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Abstract. Numerical models are a powerful tool for investigating the dynamic processes in the interior of the Earth and other

planets, but the reliability and predictive power of these discretized models depends on the numerical method, as well as

an accurate representation of material properties in space and time. In the specific context of geodynamic models, particle

methods have been applied extensively because of their suitability for advection-dominated processes, and have been used in

applications such as tracking the composition of solid rock and melt in the Earth’s mantle, fluids in lithospheric- and crustal-5

scale models, light elements in the liquid core, and deformation properties like accumulated finite strain or mineral grain size,

along with many applications outside the Earth sciences.

There have been significant benchmarking efforts to measure the accuracy and convergence behavior of particle methods,

but these efforts have largely been limited to instantaneous solutions, or time-dependent models without analytical solutions.

As a consequence, there is little understanding about the interplay of particle advection errors and errors introduced in the10

solution of the underlying transient, nonlinear flow equations. To address these limitations, we present two new dynamic

benchmarks for transient Stokes flow with analytical solutions that allow us to quantify the accuracy of various advection

methods in nonlinear flow. We use these benchmarks to measure the accuracy of our particle algorithm as implemented in the

ASPECT geodynamic modeling software against commonly employed field methods and analytical solutions. In particular, we

quantify if an algorithm that is higher-order accurate in time will allow for better overall model accuracy and verify that our15

algorithm reaches its intended optimal convergence rate. We then document that the observed increased accuracy of higher-

order algorithms matters for geodynamic applications with an example of modeling small-scale convection underneath an

oceanic plate and show that the predicted place and time of onset of small-scale convection depends significantly on the chosen

particle advection method.

Descriptions and implementations of our benchmarks are openly available and can be used to verify other advection al-20

gorithms. The availability of accurate, scalable and efficient particle methods as part of the widely used open source code

ASPECT will allow geodynamicists to accurately investigate more complex time-dependent geodynamic processes, such as

elastic deformation, anisotropic fabric development, melt generation and migration, and grain damage.
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1 Introduction

Numerical models have been a key tool for geoscientists investigating the processes governing plate tectonics and mantle25

convection. Among the many one could cite, a cross-section of publications include studies of the evolution of mantle hetero-

geneities over time (Gülcher et al., 2021; Jones et al., 2021), the initiation and evolution of plate boundaries (Baes et al., 2020;

Schierjott et al., 2020), the fate of subducted slabs (Grima et al., 2020), plume dynamics (Arnould et al., 2020), the dynamics

of microplates (Glerum et al., 2020), and the seismic cycle (Van Zelst et al., 2019). Obviously, the usefulness of such dynamic

models relies on the accurate approximation of solutions of the equations that describe the processes under consideration. For30

geodynamic models of the solid Earth, this usually requires solving the Stokes equations governing the flow, and advection(-

diffusion) equations governing the transport of thermodynamic properties like temperature or entropy, chemical composition,

trace elements, deformation properties like damage, or mineralogical properties like grain size. Established methods for solv-

ing the Stokes equations typically treat the fluid as a continuum and are based on the finite-element, finite-difference, and

finite-volume methods. In contrast, there is a wide variety of methods for solving the advection equations (Puckett et al., 2018),35

such as particle methods, continuous or discontinuous field methods, or volume-of-fluid methods.

Over the past years we have developed a flexible, scalable, and efficient particle architecture (Gassmöller et al., 2018) as part

of our work developing the Advanced Solver for Planetary Evolution, Convection, and Tectonics (ASPECT, Kronbichler et al.,

2012; Heister et al., 2017). This work is open-source, application agnostic, and performs well in modern high-performance

computing environments. In particular, it supports advanced computational methods such as an adaptively refined, unstruc-40

tured, and dynamically changing background mesh, parallelization beyond tens of thousand of compute cores, storing arbitrary

particle properties, and complex nonlinear solvers. The underlying particle infrastructure is integrated into the open source finite

element software library deal.II (Arndt et al., 2023) and has been used to model geoscientific applications, as well as Navier-

Stokes flow, mixing of granular materials, solid-fluid interaction, and laser metal deposition of metallic particles (Popov and

Marchevsky, 2022; Arndt et al., 2020; Golshan et al., 2022; El Geitani et al., 2023; Golshan and Blais, 2022; Murer et al.,45

2022).

Due to their inherent suitability for modeling advection-dominated problems, different variants of particle methods have

become popular in the geodynamic modeling community (van Keken et al., 1997; Tackley and King, 2003; Gerya and Yuen,

2003; Samuel, 2018; Sime et al., 2021). The main advantage of particles in geodynamic applications is that particles advected

with the material flow keep their associated material properties; that is, these properties do not diffuse in space as is the case50

for many field-based methods. It also means that the differential equations for each particle’s location are simply ordinary

differential equations for which many good solution approaches are available. On the other hand, while errors in particle

methods are less apparent than for field methods, they still exist (Tackley and King, 2003; Gassmöller et al., 2019). In particular,

previous work has discussed the influence of errors due to interpolating properties from particles to fields (Thielmann et al.,

2014), the influence of the divergence of the computed velocity field on particle distributions (Wang et al., 2015; Pusok et al.,55

2017; Sime et al., 2021), and the advection of particles over time in spatially variable flow (Gassmöller et al., 2019). However,

a source of error in particle advection methods that has, to the best of our knowledge, not been systematically discussed is the
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error in advecting the particle position in transient, rapidly changing flow. This type of flow is common in geodynamic models

of the upper mantle or lithosphere, because employing a visco-plastic or stress-dependent rheology can cause strong nonlinear

feedbacks between the current solution and material properties and therefore fast changes over time. While the presence of these60

errors is known, only few studies systematically investigate its influence on geodynamic applications (Trim et al., 2023a, b).

This is largely due to the difficulty of quantifying their influence, as one needs a time-dependent model solution to compare

numerical results against, and most currently available benchmarks either rely on instantaneous solutions (Duretz et al., 2011;

Zhong, 1996; Zhong et al., 2008; Schmid and Podladchikov, 2003; Kramer et al., 2021), a steady-state solution (Zhong et al.,

2008; Gassmöller et al., 2019) or a comparison between several numerical methods without known exact solution (Tackley and65

King, 2003; van Keken et al., 1997).

In this work, we start with a description of the mathematical problem we would like to solve in Section 2, and then present

an analysis of the numerical errors that result from the advection of particles in transient flow (Section 3). We develop new

benchmarks for transient flow in a box and spherical shell that have known analytical solutions (Section 4), and use these

benchmarks to measure the accuracy of the discussed particle advection methods and quantify their influence on the results70

of the Stokes equations (Section 5). Finally, we illustrate why focusing on the accuracy of particle methods matters for prac-

tical geodynamic applications with a model example of small-scale convection developing underneath oceanic lithosphere

(Section 6). We conclude in Section 7. Appendix A contains the derivation of the analytical solution for the spherical shell

benchmark, and Appendix B contains a more detailed discussion of some benchmark results that are too specific to be relevant

for the main text.75

2 Governing equations

For the models in this work, we will consider the incompressible Stokes equations using the Boussinesq approximation. They

consist of a force balance and a mass continuity equation:

−∇ · (2η ε̇(u)) +∇p = ρg, (1)

∇ ·u = 0, (2)80

where u = u(x, t) is the velocity, p = p(x, t) the pressure, ρ the density, η the viscosity, and g the gravity. ε̇(u) = 1
2 (∇u +

∇uT ) denotes the strain rate. The velocity and pressure variables depend on time because the density and viscosity may

depend on time through the variables we describe below; in other words, because inertia is absent the equations above describe

a time-dependent but instantaneous equilibrium.

To determine the time evolution of the model, we solve advection-diffusion equations of the form85

Dϕc

Dt
−∇ · (κc∇ϕc) =

∂ϕc

∂t
+ u · ∇ϕc−∇ · (κc∇ϕc) = Hc, (3)

where ϕc = ϕc(x, t) denotes an advected material property, κc its diffusivity, and Hc additional source terms. The subscript

c = 1, . . . ,Nc indicates that practical applications may require several advected material properties.
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Throughout this paper we focus on problems with negligible diffusion (κc = 0), which represent for example the advection

of the chemical composition of rocks, or the size of grains; particle methods for applications with non-negligible diffusivity90

and reactions have been described elsewhere (Gerya and Yuen, 2003; Sime et al., 2022). Consequently, instead of equation (3)

we will solve:

∂ϕc

∂t
+ u · ∇ϕc = Hc. (4)

In Equations (1), (2), and (4), material properties η, ρ and source terms Hc may depend non-linearly on the solution variables

u, p, and ϕc, resulting in a coupled system of equations.95

While for simplicity we use the incompressible Stokes equations, the usefulness of the benchmark models we present below

do not rely on this assumption and will be transferable to compressible models. In fact, an accurate solution to the advection

equation may matter more in compressible models, because they often contain more coupled terms, such as shear heating

(depending on the strain rate), the pressure dependence of the density, and additional processes like phase transitions caused

by pressure or temperature changes.100

3 Numerical methodology

We have discussed the numerical methods for most steps of our particle algorithm (Gassmöller et al., 2018, 2019) and Stokes

solver (Kronbichler et al., 2012; Heister et al., 2017) in earlier work and refer there for details on the finite-element method,

time stepping algorithm, particle generation, advection, and interpolation from particles to grid. Here we will extend this

earlier work by developing transient solutions, and focus on how the temporal accuracy of advection methods controls the105

overall accuracy of a coupled geodynamic model.

3.1 Particle advection

In particle methods, the values of fields ϕc are approximated by advecting particles that carry these field value as “properties”.

Particles move with the velocity u(x, t) that results from solving the Stokes equations (1)–(2)), and the properties carried by

a particle evolve based on the right hand side Hc in (4). In other words, the solution of the partial differential equation (4) is110

approximated by solving an ordinary differential equation (ODE) tracking the position xj = xj(t) for each particle j, and a

separate ODE tracking the evolution of the properties carried by the particle:

d

dt
xj(t) = u(xj(t), t), (5)

d

dt
ϕc,j(t) = Hc(xj(t), t,ϕc,j(t)). (6)

In practice, the exact velocity u(x, t) is not available, but only a numerical approximation in space uh(x, t) to u(x, t).115

Furthermore, this approximation is only available at discrete time steps, un
h(x) = uh(x, tn) and it needs to be interpolated

between time steps if the advection algorithm for integrating (5) requires one or more evaluations at intermediate times between
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tn and tn+1. If we denote this interpolation in time by ũh(x, t) where ũh(x, tn) = un
h(x), then the equation the differential

equation solver really tries to solve is

d

dt
x̃j(t) = ũh(xj(t), t), (7)120

where x̃j(t) is the exact solution of this equation using the “wrong” velocity field; if ũh is a good approximation to u, then

we hope that x̃(t) is a good approximation of x(t). In practice, however, we can not even compute x̃(t), but need to further

approximate it via time stepping.

3.2 Convergence of particle advection methods

The total error in computed particle positions contains contributions due to the inexactly known velocity field discussed in the125

previous subsection, as well as the error introduced by time stepping the ODEs describing particle position and properties. If

we denote by x̃j,h(t) the numerical approximation to the solution of (7), then the error at some time t will typically satisfy a

relationship like

∥x̃j,h(t)− x̃j(t)∥ ≤ C(t)∆tqp , (8)

where ∆tp is the time step used by the ODE solver, which is often an integer fraction of the time step ∆tu used to advance130

the velocity field u. In our application we will choose ∆tp = ∆tu. q is the convergence order of the method, and C(t) is a

(generally unknown) constant that depends on the end time t at which one compares the solutions as well as on ũ. We want

to compare this computed solution against “exact” trajectories using the exact velocity as in (5), and then assess the error as

∥xj(t)− x̃j,h(t)∥. This quantity will, in the best case, only satisfy an estimate of the form

∥x̃j,h(t)−xj(t)∥= ∥(x̃j,h(t)− x̃j(t)) + (x̃j(t)−xj(t))∥135

≤ ∥x̃j,h(t)− x̃j(t)∥+ ∥x̃j(t)−xj(t)∥

≤ C1(t)∆tqp + C2(t)∥u−uh∥+ C3(t)∥uh− ũh∥,

with appropriately chosen norms for the second and third term, which represent how accurately the flow field itself is discretized

in space and time. All of these terms can converge to zero at different rates with the mesh size h and the time step size ∆t; as

a consequence, each of these terms may be the limiting factor for the overall accuracy of the ODE integrator.140

3.3 Common particle integrators

Given these considerations, and given that ODE integrators require the expensive step of evaluating the velocity field ũh at

arbitrary points in time and space, choosing a simpler, less accurate scheme can significantly reduce the computation time.

In our work, we have implemented the Forward Euler, Runge–Kutta 2 (RK2) and Runge–Kutta 4 (RK4) schemes (Hairer

and Wanner, 1991; Gassmöller et al., 2018), although many other methods are available and have been used in geodynamic145

applications. We will briefly discuss our selected methods below and will then limit ourselves to a discussion of two different

variants of the RK2 integrator, which is sufficient to support our conclusions.
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For simplicity, we will omit the particle index j from formulas in the remainder of this section and will assume that the

ODE and PDE time steps ∆tp,∆tu are equal. We will therefore simply denote them as ∆t. This is often the case in practice

because the velocity field is typically computed with a method that requires a Courant-Friedrichs-Lewy (CFL) number around150

or smaller than one, implying that particles move no more than by one cell diameter per (PDE) time step. In such cases, even

explicit time integrators for particle trajectories can be used without leading to instabilities, and all of the methods below fall

in this category. The formulas in the remainder of this section are, however, obvious to generalize to cases where ∆tp < ∆tu.

We will also assume in the following that we have already solved the velocity field up to time tn+1 and are now updating

particle locations from xn to xn+1. In cases where one wants to solve for particle locations before updating the velocity field,155

ũh can be extrapolated beyond tn from previous time steps, or particle advection and velocity computation could be iterated in

a nonlinear solver scheme.

In the following, let us briefly describe some of the common time stepping algorithms, including those we use in this work.

1. Forward Euler (FE): The simplest method often used is the forward Euler scheme,

x̃n+1 = x̃n + ∆t ũh(tn, x̃n).160

It is only of first order (that is, the exponent in (8) is q = 1), but cheap to evaluate because it only requires evaluating the

velocity solution at an already-computed time point.

2. Runge–Kutta second order (RK2): Accuracy and stability can be improved by using a second order Runge–Kutta scheme.

The new particle position is computed as

k1 =
∆t

2
ũh(tn, x̃n),165

x̃n+1 = xn + ∆t ũh

(
tn +

∆t

2
, x̃n +

k1

2

)
.

This method is second order (that is, q = 2 in (8)) but requires evaluating the computed velocity at a time point interme-

diate between (velocity) time steps.

3. Runge–Kutta second-order space, first-order time (RK2FOT): In practice many geodynamic modeling packages only

store a single velocity solution at a time, which prevents the interpolation of the velocity field at tn + ∆t
2 used in RK2170

from adjacent solutions at tn and tn+1. However, reasonable accuracy can still often achieved when ignoring the time

dependence of the velocity (Gerya and Yuen, 2003; McNamara and Zhong, 2004). We here implement such an advection

scheme as a modification to RK2, in which the new particle position is computed as

k1 =
∆t

2
ũh(tn, x̃n),

x̃n+1 = x̃n + ∆t ũh

(
tn, x̃n +

k1

2

)
.175

Note how, compared to the RK2 scheme, the velocity is evaluated at tn instead of tn + ∆t
2 .
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4. Runge–Kutta fourth order (RK4): A further improvement of particle advection can be achieved by a fourth order Runge–

Kutta scheme that computes the new position as

k1 = ∆t ũh (tn, x̃n) ,

k2 =
∆t

2
ũh

(
tn +

∆t

2
, x̃n +

k1

2

)
,180

k3 =
∆t

2
ũh

(
tn +

∆t

2
, x̃n +

k2

2

)
,

k4 = ∆t ũh

(
tn+1, x̃n +k3

)
,

x̃n+1 = x̃n +
1
6
k1 +

1
3
k2 +

1
3
k3 +

1
6
k4.

The primary expense in all of the methods above is the evaluation of the velocity field un
h and un+1

h at arbitrary positions

x. Given that the velocity fields uh we consider here are often finite element fields defined with shape functions whose values185

are determined by mapping a reference cell K̂ to each cell K using a transformation x = ΦK(x̂), the evaluation at arbitrary

points requires the inversion of ΦK , which is an expensive operation for nonlinear mappings such as those used in deformed

or curved geometries.

3.4 Particle integrators used in the benchmarks

Based on our earlier work measuring the convergence properties of the integrators described above in analytically known flow190

(Gassmöller et al., 2018, supp. information) we expect FE and RK2FOT to converge with first order (in ∆t) in time variable

flow, while RK2 and RK4 are expected to converge with second order in time. RK2FOT is limited from reaching the potential

of RK2 by the use of only a single velocity solution in time, and RK4 in our specific implementation (though not in general)

is limited by only storing two velocity solutions, which only allows for a linear extrapolation from tn to tn + ∆t
2 and tn+1.

Therefore, while there are valid reasons to choose either FE or RK4, we will limit our benchmark results to RK2 and RK2FOT,195

because we expect them to illustrate the significant difference between algorithms that are first- or second-order accurate in

time.

4 Deriving transient benchmark solutions

For our benchmarks we want to reduce the coupling between (1)–(2) and (4) to a minimum in order to precisely measure the

influence of exactly one coupled property. This step also simplifies the construction of the benchmarks. Therefore, we focus on200

problems with constant viscosity (η = 1), and no source terms (Hc = 0). The advected material property ϕc we consider here
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is the density ρ. The final set of equations for our benchmarks will therefore be:

−∇ · (2 ε̇(u)) +∇p = ρg, (9)

∇ ·u = 0, (10)

∂ρ

∂t
+ u · ∇ρ = 0. (11)205

The set of benchmarks we will consider is an extension of previously published benchmarks (Gassmöller et al., 2019).

In order to explain the extensions to transient flow, we will here briefly revisit our approach to derive steady flow fields. In

our earlier work we have considered incompressible flow fields u that were derived based on a known and time-independent

stream function Ψ. Under the assumption that viscosity is known and constant, and that boundary conditions are chosen to

match the desired solution, this allowed us to compute right-hand side terms to Equation (9) that satisfied the set of equations210

and therefore created an analytical benchmark for the whole system of equations. However, this only guarantees a consistent

solution for the distribution of the density ρ at the current instant in time. It is therefore only an instantaneous benchmark

solution. In order to create a steady-state flow field — defined as a velocity field u that does not change over time — the

right-hand side driving force needs to stay constant over time. In other words the advected property ρ needs to be chosen in

such a way that when it is advected with the flow field u, the right-hand side ρg does not change over time. In order to find such215

a density distribution, we can make use of the definition of the streamline, which are lines of constant Ψ. If Ψ is independent of

time, any property advected with the flow will be advected along the streamlines. Thus, if ρ is constant along the streamlines,

the right-hand-side ρg will not change even if ρ is advected with the flow. Choosing ρ = Ψ is therefore an easy approach to

guarantee a steady-state flow field.

The benchmarks below extend these steady-state models with a nonlinear time-dependence, which will test how much error220

the chosen advection scheme accumulates over time when the velocity changes. In order to derive such solutions, we make

use of the fact that we can superimpose two independent flow fields. In addition to a steady flow based on a stream function Ψ

we add a time-dependent velocity that has two special properties: First, we ensure that this second flow field is purely forced

by the boundary conditions instead of internal density forces. This choice opens up control over the exact velocity over time.

It also implies that we do not have to modify the density distribution to add this second flow field, i.e., the density is still a225

function of the steady-state stream function Ψ. Second, we will choose the time-variable flow field to be in the nullspace of the

Stokes operator, e.g., solid-body rotational flow in a spherical shell and translational flow in a box geometry. This ensures that

the resulting modification only affects the velocity solution (but not the pressure), and can be interpreted as a (time-dependent)

coordinate transformation of a steady flow. We will consider one case in a two-dimensional spherical shell, and one case in a

two-dimensional box geometry and will discuss the specific flow fields in the following subsections.230

4.1 A benchmark for a 2D spherical shell

Extending our previously published spherical benchmark (Gassmöller et al., 2019) seems to be straightforward by adding a

time-dependent solid body rotation to the existing solution. However, because our earlier solution is already a purely rotational

flow an additional time-dependent rotation does not create a transient solution for the density, and thus does not allow to

8
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Figure 1. Solution of a transient spherical shell benchmark. Top left: The density field of the benchmark at t = 0. Top right: Velocity solution

at t = 0. Bottom row: Initial (t = 0) and later (t = 2.6) particle distributions after almost two full rotations of the model. Particles are

colored based on a unique index given to each particle at the beginning.

intuitively measure the accuracy of the combined particle-finite-element algorithm. In other words an error of the particle235

position along the streamline because of the time-variability of the flow would not change the density distribution and therefore

would not translate into an error in the Stokes solution. We therefore use a different approach whose detailed derivation is given

in Appendix A. It is important to note that while the benchmark is derived in polar coordinates, it is implemented in Cartesian

coordinates in our code.

9
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As described, we start from an instantaneous solution for Stokes flow in a spherical shell and add a time-dependent rotational240

flow that is enfored using the boundary conditions. Our final benchmark solution is

vr(r,θ, t) = g(r)k sin(k(θ− τ(t))), (12)

vθ(r,θ, t) = f(r)cos(k(θ− τ(t))) + rω(t), (13)

p(r,θ, t) = kh(r)sin(k(θ− τ(t))), (14)

ρ(r,θ, t) =−
(

A

2
r2 + B ln(r)− 1

)
cos(k(θ− τ(t))), (15)245

gr(r,θ, t) = m(r)k
sin(k(θ− τ(t)))

ρ(r,θ, t)
, (16)

gθ = 0. (17)

The constants A,B and functions g(r),f(r),h(r),m(r) are listed in the appendix. The parameter k controls the number of

upwellings and downwellings in the model and is chosen as k = 4 for this study. The parameter ω(t) represents the time-

dependent solid body rotation and is chosen as ω(t) = et. τ(t) is a phase shift caused by the solid body rotation, and is250

computed as τ(t) =
∫ t

0
ω(s)ds. The setup of the benchmark and a snapshot of the solution is shown in Fig. 1.

We note that this solution can be interpreted as consistent with a stream function that is variable in time, with a flow field

that conveniently advects the density in such a way as to satisfy our Stokes solution at the current point in time. We also note

that this solution effectively consists of two parts, a density-driven internal convection in small convection cells, and a forced

and analytically known rotational flow of the whole model.255

4.2 A benchmark for a 2D box geometry

The modification to the solution of the box benchmark of (Gassmöller et al., 2018) is analogous to the spherical shell case, but

we can build directly on our earlier model setup. We can add a solid body translation to our earlier solution, and with proper

periodic boundary conditions this allows us to define a known, transient solution to the incompressible Stokes equations.

The translation of the solution as well as the periodic boundary conditions also represent the main difference between our260

benchmark solution and the one presented in (Trim et al., 2023a), which uses a steady-state flow with a time-dependent

velocity amplitude.

As in the spherical case, we start by modifying the velocity in the x-direction to

vx(x,y, t) = vx(x− τ(t),y) +ω(t). (18)

Since the solid body translation ω is in the nullspace of the Stokes equation, it does not modify the solution except for a265

coordinate transformation x→ x− τ(t) by a phase shift τ(t),

τ(t) =

t∫

0

ω(s)ds. (19)
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Figure 2. Solution of a transient box benchmark with known analytic solution. Top left: The density field of the benchmark. Top right: Velocity

solution. Bottom row: Particle distributions at model start (t = 0) and at t = 0.5. Particles are colored as in Fig. 1.

As for the spherical case described above, we will use a nonlinear choice for ω(t), namely ω(t) = et, and the phase shift τ is

computed as before.

Thus, the transient solution of the benchmark – shown in Fig. 2 – is:270

vx(x,y, t) = sin(π(x− τ(t))cos(πy) +ω(t), (20)

vy(x,y, t) =−cos(π(x− τ(t))sin(πy), (21)

p(x,y, t) = 2π cos(π(x− τ(t))cos(πy), (22)

ρ(x,y, t) = sin(π(x− τ(t))sin(πy), (23)

gx(x,y, t) = 0, (24)275

gy(x,y, t) =−4π2 cos(π(x− τ(t))sin(πy)
ρ(x,y, t)

. (25)

4.3 How we use these benchmarks in our particle advection algorithms

Adding time dependence to the benchmarks modifies the numerical solution and the accumulated error in distinct ways, de-

pending on which advection method we choose. Here we will consider five cases:

(1) We obtain a computed solution by using the exact density ρ(x,y, t) defined in (15) and (23). This solution will act as our280

baseline benchmark, illustrating the optimal convergence rate for the Stokes solver we used.

(2) We use the (interpolated) exact density as an initial condition for the density advection equation (11), whose solution we

then approximate using discontinuous, piecewise quadratic (DGQ2) finite elements with a penalty method as described

in He et al. (2016).
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(3) As (2), but we use continuous, piecewise quadratic (Q2) finite elements and an entropy viscosity stabilization technique285

(Guermond et al., 2011; Kronbichler et al., 2012). This is the default choice in ASPECT. In both (2) and (3) we use a

BDF2 time-stepping algorithm that is second-order accurate in time to solve the advection equation (4) for the properties

ϕc (here: the density).

(4) We use the exact density as the initial condition for particles whose position we advect using a second-order accurate

Runge-Kutta (RK2) algorithm. Where we need the density for the solution of the Stokes equations, we interpolate290

properties from particles onto a DGQ2 discontinuous finite element field and evaluate that at quadrature points as

necessary.

(5) As (4), but we use RK2FOT as described in Section 3.3.

In order to limit ourselves to examining the accuracy in time of these five benchmark series, we will only consider a single

combination of Stokes finite-element and particle interpolation algorithm in this manuscript. We will use a Q2×Q1 Stokes295

element, and a linear least-squares particle interpolation algorithm with initially 64 particles per cell. We have described the

influence of these choices in earlier work (Gassmöller et al., 2019).

5 Numerical evaluation of particle schemes

In the following, let us use the benchmarks derived above for the numerical evaluation of particle schemes.

5.1 Spherical shell benchmark300

Fig. 3 presents the L2-error norm of velocity, pressure, and density for the spherical annulus benchmark at a fixed time as a

function of mesh resolution (left column), and at a fixed resolution as a function of time (right column).

The left column illustrates that all advection methods but RK2FOT reach second order convergence for the density with

increasing resolution (bottom left panel). As expected RK2FOT is limited by the available time information and only reaches

first order convergence. An additional detail is that the field methods (Q2 and DGQ2) have a larger error constant than the305

particle method (RK2), even for the same convergence rate. We will revisit the source of this error constant when discussing the

error accumulation over time. Starting at moderate resolutions (around h = 1
16 ) the RK2FOT model only reaches a first order

convergence rate in velocity, while Q2 and DGQ2 reach second-order and RK2 even maintains a third-order convergence rate

up to very fine resolutions. This result is important, because it illustrates that particles do not uniformly generate smaller errors

than field methods, but can indeed generate larger errors if their advection method is too simple and therefore inaccurate.310

Analyzing the error evolution over time (the right column of Fig. 3) illustrates further differences between field and particle

methods. Velocity and pressure errors reveal that RK2FOT accumulates the largest errors over time as expected, followed by

Q2 and DGQ2. RK2 accumulates the smallest errors. However, the density error norm shows distinct differences between the

methods. While RK2 and RK2FOT start off at the same error value, and RK2 almost maintains this error over the evolution

of the model, the error of RK2FOT increases significantly over time. The rate of increase in the RK2FOT scheme changes315
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Figure 3. Transient spherical annulus benchmark. Left: L2 error norms of velocity (top row), pressure (middle row), and density (bottom

row) for different cell sizes h at time t = ln(1 +4π)≈ 2.6075. Different colors and marker styles show different advection methods; gray

lines show ideal first, second, and third order convergence. Note that the line for an exact (benchmark) density overlaps with the RK2 line.

Right: L2 error norms of velocity (top row), pressure (middle row), and density (bottom row) over time for resolution h = 1/128. Colors as

in left column, and the exact benchmark density line is hidden behind the RK2 case. For more details on the distinction between the RK2 case

and the benchmark density case see the appendix.
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towards the end of the model run. We show in Appendix B that this slowdown is related to the periodicity of our benchmark

solution. The field methods Q2 and DGQ2 behave distinctly different. DGQ2 starts at a much smaller error value than all other

methods, but accumulates significant errors towards the end of the model run. Q2 already starts at a significantly larger error

value than all other methods. This is likely related to the fact that the used entropy viscosity method falls back to a first-order

stabilization scheme for the first time step, which introduces a large amount of numerical diffusion at the model start (and only320

then). The overall shape of these curves is due to properties of the exact solution, not the method used, but is not of interest to

us here.

Summarizing these findings, low-order particle methods show larger errors than the tested field methods, while higher-

order particle methods outperform the field methods in our benchmark both with increasing resolution and with increasing

model time. Therefore, whenever the other error sources of the solution are sufficiently small (i.e., if the Stokes element and325

time-stepping scheme allows for higher order accuracy) a higher order particle scheme can significantly enhance the accuracy

of the solution. This is even true considering the higher cost of higher-order schemes. Generally, higher order schemes are

more computationally expensive than lower order schemes both in number of operations and required memory. However,

their higher cost is generally independent of resolution. For example RK2 requires approximately 2× the computations that

RK2FOT requires and the same amount of memory, independent of mesh size. Considering that higher-order schemes are330

orders of magnitude more accurate and converge faster towards the true solution, their benefits become more apparent the

higher the model resolution and the larger the model end time. Therefore they are beneficial as long as the other numerical

algorithms reach the same accuracy.

5.2 Box benchmark

The box benchmark results follow a similar pattern for the dependence of errors on the methods used, see Fig. 4. First, the so-335

lution using the analytical density solution produces a third-order convergence in velocity and second-order in pressure, which

proves that the Stokes elements reach their optimal convergence order when given accurate density distributions. Second, and

confirming theoretical predictions, the RK2 first-order time (RK2FOT) advection method creates a first order accurate approxi-

mation for the density, which also generates a first-order accurate pressure and velocity solution, therefore significantly limiting

the potential accuracy of the Stokes elements. All other advection methods reach second-order convergence as predicted by340

their derivations, however with significant differences in the absolute error norm. For all solution variables, particles advected

using a full RK2 scheme reach about a one order of magnitude lower error norm at the end time than the Q2 and DGQ2

finite-element methods, a value that depends on the chosen end time (compare right column of Fig. 4 and next paragraph).

One feature to note is that the velocity error of the RK2 particle advection method starts with a third-order convergence rate at

low resolutions and transitions to a second-order convergence rate for higher resolutions (top left panel of Fig. 4, red line with345

triangles). We assume that this transition is caused by a shift in the dominant error source: At large h the spatial error in the

solution dominates, which is consistent with the observation that the particle solution (red line, triangles in bottom left panel

of Fig. 4) is very close to the analytical density solution (blue line, circles) and converges with third order. At smaller h the

spatial error reduces significantly, leaving the time error, which converges at second-order, as the remaining dominant source
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Figure 4. Transient box benchmark. Left: L2 error norms of velocity (top row), pressure (middle row), and density (bottom row) for different

cell sizes h at time t = ln(1+2)≈ 1.0986. Different colors and marker styles show different advection methods; gray lines show ideal first,

second and third order convergence. Right: L2 error norms of velocity (top row), pressure (middle row), and density (bottom row) as a

function of time for resolution h = 1/128.
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of velocity error. We observed such a transition in the dominant error source already in our earlier work (Gassmöller et al.,350

2019).

When evaluating the error norms of the solution as a function of time for a fixed resolution (right column of Fig. 4), we can

gain additional insight into the properties of the advection methods. While it is obvious that the RK2FOT methods remains

the most inaccurate method at a sufficiently large time, this comparison also makes clear that it shares the same error value

as RK2 at the start of the model, which is lower than the Q2 and DGQ2 methods. This is because the error in the first355

time step is dominated by the accuracy of the spatial approximation of the density. This also means that in benchmarks that

are instantaneous or very short, the RK2FOT method will perform at nearly the same accuracy as the RK2 method, leading

to misleading conclusions about its accuracy and suitability for time-dependent geodynamic models. Both Q2 and DGQ2

methods start at significantly larger errors in velocity and pressure, but accumulate less error over time than RK2FOT, although

more than RK2.360

For our conclusion it is important to note that even though both particle methods start with a significantly smaller error

than finite-element advection methods, the first order accuracy of the RK2FOT scheme produces significantly larger errors and

that this effect becomes more pronounced with increasing resolution and increasing model runtime. We conclude similar to the

spherical shell case that higher order particle advection schemes outperform low order schemes in overall model accuracy, even

considering their higher computational cost, as long as the Stokes solution can reach the same high accuracy of the particle365

method.

6 Application: Evolution of the mineral grain size below oceanic lithosphere

Above we have illustrated the influence of algorithmic choices on the accuracy of benchmark results. However, this does not

by itself justify the increased cost of such an algorithm in practical models: Perhaps, in typical geodynamic applications, the

error due to a low-order time approximation is negligible compared to other error sources and therefore a simple advection370

method would be sufficient. In the following, we use an application model to show that the higher accuracy is indeed important

and can influence first-order outcomes and the interpretation of a geodynamic study.

In order to illustrate this point, we use an example where the property carried on the particles (the grain size d) nonlinearly

influences the material properties (the viscosity η) and the corresponding solution of the equations. Our model setup (Fig. 5,

top) consists of the oceanic lithosphere and asthenosphere, down to a depth of 410 km, moving away from a spreading center375

at the top left corner of the model and horizontally extending to a distance of 4000 km from the ridge. The plate speed is

prescribed in horizontal direction to 5 cm/yr at the top, and right (outflow) boundary and linearly decreases with depth starting

at 100 km towards 0 cm/yr at the bottom of the model; the left (ridge axis) boundary of the model is closed and stress-free

(free-slip). The vertical velocity component is not prescribed at the bottom and right boundary, instead a depth-dependent

hydrostatic pressure profile that is computed at the model start and is constant in time is prescribed. Therefore, material can380

flow in beneath the ridge axis and leaves the model either through the bottom or the right boundary. The initial temperature

follows an adiabatic profile with a potential temperature of 1623 K, and a half-space cooling profile close to the top boundary

16

https://doi.org/10.5194/egusphere-2023-2765
Preprint. Discussion started: 23 November 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 5. Top: Setup of the application model. Background colors illustrate temperature, black solid lines are streamlines. Arrows indicate

velocity. Center and bottom: Grain size at the end of the model run after 200 million years, in a model that uses the second-order in time

Runge–Kutta scheme (center), and the first-order in time Runge–Kutta scheme (bottom).

with an age consistent with the plate velocity. The initial temperature also includes a small (r = 10km) thermal perturbation at

the ridge axis to support the onset of spreading. The initial grain size is set to d = 5mm, and also includes a small (r = 30km)

anomaly close to the ridge axis. Since the temperature is prescribed at the top boundary, the plate is cooling conductively over385

time until small-scale convection sets in at the base of the plate.

In this model, we use particles to carry information about the mineral grain size d, which influences the viscosity nonlinearly

as

ηdiff =
1
2
A−1

diffd
m exp

(
Ediff + PVdiff

RT

)
, (26)

ηdis =
1
2
A
− 1

n

dis ε̇
1−n

n

dis,II exp
(

Edis + PVdis

nRT

)
, (27)390

resulting in an effective viscosity of

ηeff =
ηdiff ηdis

ηdiff + ηdis
. (28)

Here, ηdiff, ηdis, and ηeff are the diffusion, dislocation and effective viscosity, respectively. Adiff = 5× 10−15 m3/Pa/s and

Adis = 10−15 Pa−3.5/s are diffusion and dislocation creep prefactors, Ediff = 375 kJ/mol and Edis = 530 kJ/mol the activation
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energy for diffusion and dislocation creep, Vdiff = 4× 10−6 m3/mol and Vdis = 1.4× 10−5 m3/mol the respective activation395

volumes; R the universal gas constant, P the pressure, T the temperature, m = 3 the grain size exponent of diffusion creep,

εdis,II the square-root of the second moment invariant of the dislocation strain rate, and n = 3.5 the dislocation creep strain rate

exponent. We limit the viscosity computed in (28) to be between 1016 and 1023 Pa s.

In addition, particles are not just advected, but both the temperature and the strain rate in the model influence the evolution

of the grain size. For a single particle moving along the flow field, we describe this evolution via the equation400

d
dt

d(t) = p−1
g d1−pgkg exp

(
−Eg + PVg

RT

)
− 4 ε̇II ε̇dis,II ηeff

λd2

cγ
, (29)

which implies that the grain size field d(x, t) satisfies the equation
(

∂d

∂t
+u · ∇d

)
= p−1

g d1−pgkg exp
(
−Eg + PVg

RT

)
− 4 ε̇II ε̇dis,II ηeff

λd2

cγ
. (30)

Here, kg = 1.92× 10−10 m3/s is the grain size growth prefactor, Eg = 400 kJ/mol and Vg = 0 m3/mol the activation energy

and volume for grain size growth respectively. pg = 3 is the grain size growth exponent, c = 3 a geometric constant, λ = 0.1405

the fraction of deformation work that goes into changing the grain boundary area and γ = 1 the average specific grain boundary

energy. For a detailed discussion of these terms and all parameter values we refer to (Dannberg et al., 2017). The terms on the

right-hand sides of these equation describe how the dynamic grain size increases over time (with a non-linear dependence on

temperature and grain size itself) and how it is decreased by dynamic recrystallization due to strain accomodated by dislocation

creep (which depends nonlinearly on stress and temperature).410

We solve this model using only the particle-based RK2 and RK2FOT advection schemes. As can be seen in the bottom two

panels of Fig. 5, the two schemes produce noticeably different locations of onset of convection. While the model with a full

RK2 advection scheme develops small-scale convection beneath the oceanic plate at a distance of 1940 km from the ridge,

the model with RK2FOT develops the onset at 1710 km distance, corresponding to plate ages of 39 Myr (RK2) and 34 Myr

(RK2FOT), respectively. More importantly, the different outcomes between the advection methods is not just a temporary415

state at this precise time, but the models stabilize around this solution, meaning that the onset of small-scale convection

is systematically earlier in the model with a first-order accurate advection scheme. This difference is relevant because the

exact timing of onset is important for the argument that small-scale convection causes a flattening of topography in seafloor

subsidence datasets, and therefore ultimately for the plate model of oceanic lithosphere cooling (Stein and Stein, 1992; Huang

and Zhong, 2005; Richards et al., 2018). In addition to the difference in onset of convection, the characteristic length scale at420

which instabilities develop below the lithosphere is significantly smaller for the RK2FOT method, visible in the larger number

and smaller distance between convection cells in the bottom panel of Fig. 5. This is especially relevant as the distance between

seismic anomalies associated with small-scale convection is a constraint from seismic studies and can be used to validate

geodynamic models (Eilon et al., 2022). We want to emphasize here that our model is conceptual and not intended to produce

realistic timings or length scales, but rather that a misprediction of these quantities due to inaccurate particle algorithms in425

models has concrete consequences for the interpretation of geodynamic features observed on Earth.
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Because both the onset of small-scale convection and the length scale of convection cells is governed by the growth of

small instabilities in a boundary layer, it is reasonable to assume that the lower accuracy of RK2FOT supports this growth of

instabilities and explains the earlier onset of convection. The growth of instabilities in a boundary layer (or internally layered

systems) is one of the most common processes for developing flow features in convecting systems like the Earth’s mantle430

and lithosphere. Examples are the generation of plumes at the core-mantle boundary, the stagnation of subducted slabs or

plumes at phase transitions or the initiation of plate boundaries in models of lithosphere dynamics. We therefore infer from

our benchmark results that models of all of these processes can benefit from incorporating more accurate particle advection

methods, and that predictions of models using lower order advection schemes may need to be adjusted or reproduced in higher

resolution studies.435

7 Conclusions

In our benchmarks and application models we have shown that implementing accurate particle algorithms, in particular higher-

order in time, can significantly increase the numerical accuracy of geodynamic models. One of the conclusions of our bench-

marks is that commonly used particle advection methods that are higher order in space but first order in time acquire significant

amounts of numerical error in time-variable flow, which becomes more pronounced the higher the resolution and the longer the440

model run. The reason this error is not often discussed in the geodynamic literature is that traditional benchmarks that either

rely on instantaneous analytical solutions, or on steady-state solutions, cannot show this error by their design. Only model

comparison studies or benchmarks with analytical solutions in transient flow can point out this error source. Given that many

geodynamic finite-element models already use Stokes elements that allow for higher order accuracy to ensure stability (e.g.

Taylor-Hood Q2×Q1 or Q2×P−1), it would be straightforward to extend their particle advection algorithms to a second-order445

in time method. While this can increase the cost for evaluating velocities at the particle locations, our results show that the in-

creased convergence order and improved accuracy of the model results is well worth the additional cost. Of course in order to

increase the overall model accuracy, all other employed algorithms need to support the same accuracy.

We believe that a sharper focus on quantifying the numerical accuracy of geodynamic models will generate more trust in

geodynamic model solutions and increase the impact of the discipline of geodynamic modeling as a whole. We provide the450

reference implementation of our algorithms and benchmarks in the open-source community software ASPECT and hope that

they are useful to the community at large.

Code availability. Computations were done using the ASPECT code (Heister et al., 2017; Kronbichler et al., 2012; Bangerth et al., 2023, 2022)

version 2.6.0-pre (git hash 299a6456385b1fde6564fc079f3aa01cac075f24). ASPECT is published under the GPL2 license, and the neces-

sary data to reproduce the benchmark models is included in the software. The precise ASPECT version and the model setup for Section 6 is455

published on Zenodo as Gassmöller (2023).
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Appendix A: Derivation of an exact solution in an annulus

We begin by deriving an exact solution to the stationary, incompressible Stokes equations for an isoviscous, isothermal fluid475

in a two-dimensional annulus. Given the geometry of the problem, we work in polar coordinates. We denote the orthonormal

basis vectors by er and eθ, the inner radius of the annulus by R1 and the outer radius by R2. Further, we assume that the

viscosity is a constant η = 1, and set the gravity vector to an inward-pointing vector g =−gr er, with gr = 1.

Given these assumptions, the incompressible Stokes equations in the annulus are (Schubert et al., 2001)

∂2vr

∂r2
+

1
r

∂vr

∂r
+

1
r2

∂2vr

∂θ2
− vr

r2
− 2

r2

∂vθ

∂θ
− ∂p

∂r
− ρgr = 0 (A1)480

∂2vθ

∂r2
+

1
r

∂vθ

∂r
+

1
r2

∂2vθ

∂θ2
+

2
r2

∂vr

∂θ
− vθ

r2
− 1

r

∂p

∂θ
= 0 (A2)

1
r

∂(rvr)
∂r

+
1
r

∂vθ

∂θ
= 0. (A3)

Equations (A1) and (A2) are the momentum equations in polar coordinates while equation (A3) is the incompressibility con-

straint.
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We then seek solutions whose circumferential velocity can be written as485

vθ(r,θ) = f(r)cos(kθ) (A4)

where k is an integer and where f(r) will be specified later. From equation (A3) we then obtain

∂(rvr)
∂r

=−∂vθ

∂θ
= kf(r)sin(kθ), (A5)

leading to

vr(r,θ) = g(r)k sin(kθ), (A6)490

where

g(r) =
1
r

r∫
f(r′)dr′. (A7)

Since we want to fix the velocity to be tangential at both boundaries we have

vr(R1,θ) = vr(R2,θ) = 0 (A8)

for all θ ∈ [0,2π]. We choose495

f(r) = Ar + B/r (A9)

in analogy to the solution of the Laplace equation in Chapter 6 of (Strauss, 2007), and thus

g(r) =
A

2
r +

B

r
lnr +

C

r
(A10)

where C is a non-zero constant of integration. Given the boundary conditions in equation A8 we find that

A =−C
2(lnR1− lnR2)

R2
2 lnR1−R2

1 lnR2
, B =−C

R2
2−R2

1

R2
2 lnR1−R2

1 lnR2
. (A11)500

In this work we choose C =−1. Our earlier choice of f means that

∂2f

∂r2
+

1
r

∂f

∂r
− f

r2
= 0, (A12)

so that equation (A2) simplifies to

1
r2

∂2vθ

∂θ2
+

2
r2

∂vr

∂θ
− 1

r

∂p

∂θ
= 0, (A13)

which together with (A4) leads to505

p(r,θ) = kh(r)sin(kθ) + l(r), (A14)
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where l(r) comes from integration with respect to θ and h(r) = (2g(r)− f(r))/r. We now insert equation (A14) into equa-

tion (A1) to obtain

ρ(r,θ) =
∂2vr

∂r2
+

1
r

∂vr

∂r
+

1
r2

∂2vr

∂θ2
− vr

r2
− 2

r2

∂vθ

∂θ
− ∂p

∂r

= kg′′(r)sin(kθ) + k
g′(r)

r
sin(kθ)− k3 g(r)

r2
sin(kθ)510

− k
g(r)
r2

sin(kθ) + k
2f(r)

r2
sin(kθ)− kh′(r)sin(kθ)− l′(r),

= m(r)k sin(kθ)− l′(r) (A15)

with

m(r) = g′′− g′

r
− g

r2
(k2− 1) +

f

r2
+

f ′

r
(A16)
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r2
+
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r
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r2
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r2
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f
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+
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r
(A17)515

=−f − g

r2
+

f ′

r
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− f − g
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(k2− 1) +

f

r2
+

f ′

r
(A18)

=−3
f − g

r2
+

f ′

r
− g

r2
(k2− 1) +

f

r2
+

f ′

r
(A19)

since it is easy to verify using (A7) that g′(r) = (f − g)/r.

Taking k = 0 yields ρ(r,θ) =−l′(r), so we choose l′(r) =−ρ0. In this case,

p(r,θ)|k=0 = l(r) = ρ0 gr(R2− r), (A20)520

which represents a familiar linear pressure increase with depth for constant density and gravity, and where we have imposed

p(r,θ) = 0 at the outer radius r = R2.

In summary, equations (A4), (A6), and (A14) form a solution of the incompressible Stokes equations, which fully stated

reads

vθ(r,θ) = f(r)cos(kθ), (A21)525

vr(r,θ) = g(r)k sin(kθ), (A22)

p(r,θ) = kh(r)sin(kθ) + ρ0gr(R2− r), (A23)
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with

ρ(r,θ) = m(r)k sin(kθ) + ρ0, (A24)

gr = 1, (A25)530

gθ = 0, (A26)

f(r) = Ar + B/r, (A27)

g(r) =
A

2
r +

B

r
lnr +

C

r
, (A28)

h(r) =
2g(r)− f(r)

r
, (A29)

m(r) = g′′(r)− g′(r)
r

− g(r)
r2

(k2− 1) +
f(r)
r2

+
f ′(r)

r
, (A30)535

A =−C
2(lnR1− lnR2)

R2
2 lnR1−R2

1 lnR2
, (A31)

B =−C
R2

2−R2
1

R2
2 lnR1−R2

1 lnR2
, (A32)

C =−1. (A33)

We can use the velocity solution for vr and vθ to determine a stream function for this flow field, which will be used to derive

the stationary benchmark below:540

Ψ(r,θ) =−
(

A

2
r2 + B ln(r) +C

)
cos(kθ). (A34)

The solution above is time-independent and only valid for instantaneous models where the density is not advected. To make

it time-dependent, we first modify the density and gravity to create a steady-state variant of the benchmark and add a known

time-dependent component to the velocity as described in Section 4. We start by choosing a density field consistent with the

streamline ρ(r,θ) = Ψ(r,θ). In our concrete benchmark this solution no longer satisfies the derived Stokes solution. However,545

we can recover an analytic solution by exploiting the fact that for the incompressible Stokes equations the density ρ only enters

the computation as a product with the gravity g. Therefore, if as described in the example case above m(r)k sin(kθ) is the

right hand side force term that satisfies the Stokes equation, we can still choose the density arbitrarily (e.g. ρ(r,θ) = Ψ(r,θ)),

as long as we define the gravity to be g(r,θ) = m(r)k sin(kθ)/ρ(r,θ). This keeps the original forcing term constant, and so

makes the solution independent of time. The steady-state solution therefore is the same as above, except:550

ρ(r,θ) = Ψ(r,θ), (A35)

gr(r,θ) = m(r)k sin(kθ)/ρ(r,θ), (A36)

with all other constants chosen as before.

In order to transform this steady-state benchmark into a known transient solution we then add a solid body rotation with

a nonlinear time-dependent rotational velocity to the flow field. Since solid body rotations lie in the nullspace of the incom-555

pressible Stokes equations on an annular domain, the resulting flow field will still be a solution of the incompressible Stokes
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equations. This approach will work as long as we perform an appropriate rotation of all components of the solution, and is

equivalent to defining the solution in a rotating reference frame. We therefore modify the velocity components in θ direction to

vθ(r,θ, t) = f(r)cos(k(θ− τ(t))) + rω(t). (A37)560

Here τ(t) is a phase shift, and ω(t) is an angular velocity. The phase shift τ(t) can be computed as the time integral of the

angular velocity from the beginning of the model up to the present time t:

τ(t) =

t∫

0

ω(s)ds. (A38)

In order to not make the problem too simple, we forgo the case of a constant angular velocity and instead choose ω(t) = et,

resulting in τ(t) = et− 1.565

Since the modification of the velocity in (A37) by the solid body rotation rω(t) lies in the nullspace of the Stokes equations,

it is straightforward to compute the modifications of the remaining solution variables, which only involves adding the phase

shift to the θ coordinate.

The final consideration is how to achieve this prescribed rotation in the model. Since in the incompressible Stokes equations

stresses are transmitted instantaneously throughout the entire domain, we can use the exact, known velocities as boundary570

conditions and expect the motion to apply equally to the entire model domain.

Appendix B: Detailed error investigation of the spherical shell benchmark

In order to better understand the accuracy of the RK2 method and investigate the source of the error decrease late in the

model we show in Fig. B1 a detailed comparison of only RK2 against the analytical density method. In order to visualize

the difference between RK2 and analytical density over resolution (left column) we no longer plot the absolute error in the575

L2 norm, but instead the relative difference in error between RK2 and analytical density; i.e., if ϵRK2 = ∥u−uRK2
h ∥L2 and

ϵAD = ∥u−uAD
h ∥L2 then we plot (ϵRK2− ϵAD)/ϵAD. This way of plotting the error illustrates if both error values converge

at the same rate – leading to a constant relative difference between the two errors – or if the RK2 error indeed converges at

a lower rate – leading to a linearly (or higher-order) increasing relative error difference towards smaller h. As it turns out the

relative error indeed increases linearly with resolution, meaning that RK2 converges at only second order, however the second580

order contribution is so small that it is not yet visible in the corresponding plot of Fig. 3. On the other hand, the pressure

(left column, middle row), converges at the same second order rate for both analytical density and RK2, leading to a constant

relative difference between the two errors.

Turning to the evolution of error over model time (Fig. B1, right column) reveals that what looked like a constant error value

in Fig. 3 indeed follows the same trends as the other methods, only at drastically reduced error values. While the error values for585

velocity and density increased by 1-2 orders of magnitude from model start to end for the other advection methods (RK2FOT,
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Figure B1. Transient spherical annulus benchmark. Left: L2 error norms of velocity (top row) and pressure (middle row) for different cell

sizes h at time t = ln(1+4π)≈ 2.6075. The pink line shows the relative difference in the error between RK2 and the analytical density model.

Gray lines indicate the same convergence order (dashed line), or one convergence order lower (dash-dotted line) than the analytical density

model. Right: L2 error norms of velocity (top row), pressure (middle row), and density (bottom row) as a function of time for resolution

h = 1/128 for analytical density and RK2 model.

Q2, DGQ2), they increase by at most≈ 2 % for RK2. Additionally, RK2 features the same error reduction close to t = 1 as the

other methods. Finally, it becomes apparent that even the model using analytical densities features a small but growing velocity

error. Because the density error in this model is zero (analytical density) it seems reasonable to assume this error is a result of

the Stokes solver. The accuracy of the Stokes solver depends on the absolute value of velocity, which increases exponentially590

over time. In other words the blue line in the top right panel of Fig. B1 represents the best possible accuracy any advection

method could reach for the given Stokes solver if it transported material information with perfect accuracy. Considering all the

results presented in this section, we consider the RK2 scheme to be very close to achieving this theoretical limit.

To understand the reduction in velocity error and density error at certain model times requires us to take a closer look at

the benchmark solution. Particularly relevant is that the benchmark solution is rotation-symmetric, with 4 regions of upwelling595

and 4 regions of downwelling. Therefore, rotating the density field by 90 degrees at any given time would lead to exactly the

same solution. For some reason the reduction in velocity error in RK2 coincides almost exactly with a quarter rotation of the

model solution at t = ln(1 +π/2)≈ 0.944, the reduction for Q2 coincides with a rotation by three quarters of a rotation (t =
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ln(1+3π/2)≈ 1.742), and the reduction for RK2FOT coincides with a full rotation (t = ln(1+2π)≈ 1.985). We speculate that

the times of rotation symmetry with the starting solution allows for a resonance between the accumulated error in the numerical600

solution and the analytical solution at a slightly different time. This interaction would allow for an apparent reduction in error

that does not actually exist, which is consistent with the observation that all errors rapidly increase again after the minimum.

However, while this theory explains why reductions in error could happen at specific times, we have no explanation why the

anomaly happens at different multiples of the rotation symmetry for different advection methods. We can only speculate that

the occurence depends on a very specific feature in each model, for example how close individual discrete time steps end at the605

analytically determined times of rotation symmetry. Independent of the origin of the anomaly, the results of the convergence

studies show that it does not influence the measurement of the convergence orders of different methods.

26

https://doi.org/10.5194/egusphere-2023-2765
Preprint. Discussion started: 23 November 2023
c© Author(s) 2023. CC BY 4.0 License.



References

Arndt, D., Fehn, N., Kanschat, G., Kormann, K., Kronbichler, M., Munch, P., Wall, W. A., and Witte, J.: ExaDG: High-Order Discontinuous

Galerkin for the Exa-Scale, in: Software for Exascale Computing - SPPEXA 2016-2019, edited by Bungartz, H.-J., Reiz, S., Uekermann,610

B., Neumann, P., and Nagel, W. E., pp. 189–224, Springer International Publishing, Cham, 2020.

Arndt, D., Bangerth, W., Bergbauer, M., Feder, M., Fehling, M., Heinz, J., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Munch, P.,

Pelteret, J.-P., Turcksin, B., Wells, D., and Zampini, S.: The deal.II Library, Version 9.5, Journal of Numerical Mathematics, 31,

231–246, https://doi.org/10.1515/jnma-2023-0089, 2023.

Arnould, M., Coltice, N., Flament, N., and Mallard, C.: Plate tectonics and mantle controls on plume dynamics, Earth and Planetary Science615

Letters, 547, 116 439, 2020.

Baes, M., Sobolev, S., Gerya, T., and Brune, S.: Plume-Induced Subduction Initiation: Single-Slab or Multi-Slab Subduction?, Geochemistry,

Geophysics, Geosystems, 21, e2019GC008 663, 2020.

Bangerth, W., Dannberg, J., Gassmöller, R., Heister, T., et al.: ASPECT: Advanced Solver for Problems in Earth’s ConvecTion, Computa-

tional Infrastructure in Geodynamics, https://aspect.dealii.org/, 2022.620

Bangerth, W., Dannberg, J., Fraters, M., Gassmoeller, R., Glerum, A., Heister, T., Myhill, R., and Naliboff, J.: ASPECT v2.5.0,

https://doi.org/10.5281/zenodo.8200213, 2023.

Dannberg, J., Eilon, Z., Faul, U., Gassmöller, R., Moulik, P., and Myhill, R.: The importance of grain size to mantle dynamics and seismo-

logical observations, Geochemistry, Geophysics, Geosystems, 18, 3034–3061, 2017.

Duretz, T., May, D. A., Gerya, T. V., and Tackley, P. J.: Discretization errors and free surface stabilization in the finite dif-625

ference and marker-in-cell method for applied geodynamics: A numerical study, Geochemistry, Geophysics, Geosystems, 12,

https://doi.org/10.1029/2011GC003567, Q07004, 2011.

Eilon, Z. C., Zhang, L., Gaherty, J. B., Forsyth, D. W., and Russell, J. B.: Sub-Lithospheric Small-Scale Convection Tomographically Imaged

Beneath the Pacific Plate, Geophysical Research Letters, 49, e2022GL100 351, 2022.

El Geitani, T., Golshan, S., and Blais, B.: Toward High-Order CFD-DEM: Development and Validation, Industrial & Engineering Chemistry630

Research, 62, 1141–1159, https://doi.org/https://doi.org/10.1021/acs.iecr.2c03546, 2023.

Gassmöller, R.: Benchmarking the accuracy of higher order particle methods in geodynamic models of transient flow: Data,

https://doi.org/10.5281/zenodo.10161412, 2023.

Gassmöller, R., Lokavarapu, H., Heien, E., Puckett, E. G., and Bangerth, W.: Flexible and scalable particle-in-cell methods with adaptive

mesh refinement for geodynamic computations, Geochemistry, Geophysics, Geosystems, 19, 3596–3604, 2018.635

Gassmöller, R., Lokavarapu, H., Bangerth, W., and Puckett, E. G.: Evaluating the accuracy of hybrid finite element/particle-in-cell methods

for modelling incompressible Stokes flow, Geophysical Journal International, 219, 1915–1938, 2019.

Gerya, T. V. and Yuen, D. A.: Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geo-

logical flows with strongly variable transport properties, Physics of the Earth and Planetary Interiors, 140, 293–318, 2003.

Glerum, A., Brune, S., Stamps, D. S., and Strecker, M. R.: Victoria continental microplate dynamics controlled by the lithospheric strength640

distribution of the East African Rift, Nature communications, 11, 1–15, 2020.

Golshan, S. and Blais, B.: Load-Balancing Strategies in Discrete Element Method Simulations, Processes, 10, 79,

https://doi.org/10.3390/pr10010079, 2022.

27

https://doi.org/10.5194/egusphere-2023-2765
Preprint. Discussion started: 23 November 2023
c© Author(s) 2023. CC BY 4.0 License.



Golshan, S., Munch, P., Gassmöller, R., Kronbichler, M., and Blais, B.: Lethe-DEM: An open-source parallel discrete element solver with

load balancing, Computational Particle Mechanics, pp. 1–20, 2022.645

Grima, A. G., Lithgow-Bertelloni, C., and Crameri, F.: Orphaning regimes: the missing link between flattened and penetrating slab mor-

phologies, Frontiers in Earth Science, 8, 374, 2020.

Guermond, J.-L., Pasquetti, R., and Popov, B.: Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., 230, 4248–4267,

2011.

Gülcher, A. J. P., Ballmer, M. D., and Tackley, P. J.: Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth’s650

lower mantle, Solid Earth, 12, 2087–2107, 2021.

Hairer, E. and Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin,

1991.

He, Y., Puckett, E. G., and Billen, M. I.: A Discontinuous Galerkin Method with a Bound Preserving Limiter for

the Advection of non-Diffusive Fields in Solid Earth Geodynamics, Physics of the Earth and Planetary Interiors,655

https://doi.org/http://dx.doi.org/10.1016/j.pepi.2016.12.001, 2016.

Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W.: High accuracy mantle convection simulation through modern numerical methods.

II: Realistic models and problems, Geophysical Journal International, 210, 833–851, 2017.

Huang, J. and Zhong, S.: Sublithospheric small-scale convection and its implications for the residual topography at old ocean basins and the

plate model, Journal of Geophysical Research: Solid Earth, 110, 2005.660

Jones, T. D., Sime, N., and van Keken, P.: Burying Earth’s primitive mantle in the slab graveyard, Geochemistry, Geophysics, Geosystems,

22, e2020GC009 396, 2021.

Kramer, S. C., Davies, D. R., and Wilson, C. R.: Analytical solutions for mantle flow in cylindrical and spherical shells, Geoscientific Model

Development, 14, 1899–1919, https://doi.org/10.5194/gmd-14-1899-2021, 2021.

Kronbichler, M., Heister, T., and Bangerth, W.: High Accuracy Mantle Convection Simulation through Modern Numerical Methods, Geo-665

physics Journal International, 191, 12–29, 2012.

McNamara, A. K. and Zhong, S.: Thermochemical structures within a spherical mantle: Superplumes or piles?, Journal of Geophysical

Research, 109, 1–14, https://doi.org/10.1029/2003JB002847, 2004.

Murer, M., Formica, G., Milicchio, F., Morganti, S., and Auricchio, F.: A coupled multiphase Lagrangian-Eulerian fluid-dynamics framework

for numerical simulation of Laser Metal Deposition process, The International Journal of Advanced Manufacturing Technology, 120,670

3269–3286, https://doi.org/10.1007/s00170-022-08763-7, 2022.

Popov, A. and Marchevsky, I.: MPI-Based PFEM-2 Method Solver for Convection-Dominated CFD Problems, in: International Conference

on Parallel Computational Technologies, pp. 261–275, Springer, 2022.

Puckett, E. G., Turcotte, D. L., He, Y., Lokavarapu, H., Robey, J. M., and Kellogg, L. H.: New numerical approaches for modeling thermo-

chemical convection in a compositionally stratified fluid, Physics of the Earth and Planetary Interiors, 276, 10–35, 2018.675

Pusok, A. E., Kaus, B. J., and Popov, A. A.: On the quality of velocity interpolation schemes for marker-in-cell method and staggered grids,

Pure and Applied Geophysics, 174, 1071–1089, 2017.

Richards, F., Hoggard, M., Cowton, L., and White, N.: Reassessing the thermal structure of oceanic lithosphere with revised global inventories

of basement depths and heat flow measurements, Journal of Geophysical Research: Solid Earth, 123, 9136–9161, 2018.

Samuel, H.: A deformable particle-in-cell method for advective transport in geodynamic modelling, Geophysical Journal International, 214,680

1744–1773, 2018.

28

https://doi.org/10.5194/egusphere-2023-2765
Preprint. Discussion started: 23 November 2023
c© Author(s) 2023. CC BY 4.0 License.



Schierjott, J. C., Thielmann, M., Rozel, A. B., Golabek, G. J., and Gerya, T. V.: Can grain size reduction initiate transform faults? Insights

from a 3-D numerical study, Tectonics, 39, e2019TC005 793, 2020.

Schmid, D. W. and Podladchikov, Y. Y.: Analytical solutions for deformable elliptical inclusions in general shear, Geophysical Journal

International, 155, 269–288, 2003.685

Schubert, G., Turcotte, D. L., and Olson, P.: Mantle Convection in the Earth and Planets, Part 1, Cambridge, 2001.

Sime, N., Maljaars, J. M., Wilson, C. R., and van Keken, P. E.: An exactly mass conserving and pointwise divergence free velocity

method: Application to compositional buoyancy driven flow problems in geodynamics, Geochemistry, Geophysics, Geosystems, 22,

e2020GC009 349, 2021.

Sime, N., Wilson, C. R., and van Keken, P. E.: A pointwise conservative method for thermochemical convection under the compressible690

anelastic liquid approximation, Geochemistry, Geophysics, Geosystems, 23, e2021GC009 922, 2022.

Stein, C. A. and Stein, S.: A model for the global variation in oceanic depth and heat flow with lithospheric age, Nature, 359, 123–129, 1992.

Strauss, W. A.: Partial differential equations: An introduction, John Wiley & Sons, 2007.

Tackley, P. J. and King, S. D.: Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations,

Geoch. Geoph. Geosystems, 4, 2001GC000 214/1–15, 2003.695

Thielmann, M., May, D. A., and Kaus, B. J. P.: Discretization Errors in the Hybrid Finite Element Particle-in-cell Method, Pure and Applied

Geophysics, 171, 2165–2184, 2014.

Trim, S. J., Butler, S. L., McAdam, S. S., and Spiteri, R. J.: Manufacturing an exact solution for 2D thermochemical mantle convection

models, Geochemistry, Geophysics, Geosystems, 24, e2022GC010 807, 2023a.

Trim, S. J., Butler, S. L., and Spiteri, R. J.: The impact of velocity update frequency on time accuracy for mantle convection particle methods,700

Authorea Preprints, 2023b.

van Keken, P., King, S., Schmeling, H., Christensen, U., Neumeister, D., and Doin, M.-P.: A comparison of methods for the modeling of

thermochemical convection, Journal of Geophysical Research: Solid Earth, 102, 22 477–22 495, 1997.

Van Zelst, I., Wollherr, S., Gabriel, A.-A., Madden, E. H., and van Dinther, Y.: Modeling megathrust earthquakes across scales: One-way

coupling from geodynamics and seismic cycles to dynamic rupture, Journal of Geophysical Research: Solid Earth, 124, 11 414–11 446,705

2019.

Wang, H., Agrusta, R., and van Hunen, J.: Advantages of a conservative velocity interpolation (CVI) scheme for particle-in-cell methods

with application in geodynamic modeling, Geochemistry, Geophysics, Geosystems, 16, https://doi.org/10.1002/2015GC005824, 2015.

Zhong, S.: Analytic solutions for Stokes’ flow with lateral variations in viscosity, Geophysical Journal International, 124, 18–28, 1996.

Zhong, S., McNamara, A., Tan, E., Moresi, L., and Gurnis, M.: A benchmark study on mantle convection in a 3-D spherical shell using710

CitcomS, Geochem. Geophys. Geosyst., 9, Q10 017, 2008.

29

https://doi.org/10.5194/egusphere-2023-2765
Preprint. Discussion started: 23 November 2023
c© Author(s) 2023. CC BY 4.0 License.


