2).

4 Discussion

Conway and Rasmussen (2000) provide a simple and easy to apply method to estimate thermal diffusivity values from a290

vertical array of thermistors in the debris layer. Therefore this method has developed to be the standard method for this task

(e.g. Nicholson and Benn, 2006; Juen et al., 2013; Nicholson and Benn, 2012; Rounce et al., 2015; Chand and Kayastha, 2018;
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Rowan et al., 2021). However, it is regularly used without considering possible limitations or error sources. Here, we have

shown how careful one has to be during the analysis of the data using this method and how relevant an appropriate experimental

setup is. Truncation errors, errors due to measurement uncertainty, or the impact of non-conductive processes are often not295

sufficiently taken into account in the uncertainty estimation of the above mentioned publications. In general, all truncation

errors and errors due to measurement uncertainties systematically underestimate thermal diffusivity values. Too large temporal

or spatial sampling intervals both result in non-linear significant truncation errors. Especially near-surface measurements are

problematic because the diurnal temperature cycle is most non-sinusoidal within the debris layer and therefore produces more

significant temporal truncation errors. On the other hand, sinusoidal temperature cycles produce the least truncation error300

in the analysis and are preferred. The deeper the debris layer, the more the temperature cycle smoothens out and becomes

more sinusoidal. Even though a ∆t or ∆x −→ 0 would produce a minimal truncation error, too small sampling intervals

also can produce erroneous results. For a ∆t −→ 0, the linear regressions coefficient of determination decreases strongly. In

practice, this is not a problem since short temporal sampling intervals can always be resampled afterwards. A more significant

problem is if thermistors are positioned too close to each other, especially if there are only a few thermistors, making it305

impossible to spatially resample. Here the thermistor discretization results in underestimated values of thermal diffusivity. Also,

with increasing depth, the thermistors in the debris layer have to be positioned at greater distances from each other because

otherwise, the thermistor measurement uncertainty dominates the measurement. Therefore, at greater depths in the debris layer,

it is not wise to perform measurements unless very precise measuring instruments are available≤ 0.01K. The only error source

due to the measurement setup that has the potential to overestimate the thermal diffusivity value is the vertical displacement310

of the thermistors. In contrast to the derivation by Conway and Rasmussen (2000), the calculated value of thermal diffusivity

strongly depends on correct thermistor positions relative to each other. Comparing our findings to the recommendations of Laha

et al. (2022), they propose to "set the sensor spacing to be 1/5th of the debris thickness at the location", however the non-linear

nature of the single error sources presented in this paper indicates that we cannot generalize such statements. Furthermore, they

stated "the top sensor should be placed approximately at the middle of the debris layer" and our analysis indicates that while315

it is true, that thermistors too close to the surface produce large truncation errors, the same is valid for too deep thermistors

as the temperature gradient is to small relative to the thermistor precision. Finally, in addition to all these measurement setup

related errors, non-conductive processes within the debris layer (e.g. rain, phase changes) would distort the results. This must

be evaluated on a case-by-case basis using meteorological data and closely evaluating the vertical temperature measurements in

the debris layer and the corresponding gradient functions Petersen et al. (2022). All of this makes it challenging to interpret the320

results correctly leaving considerable room for error, especially since the datasets often lack relevant meta- and meteorological

data. This has to be better reflected in the published measurement uncertainty.

The following best practice guidelines address all sources of error discussed in this paper and are the basis for producing

more reliable measurement data and therefore values of thermal diffusivity. With this we aim to provide an implementation

strategy for future field studies that wish to deploy these methods of analysing the thermal conductivity of natural debris layers.325

We provide an open source program where researchers can modify the single parameters to their needs and therefore can also
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investigate the chances and limitations of applying the method by Conway and Rasmussen (2000) to other regimes outside of

glaciology.

5 Best practice guidelines

When working in the field on a glacier, things do not always go as planned in the warm office. Therefore, it is even more330

essential to develop a precise concept for the measurement beforehand, which can then be worked through step by step in the

field. In addition to the recommendations put forward in Laha et al. (2022) our analysis leads us to the following best practice

guidelines to help other researchers to get as much as possible out of their measurements.

335

Thermistor precision:

As small as possible, but not larger than 0.1 K.

Debris layer depth:

Minimum of 40 cm but ideally deeper (e.g. 100 cm). The maximum depth is limited by the thermistor precision and

temperature gradients in the debris layer. This can be simulated beforehand.

Thermistor installation and recovery:

Thermistors have to be carefully extracted at the end of the measurement period to make sure the thermistors haven’t

moved in the debris while deployed. However, in case the thermistors moved, it might be necessary to omit this dataset.

Therefore mounting thermistors to a thermally insulated rod or set of rods eliminates this potential error source.

Number of thermistors:

The method requires at least three thermistors, but more thermistors make it possible to calculate diffusivity values

for different depths and therefore makes it possible to identify non-conductive processes or other inconsistencies. A

second redundant set of thermistors can also be helpful to rule out measurement errors.
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Thermistor arrangement:

Place thermistors at equal vertical intervals of 8 to 20 cm. Even though the upper-most layer often does not produce

ideal results, it can be helpful to place a thermistor at the debris-ice interface still because, this way, the debris layer can

subsequently be simulated. Depending on the depth, the thermal diffusivity, and gradient of the debris layer, the method

produces more significant errors with a greater depth limiting the depth where it makes sense to place thermistors. The

sweet spot can be determined by simulating the debris layer of interest beforehand with model parameters from previous

measurements or other estimations.
340

Temporal sampling interval:

Sample with a temporal resolution as short as possible and then average over a 5 minute period. Over such a short

period, the temperature is assumed to be nearly constant and therefore not to reduce gradients. By averaging the

thermistor, discretization is reduced.

Measurement duration:

It depends on the scientific objective and seasonality, but at least a week of suitable stable meteorological conditions

are needed. Therefore, if one has unlucky conditions, a measurement duration of several months can be necessary.

Suitable meteorological conditions:

Avoid precipitation, phase changes and aim for a sinusoidal diurnal cycles in the forcing data.
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