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Abstract. Relating forest productivity to local variations in forest structure has been a long-standing challenge. Previous

studies often focused on the connection between forest structure and stand-level photosynthesis (GPP). However, biomass

production (NPP) and net ecosystem exchange (NEE) are also subject to respiration and other carbon losses, which vary with

local conditions and life history traits. Here, we use a simulation approach to study how these losses impact forest productivity

and reveal themselves in forest structure. We fit the process-based forest model Formind to a 25 ha inventory of an old-5

growth temperate forest in China and classify trees as “mature” (full-grown) or “immature” based on their intrinsic carbon use

efficiency. Our results reveal a strong negative connection between the stand-level carbon use efficiency and the prevalence of

mature trees: GPP increases with the total basal area, whereas NPP and NEE are driven by the basal area of immature trees.

Accordingly, the basal area entropy – a structural proxy for the prevalence of immature trees – correlated well with NPP and

NEE and had a higher predictive power than other structural characteristics such as Shannon diversity and height standard10

deviation. Our results were robust across spatial scales (0.04-1ha) and yield promising hypotheses for field studies and new

theoretical work.
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1 Introduction15

Understanding the drivers of forest productivity is key for assessing forests’ ability to provide ecosystem services (e.g. carbon

sequestration or commercial wood production) and to gauge their resilience against disturbances and global change (Costanza

et al., 1998; Anav et al., 2015; Jha et al., 2019; Sheil and Bongers, 2020). Forests’ net primary production (NPP) may be

affected via two pathways: carbon supply, i.e., gross primary production (GPP), and carbon losses due to respiratory costs and

other limiting factors (Wiley and Helliker, 2012). Forest structure (e.g. density, species composition, age and size distribution;20

McElhinny et al., 2005) can be both a factor and result of processes acting on either of these pathways (Waide et al., 1999;

Forrester and Bauhus, 2016; Sheil and Bongers, 2020). For example, denser forests may exhibit a larger total leaf area and hence

higher stand productivity. Conversely, high productivity of individual trees may lead to denser forests. Hence, identifying the

connection between forest structure and productivity is key for a comprehensive understanding of forest productivity.

Several studies have established links between forest structure and carbon supply (Waide et al., 1999; Forrester and Bauhus,25

2016). For example, GPP is expected to benefit from higher diversity via improved exploitation of ecological niches and

reduced competition, and vertically stratified forests may allow for more efficient light use due to denser leaf packaging

(Forrester and Bauhus, 2016; Bohn and Huth, 2017). Nonetheless, it has proven difficult to identify clear relationships between

forest structure and NPP (Chisholm et al., 2013), as diverse factors, ranging from resource availability to the impact of biotic

agents, affect forest dynamics on different procedural levels (Forrester and Bauhus, 2016), and NPP is not only subject to30

supply-related but also loss-related factors. A unified framework for forest productivity therefore also needs to address the

corresponding role of losses. This is the subject of this study.

A tree’s ability to utilize acquired carbon to form biomass can be expressed through its carbon use efficiency (CUE =

NPP/GPP). In the absence of shading by larger plants, the CUE is expected to decline with tree size, as larger trees have a higher

demand for respiration and non-structural carbon (Collalti et al., 2020b; Binkley, 2023). Such respiratory losses and other,35

external, factors may induce site-dependent tree size maxima, at which biomass accumulation is significantly reduced. The

resulting decline of NPP with forest age is well documented on the stand level (Gower et al., 1996; Tang et al., 2014; Collalti

et al., 2020a), but the extent at which loss-induced limitations drive variations of NPP on the local scale is less understood

(Chisholm et al., 2013; Rödig et al., 2018). This, however, would be necessary for a mechanistic understanding of the impact

of loss-related factors in comparison to supply-related factors.40

To evaluate the impact of loss-induced limitations on forest productivity, we suggest a simple classification framework: we

divide trees into full-grown (below: “mature”) and growing (“immature”) trees based on their intrinsic optimal CUE, i.e., the

CUE the trees could attain if their GPP was not limited by competition. We consider trees as mature if intrinsic loss-related

factors limit their CUE even under otherwise optimal growth conditions. Consequently, tree maturity and competition are

distinct processes reducing stand-level forest productivity.45

Forest productivity may be considered on different procedural levels: GPP, representing forests’ photosynthetic capacity;

NPP, denoting their total wood production after respiratory losses; and the net ecosystem exchange (NEE), measuring the
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total forest carbon sequestration in the presence of emissions from deadwood decomposition and soil respiration. Studying the

impact of loss-induced growth limits, we focused on three questions:

1. How do GPP, NPP, and NEE depend on the prevalence of mature and immature trees?50

2. How can these relationships be linked to forest structure and expressed via easily measurable forest characteristics?

3. On which spatial scales can these relationships be observed?

To answer these questions, local carbon fluxes must be identified. Though NPP may be estimated from forest inventory data,

field data for GPP and NEE, e.g. from eddy covariance measurements, are typically only available for larger scales (about

10ha). Similarly, it can be difficult to determine which trees have reached the mature stage. These challenges can be addressed55

with process-based forest models, which reproduce the forest dynamics under controlled reference conditions and provide full

insight into carbon fluxes as well as the state and growth limitations of each tree.

There is a broad variety of forest models covering diverse sets of processes potentially impacting forest dynamics (Bugmann

and Seidl, 2022). Depending on their respective main use cases, the models differ in their spatial resolution, their representation

of vertical forest structure, physiological detail, and consideration of abiotic (e.g. soil conditions, weather, fire) and biotic60

(e.g. browsing, bark beetle attacks) factors (Merganičová et al., 2019; Bugmann and Seidl, 2022).In this study, we used the

individual-based forest gap model FORMIND (Bohn et al., 2014; Fischer et al., 2016). The model features submodels on

regeneration, competition, growth, and mortality and has been applied to study forest dynamics and carbon fluxes in a variety

of both temperate and tropical forests (Fischer et al., 2016). As the model represents individual trees and the forest’s vertical

leaf distribution explicitly, FORMIND is particularly suited for studying the relationship between forest structure and forest65

productivity (Bohn and Huth, 2017). At the same time, the gap model approach of aggregating the impacts of individual trees

at the local level leads to relatively high computational efficiency in large-scale simulations (Shugart et al., 2018).

We parameterized the model to mimic the dynamics of a species-rich old-growth temperate forest in Changbaishan, China.

Located in a natural reserve, this forest offers unique opportunities to study long-term forest dynamics without biases intro-

duced by human interventions. We addressed the research questions by computing GPP, NPP, and NEE on different spatial70

scales (0.04ha and 1ha) and setting them into relation with the basal area of mature and immature trees as well as different

measures for structural diversity. For question (2), we suggest the DBH entropy, a measure for the diversity of tree heights, as

a general proxy for the prevalence of immature trees and therefore also forest productivity.

2 Materials and Methods

We applied a data-driven modelling approach (Fig. 1) to analyze the relationship between forest structure and forest produc-75

tivity. We fitted the process-based forest model FORMIND to forest inventory data from Changbaishan, China, and data on

species’ traits and allometric relationships. Using the model, we then linked forest productivity to the prevalence of mature

trees and other forest characteristics. Below we describe the individual steps in detail.
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Figure 1. Summary of our approach. We use forest inventory data and data on species’ traits and allometric relationships to derive the
distribution of maximal plant sizes and parameterize a process-based forest model. This model, in turn, yields productivity metrics (GPP,
NPP, and NEE) and different forest characteristics, including the fraction of mature trees.

2.1 Field data

We based our analysis on forest inventory data from an old-growth temperate forest in the Changbaishan National Nature80

Reserve in northeastern China. The surveyed area consists of 25ha of conifer/broad-leaf mixed forest with 47 species, a total

biomass of 302 tODM/ha (Piponiot et al., 2022). The inventory data contain the position, diameter at breast height (DBH) and

species of each tree with DBH≥ 1cm for the census years 2004, 2009, and 2014. Each tree is uniquely identified with an ID

number. For trees that had multiple stems at breast height, we focused on the main stem (maximal DBH) in our analysis and

we disregarded minor stems.85

In addition to the inventory data, we used information on traits and allometry of the species from field measurements. These

data included DBH-dependent heights, crown radii and crown base heights. Furthermore, the dataset included the species’

wood densities and shade tolerance types (“light demanding”, “mid-tolerant”, or “shade tolerant”). Not all of these data were

available for all species; we provide details in Supplementary Information (SI) A.

2.2 Model and parameterization90

FORMIND is a process-based forest gap model featuring the main processes regeneration, competition, tree growth, and mor-

tality (Fischer et al., 2016). Trees are mainly characterized by their DBH and species. Other properties, such as plant height or

crown size, are derived from the DBH via allometric relationships. The model considers 20m×20m forest patches, for which

the vertical leaf distribution and the resulting light climate are computed. The obtained incident radiation is used to compute

each tree’s GPP. The corresponding NPP is computed by subtracting an individual’s respiration and other carbon losses from95

its GPP. Here, the maintenance respiration is determined by comparing the estimated GPP of trees under unshaded reference

conditions with corresponding biomass increments from field data. Growth respiration and other carbon losses are computed

as a certain fraction of the difference between GPP and maintenance respiration.

In the past, FORMIND was parameterized for managed European temperate forests (Bohn et al., 2014), but the Changbaishan

forest has a different, richer species pool and is old-growth, requiring a correspondingly parameterized regeneration module.100

Therefore, we needed to develop an adjusted parameterization to apply FORMIND to this site. Below we summarize how we
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parameterized the model and highlight changes to the version described before in Fischer et al. (2016). Details can be found in

SI B.

Basic parameterization

To reduce model complexity in the species-rich Changbaishan setting, we aggregated species into plant functional types (PFTs)105

based on their maximal DBHs (below / above 30cm) and light demand (light demanding, mid-tolerant, and shade tolerant).

When data necessary for the classification were not available, we assigned species via a likelihood-based cluster analysis

based on shade tolerance (Niinemets and Valladares, 2006; Wang et al., 2010) and observed tree growth (SI B2). Because

Quercus mongolica had a significantly different size structure than the other light-demanding species, we divided the large

light demanding into two PFTs, one with all other large light demanding species and one for Q. mongolica only. We obtained110

six PFTs: small light demanding, large light demanding 1 and 2, large mid-tolerant, small shade tolerant, and large shade

tolerant species. There were no small mid-tolerant species.

We estimated mean traits and allometric relationships for the PFTs based on the trait and allometry data. When computing

the means, we weighted species according to their shares in the inventory to best reflect the species composition in the study

area. Details can be found in SI B3 and B4. We modelled the forest under constant climatic conditions, which we derived115

based on data from the literature (evapotranspiration: Sun et al., 2004; temperature: Wang et al., 2020) and the WFDEI forcing

dataset (irradiance, Weedon et al., 2014). See SI B10 for details.

We estimated the DBH-dependent base mortality for each PFT applying a likelihood-based approach to the inventory data

(SI B9). To parameterize tree growth, we focused on the carbon use efficiency (CUE = NPP/GPP) of trees under optimal

growth conditions (SI B7). We modelled the CUE based on the following observations and assumptions: (1) the CUE decreases120

as plants grow in size, (2) the CUE under optimal conditions suffices for the observed DBH increments, (3) the CUE of trees

in the inventory suffices to satisfy their respiratory needs, and (4) the order of magnitude of the CUE on stand level matches

field measurements approximately (see SI B7.4).

With the modelled CUE under optimal conditions and FORMIND’s submodel for primary production, we computed the GPP

and NPP of trees under optimal conditions. We then used corresponding estimates of optimal DBH increments from the census125

data (SI B7.1) along with allometric relationships for stem dimensions to derive how much biomass trees allocate to their stem

and their crown, respectively (SI B7.5). Finally, we adjusted the primary production model until enough biomass was allocated

to the crowns that FORMIND’s estimate of the Changbaishan forest biomass matched an estimate based on DBH-biomass

relationships from the literature for each PFT (Chojnacky et al., 2014; Piponiot et al., 2022; see SI B7.5). Parameters that could

not be determined via this approach were fitted so that the model best reproduced the inventory data (see below).130

We assumed that trees compete for light only, but included crown defoliation as an additional process to account for the

limited capacity of a forest. Trees whose GPP is insufficient to satisfy their respiratory needs loose crown biomass until

all remaining parts can be maintained. Here, we assumed that – for a tree of given DBH – the maintenance respiration is

proportional to the biomass. We decreased the leaf area index (LAI) of stressed trees along with their crown completeness, i.e.,

the ratio between current (reduced) and healthy crown biomass. Trees that have lost all their crown biomass die.135
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To compute the soil respiration required to determine the NEE, FORMIND uses the submodel for deadwood composition

described by Sato et al. (2007), which involves a pool of fast and slowly decomposing deadwood, respectively (Paulick et al.,

2017). The corresponding decomposition rates and the transition rates between the pools are derived from the mean actual

evapotranspiration (Sato et al., 2007), for which we assumed a value of 600mm
yr , in line with independent estimates for the

Changbaishan region (Sun et al., 2004) and earlier parameterizations of the model for temperate forests (Bohn et al., 2014).140

Model fitting

Some of the modelled processes depend on parameters not directly inferable from the available data. This included the follow-

ing PFT-specific parameters: (1) the external influx of new seeds, (2) the saturation parameters of the light response curves,

(3) the magnitudes of carbon losses other than maintenance respiration, and (4) the light required for seedling establishment.

Furthermore, we fitted a parameter controlling the magnitude of DBH growth under optimal conditions and the sharpness of145

the light threshold for seedling input.

We fitted these 26 parameters using a likelihood-based approach maximizing the approximate likelihood of the inventory

data, estimated from a sample of simulation results. We determined each PFT’s biomass and stem count in 20m× 20m forest

patches. The combined information of stem count and biomass yields basic insight into the size distribution of trees: a large

stem count with small biomass indicates a young forest with many small trees, and a small stem count with high biomass150

indicates an old forest with few large trees. Using these summary statistics instead of the full tree size distribution reduced

the dimension of the considered state space, allowing us to estimate the joint distribution of the highly stochastic small-scale

forest states based on a reasonable sample of simulation results. The inventory covered 625 forest patches, providing us with a

similarly-sized sample of forest states.

To generate a forest state sample from the model, we first simulated 1ha of forest for a burn-in period of 2000yr. Then, we155

sampled the forest 500 times in 5yr intervals. We repeated this procedure 67 times in parallel, equivalent to simulating 67ha

of forest, obtaining a sample of 837,500 forest states for each tested parameter combination.

We estimated the likelihood of the field data via kernel density estimation (KDE; Wand and Jones, 1995). In KDE, the

probability density of an observation is estimated based on how many model-generated sample points are similar to the obser-

vation. Here, similarity is measured via kernel functions, which depend on bandwidth parameters. We used Gaussian kernels160

with bandwidths chosen corresponding to the scales of the stem counts and biomasses in the inventory data (see Table S10 in

SI B11). To correct for the bias introduced when log-transforming the KDE so as to compute the log-likelihood, we applied a

bias correction function derived via a first-order Taylor approximation (SI B11).

The resulting likelihood estimate converges to the true likelihood as the size of the generated sample increases and the band-

width parameters decrease. Hence, optimizing the KDE likelihood yields consistent parameter estimates and avoids potential165

biases arising if the model was fitted via a deterministic modelling framework (e.g. Lehmann and Huth, 2015; Rödig et al.,

2017). However, as the log-likelihood estimate is based on a sample of stochastic model results, it is stochastic as well, making

it difficult to optimize. We reduced the stochasticity by decreasing the dimension of the sample space, avoiding the “curse of
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dimensionality” (Wand and Jones, 1995) by considering the different PFTs as mutually independent. The parameter estimates

remain consistent despite this composite likelihood approach (Varin, 2008).170

We maximized the likelihood by repeatedly applying a derivative-free optimization algorithm based on non-local quadratic

approximations (Cartis et al., 2019). To avoid getting stuck in local minima, we used the basin-hopping algorithm (Wales and

Doye, 1997), which applies multiple local optimizations with randomly perturbed initial conditions. Throughout the fitting

process, we constrained the parameters to ecologically reasonable ranges. Details on model fitting can be found in SI B11. The

fitted parameter values are provided in SI B.175

Size limitations

We assumed that each tree has a maximal DBH at which it stops growing. As this maximal DBH may depend on local

conditions and the tree’s species, we drew the DBH limit randomly for each tree individually (details below). Trees that have

reached their DBH limit are called “mature” below and are assumed to use their entire primary production for respiration.

We constructed the distributions of the DBH limits based on the maximal DBHs of the species in each PFT: for each species,180

we assumed that the site-dependent DBH limits are uniformly distributed between the overall maximal DBH and a value 20%

below this maximum. We aggregated these species-specific distributions, weighted according to the species’ respective shares

in the basal area of the inventory. That way, we obtained the joint distribution of DBH limits for each PFT. In SI B4.1, we

describe the approach in greater detail.

2.3 Model validation185

We validated the fitted model by visually comparing the respective marginal and joint distributions of the biomass and stem

count values for the considered PFTs with the corresponding distributions observed in the field data. We created corresponding

one- and two-dimensional histograms based on both samples generated via simulations and computed based on the forest

inventory data. We observed that the simulated trajectory and distribution of biomass and stem count matched the values from

the inventory (Fig. 2, SI D).190

To ensure the fitting algorithm did not terminate at a suboptimal local likelihood maximum, we repeated the model fitting

procedure three times. We compared the resulting parameter estimates to assess how well the individual parameters are es-

timable. The differences between the corresponding parameter were moderate for most parameters except the light threshold

for seedling establishment (SI D).

To validate the results on a broader scale (25ha), we furthermore compared the modelled biomass, NPP, GPP, and LAI with195

values obtained for the same forest plot in independent studies (Piponiot et al., 2022). The simulated forest had a mean biomass

of 270.5 tODM/ha (estimated standard deviation for 25ha: 4.38 tODM/ha). Our biomass estimates from the allometric equations

by Chojnacky et al. (2014) were 270.52 tODM/ha if we only considered the major stems and 284.48 tODM/ha for all stems in

the inventory. This is below the estimate by Piponiot et al. (2022): 302 tODM/ha. The simulated forest had an aboveground

wood production of 2.22 tODM/ha·yr (standard deviation: 0.07 tODM/ha; Piponiot et al., 2022: 3.55 tODM/ha·yr) and GPP of200
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Figure 2. Temporal evolution of (a, b) biomass and (c) stem count of the six PFTs on (a) the 25ha scale and (b, c) the 1ha scale. The
solid lines show the trajectory of the model simulation. For comparison, the shaded areas depict the ranges between the 25th and the 75th
percentiles of the biomasses and stem counts from the inventory data. The dashed lines represent the corresponding mean values.

23.39 tODM/ha·yr (standard deviation: 0.2 tODM/ha; Wu et al., 2009: 29.82-33.86 tODM/ha·yr). The LAI of the simulated forest

was 5.18 (standard deviation 0.05; Liu et al., 2007: 5.08). See SI D for details.

2.4 Analysis

To analyze the effect of mature trees on forest productivity, we simulated 1ha of the Changbaishan forest and sampled forest

characteristics and forest productivity over time on the 0.04ha and the 1ha scale. After a burn-in period of 2000yr, we analyzed205

the forest 1000 times in 5yr time intervals. We obtained a sample of 25,000 forest states on the smaller and 1,000 states on

the larger scale, corresponding to 1000ha.

To measure forest productivity, we computed the GPP, NPP, NEE, and carbon use efficiency

(CUE = NPP/GPP) of the considered forest areas. We characterized the corresponding forest states by determining the basal

area Aall of all trees in the forest area and the basal area Agrow of only those trees that had not reached their individual DBH210

limits. Based on these measures, we also determined the basal area proportion Agrow/Aall of immature trees and the corre-

sponding proportion of mature trees. Furthermore, we computed the DBH entropy (a measure for the diversity of DBH values;

detailed explanation in section 2.5), basal-area-weighted height standard deviation, and the Shannon diversity of PFTs on the

two considered scales. We weighted the plant heights by the basal areas when computing the height standard deviation so as to

account for small plants having a minor impact on forest productivity.215

For both considered spatial scales (0.04ha and 1ha), we plotted GPP, NPP, and NEE against the mentioned forest character-

istics and computed the respective coefficients of determination (R2) to quantify the strengths of the relationships. In a similar
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Figure 3. Basal-area-weighted DBH distributions for 0.04ha forest patches with (a) low, (b) intermediate, and (c) high entropy. Each black
cross depicts the DBH of a plant. The height of the corresponding spike in the density function (blue line) corresponds to the plant’s share in
the basal area; the contributions of trees with similar DBH add up. The width of the spikes (2h; here: 2cm) is the scale on which different
plants are considered similarly sized. The entropy is higher the more uniformly the basal area is distributed across plants with different
DBHs. In (a), two similarly large plants dominate the forest patch, whereas in (c), there are many medium-sized plants with different DBHs.
Note that the standard deviation of the DBH distribution is not related to the DBH entropy.

manner, we analyzed the relationship between the basal area proportion of mature trees and the CUE. To understand the role

of the DBH entropy, we furthermore assessed its relationship with the basal area of mature and immature trees.

To assess how sensitive our results are to the assumption that mature trees stop growing completely, we computed the NPP in220

hypothetical scenarios in which the CUE of trees is reduced by only 50%, 25%, or 0%, respectively, when they enter the mature

stage. To avoid refitting the model for each of these validation scenarios, we adjusted only the intrinsic carbon fluxes and held

the sizes of the mature trees constant. We then analyzed the relationship of the obtained NPP values with the covariates given

above.

2.5 DBH entropy as a proxy for the prevalence of mature trees225

It is difficult to know which trees have reached their site-dependent growth limits in field studies. Hence, a proxy for the

prevalence of mature trees is needed in practice. Such a proxy should be easy to compute from inventory data and may

account for the following working hypotheses: (1) forest patches dominated by mature trees consist of a small number of large

individuals preventing the existence of medium-sized trees; (2) in old-growth forests, individuals typically differ in age and

size, but mature individuals of the same species may have similar DBH values. The proxy should also reflect that large trees230

have a higher impact on forest dynamics than small trees.

As a proxy satisfying these requirements, we propose the basal-area-weighted DBH entropy SDBH (below simply “DBH

entropy”), defined as the entropy of the distribution of DBHs in a forest patch (cf. Staudhammer and LeMay, 2001; Park et al.,

2019). If we split the range of occurring DBH values into equally sized intervals I and determined the basal area share pI of
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trees in each size class I relative to the total total basal area, the DBH entropy could be approximated via235

SDBH =−
∑
I∈I

pI ln(pI). (1)

Here, I is the set of DBH classes and

pI =

∑
d∈I d

2∑
I∈I

∑
d∈I d

2
(2)

is the basal area share of trees in size class I .

The weights pI can be interpreted as probabilities indicating how likely we would obtain a tree from size class I if we240

randomly selected trees from the forest patch with probabilities proportional to their basal areas. The entropy is higher the

more evenly the the DBHs are distributed (Fig. 3). If the forest patch is dominated by one or a few large trees, it is likely that

we draw one of their size classes, making the entropy small. Similarly, if two trees have a similar DBH, the probability to pick

a tree from their size class increases, decreasing the entropy. Since we weight the DBH distribution by the basal areas, adding

small trees to the forest patch does not change the entropy significantly.245

As the approach presented above is sensitive to the specific choice of interval bounds, we used a more robust definition of

the DBH entropy in our analysis (SI C1). We applied kernel smoothing (Wand and Jones, 1995) with an Epanechnikov kernel

to obtain a continuous estimate of the DBH distribution instead of discrete probabilities pI (cf. Fig. 3), and we exchanged the

sum in equation (1) with an integral. Kernel smoothing requires a bandwidth parameter (here: 1cm), which is comparable to

the width of the DBH intervals I and defines the scale on which two trees are regarded similar.250

3 Results

The basal area of the forest stand was strongly correlated with the GPP, irrespective of the spatial scale (R2 ≥ 0.65; Figs. 4a

and 5a). For the NEE, these correlations were much weaker (R2 ≤ 0.1; Figs. 4f, 5f) and for the NPP merely existent (R2 = 0;

Figs. 4k, 5k). This contrasts with the basal area of immature trees: here, the correlations were small for the GPP (R2 ≤ 0.15;

Figs. 4b, 5b) but large for the NPP (R2 ≥ 0.74; Figs. 4g, 5g) and the NEE (R2 ≥ 0.59; Figs. 4l, 5l). We obtained a similar but255

slightly weaker result for the DBH entropy. On the small scale (0.04ha), it was weakly correlated with the GPP (R2 = 0.11;

Fig. 4c) but strongly correlated with NPP (R2 = 0.47; Fig. 4h) and NEE (R2 = 0.39; Fig. 4m). These correlations decreased

on the larger scale (1ha; R2 ≤ 0.26; Figs. 5c, h, m).

The weighted tree height standard deviation was strongly negatively correlated with the GPP (R2 ≥ 0.56; Figs. 4d, 5d) but

almost uncorrelated with NPP and NEE (
∣∣R2
∣∣≤ 0.03; Figs. 4/5i, n) on both spatial scales. The Shannon diversity of PFTs was260

moderately correlated with the NPP (R2 ∈ [0.17,0.19]; Figs. 4j, 5j), weakly correlated with the NEE (R2 ≤ 0.04; Figs. 4o, 5o),

and weakly negatively correlated with the GPP (R2 ≤ 0.07; Figs. 4e, 5e).
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(a) (b) (c) (d)

Figure 6. Relationship between the DBH entropy and (a, b) the basal area of immature and (c, d) mature trees,depicted on (a, c) the 0.04ha
and (b, d) the 1ha scale. Each dot corresponds to a forest patch of the respective scale. The colour corresponds to the total basal area (dark:
low, light: high). The DBH entropy correlates positively with the basal area of immature trees, which drive the NPP, and correlates negatively
with the basal area of mature trees, which do not contribute to the NPP and compete with immature trees. The relationships are stronger on
the small scale.

(a) (b) (c) (d)

Figure 7. Relationship between the basal area proportion of immature trees and (a) the CUE, (b) the GPP, and (c) the tree respiration / carbon
losses. The CUE is proportional to the basal area of immature trees. Though the CUE can be directly computed from the GPP and respiration,
a similar relationship is not visible for these, indicating that they are not the drivers behind the proportionality. (d) Relationship between the
DBH entropy and the CUE. Though this relationship is weaker than that between the proportion of immature trees and and CUE, the DBH
entropy may serve as a proxy for the CUE.
Each dot corresponds to a 0.04ha forest patch. The colour corresponds to the basal area (dark: low, light: high).

The DBH entropy was positively correlated to the basal area of immature trees (R2 = 0.33 on the small scale; Fig. 6a) and

weakly negatively correlated to the basal area of mature trees (R2 = 0.09; Fig. 6c). For the latter, the DBH entropy was a poor

predictor in forest patches with large overall basal area. On the hectare scale, the relationships became weaker for immature265

trees (R2 = 0.23; Fig. 6b) but stronger for mature trees (R2 = 0.19; Fig. 6d).

The CUE was proportional to the proportion of immature trees in the forest (Fig. 7a). The regression analysis yielded an

intercept of 3.16·10−3 on the small and 2.182·10−4 on the large scale, with R2 values of 0.88 and 0.82, respectively. The

proportionality constants (slopes of the fitted curves) were 0.29 and 0.28. The relationship between CUE and DBH entropy
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was also significant, but weaker (R2 = 0.3 on the small and R2 = 0.28 on the large scale; Fig. 7). The GPP and tree respiration270

/ carbon losses did not show a strong correlation with the proportion of immature trees (R2 = 0 and R2 = 006, respectively on

the small scale; Figs. 7b, c).

Reducing
:::::::::
Decreasing

:
the CUE reduction of mature trees in comparison to similar immature trees decreased the correlation

between the basal area of immature trees and the NPP. However, the predictive performance remained high (R2 ≥ 0.53) even

if the CUE of immature
::::::
mature trees was only reduced by 25% (Fig. S1). The DBH entropy was even less sensitive to a change275

in the CUE reduction. However, when the CUE was reduced by less than 50%, the DBH entropy computed with cubic DBH

weights had a stronger correlation with NPP than the basal-area-weighted version and achieved an even higher R2 of 0.57 and

0.55 when the CUE was reduced by only 25% and 0%, respectively. Details and further results regarding the CUE reduction

scenarios are presented in SI E.

4 Discussion280

We suggested a simple framework of “mature” and “immature” trees to disentangle the impact of competition and intrinsic

growth limitations on forest productivity in old-growth forests. Thereby, we found that the drivers of NPP and NEE were

distinct from those determining GPP. While the latter was strongly correlated with the total basal area, NPP and NEE were

related to the basal area of immature trees only. This indicates that the increased respiratory losses of mature trees play the

major role in forests’ carbon balance: despite having a significant GPP, mature trees contribute less to wood production but285

rather reduce the productivity of other trees via competition. Hence, tree maturity may be a major driver of the difference

between NPP and GPP, making GPP-related covariates such as light competition insufficient to explain local variations in NPP

and NEE.

This conclusion is supported by the observed proportionality between the CUE and the basal area share of immature trees:

carbon usage was more efficient the more the forest was dominated by immature trees. The proportionality can be explained by290

noting that (1) the individual-level GPP is strongly positively correlated with basal area, irrespective of the maturity stage, and

(2) only immature trees contribute to the NPP. On the stand level, neither the GPP nor the respiration were correlated with the

proportion of immature trees, showing that the proportionality was not driven by the decreased GPP or increased respiration of

forests with a high share of mature trees.

These findings are based on a maturity definition considering the individual trees’ growth potential in the absence of compe-295

tition. This potential can be challenging to determine in field studies, as it requires to identify the causes of individuals’ growth

limitations. Hence, alternative maturity definitions, based on tree size or signs of senescence may be used (Gibbons et al.,

2008). Applying such alternative maturity definitions will yield qualitatively similar results if the considered characteristics are

strongly correlated with the trees’ growth potential. Otherwise, other structural forest attributes may be considered.

To that end, we suggested the DBH entropy as a proxy for the prevalence of immature trees and thereby NPP and NEE. The300

DBH entropy was positively correlated with the basal area of immature trees and negatively correlated with the basal area of

mature trees, but its relationships to NPP and NEE were even stronger. This indicates that the predictive capacity of the DBH
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entropy stems not only from its correlation with the prevalence of immature trees but also from other mechanisms. In line with

this observation, the DBH entropy remained a good predictor for NPP even in the validation scenario where we did not reduce

the CUE of mature trees (SI E). These findings support previous studies identifying structural diversity as a major driver of305

forest productivity (Dănescu et al., 2016; Bohn and Huth, 2017; Silva Pedro et al., 2017; Bohn et al., 2018; Park et al., 2019;

LaRue et al., 2023). Note that our DBH entropy index differs from the classic entropy-based measures for structural diversity

(Staudhammer and LeMay, 2001) by the basal-area-based weighting (Park et al., 2019), which improved its predictive power

(SI C2).

Remarkably, the height standard deviation, another measure for structural diversity, did not have a significant positive cor-310

relation to any of the productivity measures. The height standard deviation depends on the width of the height spectrum, i.e.,

the difference between the height of the smallest and the largest tree. Hence, forests can exhibit a high standard deviation even

if their diversity of tree heights is low. This contrasts with the entropy, which measures how many different tree sizes there

are without regarding their actual values. The strong negative relationship between the height standard deviation and GPP can

be explained by the weighting we applied. Weighting the tree heights by basal area decreases the standard deviation in forest315

stands with many large trees, which in turn have a large GPP.

The Shannon diversity of PFTs was not strongly related to any of the forest productivity measures. This was due to the

differences between stem count and biomass of the PFTs. Four PFTs contributed significantly to the forest’s stem count and

thus the Shannon diversity. In contrast, the biomass was dominated by two PFTs only, which consequently contributed most to

the production. Hence, the Shannon diversity of PFTs was a poor predictor for productivity. However, if the Shannon diversity320

was computed based on tree species rather than PFTs, it could yield useful information on the diversity of the DBH limits, as

these are species dependent. Setting this diversity of limits into relation with the actual diversity (or entropy) of DBH values

could hence improve NPP estimates.

Changing the spatial scale from 0.04ha to 1ha did not alter most of the relationships we considered. By construction, the

coefficient of determination is insensitive to the addition of independently identically distributed random variables. As the325

interactions between forest patches were weak and the basal area, GPP, NPP, and NEE are additive measures, their respective

correlations were not affected by the scale. The same applied to the height standard deviation, which is additive if the weighted

mean height is approximately constant in all small-scale patches. The Shannon diversity of PFTs did not show strong patterns

on any scale. The DBH entropy, however, was most informative on a small scale (e.g. 0.04ha). On large scales (e.g. 1ha), the

entropy increases and varies less between forest sections, since more trees are considered. This is a significant finding, as many330

previous studies considered entropy-based diversity indices on larger scales (often ≥ 0.5ha; Dănescu et al. 2016; Silva Pedro

et al. 2017; Park et al. 2019). In line with our results, a loss of information on larger scales was noticed by Chisholm et al.

(2013) with respect to the Shannon index. Nonetheless, if the scale is smaller than that of plant interactions, the DBH entropy

cannot reflect information on competition and dominance, and the similarities between mature trees cannot be reflected.
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4.1 Model parameterization and limitations335

Being an individual- and process-based model, FORMIND is designed to attain high mechanistic realism while achieving the

computational performance required to study forest dynamics on large spatial and temporal scales (Fischer et al., 2016). Hence,

some processes such as plant-internal signalling, dynamics of nonstructural carbon, below-ground carbon dynamics, interac-

tions with mycorrhiza, or pest-induced stress are not covered explicitly but implicitly incorporated into high-level processes.

As a result, not all aspects of forest community dynamics may be reproducible with the model. Nonetheless, the main carbon340

fluxes are covered, allowing us to differentiate immature trees from those that have reached their maximal sizes and to analyze

carbon fluxes on small spatial scales.

Measuring GPP and NEE on small scales is challenging, since eddy covariance measurements, for example, typically apply

to the whole stand level only, are costly and bound to one location due to the immobility of the measurement towers. The

model-based approach required some innovations in model design and parameter estimation. For example, the likelihood-345

based fitting method allowed us to estimate parameters based on small-scale (here: 0.04ha) forest characteristics despite their

stochastic variations. The small-scale distribution of stem counts and biomass contains information on local interactions and

consequently the range and diversity of local states a forest can attain. This information is typically lost on larger scales. Cir-

cumventing the need to reduce stochasticity via aggregation over several hectares of forest (see e.g. Rödig et al., 2017) enabled

us to estimate parameters affecting the small-scale forest dynamics and allowed us optimize 26 parameters on regeneration,350

light response, optimal growth, and respiration. Applying a parameterization framework focusing on the tree-level carbon use

efficiency guaranteed a balanced parameterization of the individual-level NPP and GPP.

Our fitting approach also circumvented challenges typically arising in the Bayesian framework. Bayesian methods, such

as approximate Bayesian computation (ABC; Beaumont et al., 2002; Csilléry et al., 2010), require the evaluation of many

parameter combinations. This is computationally costly in models for old-growth forests, as the entire succession has to be355

simulated. Furthermore, the stochastic search performed in ABC and classical Markov Chain Monte Carlo methods may fail

to find good parameter combinations when the parameter space is large. Hence, our methodological advances can also benefit

future forest models.

The good match between the biomass and stem count distributions in the simulated forest and the inventory indicates that the

model replicates the forest structure well. Further validation via independent estimates of biomass, GPP, NPP, and LAI showed360

that the model reproduces major forest dynamics. Nonetheless, the model underestimated the mean biomass, GPP, and NPP.

The underestimated biomass resulted partially from our focus on the main stems in the inventory, neglecting additional minor

stems. Including the secondary stems as separate trees would have led to overestimated LAI values, causing forest thinning and

making it difficult to fit the dynamic model to the field data. The biomass bias, along with the assumption that mature trees stop

growing, may also have caused the underestimated NPP and GPP. Nonetheless, these quantitative differences do not invalidate365

the strong qualitative results we obtained.

The strong correlation we observed between basal area and GPP may stem from our assumption that leaf area and basal area

are proportional within a PFT. Though this assumption is in line with theoretical and empirical findings (West et al., 1999; Xu
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et al., 2021), local conditions and competition can blur this relationship in practice, weakening it in field observations. As an

alternative, the GPP could be estimated from stand-level LAI values (see e.g. Xie et al., 2019).370

The relationship between basal area and GPP could also be weakened by competition for water and other resources, which

might also yield other interactions between mature and immature trees. Added competition may strengthen the negative effect

of mature trees on forest productivity. As a result, the relationship between the proportion of immature trees and the CUE

would become non-linear, with a disproportionally low CUE in stands dominated by mature trees. Consequently, the basal area

of mature trees would need to be considered in addition to the basal area of immature trees to accurately estimate NPP and375

NEE.

In special cases, mature trees could also have positive effects on smaller trees, for example by providing shelter (Lett and

Dorrepaal, 2018) and improving soil conditions (Yunusa and Newton, 2003). In forests whose dynamics are driven by sink

limitations (i.e., limitations affecting carbon allocation to growth) rather than source limitations (limitations affecting carbon

supply), such effects could induce a positive effect of mature trees on NPP.380

Our analysis built on the assumption that trees have maximal sizes. We modelled this via an abrupt transition from the

growing to the mature stage, which is a common approach in forest modelling (Shugart et al., 2018). In reality this transition

can be gradual, and trees may require minimal DBH increments to maintain the function of their vascular system (Prislan

et al., 2013). However, our results remained consistent even if the CUE of mature trees was only reduced by 25% as compared

to immature trees of the same size, suggesting that life-stage-dependent carbon losses have a dominant impact on the forest385

dynamics even if they have a moderate magnitude. Though the concept of growth limitations acting on the individual scale is

subject to an ongoing debate (Stephenson et al., 2014; Foster et al., 2016; Sheil et al., 2017; Forrester, 2021; Anderson-Teixeira

et al., 2022), there is strong evidence that the NPP and / or CUE decrease with the age of forest stands (Gower et al., 1996; Tang

et al., 2014; Collalti et al., 2020a), indicating that tree age or size have a significant effect on individual biomass increment

(West, 2020).390

We considered a forest under spatially and temporally uniform environmental conditions to study the within-stand produc-

tivity variations and their connection with forest structure. Temporal climatic variations and changing occurrence of diseases

and pests could increase the variance of GPP, NPP, and NEE, and weaken their correlations with forest attributes. Though

the external factors could become a major driver of forest dynamics, temporal averaging could reduce the resulting productiv-

ity variations so that data obtained on longer time scales might show patterns similar to those presented here. This could be395

confirmed via further simulation studies, e.g. with an extended FORMIND parameterization incorporating variable climate.

Similarly, spatial heterogeneity in climate, soil, species composition, and other factors could affect forest productivity on

larger scales (Munné-Bosch, 2018; West, 2020; Gea-Izquierdo and Sánchez-González, 2022). To appropriately account for

these variations, our results would need to be combined with appropriate stand-level covariates to obtain productivity estimates

on regional scales. Nevertheless, our findings may be applicable to extended areas with comparable environmental conditions.400
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4.2 Outlook

Using the concept of the potential CUE to characterize tree maturity could become a useful framework to understand forest

productivity on local scales. The identification of mature trees, whose growth is primarily limited by intrinsic factors, may be

conducted irrespective of the mechanism behind the limitations, be it increased respiratory losses (O’Leary et al., 2019), sink

limitations (Potkay et al., 2022), limited nutrient or water availability (Munné-Bosch, 2018), or even genetic predisposition (Liu405

et al., 2016). As we used a generic forest model and our results were robust across scales, our observations may hint towards

a universal relationship between tree maturity and forest productivity. This connection could be used to develop new theory

that could eventually lead to accurate predictions of NPP and NEE based on general forest characteristics. Such predictions

have proven difficult in the past (Chisholm et al., 2013; Rödig et al., 2018) but could be highly relevant for a broad spectrum

of applied and theoretical questions in forest ecosystem science. Here, the DBH entropy could prove particularly useful, as it410

can be easily obtained from inventory data and may serve both as a measure for forests’ structural diversity on the local scale

and as a proxy for net forest productivity in old-growth forests.

Confirming and generalizing the observed relationships between tree maturity, DBH entropy, NPP, and NEE is a promising

endeavour for both theoretical and field studies. Further modelling studies could assess the expected strength of the relation-

ships in forests in different successional stages, under varying environmental conditions, and in the presence of additional415

stressors such as competition for nutrients and water. Field studies could attempt to validate these findings. Typical DBH max-

ima are documented for many species from temperate forests and could serve as a first proxy for maturity (Aiba and Kohyama,

1997; Kohyama et al., 2003; Russell and Weiskittel, 2011; del Río et al., 2019). Combining the gained insights with large-scale

predictors for forest productivity could then lead to a unified theory of forest productivity.

5 Conclusion420

5 Conclusions

We applied a modelling approach to investigate how the prevalence of mature (full-grown) trees and forest structure explain

within-stand variations of forest productivity. We found that NPP and NEE are mainly driven by the basal area of immature

trees, whereas the GPP depends on the total basal area. This suggests that loss-induced limitations rather than variations in

GPP determine NPP and NEE.425

The forest stand CUE was proportional to the basal area share of immature trees. We suggested and tested the basal-area-

weighted DBH entropy as an easy-to-compute proxy for both the prevalence of mature trees and NPP and NEE. Other measures

for structural diversity, namely the height standard deviation and the Shannon entropy of functional types, had much smaller

predictive power. Our results were robust across spatial scales, and due to their solid mechanistic foundation and our generic

model, our findings yield promising hypotheses for field studies and new theoretical work.430

Understanding the drivers of forest productivity is key for an accurate assessment of forests’ role in the global carbon cycle.

Yet, despite significant research effort, it is not fully understood how the productivity of a forest can be deduced from its

18



stand structure. This is partially due to the challenge of accounting for increased carbon losses of mature trees in
:::
For

::::::::
example,

::
we

::::::::::
hypothesize

::::
that

:::::::::::
within-stand

::::
NPP

::::::::
increases

::::
with

:::
the

:::::
DBH

::::::
entropy

::::
and

:::
that

::::::::
focusing

:::
on

::::::::
immature

::::
(not

:::::::::
full-grown)

:::::
trees

::::
could

:::::
yield

:::::
more

:::::::
accurate structure-productivity relationships. We suggest to tackle this problem by identifying the share and435

structure of immature trees within mature forests and show that this approach could significantly improve estimates of forests’

net productivity. As it is challenging to assess tree maturity for each individual in the field, we suggest an easy-to-compute

stand-level proxy for the prevalence of mature trees, yielding the theoretical basis for future field studies improving our

understanding of structure-productivity relationships.
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Appendix A: Data availability by species

The table below displays basic information and data availability for each species in the inventory of 2014. The rows are sorted665

by the species’ respective basal areas (including minor stems). The column “PFT” indicates the plant functional types the

species were assigned to; the PFT numbers correspond to those provided in SI B2. The column “Allometry data available”

shows whether DBH-dependent data on allometric properties, such as tree height or crown length, were available. The column
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“Biomass equation available” indicates whether we found a suitable DBH biomass relationship in Chojnacky et al. (2014).

Species not present in the inventory of 2014 were omitted.670

The allometry dataset contained DBH values, heights, crown diameters, and crown lengths for individual trees. On average,

the dataset contained 73 individuals per species covered in the dataset.

Note that when fitting allometric equations for plant functional types (PFTs), the species were weighted according to their

share in the inventory (SI B3). Hence, missing data are not expected to impact the fitted relationships significantly if the

corresponding species have a small share of basal area in the inventory. Furthermore, the biomass equations were only used to675

approximate the relative share of each PFT in the inventory and estimate a single parameter per PFT based on this information

(SI .B4.5). Therefore, missing data are not expected to impact the model results significantly.

Species
Basal area in

inventory
[
m2

ha

] PFT Shade tolerance
Allometry data

available

Biomass

equation

available

Tilia amurensis 12.556 6 Shade tolerant X X

Pinus koraiensis 9.870 4 Midtolerant X X

Quercus mongolica 6.748 3 Light demanding X X

Fraxinus mandshurica 6.098 4 Midtolerant X X

Acer mono 2.552 6 Shade tolerant X X

Ulmus japonica 1.867 4 Midtolerant X X

Acer pseudo-sieboldianum 1.254 5 Shade tolerant X X

Populus ussuriensis 1.212 2 Light demanding X X

Tilia mandshurica 0.345 6 Shade tolerant X X

Maackia amurensis 0.285 4 Midtolerant X –

Populus koreana 0.203 2 Light demanding X X

Acer barbinerve 0.199 5 Shade tolerant – –

Betula platyphylla 0.179 2 Light demanding X X

Corylus mandshurica 0.151 5 Shade tolerant – –

Acer triflorum 0.120 6 Shade tolerant X –

Acer tegmentosum 0.120 5 Shade tolerant X –

Syringa reticulata 0.110 1 Light demanding X –

Malus baccata 0.103 6 Shade tolerant X –

Phellodendron amurense 0.100 2 Light demanding X –

Acer mandshuricum 0.083 6 Shade tolerant X –

Prunus padus 0.073 6 Shade tolerant X –
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Species
Basal area in

inventory
[
m2

ha

] PFT Shade tolerance
Allometry data

available

Biomass

equation

available

Ulmus laciniata 0.068 4 Midtolerant X –

Betula costata 0.053 2 Light demanding X –

Populus davidiana 0.031 2 Light demanding X –

Pyrus ussuriensis 0.026 2 Light demanding X –

Abies nephrolepis 0.026 4 – X –

Rhamnus ussuriensis 0.017 5 Shade tolerant – –

Cerasus maximowiczii 0.010 1 Light demanding – –

Acer ginnala 0.009 5 Shade tolerant – –

Sorbus alnifolia 0.006 5 Shade tolerant X –

Philadelphus schrenkii 0.004 5 Shade tolerant – –

Rhamnus davurica 0.004 5 Shade tolerant – –

Crataegus maximowiczii 0.002 1 – – –

Euonymus pauciflorus 0.001 5 Shade tolerant – –

Euonymus alatus 0.001 5 Shade tolerant – –

Acanthopanax senticosus 0.000 5 Shade tolerant – –

Sambucus williamsii 0.000 1 Light demanding – –

Lonicera chrysantha 0.000 5 – – –

Viburnum sargenti 0.000 5 Shade tolerant – –

Actinidia kolomikta 0.000 5 – – –

Viburnum bureiaeticum 0.000 5 Shade tolerant – –

Rhamnus diamantiaca 0.000 5 Shade tolerant – –

Euonymus macropterus 0.000 5 Shade tolerant – –

Vitis amurensis 0.000 5 – – –

Aralia elata 0.000 5 Shade tolerant – –

Deutzia amurensis 0.000 5 – – –

Sorbaria sorbifolia 0.000 4 – – –
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Appendix B: Parameterization of the forest model FORMIND

The forest model FORMIND is described in detail by Bohn et al. (2014) and Fischer et al. (2016). Below we focus on those

aspects of the model that deviate from this description, and we provide details about the parameter choice and model fitting680

procedure. We based our analysis on forest inventory data from an old-growth temperate forest in the Changbaishan National

Nature Reserve in northeastern China. The surveyed area consists of 25ha of conifer/broad-leaf mixed forest with 47 species, a

total biomass of 302 tODM/ha (Piponiot et al., 2022). The inventory data contain the position, diameter at breast height (DBH)

and species of each tree with DBH≥ 1cm for the census years 2004, 2009, and 2014. Each tree is uniquely identified with an

ID number. For trees that had multiple stems at breast height, we focused on the main stem (maximal DBH) in our analysis685

and we disregarded minor stems.

Below we provide an overview of the parameterization procedure before describing each step in detail.

Overview

We started by assigning species to PFTs, which aggregate species dependent on their shade tolerance and sizes (SI B2). Where

no shade tolerance data were available, we assigned species to a PFT based on the light demand of their saplings and their690

median observed DBH increment. Next, we derived environmental parameters from the literature and public data sets (SI B10).

To incorporate species traits and allometric relationships into the model, we computed mean trait values / allometries for

each PFT based on independent species-specific data sets or the literature, weighting the species according to their basal area

share in the inventory. For size-dependent traits / allometries, we fitted simple functions mapping the DBH to the corresponding

trait value. We considered the following DBH-dependent traits: Tree height (SI B3.1), crown length (SI B3.2), crown diameter695

(SI B3.3), stem from factor (SI B3.4), and LAI (SI B4.3). Furthermore, we considered the following constant traits: maximal

DBH (SI B4.1), wood density (SI B4.2), light extinction coefficient (SI B4.4), and mean stem biomass proportion (mean taken

over DBH values; SI B4.5).

To parameterize the modelled processes, we used a combination of approaches. Where possible, we derived parameters by

comparing inventory data from two consecutive censuses. This applied to the parameters of the optimal potential growth of700

trees (SI B7.1) and tree mortality (SI B9). Some further parameters could be derived by considering the light climate that

FORMIND obtains for the forest state observed in the inventory. That way, we could estimate the maximal incident radiation of

trees in the inventory (SI B7.2) and constrain the carbon use efficiency (CUE) of trees (SI B7.4). The remaining process-related

parameters were determined by fitting the results from dynamic model simulations to the observed inventory data. With this

approach, we obtained the parameters for the seed influx (SI B5), ingrowth of saplings (SI B6), photosynthesis (SI B7.3),705

carbon losses other than maintenance respiration (SI B7.4), as well as another parameter controlling the optimal growth of

trees (SI B7.1).

To fit the model to the inventory data by optimizing the latter parameters, we used a likelihood-based approach, maximizing

the likelihood with which the collected inventory data are observed according to the model (SI B11). This method has the

advantage that it can be applied on small scales (here: 0.04ha), where forest data are highly stochastic and can have strongly710
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skewed distributions. The approach fits the model not only to spatially aggregated forest attributes but considers their entire

distribution. That is, it seeks to reproduce the frequency of each possible forest state, including uncommon or extreme states.

By considering the complete state distribution, more information is used in the fitting stage, and parameters can be estimated

with higher precision and accuracy.

Though we largely applied the same FORMIND version used in previous studies (Fischer et al., 2016), we also adjusted some715

submodels to achieve higher realism and to assert that fitted parameters do not lead to unreasonable model behaviour. We made

the following procedural adjustments:

Individual-specific size limits (SI B4.1): We allowed each individual tree to have a different DBH limit. That way, we could

account for (1) different size limits of the species within the PFTs and (2) heterogeneity in local conditions constraining

tree height. Without individual-specific size limits, all mature trees in a PFT would have had the same size, potentially720

introducing model artifacts to the relationships between forest structure and tree maturity and hence forest productivity.

Ingrowth (SI B6): Rather than using sharp light thresholds to decide whether seeds can establish to saplings, we used sigmoid

curves that allow a small fraction of seeds to establish even under unfavourable conditions. This approach avoids sudden

strong changes in ingrowth dynamics, potentially leading to greater heterogeneity in forest patches.

Optimal DBH increment (SI B7.1): We estimated the optimal growth of trees as a certain quantile of the DBH increment725

distribution. This approach is more robust than simply considering maximal observed DBH increments, as it is insensitive

to outliers and avoids the statistical bias that could occur if the tree size distribution is not uniform.

Reference light conditions (SI B7.2): We assumed that the maximal DBH increments observed in the inventory were achieved

under shaded conditions for small trees. In earlier parameterizations of FORMIND, it was typically assumed that the

fastest-growing trees in the inventory were not shaded, irrespective of their size. For the Changbaishan forest, this was730

not in line with the light climate that FORMIND estimated based on the inventory data.

CUE under optimal conditions (SI B7.4) / size-dependent biomass allocation (SI B7.5): We introduced a submodel for the

optimal CUE of trees and used this along with biomass data to derive DBH-dependent stem and crown biomass propor-

tions and to scale the light response curve (c.f. the introduction of section B7). Without this approach, GPP and respiration

would have had to be parameterized independently of one antother, making it likely (sometimes inevitable) to run into735

situations where for some trees either (1) the parameterized GPP does not suffice for the biomass increment observed

in the inventory, resulting in zero-estimates for the maintenance respiration of these trees or (2) the parameterized GPP

exceeds the observed biomass increment by orders of magnitude, resulting in maintenance respiration estimates so high

that even moderately shaded trees cannot satisfy their respiratory needs and die. These situations cannot occur if the

optimal CUE is fixed to reasonable values.740

Defoliation (SI B7.6): We created a new submodel for stress situations in which trees’ maintenance respiration exceeds their

GPP. In the new model, trees loose leaves and biomass until their remaining respiratory needs can be satisfied. As the
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loss of leaves leads to a further decline of GPP, stress can result in a feedback loop leading to tree death. Hence, the

defoliation mechanism constrains the forest density in a mechanistic manner. The previous approach to model space

competition was based on stochastic crowding mortality and would have capped the forest density even if all trees had745

a positive NPP and thus growth potential. By linking the maximal forest density to productivity and respiration, the

defoliation approach also helped to obtain realistic parameters for the corresponding submodels.

After providing an overview of the parameterization procedure, we list all parameterization details required to reproduce the

study results.

B1 Time step and simulation area750

We ran the model using a yearly time step. We simulated a square-shaped forest area of one hectare, subdivided into 25 patches

of 20m× 20m, in which light competition occurs. Plants in different patches interact via tree falling only. For this interaction,

we assume torus boundary conditions to minimize boundary effects.

B2 Classification of species to plant functional types (PFTs)

We assigned the 47 tree species into 6 plant functional types (PFTs) according to their shade tolerance and their maximal height.755

In addition, we considered the species Mongolian Oak (Quercus mongolica) individually, as it had a unique DBH distribution

in the forest, making it difficult to assign it to other PFTs without major information loss. We considered the following 6 PFTs:

1. Small shade intolerant species (pioneers with maximal diameter at breast height (DBH) below 30cm).

2. Large shade intolerant species 1 (pioneers with maximal DBH exceeding 30cm).

3. Large shade intolerant species 2 (Mongolian oak).760

4. Large mid-tolerant species (intermediate species with maximal DBH exceeding 30cm).

5. Small shade tolerant species (climax species with maximal DBH below 30cm).

6. Large shade tolerant species (climax species with maximal DBH exceeding 30cm).

We did not consider a PFT of small mid-tolerant species, because there were no mid-tolerant species with maximal DBH below

30cm.765

Classification of species with unknown shade tolerance class

We assigned species for which shade tolerance classification data were not readily available to the PFTs via a likelihood-based

cluster analysis. For this analysis, we determined the median DBH change after 5 years for each species’ individuals observed

in the inventory. We used this value along with numerical shade tolerance data (Niinemets and Valladares, 2006; Wang et al.,
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2010), indicating the fraction of sunlight that a sapling requires to grow, as covariates. A shade tolerance value of 1 corresponds770

to a light requirement of > 50% of the full sunlight; 2 to 25%–50%; 3 to 10%–25%; 4 to 5%–10%; 5 to 2%–5%.

We assumed that the covariates follow a multivariate normal distribution N (µi, Σi) for each shade tolerance class i. We

estimated the means µi and covariance matrices Σi using the method of moments. For each shade tolerance group i, we

determined the mean values µij of the covariates j and covariances Σij1j2 between covariate j1 and j2. We assigned each

species s with unknown shade tolerance type to the class for which the likelihood based on the derived distributions was775

maximized. That is, with xs being the covariate vector of species s and fN the density function of the two-dimensional

multivariate normal distribution, we set

class(s) = argmax
classes i

fN (xj ;µi,Σi). (S1)

Fig. S1 depicts the classification of the species into shade tolerance classes.

B3 Allometric relationships780

We determined allometric relationships for the six PFTs based on allometry data for the individual species. Specifically, we

estimated the relationships between DBH and the geometric properties tree height, crown length, and crown radius, respec-

tively. Let p be the index of a geometric property, i the considered PFT, θpi a parameter vector and xpi the value of allometric

property p for PFT i, d be the DBH and gp : R+→ R+ an injective function. Then we set

xpi = gp(d; θpi). (S2)785

To estimate the parameter vectors θpi, we used a dataset containing tuples of tree DBH and tree height, crown length, and

crown radius for several species. As we desired to find the allometric relationships that best represent the considered forest in

Changbaishan, we weighted the data according to the frequency of trees with similar species and DBH in the inventory (see

subsection F1). Then we fitted the parameters θpi based on the weighted likelihood, assuming that the data were subject to a

normally distributed error with constant variance σ2
pi:790

Xpi ∼N
(
gp(d; θpi), σ

2
pi

)
, (S3)

where Xpi denotes the observed geometry values. This reduces to a weighted least squares method. That is, the objective

function can be expressed as

¯̀(θpi) =−
∑
k∈Ai

(xpik − gp(dk; θpi))
2
wk, (S4)

where Ai is the set of entries in the allometry dataset corresponding to trees of PFT i, xpk is the observed value for the795

geometric property p in entry k, dk is the corresponding DBH value, and wk is the weight. To maximize the likelihood, we
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Figure S1. Assignment of species to PFTs with unknown shade tolerance based on a cluster analysis. Each colour corresponds to a shade
tolerance type: shade intolerant (blue), mid-tolerant (green), shade tolerant (red). Quercus mongolica is drawn in a separate colour (orange),
as it is a PFT on its own. Circles indicate species with a known shade tolerance type. The size of the circles correspond to the respective
species’ basal area in the inventory. Crosses depict species for which the shade tolerance type was assigned via the cluster analysis. The
shade tolerance values indicate the fraction of sunlight that a sapling of the respective species requires to grow. Here, 1 corresponds to a light
requirement of > 50% of the full sunlight; 2: 25%–50%; 3: 10%–25%; 4: 5%–10%; 5: 2%–5%.

used a Newton-Raphson-type trust region approach (Conn et al., 2000) as provided in the Python library Scipy (Jones et al.,

2001).

For some species, no allometry data were available even though they were present in the inventory. Due to the lack of data,

these species were not taken into account when fitting the allometric relationships. However, they were responsible for only a800

small share (4%) of the basal area in the inventory (cf. SI A), so that their impact on the fitted relationships would have been

small and we expect the lack of data not to bias the results significantly.
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Table S1. Parameter values for allometric relationships.

B3.1 Height

For the relationship between DBH and tree height, we used the model

gheight(d; θheight,i) =
θheight,i,0θheight,i,1d

d · θheight,i,0 + θheight,i,1
, (S5)805

where θheight,i,0 is the initial slope of gheight and θheight,i,1 is the height asymptote. The fitted parameter values are displayed

in Table S1; the fitted curves are shown in Fig. S2a..

B3.2 Crown length

We used a linear relationship to model the relationship between tree height and crown length:

g̃crown-l(h; θcrown-l,i) = θcrown-l,i ·h, (S6)810

where h is the tree height. With equation (S5), equation (S6) can also be expressed as a function of the DBH:

gcrown-l(d; θheight,i,θcrown-l,i) = θcrown-l,i · gheight(d; θheight,i). (S7)

The fitted parameter values are displayed in Table S1; the fitted curves are depicted in Fig. S2b.

B3.3 (Maximal) crown diameter

For the relationship between DBH and crown diameter, we used a power-law model:815

gcrown-d(d; θcrown-d,i) = θcrown-d,0 · dθcrown-d,1 , (S8)

where θcrown-d,0 is the scaling factor and θcrown-d,1 is the exponent. The fitted parameter values are displayed in Table S1 and the

fitted curves in Fig. S2c.

Typically, the crown diameter of trees varies with height, and the available allometry data represent maximal crown diame-

ters. In this parameterization of FORMIND, however, crowns are assumed to have cylindrical shapes, with diameters constant820

along the vertical axis. Hence, using the observed maximal crown diameters as diameters of the cylindrical shapes used in the

model would lead to an overestimation of crown volumes and, as a result, the LAI. To correct for this potential bias, we assumed

that the trees from which the data were taken had crowns shaped like ellipsoids, rotationally symmetric around the vertical axis.

A cylinder with the same volume and height as this ellipsoid must have a diameter scaled by factor
√

2
3 as compared to the
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Figure S2. Size-dependent plant traits. The circles depict data points from the allometry dataset; their opacity shows their weight. Each
colour corresponds to a different PFT: small shade intolerant (blue), large shade intolerant 1 (orange) large shade intolerant 2 (green), large
mid-tolerant (red), small shade tolerant (purple), large shade tolerant (brown).

length of the horizontal semi-axis of the ellipsoid. Hence, we parameterized the model with the scaled DBH-crown-diameter825

relationship

gcrown-d(d; θcrown-d,i) =

√
2

3
θcrown-d,0 · dθcrown-d,1 . (S9)
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B3.4 Stem volume and form factor

To compute the stem volume Vstem,i, we used the formula

Vstem,i(d) =
π

4
d2gheight(d; θheight,i)νi(d), (S10)830

where d is the DBH, gheight(d; θheight,i) is the height (see equation (S5)), and νi(d) is a DBH- and PFT-dependent form factor.

A form factor νi(d) = 1 corresponds to a cylindrical stem shape, νi(d) = 1
3 to a cone, νi(d) ∈

(
1, 1

3

)
to a convex cone-like

shape, and νi(d) ∈
(
1, 1

3

)
to a concave cone-like shape of the stem. In line with earlier parameterizations of FORMIND (Dislich

et al., 2009), we chose

νi(d) = θform,i,0d
θform,i,1 (S11)835

with θform,i,0 = 0.336m−θform,i,1 and θform,i,1 =−0.18 for all PFTs i.

B4 Plant traits

Besides geometric relationships, the FORMIND model requires information about the maximal size of trees, their wood density,

and their leaf area index (LAI).

B4.1 Maximal DBH840

We assumed that each tree t has its own site-dependent maximal DBH dmax
t . As this value may depend on the tree’s species,

which is neglected when species are summarized to PFTs, we constructed the distribution of maximal heights based on each

species’ maximal DBH and the species’ frequency in the inventory. Below we provide a detailed description of our approach.

Let s be a species and As and Is the subsets of the allometry and inventory dataset, respectively, that correspond to species

s. We determine the maximal DBH of species s based on the maximal DBH observed in the allometry dataset and the 99.5th845

percentile of the inventory:

d̄max
s = max

{
F−1
{dk,k∈As}(0.995),max

t∈Is
dt

}
, (S12)

where F−1
· (·) is the observed percentile function.

There were some cases in which the maximal DBH from the inventory dataset was more than 10% lower than the corre-

sponding maximum from the allometry dataset (here: 10%=̂15cm difference). This may indicate that for these species, local850

conditions are unfavourable, which in turn should be reflected in the parameterization. In cases where we had enough (more

than 1000) trees in the inventory to suggest that the maximal DBHs in the inventory coincide with the maximal DBH reachable

the study site, we therefore used the value F−1
{dk,k∈As}(0.995)/0.9. These cases are shown in Table S2.
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Table S2. Maximal DBH values for species where the estimates from the inventory and the allometry data deviate strongly.

We determined the frequency of each species in the inventory based on its total basal area. Based on this, we constructed a

discrete probability distribution for the maximal tree height of a tree t. Let Si be the species belonging to PFT i. We obtained855

the following probability mass function for the maximal height of a tree of PFT i:

pmax
i (d) =

∑
s∈Si I{d̄max

s }(d)ws∑
s∈Siws

(S13)

with

ws =
∑
t∈Is

d2
t (S14)

and the indicator function I{X}(x), which is 1 id x ∈X and 0 otherwise.860

Since even trees of the same species may have different site-dependent growth limits and to reduce a potential model artifact

arising from drawing the maximal DBHs from discrete distributions, we constructed continuous distributions for the maximal

diameters by blurring the distribution below the maximal DBH values d̄max
s . That way, we obtained a continuous distribution

with probability density function

fmax
i (d) = c

∑
s∈Si

I[(1−β)d̄max
s ,d̄max

s ](d)
ws

2βd̄max
s

, (S15)865

where β is a measure for the relative within-species variation of the maximal diameter and c is a normalization constant. We

assumed that the maximal diameter for each species can take values β = 20% below the observed maximum. The resulting

probability density functions are displayed in Fig. S3.

For technical reasons, we used a discretized version of distribution (S15). To that end, we considered 200 potential maximal

DBH values homogeneously distributed in the interval
[
min
s∈Si

(1−β) d̄max
s ,max

s∈Si
(1−β) d̄max

s

]
.870

B4.2 Wood density

We computed the wood density of each PFT by taking a weighted average of species-specific wood densities. As weights, we

used each species’ basal area in the inventory. That is, with weights ws defined as in equation (S14), we computed the wood

density ρi of PFT i via

ρi =

∑
s∈Si ρsws∑
s∈Siws

, (S16)875

where ρs is the wood density of species s.
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Figure S3. Distribution of the maximal DBH for the six PFTs.
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Table S3. Parameter values for the relationship between DBH and LAI. Values marked with an asterisk (*) were taken from Xu et al. (2021).

B4.3 LAI

Both theoretical and empirical studies suggest that a tree’s leaf area is roughly proportional to its basal area (West et al., 1999;

Xu et al., 2021). However, as it is difficult and costly to determine the leaf area of individual trees, empirical individual-level

data on leaf area, leaf number, or LAI are sparse. Xu et al. (2021) estimated leaf numbers as functions of the DBH based on880

measurements on different branch levels (Liu, 2009) for three species common in our study area. In the absence of more direct

measurements, we used a simple approximation based on results by Xu et al. (2021) to parameterize the PFTs to which the

species they considered belong and used generic estimates for the other PFTs.

As general ansatz for the relationship between DBH d and LAI L, we used the following function:

L(d) = θLAI,0,i + θLAI,1,i
dθLAI,2,i

Ai(d)
, (S17)885

where θLAI,0,i, θLAI,1,i, θLAI,2,i are parameters for PFT i and

Ai(d) =
π

4
gcrown-d(d; θcrown-d,i)

2 (S18)

is the corresponding crown projection area (see also equation (S9)). The division by the crown projection areaAi(d) transforms

leaf area values to LAI values. The intercept parameter is necessary, because trees require a minimal LAI to growth as much as

observed in the field. As the crown projection area is roughly proportional to the DBH, the LAI would converge to 0 for small890

trees if θLAI,0,i = 0.

We used the exponents θLAI,2,i reported by Xu et al. (2021) for Betula platyphylla, Pinus koraiensis and Tilia amurensis

for the large shade intolerant 1, large mid-tolerant, and large shade tolerant PFT, respectively. For the other PFTs, we assumed

a generic value of 2 (West et al., 1999). We computed the remaining parameters θLAI,1,i based on mean LAI values Lref,i

reported by Xu et al. (2021). For PFTs with unknown mean LAI, we used a generic value of 3. As it was unclear, to which895

DBH values the reported mean values corresponded, we set reference DBH values dref,i dependent on the maximal tree sizes:

0.1m for small PFTs and 0.25m for large PFTs. Setting L(dref,i) = Lref,i, we obtained θLAI,1,i with a simple manipulation of

equation (S17). The resulting parameter values are displayed in Table S3. The resulting curves are visible in Fig. S2d.

B4.4 Light extinction and transmission

To compute the light climate in the forest, parameters for the light extinction and light transmission of leaves are needed. We900

assumed that these coefficients are independent of the PFTs. For the light extinction coefficients we assumed a value of 0.5 and

for the light transmission coefficients a value of 0.1.
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Table S4. Estimated mean stem biomass proportion for the different PFTs.

Table S5. Parameters for seed influx and establishment.

B4.5 Mean stem biomass proportion

In FORMIND, the biomass of a tree is computed by scaling the stem biomass by an expansion factor, which reflects that some

biomass is allocated in branches and leaves. This expansion factor may depend on the tree size and PFT. In our parameterization,905

we computed the factor based on a submodel described in section B7.5 below. However, to parameterize this submodel, we

needed information about the mean stem biomass proportions.

We determined the mean proportions of above-ground biomass in the tree crown (i.e., branches and leaves) by comparing

independent biomass estimates (Piponiot et al., 2022) for the Changbaishan forest plot with the biomass estimates obtained

via the allometric relationships estimated in the sections above. As the estimates by Piponiot et al. (2022) correspond to the910

entire forest only, we reimplemented their approach, which is based on the allometric biomass equations presented in Table

5 in Chojnacky et al. (2014). We mapped the species found in the inventory data to the taxa found in the table and used the

corresponding biomass equations to estimate the species’ respective total biomasses in the study area. For species for which we

could not find a matching biomass equation, we used the equation corresponding to Aceraceae with specific gravity below 0.5.

We then adjusted the mean stem biomass proportions until our biomass estimates matched the ones obtained via the equations915

by Chojnacky et al. (2014). The resulting stem biomass proportions are displayed in Table S4.

B5 Seed production and seed mortality

We assume that there is a constant external seed influx to the forest. This assumption holds approximately if the considered

forest is part of a larger forest area and seed availability does not depend on local species abundances. The seeds are distributed

evenly among the patches. Seeds that do not establish to small trees accumulate in a “seed bank” and may establish in later920

years. However, seeds in the seed bank are subject to a mortality of 50% per year.

We determined the number nseeds,i of incoming seeds of PFT i by fitting the model to forest inventory data (see section B11

for details). The resulting values are displayed in Table S5.

B6 Ingrowth

Seeds establish to small trees dependent on the light available at the forest’s ground and the length of the productive season.925

The fraction φseed,i of seeds of PFT i that establish is computed using a Hill function:

φseed,i(φlight,j) =
φ
θest,1
light

φ
θest,1
light + θ

θest,1
est,0,i

, (S19)
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Figure S4. Ingrowth functions for the six PFTs. The fraction of seeds in the seedbank that establish depends on the fraction of irradiation
reaching the bottom of the forest as compared to the incoming irradiation.

where φlight,j ∈ [0,1] is the fraction of the incoming irradiance that reaches the ground in patch j, the parameter θest,0,i ∈ [0,1]

is the irradiance at which half of the seeds of PFT i germinate, and θest,1 is a parameter controlling how steep the transition

from unfavourable to favourable germination conditions is. We estimated the parameters θest,0,i and θest,1 by fitting the model930

to forest inventory data (section B11). The resulting values for θest,0,i are displayed in Table S5; the threshold sharpness was

not fitted PFT-specifically and assumed a value of θest,1 = 3. The resulting curves are shown in Fig. S4.

The number nseedling,i,j of newly establishing trees of PFT i in patch j is computed by rounding the product of the number

nseedbank,i,j of seeds in the corresponding seed bank and the number of establishing seeds φseed,i(φlight,j):

nseedling,i,j := bnseedbank,i,jφseed,i(φlight,j) + 0.5c (S20)935

All newly established trees have an initial DBH of 0.05m irrespective of the PFT.

B7 Growth

In FORMIND, the growth of a tree is modelled using multiple interacting submodels, which we calibrated partly jointly and

partly independently from one another (see Fig. S5 for an overview). The key idea of our approach was to focus on trees

growing under the best possible conditions found on site. Focusing on optimal conditions reduces the complexity while at the940

same time setting a frame for the possible model behaviour. Below we briefly summarize our approach before providing details

in the succeeding sections.

16



Directly deduced from field data

Estimated via forest simulations

Intermediate derived quantity

Tree carbon use 
efficiency

Maximal DBH 
increment

Maximal stem 
biomass incrmt.

Maximal tree 
GPP

Light response 
curve

Plant traits 
and allometric 
relationships

Observed crown biomass 
proportion

Crown biomass 
proportion

Respiratory loss 
factor

Maximal tree 
biomass incrmt.

Incoming 
radiation

Mathematical relationship

Constraint

Indep. stand NPP 
/ GPP estimates

Figure S5. Overview of the model components and intermediate results used to fit the submodels for the growth of individual trees. Solid
arrows depict direct mathematical relationships, whereas dashed arrows denote constraints. Submodels and quantities that could be estimated
independently from the full model are drawn in green. Submodels with parameters that could only be estimated from the full model are shown
in blue. Quantities that were derived from other components are depicted in grey.

Based on the forest inventory data, we estimated the PFT- and DBH-dependent DBH increment under optimal conditions

(section B7.1) and used this along with the estimated allometric relationships (section B3) and plant traits (section B4) to

approximate the stem biomass increment under optimal conditions. At the same time, we used our model to estimate the GPP945

(section B7.3) and carbon use efficiency (section B7.4) of trees under optimal growth conditions. In a second step, we computed

the aboveground wood production, which we could use along with the observed stem biomass increments to deduce the biomass

allocated to the crown (section B7.5). We compared these values with field estimates, in turn, to refine the parameters that we

used to compute the GPP. Parameters that could not be estimated with this procedure were estimated by fitting the full forest

model to the forest inventory data (section B11).950

B7.1 DBH increment under optimal conditions

We estimated the DBH increment under optimal conditions based on the DBH increments observed in consecutive forest

inventory data. We modelled the DBH increment as observed in the inventory data via a simple stochastic model and used this

as a baseline to derive the optimal DBH increment.

We assumed that the DBH increment ∆dik(dk) of a tree k with PFT ik and DBH dk follows a Gamma distribution. Specifi-955

cally,

∆di(d)∼Gamma

(
µ∆DBH,i(d)

θ∆DBH
, θ∆DBH

)
, (S21)
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Table S6. Parameters for the DBH increment distributions.

where µ∆DBH,i(d) is the DBH-dependent mean DBH increment, and θ∆DBH is a scale parameter controlling the distributions

mean to variance ratio, which we assumed to be independent of the DBH. We assumed that

µ∆DBH,i(d) = θ∆DBH,i,0 + θ∆DBH,i,1d+ θ∆DBH,i,2d
2 + θ∆DBH,i,3d

3 (S22)960

is a cubic polynomial satisfying the following constraints:

µ∆DBH,i(d
max
i ) = 0, (S23)

µ∆DBH,i(0)≥ 0, (S24)

µ′∆DBH,i(0)≥ 0, (S25)

µ′∆DBH,i(d
max
i )≤ 0, (S26)965

where dmax
i is the maximal DBH a tree of PFT i can assume. Constraint (S23) reflects that trees with DBH dmax

i cannot grow

even under optimal conditions. Together with constraints (S24)-(S26), it follows that µ′∆DBH,i is always non-negative and at

most unimodal in the interval [0,dmax
i ]. Note that constraint (S23) implies that one of the parameters θ∆DBH,i,0, . . . ,θ∆DBH,i,3

can be expressed in terms of the other ones, reducing the degree of freedom when fitting the model.

We estimated the parameters by maximizing the likelihood given data from consecutive forest inventories, conducted in970

intervals of five years. For each tree k that appeared in two consecutive inventories, we determined the observed DBH difference

∆dobs
k = dk,t2 − dk,t1 , (S27)

where dk,t is the observed DBH of tree k in year t and ∆t= t2−t1 = 5yr. As empirical data may always be prone to error, we

disregarded all data that were more than 5 standard deviations apart from the mean DBH increment, taken over all individuals of975

the considered PFT. Afterwards, we also excluded all negative values ∆dobs
k < 0. We estimated the parameters for the optimal

DBH growth by fitting the distribution (S21) to the values

∆d̄obs
k =

∆dobs
k

∆t
. (S28)

The resulting parameter estimates are displayed in Table S6. In Fig. S6, we show histograms for the observed DBH increments

and the density functions of the corresponding fitted Gamma distributions.980

The Gamma distribution can take arbitrarily large values. Our goal, however, was to determine some “maximal” DBH

increment. We assumed that the maximal DBH increment is given by some (high) quantile q∆DBH of the fitted DBH increment
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Figure S6. Histogram of observed DBH increments (blue histograms) and fitted DBH increment used in the model (black lines) for the six
PFTs and plant sizes. Each panel corresponds to a PFT (indicated in the row description) and a size class (range of considered DBH indicated
in the panel heading). The observed DBH increments are averages over five year periods. The plotted probability densities correspond to the
DBHs in the centre of the respective considered DBH interval. 19



distribution:

∆dmax,i(d) = F−1
∆di(d)(q∆DBH), (S29)

where F−1
∆di(d) is the inverse cumulative probability density function of ∆di(d). That is, the DBH under optimal conditions is985

the value chosen so that a fraction of q∆DBH of the DBH increments of similar trees are expected to be lower. Whereas we

estimated the distribution of the DBH increments from forest inventory data, we fitted the parameter q∆DBH along with other

parameters based on a dynamic forest simulation (see section B11). We obtained a value of q∆DBH = 0.991. The resulting

curves for the DBH-dependent optimal DBH increment are displayed in Fig. S7.

B7.2 Reference conditions990

We assumed that the estimated optimal DBH increments (section B7.1) were obtained under the best possible conditions found

at the Changbaishan site. To link these observed DBH increments to the modelled GPP, we needed to model these reference

conditions explicitly. We assumed that the optimal growth conditions correspond to the best light conditions observed in the

forest inventory. For large trees, this is equivalent to being unshaded by other trees. However, there may be no unshaded

small trees in the inventory for some PFT, requiring us to adjust the reference light conditions accordingly. This issue was not995

considered in previous paramterizations of FORMIND. This may have led to underestimated growth of small trees.

Here, we made an ad-hoc correction to account for the range of light conditions found for trees in the inventory. We initialized

FORMIND with the forest inventory data, computed the incoming light for all trees (Fig. S8), and determined a simple piecewise

linear function that yields for each DBH the maximal fraction of incoming radiation observed for trees with this DBH

φlight(d) = min(θlight,0 + θlight,1d, 1)1000

where θlight,0 is the most favourable fraction of irradiance received by small plants and θlight,1 is the initial slope of the

reference light fraction. We fitted this curve via visual inspection, observing (1) the approximate maximal irradiance received

by small trees and (2) the DBH at which some trees received the full irradiance. We obtained the values θlight,0 = 0.5 and

θlight,1 = 1.5625m−1. The resulting relation is displayed in Fig. S8.

B7.3 Light response curve1005

In FORMIND, a tree’s GPP is determined based on the light response curve mapping the incoming radiation Ileaf of a leaf of

PFT i to its photosynthetic rate Pleaf

Pleaf,i(Ileaf) =
θproduction,i,0Ileaf

θproduction,i,1 + Ileaf
, (S30)

where θproduction,i,0 is the maximal possible photosynthetic rate and θproduction,i,1 the irradiation at which half of the max-

imally possible photosynthetic rate is achieved. We fitted the parameters θproduction,i,1 based on model simulations and1010

20



Figure S7. Observed yearly DBH increments (blue dots) and maximal DBH increment used in the model (black lines) for the six PFTs.
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Figure S8. Reference light conditions dependent on the DBH. Each blue dot corresponds to a tree in the inventory and shows its DBH and
the irradiance that it received according to the shading model in FORMIND. The black line depicts the irradiance that is used as “optimal”
reference in the parameterization. As there are no unshaded small trees, the estimated maximal observed DBH increment (section B7.1) does
not correspond to unshaded trees. Therefore, the black curve starts at an irradiance 50% below the irradiance received by unshaded trees.

Table S7. Parameters for the light response curve.

the forest inventory data (section B11). For each given value of θproduction,i,1, we computed the corresponding parameter

θproduction,i,0 by determining how large the production needs to be to let the trees of PFT i attain their observed crown biomass

proportions based on our assumptions on the carbon use efficiency (see section B7.4) and stem biomass allocation. Details are

provided in section B7.5.

B7.4 Carbon use efficiency and respiration1015

We define the carbon use efficiency (CUE; in formulas Ck) of a tree k as the fraction of its primary production (GPP; in

formulas Pk) that is used for net (aboveground) primary production (NPP, in formulas ∆Bk):

Ck =
∆Bk
Pk

. (S31)

The NPP, in turn, can be written as the difference of GPP and respiration:

∆Bk = Pk −Rk. (S32)1020
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We considered two types of respiratory losses: the maintenance respiration Rmaint,i(d), dependent on the tree size but inde-

pendent of the GPP, and other losses and limitations Rloss,k, proportional to the NPP but otherwise independent of the tree

size:

Rk =Rmaint,i(dk) +Rloss,k =Rmaint,k +
γik

1− γik
∆Bk =Rmaint,k + γik (Pk −Rmaint,k) ,

where γik is a PFT-dependent loss factor, modelling how much of the production not assigned to maintenance can be used for1025

production. It follows

Ck =
Pk −Rmaint,k − γik (Pk −Rmaint,k)

Pk

= (1− γik)

(
1− Rmaint,k

Pk

)
(S33)

Note that the maintenance respiration represents the tree’s minimal respiratory needs and thus cannot be reduced even if the

tree is under stress. Hence, if the maintenance respiration is large compared to the other losses, already a moderate reduction1030

of the GPP (e.g. due to shading) can entail that a tree cannot satisfy its respiratory needs and stops growing or dies.

As no data on the optimal CUE on single-tree level were available to us, we created a phenomenological model for the

optimal CUE (below: OCUE) based on a number of observations:

1. The OCUE decreases as trees grow in size.

2. The OCUE must be sufficiently large that trees can reach the estimated optimal biomass increment.1035

3. The CUE must suffice that most trees observed in the inventory can satisfy their minimal respiratory needs.

4. The order of magnitude of the OCUE must be chosen so that the values of GPP and NPP match field measurements on

the stand level approximately.

5. The OCUE is subject to additional limitations and carbon losses independent of the maintenance respiration. Hence the

OCUE cannot exceed 1− γi.1040

As baseline for the OCUE model, we used the following formula:

Cbase,i(d) = θOCUE,0,i− θOCUE,1,id
θOCUE,2,i , (S34)

where i is the PFT, d is the DBH, and θOCUE,0,i, θOCUE,1,i, and θOCUE,2,i are parameters. However, to guarantee that constraint

2 is satisfied, we also computed the minimal required CUE so that the trees can grow as much as observed under optimal

conditions. Let1045

∆Bopt
stem,i(d) = ρi (Vstem,i(d+ ∆dmax,i(d))−Vstem,i(d)) (S35)
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Table S8. Scaling factors relating the NPP to respiratory losses other than the maintenance respiration.

be the stem biomass increment under optimal conditions, where d is the current DBH, ρi is the wood density, Vstem,i the

stem volume, and ∆dmax,i the DBH increment under optimal conditions. We assumed that, under optimal conditions, at least

a factor κmin = 0.1 of the NPP is allocated to crown growth. Hence, the NPP under optimal conditions must be at least
1

1−κ∆B∆Bopt
stem,i(d). Consequently, we adjusted the OCUE correspondingly:1050

Copt,i(d) = max

(
Cbase,i(d),

1

1−κmin
∆Bopt

stem,i(d)

)
. (S36)

We assumed that the OCUE is monotonously decreasing as trees grow. With constraint 5, we obtain that θOCUE,0,i ≤ γi. At

the same time, constraint 3 requires that Rmaint,i(d) is small for small trees, as small shaded trees observed in the inventory

could not survive otherwise. Hence, we set

θOCUE,0,i = γi− 0.01. (S37)1055

Similarly, applying the shading module of FORMIND to the inventory data, we observed that the OCUE must decrease slowly

for small trees (Fig. S9), which in turn requires a sufficiently large exponent θOCUE,2,i. We therefore set θOCUE,2,i = 3 for all

PFTs i. Lastly, we determined θOCUE,1,i so that the largest possible trees of PFT i have an OCUE of 0 at their maximal DBH.

That is, if

dmax,i = sup{d; fmax
i (d)> 0} (S38)1060

is the maximal DBH a tree of PFT i can attain (cf. equation (S15)), then

θOCUE,1,i = θOCUE,0,id
−θOCUE,2,i

max,i . (S39)

We estimated the loss factors γi by fitting the full model to the inventory data (section B11). However, to satisfy constraint 4,

we constrained the loss factors γi to the interval [0.6,1] to match the relatively low CUE values observed in the Changbaishan1065

mountain area in independent studies (Piponiot et al., 2022). The resulting parameter estimates are displayed in Table S8

As we assume that the maintenance respiration is independent of a tree’s productivity, equation (S33) must in particular hold

for trees under optimal growth conditions. Hence, after inserting the fitted OCUE Copt,i(d) and GPP under optimal conditions,

equation (S33) can be manipulated to derive the maintenance respiration for a tree of given PFT and DBH.
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Figure S9. The optimal carbon use efficiency OCUE for the different PFTs. The OCUEs used in the model are depicted as solid blue lines. The points show estimated lower
bounds for the required CUEs obtained for trees in the inventory via the shading module of FORMIND. Each point corresponds to a tree; the colour shows whether the tree could
satisfy its respiratory needs according to the model (green: yes; black: no). The OCUE curves were chosen so that as many of the points are below the blue curves. The sharp
transitions between the curve sections are due to constraint 2 imposing a different shape of the curve for large DBH values (see also equation (S36)).
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B7.5 Growth allocation1070

Based on the OCUE and the GPP under optimal conditions, denoted Ci and P opt
i , respectively, we could compute the corre-

sponding NPP ∆Bopt
i (d) for trees of a given DBH and PFT. Based on the estimated DBH increment under optimal conditions,

determined the respective stem biomass increment ∆Bopt
stem,i(d) (see equation (S35)). If Bi(d) is the biomass of a tree of PFT

i with DBH d and ζi is the corresponding stem biomass proportion, then

∆Bopt
i (d) = Ci(d)P opt

i (d)1075

=Bi(d+ ∆dmax,i(d))−Bi(d)

=
Bstem,i(d+ ∆dmax,i(d))

ζi(d+ ∆dmax,i(d))
− Bstem,i(d)

ζi(d)
(S40)

⇐⇒

ζi(d+ ∆dmax,i(d)) =
ζi(d)Bstem,i(d+ ∆dmax,i(d))

Bstem,i(d) + ζi(d)Ci(d)P opt
i (d)

. (S41)

We used this difference equation to compute the stem biomass proportion for all DBHs and PFTs. We provide details below.1080

Equation (S41) requires knowledge of the previous stem biomass proportion ζi(d). Hence, we needed initial values for the

interval [d0,d0 + ∆dmax,i(d)] with d0 being the stem diameter of new saplings. These initial values may be chosen arbitrarily.

Using a shifted exponential ansatz for the initial condition yielded well-behaved smooth results for ζi:

ζi(d) = a0,i + a1,i exp(a2,i · d) if d < d0 + ∆dmax,i(d0). (S42)

We chose the coefficients a0i, a1i, a2i so that the curve ζi(d) is continuous, approximately differentiable, and starts at a given1085

initial value ζ0i = ζi(d0).

To see how the coefficients were determined, first note that in practice, the curve ζi is computed numerically and hence

evaluated at a discrete set of sampling points only. We chose the sampling points so that they have a constant distance to one

another. Intermediate values were obtained via linear interpolation between these points. Now, let d1i = d0 + ∆dmax,i(d0), let

d̄1i > d1i be the smallest sampling point larger than d1i, and choose d̄0i so that d̄1i = d̄0i+∆dmax,i

(
d̄0i

)
. Furthermore, define1090

(evaluating equation (S41) at d0i and d̄0i)

ζ1i =
ζ0iBstem,i(d1)

Bstem,i(d0) + ζ0iCi(d)P opt
i (d0)

, (S43)

ζ̄1i =
ζ0iBstem,i

(
d̄1

)
Bstem,i

(
d̄0i

)
+ ζ0iCi(d)P opt

i

(
d̄0i

) . (S44)
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Now we imposed the following conditions

ζi(d0) =a0i + a1i exp(a2i · d0) =ζ0i, (S45)1095

ζi(d1i) =a0i + a1i exp(a2i · d1i) =ζ1i, (S46)

ζi
(
d̄1i

)
=a0i + a1i exp

(
a2i · d̄1i

)
=ζ̄1i (S47)

and obtained

a1i =
ζ1i− ζ0i

exp(a2i · d1i)− exp(a2i · d0)
(S48)

a0i = ζ0i− a1i exp(a2i · d0). (S49)1100

We computed the remaining unknown coefficient a2i via a binary search on equation (S47) using the values for a0i and a1i

from equations (S48)-(S49).

We approximated the mean of the curves ζi(d) by taking the man of the functions values at 50 equidistant points in the inter-

vals [0.1m, dmax,i], respectively. We then conducted a binary search in the maximal possible photosynthetic rate θproduction,i,0

(see section B7.3) until the approximate mean values matched the mean stem biomass proportions estimated from the field1105

data (section B4.5).

B7.6 Defoliation

If trees are shaded, it can happen that their maintenance respiration exceeds their GPP. In these cases, we assumed that parts

of the crown die until the remaining tree can be maintained. Here, we assumed that for a tree of given DBH, the maintenance

respiration is proportional to its biomass. That is, a tree k with insufficient production Pk, maintenance respiration Rmaint,k,1110

and biomass Bk will reduce its biomass to

B̃k =Bk
Pk

Rmaint,k
, (S50)

and its maintenance respiration will be set to Pk. As we assume the biomass is lost in the crown only, the stem biomass

proportion is adjusted accordingly to a value ζ̃k.

We assumed that the loss in crown biomass also affects the tree’s number of leaves and thereby the LAI. We reduced the1115

LAI proportional to the crown completeness

ηk =
B̃crown,k

Bcrown,ik(dk)

=
B̃k −Bstem,ik(dk)

Bik(dk)−Bstem,ik(dk)
, (S51)
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Figure S10. Stem biomass proportions of the six PFTs. The solid lines depict the stem biomass proportions used in the model (obtained via
the approach described in section B7.5). The dashed lines show the independently estimated mean values (see section B4.5).

where B̃crown,k is the reduced crown biomass andBik(dk) the biomass of a tree with complete crown and DBH dk. As a result,

trees with incomplete crowns have reduced GPP and shade other trees less. Trees without any crown biomass (ηk = 0) cannot1120

recover and die.

We assumed that if the light conditions for a tree with incomplete crown improve, the new biomass is first allocated to “refill”

the crown until ηk = 1. Any remaining new biomass is allocated to the usual tree growth with corresponding DBH increment.

B8 Competition

We assumed that trees solely compete for light. In particular, we did not apply crowding mortality. Instead, the forest density1125

is self-regulated via crown defoliation and the resulting tree death. This process has an effect similar to crowding mortality

(“full” forests lead to deadly overshadowing of small plants) but a better mechanistic justification. In particular, mortality via

light competition incorporates the traits of both the shadowing and the overshadowed trees, since the LAI of larger plants as

well as the respiratory demands of smaller plants are parameterized individually for each plant functional type (PFT).
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Table S9. Parameters for the mortality probabilities.

B9 Stochastic mortality1130

We assumed that trees die randomly with probabilities dependent on their PFT and DBH. As model for the mortality, we used

a linear combination of exponentials:

pmort,i(d) = θmort,0,i + θmort,1,i exp(θmort,2,id) + θmort,3,i exp(θmort,4,id), (S52)

where pmort,i(d) is the probability that a tree of PFT i and DBH d dies within a year. This model may take a variety of shapes

including mortality increasing or decreasing with plant size or a “bathtub” shape, where the mortality is lowest for plants with1135

intermediate sizes.

We estimated the parameters in equation (S52) using data from consecutive forest inventories. We determined which trees

died in the intermediate time by comparing which trees that were present in the first inventory were also present in the second

inventory. For simplicity, we assumed that the tree DBH does not change significantly during the 5 year period between two

censuses and that random mortality is the only death mechanism at play. If dk,t1 is the DBH observed in the inventory in year1140

t1, the probability that the tree survived until the year t2 of the second inventory is approximately

pobs
mort,ik

= (1− pmort,ik(dk,t1))
t2−t1 . (S53)

We used this to construct the likelihood for the observed death and survival events. We then estimated the parameters in

equation (S52) for the different PFTs. The resulting parameters are displayed in Table S9 and the resulting curves in Fig. S11.

Besides the random mortality, we trees may die due to strong light competition (see section B7.6) or by falling large trees.1145

We assumed that trees larger than 0.1m may fall with a probability of 0.4 and kill smaller trees. Details of this mechanism are

described in Fischer et al. (2016).

B10 Climate

We used a static climate in our simulations. Advanced features such as the soil water module, temperature effects, and daily

changes to the climate were not included. Instead, we used averaged values, which we provide below.1150

Evapotranspiration. For the mean actual evapotranspiration, we used a value of 600mm
yr . This is in line with independent

estimates for the Changbaishan region (Sun et al., 2004) and earlier parameterizations of the model for temperate forests

(Bohn et al., 2014).

Growing season. We defined the growing season as the months with positive mean temperature. This were the months March

until October (Wang et al., 2020).1155
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Figure S12. Overview of the model fitting procedure.

Irradiance. We computed the mean yearly light intensity (“PAR”) above the canopy during daytime in the growing season

based on the WFDEI forcing dataset (Weedon et al., 2014). We obtained a value of 768µMolphotons
m2 .

Day length. We computed the average length of a day in the growing season and obtained a value of 13.39h.

B11 Fitting procedure

Some parameters were not available from the literature and could not be determined directly from the available data. We1160

estimated these parameters based on dynamical forest simulations and the inventory data (see Fig. S12). After a burn-in period,

we generated a sample of forest states via simulations. Then, we used the generated sample to estimate the likelihood for the

parameters given the inventory data via kernel density estimation (KDE). We then optimized the parameters by maximizing

the likelihood. Below we provide details for each of the steps involved.

B11.1 Forest state characterization1165

We characterized the forest’s state by determining the stem count and the biomass in the considered patch for each PFT. That

is, the state space was 12-dimensional. The combined information of stem count and biomass yields basic insight into the size

distribution of trees, as a large stem count with small biomass indicates a young forest with many small trees, and a small stem

count with high biomass indicates an old forest with few large trees. Hence, these summary statistics provide relatively rich

information about the overall forest state.1170

We considered forest states on the 20m× 20m level. For the forest plot in Changbaishan, which has a size of 25ha, we

therefore obtained a sample of 625 observed forest states.
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B11.2 Sample generation

To generate a sample of forest states from the model, we first simulated 1ha of forest until it reached its limiting behaviour

(2000yr). Then, we generated a sample of forest states on the 20m× 20m scale by sampling the forest 500 times every1175

5yr. Via parallel simulations, we repeated this procedure 67 times. That way we obtained a sample of forest states with

nsample = 837,500 entries.

In FORMIND, the interactions between 20m× 20m patches are small (only via tree falling, which is a rare event). Further-

more, taking samples over a relatively long period of 2500yr reduces the temporal correlations between the generated samples.

Therefore, and because we also conducted 67 mutually independent simulations, the generated sample is approximately iden-1180

tically independently distributed.

B11.3 Likelihood estimation

The distribution of the forest states according to the forest model is not known in closed form and can only be studied via

simulations. Therefore, we estimated the probability density, and based on this the likelihood for the parameters given the

data, from the model-generated sample of forest states. To this end, we used kernel density estimation (KDE; Wand and Jones,1185

1995). In KDE, the probability density f of an element y of the state space is estimated as the mean of kernel functions centred

at the elements xi of the generated sample:

f
(
y; x1, . . . ,xnsample

)
≈ f̂

(
y; x1, . . . ,xnsample

)
=

1

nsample

nsample∑
i=1

ndim∏
j=1

K(yj ,xij ;hj), (S54)

where f̂ is the estimated probability density, nsample is the number of generated sample points, ndim is the dimension of the

state space, K is the kernel function, and hj is a bandwidth parameter defining the (marginal) scale on which two points are1190

considered approximately similar. Due to its computational simplicity on the log-scale, we used a Gaussian Kernel. However,

since stem counts and biomasses are constrained to the non-negative range, we applied reflecting boundary conditions:

Kj(yj ,xij ;hj) =


1
wj

(
exp
(
− (xij−yj)2

2h2
j

)
+ exp

(
− (xij+yj)

2

2h2
j

))
if yj ≥ 0

0 else
(S55)

with wj =
√

2πhj . For the stem counts, we furthermore needed to normalized the kernel to correctly account for the discrete

nature of the data:1195

Kj(yj ,xij ;hj) =


1
wj

(
exp
(
− (xij−yj)2

2h2
j

)
+ exp

(
− (xij+yj+1)2

2h2
j

))
if yj ≥ 0

0 else
(S56)
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with

wj = 2

∞∑
k=0

exp

(
− k2

2h2
j

)
− 1.

The bandwidths we used are displayed in Table S10.

KDE provides unbiased estimate of probability densities. For likelihood optimization, however, we need the log-likelihood,1200

because working with the original likelihood would require us to handle extremely small numbers, which is numerically

infeasible. As taking the logarithm of a random variable changes its distribution and, in particular, expected value, we applied a

bias correction. First, note that for a Gaussian kernel, the KDE’s expected value µKDE and variance σ2
KDE can be approximated

as follows (Wand and Jones, 1995):

µKDE ≈ f(y) (S57)1205

σ2
KDE ≈

µKDE

2
√
πnh

. (S58)

We desired to find a bias correction function g so that

E
(
g
(
f̂(y)

))
= lnµKDE. (S59)

Applying a Taylor expansion about µKDE, we find

E
(
g
(
f̂(y)

))
≈ g(µKDE) +

1

2
g′′(µKDE)E

((
f̂(y)−µKDE

)2
)

︸ ︷︷ ︸
σ2
KDE

1210

= g(µKDE) +
σ2

KDE

2
g′′(µ)

!
= lnµKDE. (S60)

We solved differential equation (S60) to obtain the bias correction function, into which we inserted the original results (S54)

from the KDE. To avoid numerical issues, we performed all these steps on the log scale.

To fit the model, we considered a 12-dimensional state space. As a result, the products of the kernel functions in equation1215

(S54) can become very small and very sensitive to stochastic differences between simulation runs. We therefore estimated

the probability density for each PFT independently and multiplied the results to obtain the joint density. This is equivalent to

assuming that the states of different PFTs are mutually independent. Though this assumption is inaccurate in general, using the

resulting composite likelihood still yields consistent parameter estimates (Varin, 2008).
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Table S10. Ranges and KDE bandwidths for the considered state variables. The bandwidth is the scale in the state space on which a data
point in the simulated sample is considered “similar” to a point in the inventory dataset.

Table S11. Parameter bounds and initial guesses used for parameter optimization.

B11.4 Parameter optimization1220

A challenge when maximizing the kernel density estimate of the likelihood is that this estimate is stochastic. This requires the

applied optimizers to be robust against stochastic fluctuations. We applied the algorithm PY-BOBYQA (Cartis et al., 2019)

on a preconditioned version of the log-likelihood function. To reduce numerical issues, we optimized all parameters on the

log-scale except for q∆DBH, for which we applied an inverse logit transform to constrain it to the open interval (0,1). Then,

we evaluated the log-likelihood function 10 times at the initial parameter guess (Table S11) to estimate its standard deviation.1225

Based on this, we conducted for each parameter individually a rough binary search to find the scale of change on which the

log-likelihood function changed by at least 2 standard deviations but not more than 10 standard deviations. We scaled the

parameters accordingly for an efficient search. This scaling process is called preconditioning.

We constrained the parameters to ecologically reasonable ranges, respectively. The bounds we applied are displayed in Table

S11. To avoid getting stuck due to stochastic deviations, we terminated the search algorithm after 200 likelihood evaluations1230

and restarted the search until a total of 8 runs was completed. To minimize the risk of converging to a local minimum, we

furthermore applied basin-hopping (Wales and Doye, 1997) as implemented in Scipy. This algorithm performs repeated local

optimizations with randomly perturbed initial conditions. For the perturbation, we applied a step size of 4 on the preconditioned

parameter scale. We ran the algorithm for 5 iterations. After finishing this optimization process, we repeated it, using the result

as initial value and baseline for preconditioning for the repetition.1235

Appendix C: DBH entropy

C1 Derivation of the DBH entropy

We used the basal-area-weighted DBH entropy as a proxy for the prevalence of large trees in a forest patch. The entropy of the

weighted DBH distribution is defined as follows:

S̃DBH =−
∑
d∈D

pd ln(pd), (S1)1240
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where D is the set of distinct DBH values occurring in the forest patch and

pd =

∑
k∈I:dk=d d

2
k∑

k∈I d
2
k

. (S2)

is the probability to randomly select a tree with DBH d from the forest patch if the probabilities were proportional to the trees’

respective basal areas. Here, I is the set of trees in the inventory and dk is the DBH of tree k.

Formula (S1) is sensitive to arbitrarily small changes in DBH values, as trees need to have exactly the same DBH values1245

to be considered similar in equation (S2). This is inappropriate, as DBH values come from a continuous domain, and will

never be exactly equal in practice. To make the measure more robust, we could consider DBH intervals instead of individual

DBH values, as suggested in the main text. However, this approach is sensitive to the choice of interval bounds and can lead

to strongly different results for slight changes of DBH values (cf. Wand and Jones, 1995). We therefore used kernel density

estimation to obtain a continuous distribution of tree sizes from the inventory. Then, we considered the entropy of the resulting1250

distribution:

SDBH =−
∞∫

0

fd(δ) lnfd(δ)dδ, (S3)

where

fd(δ) =
∑
d∈D

wdK(d,δ;h) (S4)

with weights1255

wd =
dη∑
d∈D d

η
(S5)

is the smoothed DBH distribution in the forest patch,

K(d,δ;h) =


3

4h

(
1−

(
d−δ
h

)2)
if |d− δ| ≤ h

0 else

is the Epanechnikov kernel, η is the exponent parameter and h is a bandwidth parameter, defining the scale on which two trees

are regarded similar.1260

C2 DBH entropy parameterization

The DBH entropy depends on the exponent parameter η and the bandwidth parameter h. In line with our requirements for

a proxy for the prevalence of mature trees, we chose η = 2 to obtain weights by basal area and h= 1cm for a sufficiently
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Table S1. Parameter estimates resulting from the three optimization runs. For most of the parameters, the estimates remained in the same
order of magnitude, indicating that they are estimable. Only the parameter θest,1 took on largely different values. This suggests that this
parameter is not estimable.

fine-grained resolution to distinguish tree sizes well. To validate this choice of parameters and compare it to parameters used

in other studies, we assessed the relationship between GPP, NPP, and NEE and the DBH entropy computed with different1265

parameter values: η = 0 (no weighting), η = 2 (weighting by basal area), η = 3 (higher-order weighting, potentially similar to

biomass) with h= 1cm, respectively, and η = 0 and η = 2 with h= 10cm. We used the same methods as for the analysis of

the other diversity measures.

The results are displayed in Figs. S1 and S2 for the 0.04ha and the 1ha scale, respectively. It is visible that weighting

the entropy by the basal area strengthened the relationhip with the GPP and NEE on the fine scale; for the 1ha scale the1270

relationship to the NEE became slightly weaker compared to the unweighted version of the entropy. However, weighting with

a higher exponent (η = 3) worsened the results. Using a larger bandwidth, i.e., counting more trees as similar, worsened the

connection between entropy and NPP and NEE. This is notable, as many studies using the DBH entropy as a measure for

structural diversity consider the 1ha scale (or larger), use a large bandwidth (e.g. 10cm; Silva Pedro et al., 2017) and do not

weight the trees by basal area (e.g. Dănescu et al., 2016; Silva Pedro et al., 2017; Park et al., 2019).1275

Appendix D: Model validation

To verify that our optimization procedure reliably yields good fitting results, we repeated the fitting procedure three times. We

obtained estimated log-likelihood values of −4850.32, −4853.39, and −4866.18, respectively. Though already log-likelihood

differences of 2 are significant in likelihood ratio tests and for confidence intervals, we consider the fitting procedure successful,

because the stochastic optimization problem we needed to solve to fit the model is computationally difficult.1280

The parameter estimates we obtained in the three optimization runs are displayed in Table S1. For most parameters, the

results remained in similar orders of magnitude, suggesting that the parameters are estimable despite remaining uncertainties

resulting from the difficulty of the optimization problem. Only the parameter θest,1 which controls the sharpness of the light

threshold for seedling establishment took on vastly different values. This suggests that this parameter may not be estimable

and may be set to a predefined value without affecting the goodness of fit significantly.1285

To validate that our model fits the biomass and stem count distributions from the forest inventory well, we compared a

model-generated sample of these values to the sample from the inventory data that was also used in the fitting procedure. We

simulated 1ha of forest for a burn-in period of 2000yr and sampled 25 patches (0.04ha) of the simulated forest 1000 times in

time intervals of 5yr. We repeated this procedure 8 times, obtaining a sample with 200,000 entries, corresponding to a forest

of 8000ha.1290

Based on the simulated data and the field data, we created one-dimensional histograms of the biomass and stem count for

each PFT. Then we plotted these histograms to study how well they overlap. The results are displayed in Figures S1 and S2,
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respectively. The distributions match reasonably well, indicating a good model fit in light of the model’s complexity and the

large number of model features fitted simultaneously.

To also evaluate the model’s ability to reproduce the joint distributions of biomass and stem count for the six PFTs, we1295

created corresponding two-dimensional histograms, displayed in Fig. S3. The distributions from the model generally matched

the patterns observed in the field data. However, the field data often covered a broader range of values than observed in the

model simulation. This indicates that some sources of variation are still missing in the model.

In addition to comparing the simulation results with forest inventory data, we also computed stand-level forest characteristics

(biomass, NPP, GPP, and LAI), which we then compared to estimates from independent studies (see main text). We considered1300

a forest area of the same size (25ha) as the area where the inventory was conducted. We simulated this forest for a burn-in

period of 1,000yr. Then, we determined the forest characteristics of interest in each year for a simulation period of 3,000yr,

yielding a quasi-independent sample with 3,000 entries. We then determined the sample mean and standard deviation of each

of the considered characteristics and used the resulting values for model validation.

Appendix E: Variation of the CUE of mature trees1305

To analyze how much our results depend on the assumption that the CUE of mature trees is reduced by 100%, we considered

three alternative scenarios, in which the CUE of mature trees was reduced by 50%, 25%, and 0% compared to immature trees

of the same size. For each of the scenarios, we determined how the NPP depends on the covariates considered in the other parts

of this paper. Note that as we assumed that a tree’s maturity status does not affect its GPP, the considered scenarios would not

yield different results with respect to the GPP.1310

The basal area of immature trees continued to be the best considered predictor, with a reasonable predictive performance

(R2 ≥ 0.53) even when the CUE of immature trees was only reduced by 25% (Fig. S1). When the CUE was not reduced at

all, the complete basal area and the basal area of immature trees had similar predictive capacity (R2 ≈ 0.35), and the DBH

entropy became the best predictor (R2 = 0.4). When the trees were weighted by their cubic diameter when computing the DBH

entropy (η = 3; see SI C2), the R2 values remained consistently above 0.5 even when the CUE was not reduced (Fig. S2). The1315

correspondingly adjusted DBH entropy became the best considered predictor if the CUE of mature trees was reduced by 25%

or less.

These results suggest that the maturity stage of trees remains significant even if their CUE is only mildly reduced. However,

the consistently high predictive capacity of the DBH entropy even in cases where mature trees did not have a reduced CUE

shows that the DBH entropy captures more productivity-related forest attributes than just the fraction of mature trees.1320
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Figure S1. Comparison of the simulated biomass distribution with field data. The figure displays the marginal biomass distribution by PFT on the 0.04ha scale. The orange
bars form histograms of the biomass estimates generated based on the field data from Changbaishan. The blue bars form histograms of the biomass distributions generated from
the model. The blue curves depict the kernel-smoothed density of the distribution used to estimate the likelihood. The distributions obtained from the model generally match the
corresponding distributions of the field data well.
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Figure S2. Comparison of the simulated stem count distribution with field data. The figure displays the marginal stem count distribution by PFT on the 0.04ha scale. The orange
bars form histograms of the stem count estimates generated based on the field data from Changbaishan. The blue bars form histograms of the stem count distributions generated
from the model. The blue curves depict the kernel-smoothed density of the distribution used to estimate the likelihood. The distributions obtained from the model generally match
the corresponding distributions of the field data well.
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Appendix F: Further technical details

F1 Computing the weights of the tree species in the inventory

To derive allometric relationships for the different PFTs, we used data available for individual species, weighted according to

their respective prevalence in the inventory. Here we describe how we computed these weights.

For every sufficiently large tree K in the forest inventory, we added one unit of weight to the data points in the allometry1325

dataset that corresponded to trees of the same species with most similar DBH. Trees with DBH below 5cm were ignored, as

they are not considered in the model (see section B6). Let A be an index set for the allometry dataset (ignoring entries with

DBH below 5cm) and sk be the species corresponding to k ∈ A. Let furthermoreA+
k =

{
k̃ ∈ A : k̃ = sk, dk̃ > dk

}
the entries

in the allometry dataset that correspond to the same species and a larger DBH, and define A=
k =

{
k̃ ∈ A : k̃ = sk, dk̃ = dk

}
and A−k =

{
k̃ ∈ A : k̃ = sk, dk̃ < dk

}
correspondingly for entries with equal or smaller DBH, respectively. Define1330

d+
k =


min
k̃∈A+

k

dk̃ if A+
k 6= ∅

dk else
(S1)

and

d+
k =


max
k̃∈A−

k

dk̃ if A−k 6= ∅

dk else
(S2)

as the smallest larger and the largest smaller DBH of an entry in the allometry dataset corresponding to the same species. The

contribution vKk of tree K in the inventory to the weight of entry k in the allometry dataset is given by1335

vKk =



1 if dK = dk,

1 if dK > dk = dmax
sk

,

1 if dK < dk = dmin
sk

,

d+k−dK
d+k−dk

if dK ∈
(
dk,d

+
k

)
,

dK−d−k
dk−d−k

if dK ∈
(
d−k ,dk

)
,

0 else.

(S3)

That is, the contribution is 1 if the diameters are equal or if the the tree diameter is outside the range of diameters covered in the

allometry dataset and the allometry data entry has maximal or minimal diameter, respectively. The weights are then computed
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as follows:

wk = cclass(sk)

∑
K∈Isk

vκk
|A=

k |
, (S4)1340

where cclass(sk) is a normalization constant for the PFT class(sk) to which species sk belongs, Isk is the subset of trees in

the inventory that are of species sk, and |·| denotes the counting norm. The division by the cardinality of A=
k distributes the

contribution of tree K evenly among all allometry entries with similar species and diameter. As a result, each tree in the

inventory makes the same total contribution to the weights.

The normalization constants cclass(sk) do not affect parameter estimation, but we chose1345

cj =
|Aj |∑

k∈Aj
∑
K∈Isk

vκk
|A=
k |

(S5)

so that the sum of the weights corresponds to the size of the dataset used to fit the allometry curve for PFT j. As a result, the

likelihood computed using the weights may be of the same order of magnitude as the unweighted likelihood, which can be

helpful for model comparison and selection.

To compute the weights efficiently, we sorted both the allometry dataset and the inventory by tree DBH and species. Then, the1350

weights can be computed in linear time of the inventory dataset size (assuming that there are only few entries in the allometry

dataset that have both the same species and DBH).

F2 Assignment of new seeds to patches

Each year, a constant number of seeds is distributed evenly to the different modelled forest patches. If the provided seed number

is not an integer divisible by the number of simulated patches, the seed number is rounded stochastically for each patch so that1355

the expected number of seeds per hectare and PFT matches the provided seed number. That is, if nseeds,i is the number of seeds

per hectare for PFT i and npatches the number of simulated patches, then the number of seeds for a patch j is given by

nseeds,i,j =

⌊
nseeds,i

npatches

⌋
+Bpseed , (S6)

where

Bpseed ∼ Bernoulli(pseed) (S7)1360

is a Bernoulli distributed random variable with success probability

pseed =
nseeds,i

npatches
−
⌊
nseeds,i

npatches

⌋
. (S8)
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