
1 
 

Response to reviewers’ comments and main revisions  

Journal: Atmospheric Chemistry and Physics 

Manuscript No.: egusphere-2023-2758 

Title: Long-term Variability in Black Carbon Emissions Constrained by Gap-filled 

Absorption Aerosol Optical Depth and Associated Premature Mortality in China 

Authors: Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, 

Huizheng Che, Zhengqiang Li, Mingrui Ma, Yun Hang 

 

We thank very much for the valuable comments and suggestions from the 

reviewers, which help us improve our manuscript. The comments have been carefully 

considered and revisions have been made in response to suggestions. Following are 

our point-by-point responses to the comments and corresponding revisions. Please 

note that the line/table/figure numbers mentioned following refer to the clean 

version of the revised manuscript, unless specifically noted. 

 

Comments from Reviewer #1 

General comment: Using a machine learning technique and a “top-down” 

inversion approach, with remote sensing observations and meteorological 

reanalysis data as input, the authors analyzed the evolution of black carbon 

emissions in China from 2000 to 2020. Moreover, using an attributional model, 

the authors related premature mortality and black carbon exposure, and 

investigated the mortality due to black carbon exposure and its drivers. In 

addition, the authors discussed the uncertainties in the calculation of black 

carbon AAOD and health impact estimation. The manuscript is well structured 

and written, the methodology is well established, the results are well presented 

and discussed. Due to the issues listed below, I suggest a major revision before it 

is suitable for publication. 
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Response and main revisions: 

We appreciate the reviewer’s positive comments on our paper, and have made 

point-by-point response and revisions as summarized below. 

 

Q1. Major issues: In the introduction, there is no review of studies on 

BC-associated premature mortality, especially over China. The motivation 

behind the authors' investigation into BC-associated premature motility and the 

research status of this premature motility is not clear. As the associated 

premature mortality is listed in the title and it is supposed to be one of the 

important parts of the paper. 

Response and main revisions: 

We appreciate and agree with the reviewer’s valuable comment. The review of 

studies on BC-associated premature mortality in China and the motivation of this 

study are summarized below. 

Based on the “bottom-up” emission estimates with great uncertainty and CTMs, 

previous studies have evaluated the BC-associated premature mortality in China for 

limited years (2000, 2013, and 2016, Cui et al., 2022; Qin et al., 2019; Saikawa et al., 

2009; Wang et al., 2021). Large discrepancy exists in the magnitude 

(50,100-1,436,960 cases) and few analyses are available on the long-term 

spatiotemporal variations and driving forces of BC-associated health effects. The 

influence of human activities on quickly changing BC emissions and their associated 

health impact is inadequately or inaccurately understood, weakening science-based 

decision making for air pollution control. 

We have added and reorganized the information in lines 95-100 in the revised 

manuscript. 

 

Q2. Major issues: In section 3.3, the results of premature mortality associated 

with BC exposure are only based on the estimation, without any validations, 

which makes the analysis less convincing. Is it possible to collect some data, 
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either released in government reports or published in papers, to support your 

estimations? It does not need to be very precise, the magnitudes of the same 

order are sufficient. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have collected the all-cause 

premature deaths attributed to BC in China from limited published papers to validate 

our estimates. The all-cause premature deaths attributed to BC in China were reported 

as 50,100 cases in 2000 (Qin et al., 2019), 1,436,960 cases in 2013 (Wang et al., 2021) 

and 538, 400 cases in 2017 (Cui et al., 2022). All-cause premature deaths attributed to 

BC in China in this work were estimated as 733,910-937,990 in 2000-2020, within the 

wide range of 50,100-1,436,960 cases by previous studies. 

The health impact estimation could be biased by rare domestic βBC values in 

China. Previous studies commonly adopted the same βBC with PM2.5 (Qin et al., 2019) 

or βBC obtained from experiments conducted in Europe or the United States (Wang et 

al., 2021), resulting in large uncertainty. In this study, we relied on a unique cohort 

study in China and calculated the all-cause premature deaths attributed to BC at 

733,910-937,980/yr. The βBC values obtained from national-scale studies in the US 

and Europe indicate a 10-fold difference (220,980-2,386,060/yr, Supplementary Table 

S14), similar to the estimation conducted in the US (Li et al., 2016). More domestic 

epidemiological studies focusing on BC emissions are expected to further reduce the 

uncertainty. 

We have added the validations and uncertainty discussions in lines 533-536 and 

lines 610-618 in the revised manuscript. 

 

Q3. Specific points: L137: The Chinese Academy of Sciences is a huge 

organization. A detailed name where the data is obtained is needed. The website 

of the dataset rather than the website of the data center should be provided. If 

the dataset is associated with a published paper, then the paper should be cited. 

Response and main revisions: 
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We appreciate the reviewer’s valuable comment. The land-use data were 

obtained from the Institute of Geographic Sciences and Natural Resources Research, 

Chinese Academy of Sciences at a horizontal resolution of 1 × 1 km 

(https://www.resdc.cn/DOI/DOI.aspx?DOIID=129; last accessed on 25 June 2022). 

The elevation data were obtained from the Shuttle Radar Topography Mission at a 

horizontal resolution of 1 × 1 km (https://www.resdc.cn/data.aspx?DATAID=123; last 

accessed on 25 June 2022). We have corrected the data source information in lines 

155-162 in the revised manuscript. 

 

Q4. Specific points: L148: References for CARSNET are needed. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have added the reference 

for CARSNET (Che et al., 2015) in line 172 in the revised manuscript. 

 

Q5. Specific points: L149: References for CARE-China and SONET are needed. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have added the reference 

for CARE-China (Xin et al., 2015) and SONET (Li et al., 2018) in lines 173-174 in 

the revised manuscript. 

 

Q6. Specific points: L163: Have you tested uncertainties brought by using four 

months to represent four seasons? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. In this study, January, April, 

July, and October were selected as representative months of different seasons to avoid 

abundant calculations. This method has been widely applied in emission inversion 

researches (Zhang et al., 2015; Zhao et al., 2019). The relative difference between the 

average AAOD of four representative months and annual value were estimated within 

https://www.resdc.cn/DOI/DOI.aspx?DOIID=129
https://www.resdc.cn/data.aspx?DATAID=123
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-4%~-1% during 2000-2020. We do not quantify this uncertainty due to computational 

costs in this work. We have added relative information in lines 193-194 in the revised 

manuscript. 

 

Q7. Specific points: L166: Add references for CMAQ. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have added the reference 

for CMAQ (USEPA, 2017) in lines 196-197 in the revised manuscript.  

 

Q8. Specific points: L221: References are needed for the log-linear model. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have added the reference 

for the log-linear model (Wang et al., 2021) in line 256 in the revised manuscript.  

 

Q9. Specific points: L221: L231: References are needed for Equation 7. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have added the reference 

for the Equation 10 (Eq. 7 in the previous edition) (Wang et al., 2021) in lines 

266-267 in the revised manuscript. 

 

Q10. Specific points: L257: Where are the RMSE and NMB values from? From 

which plots or tables? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have added the data sources 

in line 295 in the revised manuscript and corresponding Supplementary Table S8 

in the revised supplement. 
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Table S8 in the revised supplement: Evaluation of the monthly 

XGBoost-predicted AAOD and MERRA-2 AAOD performance against ground 

measurements. 

 BIAS RMSE NMB NME 

XGBoost-predicted AAOD 

(this study) 
0.0023 0.017 5% 32% 

MERRA-2 AAOD -0.0079 0.021 -19% 37% 

 

Q11. Specific points: L284: Double brackets at the right side. 

Response and main revisions: 

We appreciate the reviewer’s reminder and the redundant bracket has been 

deleted in the revised manuscript. 

 

Q12. Specific points: L314: I do not agree that the increase in AAOD from 2018 

to 2020 is due to the increasing surface wind speed. In general, the near-surface 

wind speed has decreased significantly since 1980 and has become flat or 

increased slightly since about 2010~2013. Why did the AAOD still decrease from 

2013 to 2020? Thus, near-surface wind speed only cannot explain the changing 

trend in AAOD. Moreover, from 2018 to 2020, only 3 years, the time period is too 

short for changing trend analysis. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. Continuous air pollution 

controls during 2013-2020 have resulted in the reduction of light-absorption BC 

emissions, thereby the decline of AAOD of China. However, recent observations 

show that the frequency of sandstorms in northern China has increased after 2015 due 

to increasing surface wind speed (Yang et al., 2021). This resulted in greater 

emissions of light-absorption dust aerosols, thereby AAOD, partly offset the AAOD 

decline owing to black carbon emission mitigation in northern China. We agreed with 

the reviewer that the time period from 2018 to 2020 is too short for changing trend 
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analysis, so we removed the trend analysis results for 2018-2020 from Figure 3 and 

the main text. 

We have included the discussion in lines 352-355 and modified Figure 3 in the 

revised manuscript. 

Figure 3 in the revised manuscript: (a) Spatial distribution of multiyear average 

AAOD during 2000-2020 and (b-h) interannual variations of AAOD for China 

and six key regions in 2000-2020. The grey and white present Phase 1 (2000-2012) 

and Phase 2 (2013-2020), respectively. The red dots and dashed line represent 

time series of monthly AAOD (left vertical axis). The black solid lines represent 

the interannual variability after removing the seasonal change through 

time-series decomposition (right vertical axis). The straight red and blue lines 

present the linear trends of AAOD for different phases (right vertical axis). The 

annual variation rates (1/yr) during different phases with significance levels (*p 

< 0.05, **p < 0.01, ***p < 0.001) are presented. 
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Q13. Specific points: L327-329: Could you explain why a larger underestimation 

appears in 2000 and 2020? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. The larger underestimation of 

simulated prior BC concentration in 2000 and 2020 may be caused by larger 

underestimation of BC emissions in these years.  

For 2000, the under-reporting of activity levels and lack of local measurements 

for specific BC emission factors (EFs, emissions per unit of activity level) in very 

early year may lead to larger uncertainties in BC emission estimation (Fu et al., 2012; 

Guan et al., 2012). The increased uncertainty in prior BC emissions in 2020 may have 

resulted partly from an underestimation of increased fuel use owing to residential 

heating and cooking during the COVID-19 lockdown and quarantine (Zheng et al., 

2020). 

We have discussed the possible reasons in lines 366-367 and 407-418 in the 

revised manuscript. 

 

Q14. Specific points: L345: Simulation -> simulation. 

Response and main revisions: 

We appreciate the reviewer’s reminder. We are sorry for the mistake and have 

corrected it in line 384 in the revised manuscript. 

 

Q15. Specific points: L361: What do you mean by the factor here? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. The “factor” here represents the 

ratio of the difference between posterior and prior to the prior BC emissions, i.e., (a 

posterior – a prior) / a prior. We have modified the expression in lines 400-401 in the 

revised manuscript. 
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Q16. Specific points: L426: Why coal consumption or fossil fuel combustion are 

missing, which are also very important to BC emissions. 

Response and main revisions: 

We appreciate the reviewer’s important comment. As shown in Figure R1 below, 

there is a great correlation between provincial coal production and consumption. In 

Section 3.2.3, we used coal production as an indicator to distinguish the main coal 

production provinces and to further highlight the unique BC emission patterns for 

those provinces (Shanxi, Inner Mongolia, Henan and Shaanxi Province). Those 

patterns cannot be clearly revealed if coal consumption is used as the indicator. 

 

Figure R1 Correlation between provincial coal consumption and production by 

year (2000-2020, with a five-year interval). 
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Q17. Specific points: L490-493: How did you get those values? Calculated from 

equation 7? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. The all-cause premature deaths 

attributed to BC here were calculated from equation 10 (equation 7 in the previous 

edition) in lines 266-278 in the revised manuscript. 

 

Q18. Specific points: L496-498: Can you calculate the relative premature deaths 

that divide the premature death cases by the total population? Then, one can get 

rid of the impacts of population density when comparing premature deaths in 

different regions of China. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We calculated the premature 

death rate that divide the premature death cases by the total population and the results 

are shown in a new Supplementary Figure S9 in the revised supplement. Higher 

premature death rate in eastern China were attributed mainly to the relatively high BC 

exposure from developed industrial and commercial activities. We have added the 

corresponding statement in lines 536-539 in the revised manuscript. 
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Figure S9 in the revised supplement: Spatial distribution of premature mortality 

rate attributable to the posterior BC exposure during 2000-2020 (with a five-year 

interval). 

 

 

Q19. Specific points: L499: What does cases/grid mean? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. The “cases/grid” means the 

all-cause premature deaths attributed to BC in a model grid cell (27 × 27 km). 

Combined with the Q21 of reviewer #2, we have modified the unit “cases/grid” to 

“cases/1000 km2” and re-calculated the corresponding values in Table 3 in the 

revised manuscript to make the expression easier to understand. The corresponding 

sentences were modified to “The highest multiyear average of premature mortality 

was 1482 cases/1000 km2 (the all-cause premature deaths attributed to BC per area of 

1000 km2) in Shanghai, followed by 793, 761, 520, 450, and 442 cases/1000 km2 in 

Beijing, Tianjin, Jiangsu, Henan, and Shandong, respectively (Table 3). These values 

were much higher than the national average of 86 cases/1000 km2” in lines 539-543 

in the revised manuscript. 
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Table 3 in the revised manuscript: The annual all-cause premature mortality 

associated with BC exposure by province in mainland China during 2000-2020 

with a five-year interval (Unit: cases/1000 km2). Locations of provinces are 

shown in Figure S1a. 

 2000 2005 2010 2015 2020 Average 

Shanghai 1050  1258  1661  2038  1403  1482  

Beijing 410  686  781  930  1156  793  

Tianjin 442  601  760  907  1094  761  

Jiangsu 341  481  575  669  535  520  

Henan 386  484  421  404  555  450  

Shandong 299  433  455  494  529  442  

Anhui 218  320  338  341  322  308  

Liaoning 346  282  271  234  226  272  

Hebei 194  250  238  249  303  247  

Chongqing 253  285  249  204  239  246  

Hubei 173  250  245  192  210  214  

Jilin 207  200  206  212  188  203  

Zhejiang 140  180  210  234  224  198  

Hunan 163  227  206  171  216  197  

Guangdong 149  177  213  165  192  179  

Shanxi 192  213  134  130  217  177  

Sichuan 124  148  130  105  113  124  

Guizhou 109  128  111  120  132  120  

Jiangxi 90  127  129  108  136  118  

Shannxi 97  120  95  80  116  101  

Heilongjiang 87  88  104  113  109  100  

Fujian 81  87  99  79  84  86  

Guangxi 70  96  99  72  81  84  

Hainan 46  59  64  43  59  54  

Yunnan 42  51  49  50  59  50  

Ningxia 34  49  33  34  49  40  

Gansu 23  30  19  17  22  22  

Inner Mongolia 6  8  6  5  7  7  

Qinghai 2  3  2  2  2  2  

Xinjiang 1  1  1  1  1  1  

Tibet 0  0  0  0  0  0  
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Q20. Specific points: Table 1: Units are needed for the values of emission. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. Table 1 shows the multiyear 

average relative differences between the posterior and various “bottom-up” estimates 

of BC emissions. We have added “unitless” for the relative difference in the caption 

of Table 1. 

 

Table 1 in the revised manuscript: The multiyear average relative differences 

between the posterior and various “bottom-up” estimates of BC emissions by 

region (unitless). Note: OBB emissions from GFED are added to each 

anthropogenic emission estimate as the total “bottom-up” estimate, except for 

PKU-Fuel which includes its own OBB emission estimate.  

Region 

CEDS 

+ 

GFED 

PKU-Fuel 

EDGAR 

+ 

GFED 

REAS 

+ 

GFED 

MEIC 

+ 

GFED 

Average 

BTH 1.19 0.31 2.35 0.69 0.99 1.11 

FWP 2.18 0.56 3.63 1.50 2.70 2.11 

YRD 0.80 1.44 1.23 1.49 1.56 1.30 

PRD 0.75 1.15 2.01 2.05 2.65 1.72 

SCB 3.23 2.23 6.38 3.01 3.17 3.60 

NE 4.90 4.66 6.37 5.36 6.81 5.62 

Other 3.35 1.98 4.96 3.68 3.62 3.52 

       

China 2.68 1.72 4.13 2.82 3.26 2.92 

 

Q21. Specific points: Figure 1: The quality of the figure needs to be improved. 

The words are too small and unreadable. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have improved the quality 

of Figure 1 in the revised manuscript. 

 



14 
 

Q22. Specific points: Figure 2: I highly recommend using five different colors for 

the data from five different years. The two dashed lines have to be introduced in 

the caption. The interval of bins is also needed to be introduced. The equations of 

NMB, NME, and RMSE should go to section 2.1. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment and modified the Figure 2. 

Firstly, we use 16 different colors to represent the data from 16 years (2005-2020) in 

Figure 2. Secondly, we added the introduction of the dashed lines and the interval of 

bins in the caption of Figure 2, i.e., “The red dashed line indicates the 1:1 line. The 

blue dashed line indicates the regression line. The interval of bins of the marginal 

histograms is 0.02”. Finally, the equations of NMB, NME and RMSE were moved to 

section 2.1 in lines 181-188 in the revised manuscript. 

 

Q23. Specific points: Figure 3: The quality needs to be improved. Words and 

legends are not clear enough. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment and improve the quality of 

Figure 3 to make the words and legends clear enough. 

 

Q24. Specific points: Figure 7: What do colors in Figures 7c and 7d stand for? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. The colors in Figures 7c and 7d 

stand for changes in provincial BC emission intensity (annual BC emissions per km2) 

in posterior BC estimates, which are the same as those in Figures 7a and 7b. We have 

added the information in the caption of Figure 7. 

 

Q25. Specific points: Figure 9: The quality of the figure needs to be improved. 

Words are not readable. Important information should be included in the 
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caption, for example, what the gray bars are and why the numbers over the gray 

bars are missing. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment and improve the quality of 

Figure 9 to make the words and legends clear enough. The grey bars stand for the 

total all-cause premature deaths attributed to BC exposure in China during 2000-2020 

(with a 5-year interval), and the corresponding numbers are at the bottom of the 

Figure. The colored bars and numbers above the bars show the contributions of major 

factors to the national changing mortality. We have added the information in the 

caption of Figure 9 in the revised manuscript. 

 

Figure 9 in the revised manuscript: Total all-cause premature deaths attributed 

to BC exposure in China (grey bars) and drivers of changing premature 

mortality (colored bars) during 2000-2020 (with a 5-year interval). Error bars 

show the 95% CI of estimates in this study. The numbers of total all-cause 

premature deaths are at the bottom of the Figure. The contributions of major 

factors to the national changing mortality are above the colored bars. 
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Comments from Reviewer #2 

General comment: The authors analyzed BC emission changes and the 

associated premature mortality in China during 2000-2020. Overall, the 

methodology is robust and the findings are valuable. The paper was well written 

and I enjoyed reading it. The following comments need to be addressed before 

publishing. 

Response and main revisions: 

We appreciate the reviewer’s positive comments on our paper, and have made 

point-by-point response and revisions as summarized below. 

 

Q1. Line 31: Explicitly mention OMI and Extreme Gradient Boosting algorithm 

in the abstract. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment and have added the specific 

information. The sentence has been modified as “Here, we present the spatiotemporal 

evolution of BC emissions and the associated premature mortality in China during 

2000-2020, based on an integrated framework combining satellite observations from 

Ozone Monitoring Instrument (OMI), an Extreme Gradient Boosting (XGBoost) 

algorithm, a “top-down” inversion approach, and an exposure-response model” in 

lines 29-33 in the revised manuscript. 

 

Q2. Line 47: “BC poses greater health risks than total PM2.5 due to its 

absorption”? Why would absorption be related to health? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. Here the “absorption” means 

the ability of BC to absorb the harmful matters. Epidemiological studies have 

indicated that BC absorbs polycyclic aromatic hydrocarbons (PAHs) and volatile 

organic compounds (VOCs) due to its fine particle size and porous structure, and 
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readily penetrates human lung tissue (Pani et al., 2020). Thus BC exposure may cause 

cardiovascular diseases (CVDs) and respiratory diseases (RDs). We have modified the 

unclear expression and added the corresponding reference in lines 48-51 in the 

revised manuscript. 

 

Q3. Line 64-65: “9%-22% (2005-2020) and 8%-12% (2006-2013)”. Reference? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. Here the data coverage ratio 

was calculated by the author based on the satellite AAOD datasets. We have added the 

data sources of OMI (https://disc.gsfc.nasa.gov/datasets/OMAEROe_003/summary; 

last accessed on 10 March 2022) and POLDER (https://www.grasp-open.com; last 

accessed on 4 May 2022) in lines 65-69 in the revised manuscript. 

 

Q4. Line 72 “Existing bottom-up estimates”. Please explicitly list the name of 

these inventories mentioned here. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have listed the name of the 

inventories mentioned here in lines 79-84 in the revised manuscript, i.e., the 

Multiresolution Emission Inventory for China (MEIC; Tsinghua University, 2023), the 

Emissions Database for Global Atmospheric Research (EDGAR; European 

Commission, 2022), Community Emissions Data System (CEDS; Mcduffie et al., 

2020), the Peking University Fuel Inventory (PKU-Fuel; Wang et al., 2014), Regional 

Emission inventory in ASia (REAS; Kurokawa and Ohara, 2020), and others (Lu et al., 

2011; Lei et al., 2011; Klimont et al., 2009; Qin and Xie, 2012). 

 

Q5. Section 2.1: Move the description of XGBoost model from Supplement to the 

main text. And explicitly explain how it differs from a Random Forest Model. 

Response and main revisions: 

https://www.grasp-open.com/
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We appreciate the reviewer’s valuable comment. We have moved the description 

of XGBoost model from Supplement to lines 120-127 in the revised manuscript. 

XGBoost has been widely used in predicting air pollution and shown to outperform 

various statistical and machine learning models (Liang et al., 2020; Liu et al., 2022; 

Wang et al., 2023; Xiao et al., 2018). The XGBoost algorithm is an additive model 

based on hundreds of decision tree models. It first builds multiple Classification and 

Regression Trees, and then integrates these trees as a new tree model using an 

additive function (Liu et al., 2021). The model continues to iteratively improve, and 

the new tree model generated in each iteration will fit the residual of the previous tree. 

The complexity of the ensemble model will gradually increase until the training 

achieves the best results. Different from the boosting approach of XGBoost, the 

Random Forest model fits a set of decision trees, and then a majority vote method is 

taken for final prediction (Lyu et al., 2019). Generally, XGBoost model requires less 

training and prediction time and presents better performance than the Random Forest 

model. We have added the comparison of two models in lines 128-131 in the revised 

manuscript. 

 

Q6. Line 98: “extreme gradient boosting” ==> “Extreme Gradient Boosting” 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have modified the “extreme 

gradient boosting” to “Extreme Gradient Boosting” in the main text (lines 31-32 and 

lines 108-109). 

 

Q7. Line 110: “XGBoost has been widely used…” In this case, please provide 

more reference than Xiao et al., 2018. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have added more relative 

references (Liang et al., 2020; Liu et al., 2022; Wang et al., 2023) in lines 121-122 in 

the revised manuscript. 
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Q8. In the Text S1 XGBoost model description, can you explain how you 

“integrates these trees as a new tree model”? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. The XGBoost algorithm is an 

additive model. For a given dataset, the XGBoost algorithm continuously perform 

feature splitting to grow a tree. Each time a tree is added, a new function is actually 

learned to fit the residuals of the last tree prediction. Eventually the model uses an 

additive function to “integrates these trees as a new tree model”, thus obtaining the 

final prediction. We have added the explanation in lines 123-125 in the revised 

manuscript. 

 

Q9. Line 113: “random forest” ==> “Random Forest”. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have modified the “random 

forest” to “Random Forest” in the main text (line 128 and line 131). 

 

Q10. Line 139: To regrid from 1 km to 0.25 degree, you should use average 

rather than Bilinear interpolation. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We are sorry for the mistake 

and have modified it to “These parameters were resampled to the 0.25° × 0.25° grid 

system by averaging the 1-km resolution data.” in lines 162-163 in the revised 

manuscript. 

 

Q11. OMI overpass time is ~13:30. Therefore OMI only measures AAOD at 

~13:30 each day. Therefore when you use other MERRA-2 variables for model 

training, it’s better to use hourly values near 13:30 rather than daily average. 
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You don’t need to redo the training. However please add a few sentences to 

discuss this. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We used the daily MERRA-2 

data because the daily average MERRA-2 data was proved more reliable than the 

hourly data compared to the observation (Xu et al., 2020). However, as the reviewer 

said, application of the daily data may result in a mismatch with OMI-measured 

AAOD at ~13:30, thus leading to uncertainties in AAOD prediction. The complicated 

nonlinear response relationship of machine learning (i.e., XGBoost model) can 

partially compensate this mismatch, and our validation results also proved the 

robustness of the model. Evaluated by 10-fold CV and individual ground 

measurements, the predicted AAOD shows good agreements with observations, with 

RMSE of 0.013 and 0.017, respectively (Figure 2 and Supplementary Table S8). We 

have added the explanation in lines 153-155 in the revised manuscript. 

 

Q12. Your developed monthly AAOD data represent the value at ~13:30 if you 

use OMI AAOD as the truth for training. Please discuss the impact of diurnal 

variation on your emission estimates. GEMS will provide more diurnal 

information in the future and can be used to further understand this issue. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment and acknowledged the limitation 

in emission inversion of this work. As XGBoost predicted monthly BC AAOD at 

~13:30, we could not capture the diurnal distribution of BC emissions. We simply 

applied the ratio of the posterior to prior emissions at 13:30 to correct emissions in 

other hours, causing uncertainties in the diurnal distribution of emissions. As 

mentioned by the reviewer, the Geostationary Environment Monitoring Spectrometer 

(GEMS) was launched on board the Geostationary KOrea Multi-Purpose SATellite 2B 

(GEO-KOMPSAT-2B) satellite in 2020 and provided hourly daytime observations of 

aerosols (Kim et al., 2020; Park et al., 2023). This can potentially be helpful for 
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improving the temporal accuracy of BC emission inversion in the future. We have 

added the discussion of the uncertainty in lines 603-609 in the revised manuscript. 

 

Q13. Line 163: While it makes sense to have five-year intervals, using 2015 and 

2020 to interpolate the years in between will introduce biases due to COVID 

interruption (i.e., 2020 emission is an anomaly). 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We acknowledged that 2020 is 

an anomaly considering the influence of COVID-19. We compared the national 

monthly BC AAOD in 2015, 2020 and 2016-2019 (Figure R2). Annual average BC 

AAOD in 2020 was 0.0235, slightly lower than that in 2015 (0.0239), while both of 

them were higher than the multi-year average BC AAOD in 2016-2019 (0.0227). The 

COVID-19 lockdown and quarantine may cause the increase of fuel use owing to 

residential heating and cooking (Zheng et al., 2020), thereby the increase of BC 

emissions. We have briefly discussed the influence of COVID-19 in lines 415-418 in 

the revised manuscript. To describe an emission trend of entire two decades, we kept 

using the five-year interval in the emission inversion analysis. 

 

Figure R2 Comparison of the national average monthly BC AAOD in different 

years, i.e., 2015, 2020 and the multi-year average for 2016-2019. 
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Q14. Line 181: To be more clear, I suggest to replace 𝐴𝐴𝑂𝐷_𝑠𝑖𝑚𝑖,, with 

𝐴𝐴𝑂𝐷_BC_𝑠𝑖𝑚𝑖,𝑚,𝑛 here and after. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have modified the 

“𝐴𝐴𝑂𝐷_𝑠𝑖𝑚𝑖,𝑚,𝑛” to “𝐴𝐴𝑂𝐷_𝐵𝐶_𝑠𝑖𝑚𝑖,𝑚,𝑛” in the main text (line 211, 212, 231, 233, 

238 and 239) and Table S2 in the revised supplement. 

 

Q15. Section 2.2.2: I appreciate this part that the authors included four 

sensitivity tests to recalculate posterior BC emissions and explore the uncertainty 

in the inversion. 

Response and main revisions: 

We appreciate the reviewer’s positive comment on this work.  

 

Q16. Line 227: “we applied the 1.25th percentile of BC concentrations as the 

threshold.” Why use 1.25? Is it from a previous study? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. The health impact threshold of 

BC (i.e., 1.25th percentile of BC concentrations) was suggested by previous study 

(Pani et al., 2020; Wang et al., 2021). We have added the reference in lines 261-262 in 

the revised manuscript.  

 

Q17. Figure 4: Have you described these BC concentration observations in the 

text? How were they measured? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. The BC concentration 

observations here were collected from 64 published researches as comprehensive as 

possible, covering various sampling regions in China and study period from 2000 to 

2020, which are listed in Supplementary Table S3. Most studies analyzed BC using 
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well-acknowledged reliable and widely used analyzers (Tao et al., 2017), for example, 

a DRI carbon analyzer or Sunset carbon analyzer. We have added the description of 

BC concentration observations in lines 244-248 in the revised manuscript. 

 

Q18. Did you add anthro and fire BC emis together and updated them as a whole? 

Please be explicit. 

If that’s the case, why would you compare your BC emission estimates 

(anthro+BB) with other anthropogenic emission inventories in Figure 5? If that’s 

not the case, did you separately update anthro and biomass burning BC 

emissions? Or you only updated anthro emissions? Biomass burning emissions 

are a large source for BC (sometimes larger than anthropogenic sources) and 

have to be considered. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment and careful reminding. In this 

study, we added anthropogenic and fire BC emissions together and updated them as a 

whole. We acknowledged that comparing the posterior BC emissions (anthro+BB) 

with other “bottom-up” anthropogenic emission inventories (i.e., EDGAR, CEDS, 

REAS, et al.) was not rigorous enough. Here we added GFED open biomass burning 

BC emissions to various anthropogenic emission inventories and re-compared the 

posterior emissions with the new “bottom-up” emission estimates. It is worth noting 

that the PKU-Fuel, Lu et al. (2011) and Qin and Xie (2012) already includes 

emissions from wildfires. The posterior BC emissions presented an enhancement 

compared to various “bottom–up” estimates of China’s BC emissions (sum of 

anthropogenic and OBB emissions), with the lowest relative difference of 1.7 for the 

PKU-Fuel (http://inventory.pku.edu.cn/; last accessed on 1 May 2023) and highest 

value of 4.1 for EDGAR+GFED (https://edgar.jrc.ec.europa.eu/dataset_ap61; last 

accessed on 1 May 2023) (Figure 5d and Table 1). The posterior emissions presented 

a smaller interannual variability compared to the prior and other “bottom-up” 

estimates, with a net growth of 8% during 2000-2010 (the analogous numbers are 

http://inventory.pku.edu.cn/
https://edgar.jrc.ec.europa.eu/dataset_ap61
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12%-55% for various “bottom-up” estimates including 24% for the prior used in this 

work, MEIC+GFED) and a decline of 26% during 2010-2020 (41% for MEIC+GFED, 

Figure 5e). Besides, the relative differences between posterior and other “bottom-up” 

BC emission estimates were smaller (1.1-2.1) in more economically developed 

regions (BTH, FWP, YRD, and PRD), but larger (3.5-5.6) in SCB, NE, and other 

regions (Table 1).  

We have modified the Figure 5 and Table 1 and corresponding descriptions in 

lines 402-407, lines 419-423 and lines 429-432 in the revised manuscript. 

 

Table 1 in the revised manuscript: The multiyear average relative differences 

between the posterior and various “bottom-up” estimates of BC emissions by 

region (unitless). Note: OBB emissions from GFED are added to each 

anthropogenic emission estimates as the total “bottom-up” estimate, except for 

PKU-Fuel which includes its own OBB emission estimate.  

Region 

CEDS 

+ 

GFED 

PKU-Fuel 

EDGAR 

+ 

GFED 

REAS 

+ 

GFED 

MEIC 

+ 

GFED 

Average 

BTH 1.19 0.31 2.35 0.69 0.99 1.11 

FWP 2.18 0.56 3.63 1.50 2.70 2.11 

YRD 0.80 1.44 1.23 1.49 1.56 1.30 

PRD 0.75 1.15 2.01 2.05 2.65 1.72 

SCB 3.23 2.23 6.38 3.01 3.17 3.60 

NE 4.90 4.66 6.37 5.36 6.81 5.62 

Other 3.35 1.98 4.96 3.68 3.62 3.52 

       

China 2.68 1.72 4.13 2.82 3.26 2.92 
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Figure 5 in the revised manuscript: Comparisons between posterior and various 

“bottom-up” BC emission estimates in China during 2000-2020. (a) Multiyear 

average spatial distribution of prior BC emissions (MEIC+GFED), (b) posterior 

BC emissions, and (c) their relative differences. (d) Long-term variability in the 

relative differences between posterior and various “bottom-up” BC emission 

estimates, with five-year intervals. Note: OBB emissions from GFED are added 

to each anthropogenic emission estimate as the total “bottom-up” estimate, 

except for PKU-Fuel, Lu et al. (2011) and Qin and Xie (2012) which include their 

own OBB emission estimate. (e) Long-term variability in normalized posterior 

and various “bottom-up” BC emission estimates (relative to 2000). The grey area 

indicates the period with declining national BC emissions. (f) Long-term 

variability in the relative differences between prior (MEIC+GFED) and 

posterior BC emissions by region and land use type. 
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Q19. Figure 5: The relative difference is larger in forest and grassland rather 

than rural or urban. Does that mean the uncertainties mainly come from 

biomass burning emissions rather than anthro? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. Yes, it means that the 

uncertainties of BC emissions in remote regions, including those from open biomass 

burning should be larger than those from more intensive human activities. The 

“bottom-up” approach could capture information about energy consumption and 

pollution controls more easily and accurately in regions with more intensive human 

activities. However the omission of small fires from satellite observations and 

application of global EFs led to an underestimation of biomass burning emissions. We 

have included the discussions in lines 411-413 and lines 442-446 in the revised 

manuscript. 

 

Q20. Line 485: Just out of curiosity, is transportation a significant source sector 

for BC in China? 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. The transportation sector is an 

important source of BC emissions in China. According to MEIC, the contributions of 

transportation sector to total anthropogenic BC emissions in China during 2000-2020 

(i.e., our study period) varied between 17%-24%. 

 

Q21. Line 501: It’s more intuitive to use unit cases/km2 than cases/grid. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have modified the unit 

“cases/grid” to “cases/1000 km2” and re-calculated the corresponding values in Table 

3 in the revised manuscript. The corresponding sentences were modified to “The 

highest multiyear average of premature mortality was 1482 cases/1000 km2 (the 
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all-cause premature deaths attributed to BC per area of 1000 km2) in Shanghai, 

followed by 793, 761, 520, 450, and 442 cases/1000 km2 in Beijing, Tianjin, Jiangsu, 

Henan, and Shandong, respectively (Table 3). These values were much higher than the 

national average of 86 cases/1000 km2” in lines 539-543 in the revised manuscript. 
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Table 3 in the revised manuscript: The annual all-cause premature mortality 

associated with BC exposure by province in mainland China during 2000-2020 

with a five-year interval (Unit: cases/1000 km2). Locations of provinces are 

shown in Figure S1a. 

 2000 2005 2010 2015 2020 Average 

Shanghai 1050 1258 1661 2038 1403 1482 

Beijing 410 686 781 930 1156 793 

Tianjin 442 601 760 907 1094 761 

Jiangsu 341 481 575 669 535 520 

Henan 386 484 421 404 555 450 

Shandong 299 433 455 494 529 442 

Anhui 218 320 338 341 322 308 

Liaoning 346 282 271 234 226 272 

Hebei 194 250 238 249 303 247 

Chongqing 253 285 249 204 239 246 

Hubei 173 250 245 192 210 214 

Jilin 207 200 206 212 188 203 

Zhejiang 140 180 210 234 224 198 

Hunan 163 227 206 171 216 197 

Guangdong 149 177 213 165 192 179 

Shanxi 192 213 134 130 217 177 

Sichuan 124 148 130 105 113 124 

Guizhou 109 128 111 120 132 120 

Jiangxi 90 127 129 108 136 118 

Shannxi 97 120 95 80 116 101 

Heilongjiang 87 88 104 113 109 100 

Fujian 81 87 99 79 84 86 

Guangxi 70 96 99 72 81 84 

Hainan 46 59 64 43 59 54 

Yunnan 42 51 49 50 59 50 

Ningxia 34 49 33 34 49 40 

Gansu 23 30 19 17 22 22 

Inner Mongolia 6 8 6 5 7 7 

Qinghai 2 3 2 2 2 2 

Xinjiang 1 1 1 1 1 1 

Tibet 0 0 0 0 0 0 
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Q22. I like the Section 3.4 (detailed discussion on the uncertainties). It makes this 

manuscript more convincing. 

Response and main revisions: 

We appreciate the reviewer’s positive comment on this work.  

 

Q23. It’s not convenient for the reviewers when you separate figure captions 

from figures. I had to go back and forth to understand a figure. I suggest in your 

future manuscript submissions, put figure and its corresponding caption in the 

same place. 

Response and main revisions: 

We appreciate the reviewer’s valuable comment. We have put figure and its 

corresponding caption in the same place. 
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