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Abstract. Because optimal transport acts as displacement interpolation in physical space rather than as interpolation in value

space, it can avoid double-penalty errors generated by mislocations of geophysical fields. As such it provides a very attractive

metric for non-negative, sharp fields comparison — the Wasserstein distance — which could further be used in data assimi-

lation for the geosciences. The algorithmic and numerical implementations of such distance are however not straightforward.

Moreover, its theoretical formulation within typical data assimilation problems face conceptual challenges, resulting in scarce5

contributions on the topic in the literature.

We formulate the problem in a way that offers a unified view on both classical data assimilation and optimal transport. The

resulting OTDA framework accounts for both the classical source of prior errors, background and observation, together with

a Wasserstein barycentre in between states that stand for these background and observation. We show that the hybrid OTDA

analysis can be decomposed as a simpler OTDA problem involving a single Wasserstein distance, followed by a Wasserstein10

barycentre problem which ignores the prior errors and can be seen as a McCann interpolant. We also propose a less enlightening

but straightforward solution to the full OTDA problem, which includes the derivation of its analysis error covariance matrix.

Thanks to these theoretical developments, we are able to extend the classical 3D–Var/BLUE paradigm at the core of most

classical data assimilation schemes. The resulting formalism is very flexible and can account for sparse, noisy observations and

non-Gaussian error statistics. It is illustrated by simple one– and two–dimensional examples that show the richness of the new15

types of analysis offered by this unification.

1 Introduction

1.1 Data assimilation and the double-penalty issue

Geophysical data assimilation is a set of methods and algorithms at the intersection of Earth sciences, mathematics, and

computer science, designed to enhance our understanding and predictive capabilities of the complex systems that govern our20

planet (Carrassi et al., 2018). These systems encompass the atmosphere, ocean, atmospheric chemistry and biogeochemistry,

land surfaces, glaciology, hydrology, etc., and as a whole the climate system. Data assimilation is meant to optimally combine

all sources of quantitative information, typically past and present observations, and numerical and statistical models of the

system under consideration. Data assimilation (DA) is critical in forecasting chaotic geofluids by resetting the initial conditions
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Figure 1. These two panels schematise the computation of the RMSE of two analysis increments. Those increments are the difference

between the truth (left mesh within both Euclidean norm), concentrated here in the red grid-cell and the analysis located in the green grid-

cells (right mesh within both Euclidean norm). The increment on panel (a) is the outcome of a better analysis spatially closer to the truth,

as compared to the one in panel (b), and yet both increments yield the same RMSE. This verification metrics is hence impacted by the

double-penalty error and does not help in discriminating location errors.

of the flow, estimating physical and statistical parameters of the models, and providing a quantitative re-analysis of the past25

history of the climate system over decades. Because classical DA is applied to complex and high-dimensional dynamics, the

DA algorithms often result from a compromise between the sophistication of the employed mathematical techniques and their

numerical scalability and efficiency (Kalnay, 2003; Asch et al., 2016; Evensen et al., 2022). For instance, it is well-known

that most DA methods are built around or from an update step – the analysis – where observations and background states are

combined, an operation which often relies on Gaussian statistical assumptions.30

Here we would like to focus on one important issue that impacts classical DA, known as the double-penalty error in

the geosciences. The double-penalty issue refers to the over-penalisation of errors in both the model and observational data

(e.g. Amodei and Stein, 2009)
:::::::::::::::::::::::::
(e.g., Amodei and Stein, 2009) and compromises the balance required for effective DA. It often

stems from mislocation of fields which is caused by model error, in either the forecasting or observation operator. A typical

example is given by a slight mislocation of a plume of pollutant resulting in high predicted concentration values at positions35

where no pollutant is observed while the model misses the observed peaks of concentration (Farchi et al., 2016). This mismatch

is heavily penalised because of the use, over the same discretised space, of the root-mean square error (RMSE) utilised for a

point-by-point comparison. Figure 1 shows an exemplar for such double-penalty error resulting in the inability to properly

evaluate a model and learn from an analysis increment. This double-penalty error, a very common contribution to the rep-

resentation error (Janjić et al., 2018), is ubiquitous in the geosciences: in numerical weather prediction and in particular for40

water vapour, in atmospheric chemistry and air quality, in biogeochemistry and in eddy resolving ocean forecasting, etc. This

especially applies to sharp fields while it may be of less relevance for smoother, larger scale fields such as temperature.

It has been recognised that while the weighted Euclidean (Mahalanobis) distance can handle amplitude and smoothness

mismatch, it cannot cope with mislocation error and hence account for the full distortion between mismatched fields (Hoffman

et al., 1995).
:
In

:::
the

::::
field

::
of

:::::::::::
precipitation

::::::::::
verification,

::::
one

:::::
would

::::::::::
alternatively

::::::
speak

::
of

:::::::::
amplitude,

:::::::
structure

::::
and

:::::::
location

:::::
errors45

::::::::::::::::::::
(e.g., Wernli et al., 2008)

:
. Hence, even though tuning covariances of Gaussian error distributions as in classical DA, such as
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increasing the correlation length, might help mitigate the double-penalty error, it is insufficient. In Fig. 1, one might replace

the Euclidean norm by a weighted Euclidean one with a large correlation length. This would yield similar norm values for both

cases. Unfortunately, it is not difficult to show that in this limit this (almost singular) norm can only distinguish between the

spatial mean of both fields; it became blunt with no discriminating power. Towards DA, Fig. 1 in Feyeux et al. (2018) also50

illustrates why the Euclidean distance cannot properly cope with mislocation error. Note that, should Feyeux et al. (2018) have

used a weighted Euclidean distance instead, with the same covariance matrix for the two contributions of the cost function, the

resulting analysis state would have be been the same and, in particular, independent from the covariance matrix. A similar but

two-dimensional illustration is given by Fig. 3 in Vanderbecken et al. (2023).

1.2 Nonlocal verification metrics55

The issue can be attributed to the use of a local verification metric, meaning that it compares, through the RMSE, values at the

same site, of the same grid-cell. Thus, this issue goes beyond DA, and pertains to the use of local metrics.

To avoid being impacted by the double-penalty issue stemming from the use of local verification metrics, smarter nonlocal or

multiscale metrics have been proposed. A typical metric of this kind consists in the combination of a displacement map followed

by the use of classical norm such as the RMSE (Hoffman et al., 1995; Keil and Craig, 2009). In this vein, effective verification60

metrics can be based on optical flow-based warping, or on deformed meshes, prior to using classical norms (Gilleland et al.,

2010a, b). These metrics can also be designed as scale-dependent and possibly multiscale, based on an empirical separation of

scales, such as with fuzzy metrics (Ebert, 2008; Amodei and Stein, 2009), or e.g., wavelets (Briggs and Levine, 1997). They can

be designed to grasp and quantify objects and features, such as lows and highs (Davis et al., 2006a, b; Lack et al., 2010). Metrics

with similar capabilities but not necessary based on a displacement concept, have been introduced in computer vision such as65

the structural similarity index (Zhou et al., 2004), or in the verification of precipitations (Skok, 2023; Necker et al., 2023)

::::::::::::::::::::::::::::::::::::::::::
(Wernli et al., 2008; Skok, 2023; Necker et al., 2023).

One of the most elegant approach is based on the theory of optimal transport (OT), and the associated Wasserstein distance,

which sits on solid mathematical foundations and significant developments, which are the main reasons why we will focus

on OT in the following. Examples of application of OT to the verification of tracer and greenhouse gases models are given in70

Farchi et al. (2016); Vanderbecken et al. (2023).

1.3 Optimal transport and the Wasserstein distance

Before mentioning applications of the Wasserstein distance in the field of geoscience, let us first give a very brief introduction

to the concept and mathematical formulation of OT.

The OT concept stemmed from an engineering but rather universal problem. Gaspard Monge (Monge, 1781) considered the75

earth mover problem where the goal is to efficiently move rubble to an embankment of about the same volume (see Fig. 2).

Each displacement of a bit of earth has a known cost, so that the goal is to find the cheapest deterministic map that completely

moves the rubble to the embankment. In mathematical terms, the goal is to find the map of minimal cost that transports the

origin measure ρo to the target measure ρb, where measure here means that both of them are non-negative, and are integrable
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Figure 2. Illustration of the earth mover problem introduced by Monge in 1781 (see bulk of paper).

of integral 1. Note that the value 1 is arbitrary here and can be changed to m> 0, provided this is the mass of both ρo and ρb.80

The cost is defined by a non-negative function Cbo of two variables (one for the origin space and the other for the target space).

Let us assume a quadratic cost, defined for any couple of points (x,y) of a geometric domain Ω:

Cbo(x,y) = ∥x− y∥22 , (1)

where ∥·∥2 is the Euclidean norm. Let us define the set of all admissible differentiable maps T that transport ρo to ρb:

Ubo = {T : Ω 7→ Ω, ρo = |∂xT | ρb ◦T} , (2)85

where |∂xT | is the absolute value of the determinant of the Jacobian of T , a factor which accounts for the deformation of the

measure by the globally mass-conserving T . The square of the Wasserstein distance WCbo
is then defined by

W2
Cbo

(ρo,ρb) = min
T∈Ubo

∫
Ω

Cbo (x,T (x))ρo(x)dx, (3)

whose purpose is to minimise the total transport cost between ρo and ρb,
::::
and

::::::
whose

::::::
optimal

::::
map

::
T

::
is

:::::
often

::::::
referred

:::
to

::
as

:::
the

::::::
Monge

:::
map. It can be shown that WCbo

is indeed a proper mathematical distance. The mathematical formulation is deceptively90

simple since it is elegant, compact
::::::
concise and easy to grasp, but its theoretical and numerical solutions are far from trivial.

A breakthrough was made in the 20th century by Leonid Kantorovich who promoted the Monge problem to a probabilistic

formulation. In his point of view, a bit of earth can be split and moved to many sites of the target measure support. The

deterministic map T is hence replaced with a probabilistic measure π defined over Ω×Ω. Such a π is called hereafter a

transference plan. An admissible transference plan is integrable and have ρo and ρb as one-variable marginals; hence the95

definition of the admissible set:

Vbo =

π : Ω×Ω 7→ R+, ρo(x) =

∫
Ω

π(x,y)dy, ρb(y) =

∫
Ω

π(x,y)dx

 . (4)

As opposed to the deterministic Monge maps, the transference plans offer a symmetrical view on the origin and target space

and their measures. An illustration of a discrete transference plan is given by Fig. 3. In this view the squared Wasserstein

distance can be reformulated as100

W2
Cbo

(ρo,ρb) = min
π∈Vbo

∫
Ω×Ω

Cbo(x,y)π(x,y)dxdy. (5)
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ρo
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Figure 3. A representation of a discrete transport plan between two discrete origin (blue) and target (red) measures. The black dots represent

the value of the transference plan. The radius of the dots are proportional to the values of these measures. This transference plan is checked

to be admissible but is not necessarily optimal.

Equations (3,5) are the consecrated continuous formulations of OT. In the rest of the paper, we will deal instead with discrete

related formulations, more tangible, and amenable to algorithmic and numerical implementations.

The field has attracted a lot of attention from pure and applied mathematicians, and computer scientists. A complete intro-

duction to the topic by its experts can be found in the stimulating text books by Vilani (2003, 2009); Peyré and Cuturi (2019).105

Peyré and Cuturi (2019) nicely provide concrete examples, numerical methods and a broad coverage of the topic from the

perspective of applied mathematicians and computer scientists. Hence, it will be referred to quite often in the rest of the paper.

1.4 Nonlocal, multiscale metrics and data assimilation

Let us now go back to DA and narrow our focus to the use of advanced metrics in DA. Accounting for displacement error

in DA and hence relying on nonlocal verification metrics has been advocated by Hoffman and Grassotti (1996); Ravela et al.110

(2007); Plu (2013). Metrics built on a multiscale analysis of the fields to achieve a similar goal have been proposed by Ying

(2019); Ying et al. (2023).

Wasserstein distance and closely related formulations, have been advocated in the flow formulation of the analysis (DA

update) to seamlessly transport the prior to the posterior (El Moselhy and Marzouk, 2012; Oliver, 2014; Marzouk et al., 2017;

Farchi and Bocquet, 2018; Tamang et al., 2020). It can for instance be used to adjust the posterior discrete probability density115

functions (pdf) in the particle filter. It has similarly been used to assist ensemble DA (Tamang et al., 2021, 2022). Finally, it

has also very recently been used to compare forecast ensembles for sub-seasonal prediction (Le Coz et al., 2023; Lledó et al.,

2023), or precipitation (Duc and Sawada, 2024).

In the context of this paper, it is critical to be aware that the use of OT in practical DA focused so far on applying OT

:::::::::::
independently

:
to the pdf of a single

:::
each

::::::
single

:::::
scalar

:
variable. Quite often, OT is applied to the pdf of a single random120

variable because
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– OT in one dimension (the space of the values taken by this random variable) together with the quadratic cost has a

very simple solution that only relies on the cumulative distribution functions of the origin and target measures (see e.g.,

Remark 2.30 in Peyré and Cuturi, 2019),
:
a
::::::::
technique

::::::
known

::
in

::::::::
statistics

::
as

:::::::
quantile

::::::::
matching,

:

– increasing the number of random variables is subject to the curse of dimensionality, necessitating an exponential increase125

in computational resources, when increasing the resolution of the discretised fields.

This is very different from our context and objective where the objects dealt with by OT are (non-negative) physical field states,

not the pdf of one of their variables. In particular, although the computations are very demanding when the physical space that

supports the fields scales to dimension 2 and 3, our problem is not subject to the curse of dimensionality.
:::::
scalar

::::::::
variables.

1.5 Feyeux et al. proposal130

The present paper stands more in the wake of the seminal proposals of Ning et al. (2014) and Feyeux (2016); Feyeux et al.

(2018). Their idea is to replace the local metrics of classical variational DA, typically the square of the Euclidean distance

(hence related to the L2 norm) by the squared Wasserstein distance. This is intuitively what we are after in order to cope with

mislocation errors mentioned in Sect. 1.1 in the context of DA. This should redefine the nature of the DA update step. Let us

formalise this idea (Feyeux, 2016).135

We will seize this opportunity to introduce some of our notation, in the context of discrete DA which is a widely adopted

standpoint in the geosciences. Let us focus on a classical DA 3D–Var cost function (Daley, 1991):

Gcl(x
a) =

∥∥yb −xa
∥∥2
2
+ ∥yo −Hxa∥22 , (6)

where ∥x∥2 =
√∑N

i=1x
2
i ::::
∥·∥2 is the Euclidean norm, yb ∈ RNb is the first guess, yo ∈ RNo is the vector of observations, and

H is the observation operator1. xa ∈ RNa is the dummy variable of this optimisation problem whose optimal value corresponds140

to the DA state analysis. Now, the substitution of the Euclidean norm yields the new 3D–Var cost function:

Gw(x
a) =W2

2 (y
b,xa)+W2

2 (y
o,Hxa), (7)

where W2 is some discretisation of the Wasserstein distance based on the cost defined by the square of the Euclidean dis-

tance. Note that this 3D–Var requires balancing two instances of a Wasserstein-based metric. The analysis state is known as a

Wasserstein barycentre, abridged W-barycentre in the following.145

Feyeux (2016); Feyeux et al. (2018) explored the optimisation aspects of this DA problem. However, Feyeux (2016) ulti-

mately pointed to a possible inconsistency in the definition of the DA problem formulated in Eq. (7), where the system is only

partially observed (non-trivial H). In the case where the system is fully observed, typically when H is the identity operator,

the outcome of the optimisation problem, i.e. the analysis, matches our expectations. However, when the system is partially

observed, inconsistencies are observed. Let us see why.150

1The notation yb and yo is at variance with the more familiar xb and y notation of DA, respectively. Yet, this change will prove very useful in the following;

it follows the idea that the full information vector is y = [(yb)⊤,(yo)⊤]⊤ whose components may benefit from homogeneous notation (Talagrand, 1997).
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Figure 4. These panels illustrate the analysis of a 3D–Var that relies on the Wasserstein distance rather than a local metric. The red dots

represent the observations, while the dashed blue curve represents the background state. The observations are only focused on the left half of

the domain. The solution of the optimisation problem Eq. (7), is displayed on panel (a) as a solid green curve. The solution of the optimisation

problem we will propose in this paper is displayed on panel (b) as a solid green curve. The support of the observation is suggested with a

wavy grey segment. These states are typically one-dimensional puff pollutant concentrations. They should not be confused with pdfs of a

single random variable.

Panel (a) of Fig. 4 considers the DA problem based on Eq. (7), assuming that only half of the domain is observed. We have

solved the corresponding mathematical and numerical problem as raised by Feyeux (2016) and displayed its solution. However,

one observes that the mass of the solution concentrates on the observed subdomain, and neglects the rest of the domain where

the prior mainly concentrates, an outcome suspected by Feyeux (2016). Instead, we would have intuitively preferred a solution

close to the one offered by panel (b) of Fig. 4, whose formulation and numerical solution differ and follow the new approach155

developed in the present paper (how we obtained this solution will be described in Sect. 2).

The main caveat of Eq. (7) comes from the occultation of part of the domain (the kernel of H is non-trivial)
:::
fact

::::
that

:::
the

::::::
system

:
is
:::::

only
:::::::
partially

::::::::
observed, together with the requirement that OT is balanced, i.e. the origin and target densities must

have the same mass. This mass balance applies to both OT terms in Eq. (7), between yb and xa and between yo and Hxa:

m(xa) =m
(
yb
)
, m(Hxa) =m(yo) , (8)160

where the mass of a vector x ∈ RN is defined by

m(x) = 1⊤x=

N∑
i=1

xi, (9)

with 1 ∈ RN hereafter defined as the vector of entries 1.
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Now, if we further assume for simplicity that yb and yo have the same mass (which is the case in Fig. 4), then

m(Hxa) =m(yo) =m
(
yb
)
=m(xa) . (10)165

As a result, we obtain m(Hxa) =m(xa) which is an undesired prior piece of information as to where to find the mass of

xa. Simply put, unless the system is fully observed, this approach amounts to finding the truth under the streetlight. This is

precisely what happens in panel (a) of Fig. 4 with the undesired concentration of the mass of xa close to the edge of the

observed subdomain.

To overcome this caveat and find a proper alternative to Eq. (7), we need (i) to renounce comparing the fields in observation170

space (in the observation discrepancy term of the cost function), and (ii) introduce unbalanced OT, i.e. we need to be able to

accommodate states of distinct masses. In the computer science context of pure OT, the latter has been discussed by Chizat

et al. (2018). But our solution differs formally and will be DA-centric.

1.6 Objective and outline

The objective of this paper is to lift the objection of Feyeux (2016), and propose a DA framework based on the Wasserstein175

distance, and hence to offer a consistent way to bridge OT and classical DA. The new formalism will be referred to as hybrid

OTDA for hybrid optimal transport data assimilation in the rest of this paper, and often for the sake of brevity OTDA. We

will focus on the definition of a 3D–Var DA problem and how to obtain its analysis state and the associated analysis error

covariance matrix.

At least within the perimeter of this paper, some restrictions apply. Firstly, the physical fields considered in the DA problem180

are non-negative (concentration of tracer, pollutants, water vapour, hydrometeors, chemical and biogeochemical species, etc.).

However, as opposed to Feyeux (2016), the methods of this paper do not require the (possibly noisy) background state yb and

observation yo to be non-negative. We stress once again that the states of our DA problem are physical fields onto which OT

is applied and are not meant to be pdf of a random variable. Secondly, the observation operator H is assumed to be linear.

This is only meant for convenience and to obtain a rigorous correspondence between the primal and dual cost functions of the185

3D–Var. Making this assumption is very common in geophysical DA: H can indeed be seen as the tangent linear of a nonlinear

observation operator within the inner loop of a 3D–Var or a 4D–Var (see for instance Courtier, 1997).

The outline of the paper follows. After the present introduction, Sect. 2 discloses our main idea, and discusses two mathe-

matical paths to solve the underlying optimisation problem, a first one which is enlightening but not necessarily practical and an

alternative which is direct and robust but hides some of the concepts behind it. Section 3 provides one– and two– dimensional190

illustrations of a 3D–Var analysis based on the new hybrid OTDA formalism. These illustrations will show the possibilities

and flexibility of the new framework. Importantly, This section will also depict classical DA as limit case of the formalism. In

Sect. 4, the second-order analysis, i.e. the uncertainty quantification of the OTDA 3D–Var, is derived, discussed, and illustrated.

Conclusions and perspectives are given in Sect. 5.
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2 The main proposal195

2.1 Notation and conventions

Non-negative vectors x of size N are called discrete measures; they lie in the orthant O+
N

∆
= RN+ . Although most mathematical

OT theories work on normalised discrete measures, yielding probability vectors, this assumption won’t be needed in this paper.

The open subset of O+
N of all the positive discrete measures will be denoted O+,⋆

N
∆
= RN+,⋆.

We will distinguish the observations yb ∈ RNb , yo ∈ RNo from the observable states xb ∈ O+
Nb

and xo ∈ O+
No

. yb, which200

corresponds to the first guess of conventional DA, and yo, which corresponds to the traditional observation vector, are known

before solving the 3D–Var problem. These vectors embody all the information processed in the analysis. By contrast, the

observables xb and xo, which are related to yb and yo, respectively, through an observation operator (the identity for yb and

xb), are not known a priori. They will be estimated together with the analysis state xa ∈ O+
Na

. Note that these vectors may well

lie in distinct vector spaces of different dimensions, hence the introduction of as many dimensions Nb,No,Nb,No. x⋆i can be205

seen as the value taken by x⋆ at site r⋆i , for ⋆= b,o,a and i ∈ J1,N⋆K. Mind that the distinction between yb and xb, and the

introduction of xo is a novelty of OTDA compared to classical DA.

Like in classical DA, the vectors yb and yo are subject to (prior) errors whose statistics are specified by the likelihoods

p(yb|xb) and p(yo|xo), respectively. Up to constants that do not depend on xb,xo,yb,yo, we assume the existence of ζb and

ζo such that210

lnp(yb|xb)
∆
=−ζb(yb −xb)+ cst, lnp(yo|xo)

∆
=−ζo(yo −Hxo)+ cst, (11)

so that various error statistics can be considered. These errors are hypothesised to be mutually independent. The observation

operator H :O+
No

7→ RNo used in the definition of ζo is assumed to be linear. This qualification is for convenience and could be

lifted if necessary. It is further assumed that ζb and ζo are strictly convex functions. This is for instance the case if we choose

Gaussian error statistics yielding215

ζb(eb) =
1

2
∥eb∥2B−1 , ζo(eo) =

1

2
∥eo∥2R−1 , (12)

where ∥e∥A =
√
e⊤Ae. B is the positive definite background error covariance matrix, and R is the positive definite observa-

tion error covariance matrix. Finally, the m(⋆) operator will act in the following on not only vectors but, more generally, on

any tensor and will return the sum of all of its entries.

2.2 Formalism of discrete optimal transport220

To discretise and solve the continuous Kantorovich optimisation problem introduced in Sect. 1.3, we will need two elementary

pieces of information about OT. These are not the only techniques we will leverage, but both represent cornerstones towards a

numerical solution to our proposal, and hence they need a proper introduction.
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2.2.1 The primal cost function

Let us consider two discrete measures xb ∈ O+
Nb

and xo ∈ O+
No

having the same mass225

m
∆
=m

(
xb
)
=m(xo) . (13)

For convenience, O+
b,o will be used as an alias for the set O+

Nb×No
. A cost matrix Cbo ∈ O+

b,o is given. The optimisation

problem will be formulated using discrete Kantorovich transference plans Pbo ∈ O+
b,o. The optimal discrete transference plan

is given by the minimiser of the following optimisation problem:

WCbo
(xb,xo)

∆
= min

Pbo∈Ubo(xb,xo)
Tr
(
C⊤

boP
bo
)
, (14a)230

where the trace sums up the costs attached to each path, and the set of admissible transference plans is defined by

Ubo
∆
=
{
P ∈ O+

b,o : P1o = xb, P⊤1b = xo
}
, (14b)

which selects the discrete transference plans with the proper marginals. WCbo
could be viewed as a discrete equivalent to the

square of the Wasserstein distance W2
Cbo

introduced in Eq. (5).

2.2.2 Entropic regularisation235

Adding to the fact that the
:::
The

:
optimisation problem Eq. is constrained, it may neither be convex, nor (14)

::
is

:
a
:::::
linear

::::::::
program

:::::
which

::
is

::::::
convex

:::::::::::::::::::::::::::::::::::::::
(Peyré and Cuturi, 2019, and references therein)

:
.
::::
Yet,

:
it
::
is
:::
not

:::::::::
generally

::::::
strictly

::::::
convex,

::::
and

:::::
hence

:::::
does

:::
not

:::::::::
necessarily exhibit a single minimum.

::::::
Adding

::
to

:::
the

::::::::
difficulty,

::
its

::::
cost

:::::::
function

:::
Eq.

:
(14a)

::
is

::::::::::
constrained. Entropic regularisation

addresses these issues and is used here to lift the constraints and to render the problem strictly convex.
:
It
::::
will

::
in

::::::::
particular

:::::
force

:::
any

::::
state

::::::
vector

:::::
which

::
is
:::::::
solution

:::
of

:::
the

:::::::
problem

::
to

:::
be

:::::::
positive.

:
A comprehensive justification is given by Peyré and Cuturi240

(2019). More precisely, we will use a Kullback-Leibler divergence (KL) regularisation term to be inserted in Eq. (14a),

Tr
(
C⊤

boP
bo
)
→ Tr

(
C⊤

boP
bo
)
+ εK(Pbo|νbo), (15)

which incorporates some prior transference plan νbo and does not require m
(
Pbo

)
= 1, whereas Peyré and Cuturi (2019)

opted for a basic entropy term. The KL term (Boyd and Vandenberghe, 2004) is defined by

K(p|q) ∆
=
∑
i

pi ln
pi
qi

− pi+ qi. (16)245

It can be checked that the Hessian of the regularised cost function Eq. (15) is a diagonal matrix of coefficients ε/P bo
ij ≥ ε

since 0≤ P bo
ij ≤ 1, making the problem ε–strongly convex. We choose, e.g., νbo = xb (xo)

⊤
/m, and ε > 0 which is the

regularisation scalar parameter. Note that this particular νbo is an admissible transference plan, i.e. it belongs to Ubo, and

can be interpreted as a complete statistical decoupling of the transference plan with respect to the origin and target discrete

measures. In the limit ε→ 0+ of vanishing regularisation, the solution should not depend on the choice of νbo. However, the250

convergence to the solution at finite ε may depend on this choice. The primal cost function augmented with such an entropic
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yb yo

Hxa

xa

ζb

H

ζo

Figure 5. A diagrammatic representation of the classical 3D–Var update, with the observations yb (the first guess) and yo (the observation

vector), the analysis state xa, and the observed analysis Hxa. A double line arrow represents a deterministic map, whereas a single line

arrow represents a statistical binding between the origin and the target.

regularisation is usually solved numerically using the iterative Sinkhorn algorithm (Sinkhorn, 1964). However, this is not the

path followed in this paper, although we have used it as well.

Finally note that the technique to convexify such an optimisation problem with a KL term has been introduced in DA by

Bocquet (2009); Bocquet et al. (2011) following principles of statistical physics.255

2.3 From classical data assimilation to hybrid optimal transport data assimilation

Figure 5 is a schematic representation of the flow of information in a classical DA update, and in particular 3D–Var, using the

notation introduced above. In this case, the observables xb, xo, and the analysis state xa are the same by construction, hence

xb and xo are not needed. This diagram, which could also be seen as a Bayesian network, corresponds to the cost function

Lcl(x
a) = ζb(y

b −xa)+ ζo(y
o −Hxa), (17)260

to be minimised over xa. Now let us make use of the observables xb and xo as new degrees of freedom but bind them by

OTs to xa, using the cost matrices Cba and Coa, respectively. This yields the diagram in Fig. 6, which corresponds to the cost

function

Lw(x
a) = min

xb∈O+
Nb

xo∈O+
No

{
ζb(y

b −xb)+ ζo(y
o −Hxo)+WCba

(xb,xa)+WCoa(x
o,xa)

}
. (18)

It must be minimised over xa, yielding an analysis state xa which can also be seen as the W-barycentre between xb and265

xo. Note that xb and xo are discrete measures of unknown mass. For the optimisation problem, they lie in O+
Nb

and O+
No

,

respectively.

Moving from Eq. (17) to Eq. (18) following the principles and guidance of the introductory Sect. 1.4 is empirical, but no

more than in Ning et al. (2014); Feyeux (2016). Showing its merits is the goal of the present paper. As opposed to Feyeux et al.

(2018), it can deal with sparse and noisy observations, i.e. non-trivial H. We will show that classical DA is embedded in this270

generalisation. Moreover, the merits of the new cost function will be a posteriori qualitatively supported by the outcome of the

11



yb yo

Hxo

xb xa xo

ζb

H

ζo

Cba Coa

Figure 6. A diagrammatic representation of the hybrid OTDA 3D–Var update, with the observations yb (the first guess) and yo (the obser-

vation vector), the observables xb, xo, and xa which is the W-barycentre. A double line arrow represents a deterministic map, a single line

arrow represents a statistical binding between the origin and the target, and a waving line represents the weaker bindings of xb and xa and

xo and xa through OTs. This diagram can be seen as an unfolding of that of Fig. 5.

numerical experiments (to the expert’s eyes), which improve over previous formalism’s outcomes. We would like to point out

that we have also developed a consistent probabilistic and Bayesian formalism fully supporting the introduction of Eq. (18).

However we felt that the derivation is too long and technical for this paper, and would not be helpful in the exploration of the

direct consequences of Eq. (18).275

We call Eq. (18) a high-level primal cost function because the metrics WCba
and WCoa have not yet been replaced by their

transference plan expression as opposed to, e.g., Eq. (14a). Passing to a lower level primal cost function would require to

expand Eq. (18) using Eq. (14a) twice.

In the subsequent two subsections, we will investigate two pathways to solve the optimisation problem Eq. (18). The first

path, Sect. 2.4, unveils some of the key concepts behind its solution, and partially disentangle the classical DA part from280

the W-barycentre part of the full analysis. This approach is enlightening but not necessarily practical. The second path is an

alternative which is direct and robust but hides some of the fundamental principles underlying the solution. The busy reader

could skip directly to the latter, i.e. Sect. 2.5.

2.4 Decomposition of the optimisation problem and effective cost metric

In this section, key ideas behind the minimisation of Eq. (18) are sketched and discussed. The level of mathematical rigour285

of this section is that of casual methodological DA in the geoscience literature. However, we stress that all the algorithms

discussed here have been tested numerically successfully on various configurations. The solution of Eq. (18) presented in this

section is not necessarily robust, but it is enlightening and hence worth discussing.

Repeated contravariant indices – meaning the same tensor index
:
is
:
present as upper and lower index – in tensor expressions

will be understood as summed over, following Einstein’s convention.290
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2.4.1 Dual formulation of the primal problem

One way, though not the only one, to write the explicit primal problem associated to
:::
with

:
Eq. (18) is through the use of a gluing

transference plan Pboa ∈ O+
b,o,a where O+

b,o,a = RNbNoNa
+ (see p.11-12 of Vilani, 2009), a 3–tensor whose marginals are xb,

xo, and xa and that glues the transference plans Pba between xb and xa and Poa between xo and xa:

L= min
xa∈O+

a

Lw(x
a), (19a)295

= min
xb∈O+

b xo∈O+
o xa∈O+

a

[
ζb(y

b −xb)+ ζo(y
o −Hxo)+ min

P∈Uboa

{
PijkC

ik
ba +PijkC

jk
oa

}]
. (19b)

where the admissible set of (glued) transference plans, the set of all 3–tensors of non negative entries whose marginals are xb,

xo and xa, is defined by

Uboa
∆
=
{
P ∈ O+

b,o,a : ∀i, Pijk1jo1ka = xbi , ∀j, Pijk1ib1ka = xoj , ∀k, Pijk1ib1jo = xak

}
. (19c)

Because of the hardly scalable dimensionality of the primal problem, based on either a 3–tensor, or a couple of 2–tensors, we300

wish to derive a dual problem equivalent to the primal one, using Lagrange multipliers to lift the constraints with, as will be

checked later, a significantly smaller dimensionality.

This leads to a series of transformations of the problem L, from a Lagrangian to a dual cost function, which is reported in

Appendix A for the mathematics-inclined reader. The outcome is a dual problem which reads

L∗ = max
(fb,fo)∈U∗

bo(Cba,Coa,H)

{
f⊤b yb + f⊤o yo − ζ∗b(fb)− ζ∗o (fo)

}
, (20a)305

where the ∗ symbol refers to dual and where the polyhedron U∗
bo(Cba,Coa,H) is defined by

U∗
bo(Cba,Coa,H)

∆
=
{
fb ∈ RNb , fo ∈ RNo : ∀ i, j,k, f ib + f loH

j
l ≤ Cikba +Cjkoa

}
. (20b)

In Eq. (20), the maps ζ∗b and ζ∗o are the Legendre-Fenchel transforms of the maps ζb and ζo, respectively. Let us recall that the

Legendre-Fenchel transform f 7→ ζ∗(f) of the map e 7→ ζ(e) is defined by ζ∗(f) = supe
{
f⊤e− ζ(e)

}
. For instance, in the

case of Gaussian error statistics as in Eq. (12), these transforms are given by310

ζ∗b(fb) =
1

2
∥fb∥2B , ζ∗o (fo) =

1

2
∥fo∥2R . (21)

::::
Note

:::
that

::
in
:::::::
Section

:::
2.4,

:::
we

:::
do

:::
not

:::
add

:::
the

:::::::
entropic

:::::::::::
regularisation

::
to

:::
the

::::
cost

::::::::
functions

:::
for

:::
the

::::
sake

::
of

::::::::::
conciseness

:::
and

:::::::
because

:
it
::::
does

:::
not

::::
play

::
a
:::
role

::
in
:::
the

::::
key

::::
ideas

:::::::::
developed

::
in

:::
this

:::::::
section;

::
it

:::::
would

::::::::
however

::
be

:::::
likely

:::::
added

::::
and

::::::::
employed

::
in

:::::::::
numerical

::::::::::
applications.

:

2.4.2 Decomposition of the dual problem315

These transformations allow us to trade the primal for the dual problem. Since for each pair fb, fo in U∗
bo, there are Na con-

straints indexed by k ∈ J1,NaK, and that the tightest of these constraints can account for the others, the problem Eq. (20) should

13



be equivalent to

L∗ = max
(fb,fo)∈U∗

bo(Cbo,H)

{
f⊤b yb + f⊤o yo − ζ∗b(fb)− ζ∗o (fo)

}
, (22a)

where the polyhedron U∗
bo(Cbo,H) is defined by320

U∗
bo(Cbo,H)

∆
=
{
fb ∈ RNb , fo ∈ RNo : ∀ i, j, f ib + f loH

j
l ≤ Cijbo

}
, (22b)

and where the effective cost metric Cbo is given by (in the absence of entropic regularisation)

[Cbo]ij
∆
=min

k
{[Cba]ik + [Coa]jk} . (22c)

According to Eq. (22c), this effective cost is given by the cost of the cheapest path(s), which is intuitive. The optimal transfer-

ence glued plan, P, can be connected to the optimal transference plan Pbo between xb and xo with the cost Cbo in Eq. (22c),325

by marginalising on the intermediate density, i.e the W-barycentre

P bo
ij = Pijk1

k
a . (23)

The solution for the analysis state xa is given by

xak = Pijk1
i
b1
j
o, (24)

by the definition of the marginals of the gluing transference plan P, Eq. (19c). Yet, we do not have a direct access to the optimal330

gluing P from the dual problem Eq. (22). This will be made simpler later on when adding the entropic regularisation to the

problem.

For now, let us find an alternative solution bypassing the need for the gluing P and define the map

κbo :J1,NbK× J1,NoK 7→ P(J1,NaK)

(i, j) 7→ κboij = argmin
k

(
Cikba +Cjkoa

)
, (25)335

where P(S) is defined as the set of all subsets of S. The set κboij lists all the indices k that are relays to the transport in between

the sites corresponding to index i and index j. That is why the W-barycentre can be obtained from Pbo:

xak = Pijk1
i
b1
j
o =

∑
ij

P bo
ij δk∈κbo

ij
. (26)

We will show in the next section how to estimate Pbo using entropic regularisation and hence leverage Eq. (26) to compute xa.

κbo is reminiscent of the so-called McCann interpolant in OT theory because it is only related to the OT between xb and xo,340

bypassing xa, and hence the transference plan Pbo. Please refer to Remark 7.1 by Peyré and Cuturi (2019) and to Gangbo and

McCann (1996) for a description of the McCann interpolant, even when there is no Monge map. This suggests that the analysis

xa is not an interpolation of xb and xo in the space of values as for classical DA, but along a geodesic in a Riemannian space

built on a metric derived from the Wasserstein distance.
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µb µo

xa Hxo

xb xo

ζb

H

ζo

Cba Coa

⇒
yb yo

Hxo

xb xo

H

ζb

ζo

Cbo

Figure 7. Trading a full hybrid OTDA problem characterised by a W-barycentre defined by the cost metrics Cba and Coa, with a simplified

hybrid OTDA problem characterised by a single OT problem defined by an effective cost metric Cbo.

Nonetheless, the above derivation shows that we can trade a W-barycentre problem characterised by a couple of OT problems345

for a single OT problem defined by an effective metric Cbo. This principle is schematically illustrated by Fig. 7.

This suggests a simpler two-step algorithm, where the steps consist of (i) solving a hybrid OTDA problem but with a single

OT problem under an effective cost metric, which yields the analysed observables xb and xo and then (ii) computing the W-

barycentre of these xb and xo. To avoid making a too large detour, the derivation of this algorithm is presented in Appendix B.

2.4.3 Classical data assimilation as a particular case350

The primal problem Eq. (17) of classical DA reads

Lcl = min
xa∈O+

Na

{
ζb(y

b −xa)+ ζo(y
o −Hxa)

}
. (27)

Let us see how the OTDA formalism Eq. (22) can account for classical DA. In the context of classical DA, the observable

spaces for xb, xo, and xa are assumed to be the same by construction. Let us then define the cost matrices

[C∞
ba]ij

∆
= [C∞

oa]ij
∆
=

 0 if i= j

+∞ if i ̸= j
, (28)355

i.e. it is assumed that the cost of moving masses is as large as can be. Looking back at Eq. (19) but with these costs, it is clear

that in order to avoid the primal cost function to be +∞, the transference plan Pijk must always be 0 unless i= j = k. But this

implies from the definition of Uboa that the observables coincide: xb = xo = xa and that their mass is given by m(P). In this

limit where the specific cost matrices are equal to C∞
ba and C∞

oa, the OTDA primal problem become mathematically equivalent

to classical DA. Hence, classical DA is a limit case of OTDA. Note that from its definition Eq. (22c), the effective cost Cbo360

obtained from C∞
ba and C∞

oa coincide with C∞
bo

∆
=C∞

ba =C∞
oa.
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2.5 A direct algorithmic solution

The two-step approach of Sect. 2.4 has the merit to connect to the traditional W-barycentre problem, by first estimating xb and

xo, and later computing the W-barycentre in between both states. It also suggests the existence of the effective cost metric of

the problem. However, going through its consecutive steps may not be necessary for pure computational purposes. Here we365

describe a direct approach that yields the analysis of the OTDA problem. It is less enlightening but is practical and will be used

in the subsequent illustrations of the present paper.

An alternative formulation to the primal problem Eq. (19) relies on two transference plans Pba and Poa corresponding to

the two transports of the underlying W-barycentre problem, instead of the gluing one. Moreover, entropic regularisation is

enforced via K(Pba|νba) and K(Poa|νoa). The corresponding optimisation problem reads370

L= min
xb∈O+

b xo∈O+
o xa∈O+

a

[
ζb(y

b −xb)+ ζo(y
o −Hxo)

+ min
Pba∈UbaPoa∈Uoa

{
εK(Pba|νba)+ εK(Poa|νoa)+P ba

ik C
ik
ba +P oa

jkC
jk
oa

}]
, (29a)

where the admissible sets of transference plans Pba and Poa are defined by

Uba
∆
=
{
P ∈ O+

b,a : P1a = xb, P⊤1b = xa
}
, (29b)

Uoa
∆
=
{
P ∈ O+

o,a : P1a = xo, P⊤1b = xa
}
. (29c)375

Following the same type of derivation as reported in the previous sections and Appendix B, the corresponding dual problem to

be minimised is obtained as

J ∗
ε = min

fb∈RNb fo∈RNo fa∈RNa

J∗
ε (fb, fo, fa), (30a)

where, discarding the constant −εm
(
νba
)
− εm(νoa), the associated regularised Lagrangian is

J∗
ε (fb, fo, fa) = εZba

ε (fb, fa)+ εZoa
ε (fo, fa)+ ζ∗b(fb)+ ζ∗o (fo)− f⊤b yb − f⊤o yo, (30b)380

with a partition function associated with each transport:

Zba
ε

∆
=
∑
ik

P ba
ik , Zoa

ε
∆
=
∑
jk

P oa
jk (30c)

where

P ba
ik = νbaik e

(fi
b+f

k
a −Cik

ba)/ε, P oa
jk = νoajke

(f l
oH

j
l −f

k
a −Cjk

oa )/ε. (30d)

It turns out that the optimal fa can be obtained analytically as a function of fb and fo, which we checked makes the optimisation385

numerically more efficient and robust. Indeed, let us introduce ψk
∆
= ef

k
a /ε. We could optimise J∗

ε (fb, fo, fa = ε lnψ) on ψ:

0 = ∂ψk
J∗
ε (fb, fo, fa) =

∑
i

νbaik e
(fi

b−C
ik
ba)/ε− 1

ψ2
k

∑
j

νoajke
(f l

oH
j
l −C

jk
oa )/ε, (31)
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yielding the solution

ψ2
k =

Zoa
ε,k

Zba
ε,k

, Zoa
ε,k

∆
=
∑
j

νoajke
(f l

oH
j
l −C

jk
oa )/ε, Zba

ε,k
∆
=
∑
i

νbaik e
(fi

b−C
ik
ba)/ε. (32)

Up to irrelevant constants, the resulting effective cost function using the optimal ψk is390

J∗
ε (fb, fo) = 2ε

∑
k

√
Zba
ε,kZ

oa
ε,k + ζ∗b(fb)+ ζ∗o (fo)− f⊤b yb − f⊤o yo. (33)

Now, the optimal W-barycentre xa is given by either xak = P ba
ik 1

i
b or xak = P oa

jk 1
j
o, i.e.

xak = ψkZ
ba
ε,k =

1

ψk
Zoa
ε,k, (34)

from which we can infer the ψk-free expression

xak =
√
Zba
ε,kZ

oa
ε,k. (35)395

It is also useful to retrieve the optimal value of fa and obtain

fka = ε lnψk =
ε

2
ln

(
Zoa
ε,k

Zba
ε,k

)
, (36)

so that we can compute the other two analysed observables, xb and xo, using

xbi = P ba
ik 1

k
a =

∑
k

ψkν
ba
ik e

(fi
b−C

ik
ba)/ε = ef

i
b/ε
∑
k

νbaik e
(fk

a −Cik
ba)/ε, (37a)

xoj = P oa
jk 1

k
a =

∑
k

1

ψk
νoajke

(f l
oH

j
l −C

jk
oa )/ε = e(f

l
oH

j
l )/ε

∑
k

νoajke
(−fk

a −Cjk
oa )/ε. (37b)400

Note that most of these expressions can be assessed in a robust way in the log-domain. For instance we use in practice,

equivalently to Eqs. (35,37):

ε lnxak =
ε

2
ln
∑
i

νbaik e
(fi

b−C
ik
ba)/ε+

ε

2
ln
∑
j

νoajke
(f l

oH
j
l −C

jk
oa )/ε, (38a)

ε lnxbi = f ib + ε ln
∑
k

νbaik e
(fk

a −Cik
ba)/ε, (38b)

ε lnxoj = f loH
j
l + ε ln

∑
k

νoajke
(−fk

a −Cjk
oa )/ε. (38c)405

3 Numerical illustrations

In this section, we showcase a selection of OTDA 3D–Var analyses. These are meant to stress the versatility of the formalism

and the diverse solutions it offers, with significantly more degrees of freedom than in classical DA. The OTDA state analysis is

carried out using Sect. 2.5 and its formulas. Unless specifically discussed, entropic regularisation is used with ε= 10−3. The

dual cost function Eq. (33) is minimised using the quasi-Newton method L-BFGS-B (Liu and Nocedal, 1989), which yields410

the optimal fb, fo. Then Eq. (38) is employed to compute xb, xo, and xa.
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3.1 One-dimensional examples

Considering the case where the physical space of the fields is one-dimensional, we build bell-shaped observations yb and yo,

related to an observable space of size Nb =No =Na = 102 shared by xb, xo and xa. Since yb is a fully observed instance

of xb, we have Nb =Nb = 102, while No may differ from No depending on the definition of the observation operator H. We415

choose (Gaussian statistics)

ζb(eb) =
1

2σ2
b

∥eb∥2 , ζb(eo) =
1

2σ2
o

∥eo∥2 , (39)

with σb = σo = 10−2. The states are discretised over the interval [0,1] at sites/grid cells r⋆i = (i− 1
2 )/N⋆ for i ∈ J1,N⋆K,

with ⋆= b,o,a. Unless otherwise specified, the cost metric has a quadratic dependence with the distance between sites, i.e.

[Cba]ik = |rbi − rak|2 and [Coa]jk = |roj − rak|2. This is our reference setup. The observation operator and the mass of the420

observations yb and yo will be specified for each experiment.

We consider four experiments where we choose to vary key parameters in the OTDA setup.

3.1.1 Varying the imbalance of the observation states

In the first experiment, the system is fully observed with H= I. We choose m
(
yb
)
= 1 and the mass of yo to be in the

set m(yo) ∈ {0.5,1,1.5}, all the other parameters being fixed to the reference. The results are displayed in Fig. 8. Panel (a)425

corresponds to the case m(yo) = 0.5. The resulting mass of the analysed observables is then m(xa) =m
(
xb
)
=m(xo) =

0.79. The adjustment of xb compared to yb, and the adjustment of xo compared to yo, which are required to balance xb,

xo are patent. Panel (b) corresponds to the case m(yo) = 1. The resulting mass of the analysed observables is then m(xa) =

m
(
xb
)
=m(xo) = 1. No adjustment is required here since m(yo) =m

(
yb
)
, and xo and yo, as well as xb and yb coincide.

Finally, the mass of yo is set to m(yo) = 1.5 in panel (c). The resulting mass of the analysed observables is then m(xa) =430

m
(
xb
)
=m(xo) = 1.34. The adjustment of xb compared to yb, and the adjustment of xo compared to yo, which are required

to balance xb, xo are visually obvious, but the balancing goes in the opposite direction compared to panel (a), as expected.

3.1.2 Varying the sparseness of the observation operator

In this second experiment, all the other parameters being fixed to their reference value, only a fraction of the domain is

observed, over
[
0, 14
]
,
[
0, 12
]

and
[
0, 34
]
, where H ∈ O+

No×No
with No =No/4, No/2, 3No/4, and Hj

l = δl,j for l ∈ J1,NoK435

and j ∈ J1,NoK.

The masses of the states that are built to generate yb and yo, before applying any observation operator, are set to 1 and

1.5, respectively. As a result, we have m
(
yb
)
= 1 but m(yo) may depart from 1.5 depending on H. The fully observed case

corresponds to panel (c) of Fig. 8. The results are displayed in Fig. 9. It shows how smooth the OTDA solution can be compared

to that of classical DA. Yet, as in panel (a), OTDA can also handle obviously diverging sources of information as in the case440

where the support of H is
[
0, 14
]

and where yo and yb can be seen are barely consistent. In that case, the OTDA solution is

smooth but bimodal.
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Figure 8.

A hybrid OTDA 3D–Var analysis with one-dimensional physical states, where only the mass of yo is varied. Its mass is m(yo) = 0.5 in

panel (a), m(yo) = 1 in panel (b), and m(yo) = 1.5 in panel (c). The dashed blue curve corresponds to the first guess yb, the red dots

correspond to the observations yo, the analysis state xa is the solid green curve, the analysed observables xb and xo are blue and red dotted

curves, respectively. The support of the observation is underlined by a wavy grey segment. The corresponding classical analysis is also

plotted with a dashed-dotted orange curve. The x-axis corresponds to the position in space; the y-axis corresponds to the concentration

value of the fields.

0.0 0.2 0.4 0.6 0.8 1.0

Position in space

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
on

ce
n
tr

at
io

n

(a)
xa

xa
cl

xb

xo

yb

yo

Supp(H)

0.0 0.2 0.4 0.6 0.8 1.0

Position in space

(b)
xa

xa
cl

xb

xo

yb

yo

Supp(H)

0.0 0.2 0.4 0.6 0.8 1.0

Position in space

(c)
xa

xa
cl

xb

xo

yb

yo

Supp(H)

Figure 9.

A hybrid OTDA 3D–Var analysis with one-dimensional physical states, where the observation operator is increasingly sparse. The support

of H is
[
0, 1

4

]
for panel (a),

[
0, 1

2

]
for panel (b), and

[
0, 3

4

]
for panel (c). See Fig. 8 for the description of the legend.
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Figure 10.

A hybrid OTDA 3D–Var analysis with one-dimensional physical states, where the cost metrics are changed. See the bulk of the text for a

definition of those three cost metrics. See Fig. 8 for the description of the legend.

3.1.3 Changing the nature of the cost metric

In this third experiment, we choose the cost metric to be of the form [Cba]ik = |rbi − rak|α and [Coa]jk = |roj − rak|α. Only half

of the domain is observed over
[
0, 12
]
, as in the case of Fig. 9, panel (b). Since the mass of the state used to produce yo is 1.5,445

we have a slightly different m(yo) = 1.49, the rest of the mass being located in the unobserved part of the domain. All of the

other parameters follow the reference setup. The results are displayed in Fig. 10. For panel (a), α is set to 0.5. For panel (b), α

is set to 1. For panel (c), the cost metric is piecewise; it is quadratic, i.e. α= 2, for pairs of sites separated by less than 10−1, i.e.

|rbi − rak|= |roj − rak| ≤ 10−1, whereas for pairs of sites beyond this range, the costs are chosen to be infinite. Hence transport

is prohibited beyond a distance of 10−1. The case of a pure quadratic cost corresponds to panel (b) of Fig. 9. The impact on450

the shape of the OTDA analysis is very significant, and suggests that one could easily tailor their own cost to suit their specific

DA problem.

3.1.4 Classical data assimilation as a subcase of the hybrid optimal transport data assimilation

In the fourth experiment, we would like to numerically check the theoretical prediction of Sect. 2.4.3. Consider again the

reference configuration. But only half of the domain, over
[
0, 12
]
, is observed, H ∈ O+

No×No
with No =No/2 and Hj

l = δl,j455

for l ∈ J1,NoK and j ∈ J1,NoK. Most importantly, the cost metric has a quadratic dependence with the distance between sites,

i.e. [Cba]ik = λ|rbi − rak|2 and [Coa]jk = λ|roj − rak|2. The case λ= 1 corresponds to panel (b) of Fig. 9. Figure 11 shows the

results corresponding to: λ= 103 for panel (a), λ= 104 for panel (b), and λ= 106 for panel (c). When λ is increased, the

OTDA analysis should tend to the classical DA solution. This is indeed corroborated by Fig. 11 and comforts the claim of
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Figure 11. Scaling up the cost metrics λCba and λCoa with increasing λ, the OTDA analysis converges to the classical DA analysis. Panels

(a), (b), and (c) correspond to the scaling values λ= 103,104,106, respectively. See Fig. 8 for the description of the legend.

Sect. 2.4.3. Note that, as opposed to the three earlier experiments, we had here to tune ε since the wide range of λ has a460

significant impact in the balance of the key terms of the cost function (transport cost, discrepancy errors, and regularisation).

3.2 Two-dimensional examples

Considering the case where the physical space of the fields is two-dimensional, we perform a couple of 3D–Var analy-

sis on concentration fields (puffs of a pollutant). The states are discretised in the domain [0,1]2 at sites/grid cells r⋆i,j =(
(i− 1

2 )/N
x
⋆ ,(j− 1

2 )/N
y
⋆

)
for (i, j) ∈ J1,Nx

⋆ K× J1,Ny
⋆ K, with ⋆= b,o,a. We choose Nx

b =Ny
b =Nx

o =Ny
o =Nx

a =Ny
a =465

102, such that Nb =No =Na = 104. Hence, the number of control variables is 3× 104. The observation vectors are yb and

yo. Since yb is a fully observed instance of xb, we have Nb =Nb, while No may differ from No depending on the definition

of the observation operator H. Moreover, we choose (Gaussian statistics)

ζb(eb) =
1

2σ2
b

∥eb∥2 , ζb(eo) =
1

2σ2
o

∥eo∥2 , (40)

with σb = σo = 10−2. The entropic regularisation parameter is set to ε= 10−3.470

The first analysis is displayed in Fig. 12. The observation operator H is the identity but its support is restricted to the

subdomain [0,0.6]2. The plumes of pollutants yb and yo are generated from states formed as combinations of bell-like puffs.

The system is unbalanced with m
(
yb
)
= 1.35, m(yo) = 0.73. The cost metric has a quadratic dependence with the distance

between sites, i.e. [Cba]ik =
∥∥rbi − rak

∥∥2
2

and [Coa]jk =
∥∥roj − rak

∥∥2
2
. The OTDA analysis is clearly smoother than the classical

solution. The classical solution does not cope very well with the seemingly disagreeing sources of information yb and yo,475

which generates sharp transitions in the classical analysis. If yb and yo were consistently obtained from a truth perturbed with

errors with short-range correlation,
::
i.e.

::
if
::::
they

:::::
were

:::::
drawn

:::::
from

:::
the

::::
true

::::
prior

::::::::::
distribution

:::
and

:::
in

:::
the

:::::::
absence

::
of

::::::::::
mislocation

:::::
errors,

:
then the classical analysis would be as good as can be, while the OTDA solution may be too safe,

:::
i.e.

::::
too

::::::
smooth.
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Figure 12. Two-dimensions concentration maps (plumes) of a hybrid OTDA analysis for the first configuration. The observations yb and

yo, the analysed observables xb, xa i.e. the state analysis, xo, and the corresponding classical DA analysis xa
cl are displayed. All fields are

rescaled so their joint maximum is 1. All heatmaps
::::::::::
concentration

::::
maps use the same scale. The colour bar represents a unified contrast scale

for the diverse field concentrations.

However, if one believes that structural errors and in particular location errors can impact yb and yo, then the classical solution

is improper and the OTDA analysis preferable.480

The second analysis is displayed in Fig. 13. The support of the observation operator H is again contained within the subdo-

main [0,0.6]2 but only one of four grid cells are actually observed in this area. The observation states yb and yo are generated

from the same states as for Fig. 12. The system is unbalanced with m
(
yb
)
= 1.35, m(yo) = 0.18. The cost metric is defined to

be the same as in Fig. 12. The OTDA analysis is even smoother in this case as compared to the classical DA analysis. It is much

less impacted by the sparseness of the observation operator. The classical solution has to account for the staggered observations485

in the top left corner of the domain because the first guess in that region is weak
::::
very

::::::::
uncertain. By contrast, the OTDA solution

assumes that location errors are possible and it hence moves around the mass corresponding to these observations, so that the

structure of the observation operator is not as impactful on the analysis.
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Figure 13. Two-dimensions concentrations maps of a hybrid OTDA analysis for the second configuration. The observations yb and yo,

the analysed observables xb, xa i.e. the state analysis, xo, and the corresponding classical DA analysis. Compared to Fig. 12, only H has

changed. The level sets in panels (c) and (f) are omitted since they are driven by the staggered observation operator.

4 Uncertainty quantification

In this section, we compute the posterior error covariance matrix Pa associated to
::::
with

:
the state analysis xa, in order to490

complete the OTDA 3D–Var analysis description. There are many ways to proceed depending on the chosen regularisation

and on the targeted degree of generality. Here, for the sake of consistency, we report on the way to derive Pa following the

computation of the analysis state xa proposed in Sect. 2.5.

4.1 Mathematical results

Let us denote the compounded vectors of the observations, of the Lagrange multipliers, and of the observables, as well as the495

compounded observation operator by

y
∆
=

 yb

yo

 , f
∆
=

 fb

fo

 , x
∆
=

 xb

xo

 , H ∆
=

 Ib 0

0 H

 , (41)
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of size Nb +No, Nb +No, Nb +No, and (Nb +No)× (Nb +No), respectively. Similarly, we define the sum of the error

statistics by ζ(f) ∆
= ζb(fb)+ζo(fo), whose Legendre-Fenchel transform is ζ∗(f) = ζ∗b(fb)+ζ

∗
o (fo). Using this notation, we can

recapitulate the key results of Sect. 2.5: the effective dual cost function is500

J∗
ε (f)

∆
= εZε(f)+ ζ∗(f)− f⊤y, Zε(f)

∆
= 2

∑
k

√
Zba
ε,k(fb)Z

oa
ε,k(fo), (42)

and the analysis state reads

xak(f) =
√
Zba
ε,k(fb)Z

oa
ε,k(fo), (43)

where the dependence of the analysis state and the partition functions on f , fb and fo is now emphasised and made explicit.

Any prior source of error in the system stems from the information vector y, and hence drives the posterior error in the505

analysis xa. That is why we are interested in the sensitivity of xa with respect to y, i.e. δxa = ∂yx
aδy. Denoting the expectation

operator by E, the error covariance matrix is then defined by

Pa = E
[
δxa (δxa)

⊤
]
= (∂yx

a)E
[
δyδy⊤](∂yxa)

⊤
= (∂yx

a)(∂2f ζ
∗)(∂yx

a)
⊤
, (44)

from which a matrix factor Xa of Pa, i.e. which satisfies Pa =Xa (Xa)
⊤ and whose expressions are usually much shorter

than those of Pa, can be extracted, up to the multiplication by an orthogonal matrix on the right:510

Xa = ∂yx
a(∂2f ζ

∗)
1
2 . (45)

To compute the sensitivity matrix ∂yxa, we leverage the stationarity of the dual cost function at the minimum:

∂fJ
∗
ε (f(y),y) = 0, (46)

and resort to the implicit function theorem:

0= dy∂fJ
∗
ε (f(y),y) = ∂2f J

∗
ε ∂yf + ∂f∂yJ

∗
ε , (47)515

which yields

∂yf =−
[
∂2f J

∗
ε

]−1
∂f∂yJ

∗
ε =

[
∂2f J

∗
ε

]−1
, (48)

since ∂f∂yJ∗
ε =−Ibo, where Ibo is the identity matrix in the compounded observation space RNb+No . The sensitivity ∂yxa

can now be computed using the Leibniz chain rule and Eq. (48):

∂xa

∂y
=
∂xa

∂f

∂f

∂y
= ∂fx

a
[
∂2f J

∗
ε

]−1
. (49)520

Let us now compute the Jacobian and Hessian in the right-hand side of Eq. (49). To that end and in order to externalise the

observation operator, we introduce Ẑε and x̂a such that

Ẑε(η =H⊤f)
∆
= Zε(f), x̂a(η =H⊤f)

∆
= xa(f), (50)
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and the related Jacobian and Hessians

Ωbo,a
∆
= ∂ηx̂a, Ωbo,bo

∆
= ε∂2ηẐε, Λbo,bo

∆
= ∂2f ζ

∗. (51)525

Ẑε and x̂a can be shown to exist; they can be read off from the explicit expressions of Zε and xa as functions of f . These

Jacobian and Hessians depend on the choice of the regularisation operator and they need to be computed analytically, which

is simple but tedious, and not reported here since this is a regularisation-dependent calculation. The Hessian of the dual cost

function Eq. (42) can then be written as the sum

∂2f J
∗
ε =Λbo,bo +HΩbo,boH⊤, (52)530

while the sensitivity matrix now reads

∂fx
a =Ω⊤

bo,aH
⊤. (53)

Note that Ωbo,bo can be interpreted as the covariance matrix of x, the compounded observable vector as defined in Eq. (41)

though seen as a random vector, on the assumption that xb and xo are connected via the W-barycentre xa and the optimal

transference plans Pba and Poa, all seen as random vectors. Combining Eqs. (52,53) with Eq. (45), we finally obtain the535

expression for a factor Xa of Pa:

Xa =Ω⊤
bo,aH

⊤
[
Λbo,bo +HΩbo,boH⊤

]−1

Λ
1
2

bo,bo, (54)

or, alternatively using the Sherman-Morisson-Woodbury transformation, while assuming Ωbo,bo to be invertible,

Xa =Ω⊤
bo,aΩ

−1
bo,bo

[
Ω−1

bo,bo +H⊤Λ−1
bo,boH

]−1

H⊤Λ
− 1

2

bo,bo. (55)

These formulas are similar to the normal equations of classical DA. But mind that, in Eqs. (54,55), all the prior error statistics540

are encapsulated in Λbo,bo whereas the impact of OT is encoded in Ωbo,bo. To be concrete, note that, when using Gaussian

statistics Eq. (12), Λbo,bo would simply read

Λbo,bo =

 Λbb 0

0 Λoo

=

 B 0

0 R

 . (56)

4.2 Interpretation

Further, we can perform a block decomposition of Ω conformally to
::::
onto the spaces of xb and xo:545

Ωbo,bo
∆
=

 Ωbb Ωbo

Ω⊤
bo Ωoo

 . (57)

It can be shown that Ωbo is proportional to the optimal transference plan of the effective transport between xo and xb, and that

the blocks of the diagonal are themselves diagonal and depend on the observable states:

Ωbo =
1

ε
Pbo, Ωbb =

1

ε
diag(xb), Ωoo =

1

ε
diag(xo). (58)
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For instance, this could be shown by the explicit computation of Ωbo,bo = ε∂2ηẐε.550

Let us now examine the impact of OT on the analysis error covariance matrix. We first define

∆=Λ
− 1

2

bo,boHΩ
1
2

bo,bo, (59)

whose thin singular value decomposition is UΣV⊤, where U is an orthogonal matrix of size (Nb+No)× (Nb+No), Σ is a

rectangular and diagonal matrix of size (Nb+No)×(Nb+No), and V is an orthogonal matrix of size (Nb+No)×(Nb+No).

Then, we standardise Eq. (54) following, e.g., Sect. 2.4.1 in Rodgers (2000):555

Xa =Ω⊤
bo,aH

⊤
[
Λbo,bo +HΩbo,boH⊤

]−1

Λ
1
2

bo,bo, (60a)

=Ω⊤
bo,aH

⊤Λ
− 1

2

bo,bo

[
Ibo +Λ

− 1
2

bo,boHΩbo,boH⊤Λ
− 1

2

bo,bo

]−1

, (60b)

=Ω⊤
bo,aΩ

− 1
2

bo,bo∆
⊤
[
Ibo +∆∆⊤

]−1

, (60c)

=Ω⊤
bo,aΩ

− 1
2

bo,boVΣ⊤
[
Ibo +ΣΣ⊤

]−1

U⊤. (60d)

Defining σ =
(
ΣΣ⊤

) 1
2

, which is square diagonal of size (Nb +No)× (Nb +No), we obtain, up to a multiplication by an560

irrelevant orthogonal matrix on the right, an equivalent factor for Pa:

Xa =Ω⊤
bo,aΩ

− 1
2

bo,boV
σ

Ibo +σ2
. (60e)

The diagonal values of σ, denoted σi ≥ 0, represent the independent degrees freedom (dof) of information that can be extracted

from the observations, which in our case is the first guess yb and the traditional observations yo, in contrast to Rodgers (2000)

who only considers the dofs from yo. The higher the σi, the more information attached to the dof of index i, and the more565

squeezed the corresponding direction in Xa and Pa. From Eq. (59), and in particular its transpose: ∆⊤ =Ω
1
2

bo,boH
⊤Λ

− 1
2

bo,bo

we can trace the flow of any piece of information. Such piece of information stems from the observation vectors, and hence

its flow starts in ∆⊤ from Λ
− 1

2

bo,bo the square root of the precision matrix Λ−1
bo,bo. It is then transferred from the observation

spaces to the observable spaces through H⊤. It is finally optimally transported across the space of xb and xo by Ωbo,bo whose

off-diagonal block is proportional to the transference plan Pbo. Hence, OT is not a primary source of uncertainty, as yb and570

yo can be, but moves information in between the observable spaces.

Let us now check the OTDA analysis error covariance matrix Pa in the classical DA limit. To that end, we study Eq. (54) in

the classical limit. Similarly to Ωbb and Ωoo in Eq. (58), Ωaa is defined as the covariance matrix of xa when only accounting

for both OTs, and it can be shown that it reads

Ωaa =
1

ε
diag(xa). (61)575

When the cost tends to C∞
bo, following the same arguments as in Sect. 2.4.3, xb, xo, and xa must merge and, consequently,

Ωbo =Ωaa =Ωbb =Ωoo. Hence, in this limit Ωbo,bo = 12Ωaa1
⊤
2 , and Ωbo,a = 12Ωaa, with 12 = [1 1]⊤. Then, substitut-

26



ing these expressions of Ωbo,bo and Ωbo,a into Eq. (54), we get

Xa =Ωaa1
⊤
2 H

⊤
[
Λbo,bo +H12Ωaa1

⊤
2 H

⊤
]−1

Λ
1
2

bo,bo, (62a)

=Ωaa1
⊤
2 H

⊤
[
Ibo +Λ−1

bo,boH12Ωaa1
⊤
2 H

⊤
]−1

Λ
− 1

2

bo,bo, (62b)580

=Ωaa

[
Ia +1⊤

2 H
⊤Λ−1

bo,boH12Ωaa

]−1

1⊤
2 H

⊤Λ
− 1

2

bo,bo, (62c)

=
[
Ω−1

aa +1⊤
2 H

⊤Λ−1
bo,boH12

]−1

1⊤
2 H

⊤Λ
− 1

2

bo,bo, (62d)

where Ia is the identity matrix of size Na. From Eq. (62b) to Eq. (62c) we relied on the shift matrix lemma (e.g., Asch et al.,

2016). For Ω−1
aa in Eq. (62d) to exist, it must be assumed that xa ∈ O+,⋆

Na
, i.e. all the entries of xa are positive. This is verified

when using entropic regularisation with ε > 0, no matter how small the entries of xa can be. Moreover, if xa has zero entries,585

xa can be represented as the limit of a sequence of positive discrete measures.

Now, since we have

A−1 ∆
= 1⊤

2 H
⊤Λ−1

bo,boH12 =Λ−1
bb +H⊤Λ−1

oo H, (63)

we conclude from Eq. (62d) that the classical limit of the analysis error covariance matrix is

Pa =Xa (Xa)
⊤
=
[
Ω−1

aa +A−1
]−1

A−1
[
Ω−1

aa +A−1
]−1

. (64)590

If the limit of xa when ε→ 0+ is in O+,⋆
Na

, then Ω−1
aa = εdiag(xa)−1 must vanish. In this case:

Pa −→
ε→0+

A=
(
∂2fbζb +H⊤∂2foζoH

)−1
, (65)

which, assuming Gaussian errors, would read Pa =
(
B−1 +H⊤R−1H

)−1
, as expected from classical DA. However, if some

of the entries of xa vanish in the limit ε→ 0+, we suspect that the limit of Pa will be the classical analysis error covariance

matrix A but with the columns and rows associated to
:::
with

:
the vanishing entries of xa tapered to 0.595

4.3 Numerical illustration

We consider the one-dimensional example where one half of the domain is observed, over
[
0, 12
]
, H ∈ O+

No×No
with No =

No/2 andHj
l = δl,j for l ∈ J1,NoK and j ∈ J1,NoK; the observations are unbalanced, m

(
yb
)
= 1 and m(yo) = 1.49; they have

been generated through H by discrete measures of mass 1 and 1.5, respectively; The cost metric has a quadratic dependence

with the distance between sites, i.e. [Cba]ik = λ|rbi − rak|2 and [Coa]jk = λ|roj − rak|2, where λ= 103. We use the results of600

Sect. 4.1 to compute the analysis error covariance matrix Pa, the transference plan Pbo, and the Jacobian Ωbo,a. The numerical

results are displayed in Fig. 14. The OTDA analysis state is bimodal, some mass being left over to the right of the domain

to account for the long tail of the first guess, which is far from the observation support. Hence, there is a vanishing field

region, roughly [0.6,0.7], which separates the two components of the analysis state. As expected from OT theory, Pbo seems

to converge towards a (non-trivial and barely differentiable) Monge map which, in this discrete context, has two branches,605
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Figure 14. Illustration of the second-order analysis of an OTDA 3D–Var. Panel (a) shows the same plot as panel (a) of Fig. 11, but with

errors bars (
::
the

:::::::
addition

::
of

:::::
shaded

::::::
regions

::::::::
delineated

::
by

:
plus /

:::
and minus the standard deviations )

::::
about

::
the

::::::::
estimates

::
for

::::::::::::
xa,xa

cl,x
b,xo.

::::
These

:::::::
standard

::::::::
deviations

:::
are computed from the diagonal of the diagnosed posterior error covariance matrices associated to

::::
with xa,

:::
xa
cl,

xb, and xo. Panel (b) displays the analysis error covariance matrix Pa. Panel (c) shows the optimal transference plan Pbo. Panel (d) shows

the a,b block part of the Jacobian matrix Ωbo,a, which is denoted Ωba.

separated by the gap created by the vanishing field region. The analysis error covariance matrix Pa seems to converge to a

diagonal matrix, with the exception of the vanishing field region. Indeed, there seems to be an uncertainty as to how much mass

should be transferred from the first guess tail [0.7,1] to the main region [0,0.6]. This is given away by peaks of variances near

the edges of the gap, and by negative covariances between the two edge points of the gap.
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5 Conclusions610

In this paper, we have introduced a theoretical framework for integrating nonlocal optimal transport (OT) metrics into data

assimilation (DA), which we refer to as hybrid OTDA. This framework addresses the inconsistencies initially identified by

Feyeux et al. when local metrics in classical DA are replaced with nonlocal ones based on OT.

Our focus has been on defining a 3D–Var approach for hybrid OTDA and deriving the first- and second-order moments

of its analysis. The hybrid OTDA 3D–Var method blends classical DA and its background and observation error statistics615

with a Wasserstein barycentre problem involving the observables associated with the first-guess and the observation vector.

Importantly, our work demonstrates that classical DA is encompassed within this theoretical framework.

We have shown that this optimisation problem can be decomposed and simplified into a hybrid OTDA problem with a single

OT problem based on an effective cost. This first problem yields the estimated xb and xo, followed by a pure W-barycentre

problem involving these states, whose solution is known as the McCann interpolant. This W-barycentre computation serves as620

the final analysis step.

Our proposed method can be applied to sparsely and noisily observed systems, as expected from a robust DA method. It

can also accommodate non-trivial error statistics typical of a 3D–Var approach. Furthermore, we have illustrated the method’s

flexibility in defining cost metrics through various 1D and 2D numerical examples. We have empirically checked how the

OTDA analysis shifts towards the classical DA analysis, within the OTDA framework.625

Note that, for now, some limitations apply; mainly the framework is presently meant for non-negative fields.

While we have looked into several other promising developments of our methodology, we have chosen not to report them in

this paper. These developments will be the subject of a future publication, including:

– the derivation of a Bayesian and probabilistic standpoint on OTDA,

– a generalised formalism where physical regularisation such as smoothness of the field can be enforced on the analysis630

state,

– a stochastic matrix formalism, which is a substitute to using transference plans, but could offer more robustness in the

presence of entropic regularisation,

– employing cost matrices defined across several spaces, which is useful for realistic application where xb and xo lies

in very distinct spaces, such as the space of emission of a pollutant, and the space of the pollutant concentrations,635

respectively.

While our primary focus in this paper was on the derivation and understanding of key cost functions within the hybrid OTDA

framework, we did not delve much into the numerical challenges, algorithmic complexity, or computing acceleration. For this

aspect of the developments, we would rather rely on the developments of the experts of OT who are continuously improving

on the efficiency of numerical OT (e.g., Flamary et al., 2021).640

In addition to strengthening the developments mentioned above, our future research will explore the application of the hybrid

OTDA formalism in a sequential DA framework, as this paper concentrated solely on the static analysis. We are also interested
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in investigating the role played by error statistics and cost metrics {ζb, ζo,Cba,Coa} and their balancing in the hybrid OTDA

analysis, as well as developing their objective tuning.

Code availability. The products of this paper are exclusively optimisation problems and methods to solve them; their implementation (code)645

used in the illustrative sections rely on freely available software to solve the optimisation problems, mainly L-BFGS-B and its implementation

in Scipy https://github.com/scipy/scipy and the Python Optimal Transport library and and its implementation https://github.com/PythonOT.

Appendix A: From the primal to the dual cost function for the full problem

This appendix is dedicated to the derivation of the transformation from a Lagrangian variant of the primal problem to the dual

cost function Eq. (20). It takes the form of the following series of transformations of the problem, from a Lagrangian to a dual650

cost function:

L= min
xbxoxa

[
max
fb

{
(yb −xb)⊤fb − ζ∗b(fb)

}
+max

fo

{
(yo −Hxo)⊤fo − ζ∗o (fo)

}
+ min

P∈O+
b,o,a

{
PijkC

ik
ba +PijkC

jk
oa

+ max
hbho fa

{
hbi
(
xbi −Pijk1

j
o1
k
a

)
+hoj

(
xoj −Pijk1

i
b1
k
a

)
+ fka

(
xak −Pijk1

i
b1
j
o

)}}]
, (A1a)

= min
xaxbxo

[
max
fb,fo

{
(yb −xb)⊤fb − ζ∗b(fb)+ (yo −Hxo)⊤fo − ζ∗o (fo)

}
655

+ max
hbho fa

min
P∈O+

b,o,a

{
PijkC

ik
ba +PijkC

jk
oa

+hbi
(
xbi −Pijk1

j
o1
k
a

)
+hoj

(
xoj −Pijk1

i
b1
k
a

)
+ fka

(
xak −Pijk1

i
b1
j
o

)}]
, (A1b)

= max
hbho fa
fb fo

min
xaxbxo

P∈O+
b,o,a

[
(yb −xb)⊤fb − ζ∗b(fb)+ (yo −Hxo)⊤fo − ζ∗o (fo)

+PijkC
ik
ba +PijkC

jk
oa +hbi

(
xbi −Pijk1

j
o1
k
a

)
+hoj

(
xoj −Pijk1

i
b1
k
a

)
+ fka

(
xak −Pijk1

i
b1
j
o

)]
, (A1c)

= max
fb fo

{
f⊤b yb + f⊤o yo − ζ∗b(fb)− ζ∗o (fo)660

+ min
hbho fa

xaxbxoP∈O+
b,o,a

[
(hb − fb)

⊤xb +(ho −H⊤fo)
⊤xo + f⊤a xa

+Pijk
(
Cikba +Cjkoa −hbi 1

j
o1
k
a −hoj1

i
b1
k
a − fka 1

i
b1
j
o

)}]
, (A1d)

= max
fb fo

[
f⊤b yb + f⊤o yo − ζ∗b(fb)− ζ∗o (fo)

+ min
P∈O+

b,o,a

Pijk

(
Cikba +Cjkoa − f ib1

j
o1
k
a −Hj

l f
l
o1
i
b1
k
a

)]
. (A1e)
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In Eq. (A1a), the maps ζ∗b and ζ∗o are the Legendre-Fenchel transforms of the maps ζb and ζo, respectively. From Eq. (A1d)665

to Eq. (A1e), taking the minimum over the observables xb, xo, and xa implies to enforce hb = fb, ho =H⊤fo, and fa = 0.

Hence, we obtain the dual problem which only depends on the Lagrange multipliers:

L∗ = max
(fb,fo)∈U∗

bo(Cba,Coa,H)

{
f⊤b yb + f⊤o yo − ζ∗b(fb)− ζ∗o (fo)

}
, (A2a)

where the ∗ symbol refers to dual and where the polyhedron U∗
bo(Cba,Coa,H) is defined by

U∗
bo(Cba,Coa,H)

∆
=
{
fb ∈ RNb , fo ∈ RNo : ∀ i, j,k, f ib + f loH

j
l ≤ Cikba +Cjkoa

}
. (A2b)670

The inequality constraints of the polyhedron U∗
bo stem from the positivity constraint Pijk ≥ 0 in Eq. (A1e). Very importantly,

we have the coincidence of the minimum of the primal problem with the maximum of the dual problem L= L∗, a property

called strong duality (see Sect. 5.2 in Boyd and Vandenberghe, 2004). Strong duality can for instance be achieved if both the

primal and dual cost functions are convex, which is the case here.

Appendix B: Derivation of the two-step hybrid optimal transport data assimilation algorithm675

Here we derive the two-step algorithm elaborated in Sec. 2.4.2. Moreover, entropic regularisation is added to the problem.

B1 First step: simplified hybrid optimal transport data assimilation problem

The first step of the full OTDA algorithm is a simplified OTDA problem based on a single OT problem driven by the cost Cbo.

The corresponding high-level primal cost function is

L= min
xb∈O+

b xo∈O+
o

{
ζb(y

b −xb)+ ζo(y
o −Hxo)+WCbo

(xb,xo)
}
. (B1)680

The associated (lower level) primal cost function, but adding entropic regularisation (ε > 0), is then

Lε = min
xb∈O+

b xo∈O+
o

[
ζb(y

b −xb)+ ζo(y
o −Hxo)+ min

P∈Ubo

(
εK(P|ν)+PijC

ij
bo

)]
. (B2a)

In this optimisation problem, the admissible set of transference plans, i.e. the set of all 2–tensors of non negative entries whose

marginals are xb and xo, is defined by

Ubo
∆
=
{
P ∈ O+

b,o : P1o = xb, P⊤1b = xo
}
. (B2b)685

Since xb and xo are not predetermined, the prior transference plan ν cannot be selected from Ubo a priori. The simplest choice,

which we decided to implement, is hence to set νij to a constant, which assumes some statistical prior independence of xb and

xo. A derivation of the dual problem equivalent to Lε can be obtained in the exact same way as in the previous subsection,

although it is now less cluttered since there is only one OT to account for, instead of two. The associated Lagrangian is

Lε = max
fb∈RNb fo∈RNo

[
f⊤b yb + f⊤o yo − ζ∗b(fb)− ζ∗o (fo)

+ min
P∈O+

b,o

ε∑
ij

{
Pij ln

Pij
νij

−Pij + νij

}
+Pij

{
Cijbo − f ib1

j
o −Hj

l f
l
o1
i
b

} . (B3)690
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Again, the maps ζ∗b and ζ∗o are the Legendre-Fenchel transforms of the maps ζb and ζo. The variables fb and fo are Lagrange

vectors; they are used to enforce the marginals of the transference plan associated to
:::
with

:
WCbo

. The unconstrained minimi-

sation over P, i.e. the inner minimisation problem in Eq. (B3), is obtained by cancelling the gradient with respect to P, which

yields

Pij = νije
(fi

b+f
l
oH

j
l −C

ij
bo)/ε. (B4)695

Substituting this solution into minus the Lagrangian −Lε gives the regularised dual problem

J ∗
ε = min

fb∈RNb fo∈RNo

J∗
ε (fb, fo), (B5a)

with the associated Lagrangian

J∗
ε (fb, fo) = ε(Zε−m(ν))+ ζ∗b(fb)+ ζ∗o (fo)− f⊤b yb − f⊤o yo, (B5b)

which relies on the partition function700

Zε =
∑
ij

Pij . (B5c)

The notation J ∗
ε and J∗

ε , rather than L∗
ε and L∗

ε , signifies that we work on the opposite of L∗
ε and L∗

ε so as to obtain a

dual problem to be minimised rather than maximised. Most importantly, we have, under conditions that will be satisfied in the

following, the coincidence of the two minima J ∗
ε =−Lε, i.e. strong duality. Assuming one can obtain a proper correspondence

between the optimal fb, fo of the dual problem and xb, xo of the primal problem, this implies, once again, that the primal705

problem can be traded for the dual problem.

Even though the regularised optimisation problem is slightly different from the unregularised one, a difference which is

controlled by the value of ε, the new dual optimisation problem is free, i.e. without constraints. It can be solved as it is, using

for instance the L-BFGS-B minimiser (Liu and Nocedal, 1989). The advantage of the regularised dual formulation is two-

fold: the dual cost function is unconstrained (free optimisation) and we will trade a minimisation over Nb×No variables for a710

minimisation overNb+No variables. This dual formulation can be viewed as a generalised Physical–space Statistical Analysis

System (PSAS) formalism (Courtier, 1997), an approach where classical DA algebra is mostly carried out in observation space.

Once the optimal values for fb and fo are obtained, the optimal discrete Kantorovich transference plan P can be computed

using Eq. (B4). As a result, as marginals of this transference plan, the solutions for the observables are

xbi = Pij1
j
o =

∑
j

Pij , xoj = Pij1
i
b =

∑
i

Pij . (B6)715

B2 Second step: Wasserstein barycentre

Now that we have obtained the observables xb and xo via Eq. (B6), we would like to compute their W-barycentre. The joint

mass m of these observables can be computed:

m=m
(
xb
)
=m(xo) . (B7)
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The high-level primal cost function of this W-barycentre problem is720

Jw = min
xa∈O+

Na

{
WCba

(xb,xa)+WCoa
(xo,xa)

}
. (B8)

We have found and practised several ways to solve this problem. One way is to compute the McCann interpolant. This is

theoretically elegant but Eq. (26) did not leverage regularisation of the W-barycentre problem. Instead, the approach reported

here is to use the dual optimisation problem, in conjunction with the entropic regularisation at finite ε > 0. We leverage our

knowledge of the mass m resulting from the first step of the algorithm by enforcing the mass in the cost function, m(P) =m.725

This seems redundant but it actually yields by construction and very naturally a numerical efficient algorithm comparable to

the ad hoc log-domain scheme proposed in Sect. 4.4 of Peyré and Cuturi (2019).

Again, one way, though not the only one, to write the primal problem goes trough the use of a gluing transference plan, a

3–tensor whose marginals are xb, xo, and xa:

Lε = min
xa∈O+

Na
P∈Uboa(xa)

{
P ·Cboa + εK(P|ν)+ f⊤b xb + f⊤o xo

}
, (B9a)730

where [Cboa]ijk = Cikba +Cjkoa , the binary operator · denotes the contraction of tensors, and

Uboa(x
a)

∆
=
{
P ∈ O+

b,o,a : ∀ i, Pijk1jo1ka = xbi , ∀j, Pijk1ib1ka = xoj , ∀k, Pijk1ib1jo = xak

}
. (B9b)

The 3–tensor ν is chosen to be νijk = xbi x
o
j/(mNa), which is uniform in k and for which m(ν) =m. The resulting dual

problem is

J ∗ = min
fb∈RNb fo∈RNo

J∗(fb, fo), (B10a)735

where the associated Lagrangian is

J∗(fb, fo) = ε

(
m ln

Zε
m

+m−m(ν)

)
− f⊤b xb − f⊤o xo, (B10b)

with the partition function

Zε =
∑
ijk

νijke
(fi

b+f
l
oH

j
l −C

ik
ba−C

jk
oa )/ε. (B10c)

This partition function is elegant but impractical since in high dimension a 3–tensor might be too large to store and compute740

with. However the partition function Eq. (B10c) can be simplified by noticing that

Zε =
∑
ij

νije
(fi

b+f
l
oH

j
l −C

ij
bo)/ε, (B11)

where we introduced the effective cost metric

[Cbo]ij =−ε ln
(∑

k

νijk
νij

e−(C
ik
ba+C

jk
oa )/ε

)
, (B12)
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which is the regularised cost – known in statistics and machine learning as a soft-plus transform – of Eq. (22c). The 2–tensor745

νij plays the same role as that of the first step of the algorithm; we choose it as νij = xbi x
o
j/m, for which m(ν) =m. The dual

problem now only involves 2–tensors and becomes numerically more efficient. Given the optimal fb and fo, the (glued) optimal

transference plan Pboa is formally given by

P boa
ijk =

νijk
Zε

e(f
i
b+f

l
oH

j
l −C

ik
ba−C

jk
oa )/ε. (B13)

The W-barycentre xa is then given as a marginal of Pboa:750

xak = Pijk1
i
b1
j
o =

1

Zε

∑
ij

νijke
(fi

b+f
l
oH

j
l −C

ik
ba−C

jk
oa )/ε. (B14)

Because of the normalisation of the transference plan to m, the entropic regularisation exhibits a εm lnZε instead of εZε.

This systematically enforces normalisation in the computations of the gradients, as well as in the course of the numerical

optimisation of the dual cost function, de facto working in log-domain. We experienced more stable computations and the

ability to reach smaller ε, as compared to the case without normalisation. This completes the solution through the 2-step755

OTDA algorithm.
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