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The paper discusses a very interesting and pertinent problem and proposes a solution that is
certainly worth looking at further. The continued use of quadratic error functional is somewhat
anachronistic given that the main motivation for using it are simplicity of analytic computations
and an assumption of Gaussian errors. The first argument carries less weight in the age of super-
computers, and the second was always known to be wrong except in (important) special cases. I
cannot, however, recommend the publication of the paper in its present form and believe that the
paper requires a major revision. This is due to the following major concerns (see below for a few
more minor concerns)

We appreciate the reviewer’s comments and suggestions. In the following, we discuss the raised
concerns and what we have changed or will revise in the manuscript. The pdf document highlighting
the differences between the original and the revised manuscript is provided.

(1) I find the first section very confusing. The authors are discussing problems related to the so-
called double penalty error and the non-overlap of functions (or distributions) that appear in data
assimilation. It is not clear however on what level the authors are working. More specifically, it
seems first that the authors want to work on the level of probability distributions for state variables.
Later however it turns out that they want to work on the level of state variables directly, yet focus
on those that represent meteorological fields which essentially have the character of distributions.
This, however, has to be clear from the very beginning.

It has been made clear in the manuscript that the theory applies to fields, not probability
distributions. For instance in section 1.4:
In the context of this paper, it is critical to be aware that the use of OT in practical DA focused so
far on applying OT to the pdf of a single variable. Quite often, OT is applied to the pdf of a single
random variable because. . .This is very different from our context and objective where the objects
dealt with by OT are field states, not the pdf of one of their variables.

Or, in section 1.5, Objective and Outline, we state:
At least within the perimeter of this paper, some restrictions apply compared to traditional DA.
Firstly, the physical fields considered in the DA problem are non-negative (concentration of tracer,
pollutants, water vapour, hydrometeors, chemical and biogeochemical species, etc.). However, as
opposed to Feyeux (2016), the methods of this paper do not require the (possibly noisy) background
state yb and observation yo to be non-negative. Secondly, the observation operator H is assumed
to be linear. This is only meant for convenience and to obtain a rigorous correspondence between
the primal and dual cost functions of the 3D-Var. Finally, we stress once again that the states
of our DA problem are physical fields onto which OT is applied and are not meant to be pdf of a
random variable.

That said, we fully agree with the reviewer that the second motivational argument (overlapping
of fields) could generate a lot of confusion and could even be misleading, especially so early in the
manuscript. We explain below with the third point raised how we addressed this issue. We have
also made sure that the application of OT to non-negative physical fields was unambiguously stated,
at every important step of the abstract and introduction (please see the difference document).
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(2) I understand what the authors label as the first (of two) weaknesses of classical DA which
is often termed the double penalty error. This problem however is ultimately an issue resulting
from a mismatch between the employed distance and the smoothness of meteorological fields. If
the correct metric is selected depending on the smoothness of the meteorological fields, there is no
double penalty problem. Labelling this as a problem of “classical DA” however implies that classical
DA only uses the mean square error which is not correct (error covariances are important part of
the error functional and have a strong influence on whether the double penalty problem occurs or
not).

In the light of your comments, we have decided to renounce calling the main issue (double
penalty error) a weakness of classical DA since it is instead a weakness in the choice of the metrics
which, as a result, impacts data assimilation. We hope the revision will be clearer in that regard.

However, we would like to stress that the double-penalty issue, which comes from a (model)
location error of fields, does not disappear by a smart choice of a weighted Euclidean distance
(Mahalanobis distance). It is true that inflating the correlation length of the covariance matrices
is a known trick to mitigate the double penalty error but it does not solve it, since it cannot
correct for the location of fields (e.g., Hoffman et al., 1995). The weighted Euclidean distance only
measures amplitude and smoothness mismatches, not the full distortion. This was a key incentive
for the stream of work mentioned in the introduction (e.g.. Hoffman et al., 1995; Hoffman and
Grassotti, 1996; Ravela et al., 2007; Ning et al., 2014; Feyeux et al., 2018). Here is a thought
experiment to stress this: one can imagine inflating the correlation length of the covariance matrix
of a weighted Euclidean distance of two mislocated peaked fields which are far apart. But it could
become a blunt tool with poor separation power. Indeed, it is not difficult to check that in the
very large correlation length limit, such norm only compares the mean of the two fields, i.e. only
one degree of freedom.

This is now clarified/further discussed in the motivational section 1.1 of the introduction:

“It has been recognised that while the weighted Euclidean (Mahalanobis) distance can handle
amplitude and smoothness mismatch, it cannot cope with mislocation error and hence account for
the full distortion between mismatched fields (Hoffman et al., 1995). Hence, even though tuning
covariances of Gaussian error distributions as in classical DA, such as increasing the correlation
length, might help mitigate the double-penalty error, it is insufficient. In Fig. 1, one might replace
the Euclidean norm by a weighted Euclidean one with a large correlation length. This would yield
similar norm values for both cases. Unfortunately, it is not difficult to show that in this limit this
(almost singular) norm can only distinguish between the spatial mean of both fields; it became
blunt with no discriminating power.”

(3) Related to the previous question, I do NOT understand what the authors label as the second
weakness of classical DA. In fact, the last paragraph of Sec. 1.1 hardly makes any sense when
it talks about “overlap in space and time” between background and observations. The material
seems to draw on intuition coming from the Bayes rule but that applies to probability densities;
the 3D-Var analysis is an operator-convex combination of meteorological fields which is something
completely different.

We agree that the motivational argument was too confusing, especially at the very beginning
of the manuscript. Hence, in the light of your comments, we have decided to withdraw it. Hence
section 1.1, now entitled Data assimilation and the double-penalty issue has been rewritten and is
now mainly focused on the double-penalty error. Thank you for pointing out the lack of clarity of
the original section 1.1.

(4) As far as I can see, the technique can only assimilate meteorological fields that essentially
behave like distributions, which is clearly a major restriction. I believe the assumption that the fields
be positive is not enough (after all, by choice of origin any meteorological field can be assumed to
have non-negative values). All the examples mentioned by the authors are extensive quantities. Is
there an issue with applying the approach to an intensive quantity such as, say, the temperature?

Yes, the technique has a major limitation in that it is meant for non-negative fields. We have
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been very upfront about this. Note, however, that we have introduced a way to address the
unbalanced case where the mass of the origin and target fields are not equal. That is why we speak
of non-negative fields, not distributions (which is too restrictive).

Yes, the assumption that the fields are non-negative is sufficient, at least mathematically. If one
wishes, the origin of fields could be redefined to make them non-negative and our theory could be
applied. But of course such trick would introduce major biases that would force to reconsider how
to apply data assimilation. And what would be the origin of fields for wind components? That is
why we prefer to emphasise potential applications to chemical species fields, biogeochemical fields,
water vapour, etc., where location errors can be significant.

No, there is no issue applying OTDA to temperature. But of course, temperature fields are
known to be much smoother; they do not exhibit strong location errors, compared to, say, the
relative or specific humidity (which are intensive fields as well). Hence, it is a priori more interesting
to apply OTDA to, e.g., humidity fields where, for this reason, the double-penalty error is more
prominent, and perhaps for fields with exact or approximate conservation laws. But these are not
necessary conditions for the applicability of the tool.

(a) It is not clear how the authors deal with comparing fields that do not have the same mass.
Also, it is not clear what the cumbersome result in Fig. 5 has to do with the assumption whether
or not the two fields have the same mass.

The reviewer refers to Fig. 5 (Fig. 4 in the revised manuscript), where the solution that we
proposed has not been introduced yet. At this stage in the paper, we only state the nature of the
problem, and explain that it was deemed so far unclear how to compare fields that do not have
the same mass. Our solution is only introduced later on, starting from section 2.3. We stress this
in the revised manuscript.

As for the second comment, the assumption that yb and yo have the same mass was merely for
convenience; this is not crucial to the argument. We have clarified the corresponding statement
and sentence. (But the fact that OT – not OTDA –conserves mass by definition is of course critical
to the derivation we provide.)

(b) The concept of the entropy regularisation is not clear. It is not even clear why this renders
the problem convex or at least uniquely solvable.

We follow a classical technique used by the applied mathematicians in the field of numerical
optimal transport. As clearly mentioned when introducing the technique, we refer to the nice and
accessible textbook of Peyré and Cuturi (2019):
Hence, entropic regularisation is used to render the problem strictly convex. A comprehensive
justification is given by Peyré and Cuturi (2019).

We have extended the sentence referencing their book and now precisely points to where the
proof of convexity is given if it can help. That said, since the proof is simple and enlightening, we
can give it in this response and in the revised manuscript. Indeed, the regularised problem has a
cost function of the form

εK(p|q) + c
⊺
p = ε

∑
i

pi ln

(
pi
qi

− pi

)
+ qi +

∑
i

cipi (1)

to be minimised over the pi, and where ε > 0. The Hessian of this cost function is readily computed
and it is diagonal with entries

ε/pi > 0, (2)

which, since 0 ≤ pi ≤ 1, shows that the optimisation problem is ε–strongly convex and in particular
strictly convex as long as ε > 0.

We have added the following sentence:

It can be checked that the Hessian of the regularised cost function Eq. (15) is a diagonal matrix
of coefficients ε/P bo

ij ≥ ε since 0 ≤ P bo
ij ≤ 1, making the problem ε–strongly convex.
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(c) There are other ways to measure distances between meteorological fields that avoid or al-
leviate the double penalty error (depending on the smoothness of the fields). Have the authors
compared their Wasserstein approach with other metrics, also given that the entropy regularised
Wasserstein distances are not easy to calculate and optimise?

We did not, since the main focus of the paper was to show how to merge classical data assim-
ilation and the optimal transport. One of the reason why we chose optimal transport over other
approaches is that there is a large community of applied mathematicians that built solid founda-
tions for this tool, and recently made progress on the numerical implementation (Peyré and Cuturi,
2019; Flamary et al., 2021), so that computing the Wasserstein distance is not as challenging as
it used to be. Further, in order to make a meaningful comparison, we would need a concrete,
practical case with real data, which is beyond the scope of this paper.

(d) On pg 6 the authors claim that “our problem is not subject to the curse of dimensionality”.
Although this is true, the curse of dimensionality (in the sense implied by the discussion here) is
not actually a concern in 3D-Var either which is what the method should be compared with. So this
remark is misleading.

The remark was only intended for readers that use optimal transport theory and apply it to
probability distributions in the field of geosciences (which includes some of us) and may have
thought that the present theory is impacted by the curse of dimensionality as well. Nothing more
was intended, especially in the scope of this introduction.
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The paper proposed a different objective function for the data assimilation problem, which is
a mixed sum between the classic cost function and the Wasserstein metrics. With assumptions
on strictly convexity and linearity, the problem is convex. The paper then derives the optimization
conditions for the new objective function by combining convex optimization analysis and the duality
concerned about the Wasserstein metric with entropy regularization. It is further supported by
several 1D and 2D data assimilation problems.

We appreciate the reviewer’s comments and suggestions. In the following, we discuss the raised
concerns and what we have changed or will revise in the manuscript. The pdf document highlighting
the differences between the original and the revised manuscript is provided.

(1) My biggest complaint is the paper title. I think the title does not match the content of the
paper. Based on the title, it sounds like a providing a theoretical connection between classical data
assimilation and OT. However, it is more like introducing an application of OT theory for data
assimilation problems. I suggest the authors change the title of this paper to a more descriptive
one.

We have presented this work to many colleagues (in geophysical data assimilation with some
knowledge of optimal transport) who did not feel this issue. But we can certainly make the title
of the paper more specific. We have opted for ”Bridging classical data assimilation and
optimal transport: The 3D-Var case” since we are proposing the OTDA 3D-Var and a way
to carry out its analysis for both first-order and second-order moments.

(2) The assumption in equation (11) is rather strong. H is linear, and all the costs are convex.
That means the paper only deals with log-concave distributions, which does not apply to the multi-
modal distributions that are challenging to handle. The baseline DA (17) is a strictly convex
problem that can be solved easily. Even if one is worried about noise overfitting, many existing
good methods exist to handle this.

The fact that H is linear is for convenience because it can make the dual optimal problem
formally equivalent. This could be alleviated, by for instance sticking to a primal formulation.
In any case, it must be kept in mind that assuming H linear is a common practice (with good
reasons) in classical data assimilation through explicit linearisation, or implicitly as in the EnKF.
For instance in one of the seminal paper of data assimilation (Courtier, 1997) about the dual
formulation of 4D-Var (relevant to and cited in the manuscript), the authors assume linearisation
of H from the very beginning of the paper owing to the so-called incremental formulation of
4D-Var.

So this assumption is actually not as shocking as it may seem. But we agree that as such,
this is a strong assumption, out of the data assimilation context. Following your concern, we have
added a bit a context in the revised manuscript to support the assumption.
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“Secondly, the observation operator H is assumed to be linear. This is only meant for conve-
nience and to obtain a rigorous correspondence between the primal and dual cost functions of the
3D–Var. Making this assumption is very common in geophysical DA: H can indeed be seen as the
tangent linear of a nonlinear observation operator within the inner loop of a 3D–Var or a 4D–Var
(see for instance Courtier, 1997).”

However, the fact that the problem is convex, or can be considered so, is a completely standard
assumption to classical geophysical data assimilation. Even though the standard methods DA
applied to high-dimensional systems (3D-Var, 4D-Var, EnKF) are not rigorously convex, they are
in practice assumed to be so with one single outstanding minimum. Almost all the methods in
operation rely on a linearisation and implicit Gaussian assumptions (see, e.g., Carrassi et al., 2018,
and references within). Moreover, all the incremental variational formulations of 3D–Var and 4D–
Var use a truly strongly convex cost function in their inner loop so as to leverage a conjugate
gradient optimisation scheme. They would fail in presence of true multi-modality. With the
exception of the linearity of H, the statistical assumptions in Eq. (11) are actually more general
that those used in classical 3D-Var (Daley, 1991).

We note that the problem of strong nonlinearity, non-Gaussianity, and multi-modal distribu-
tions, a problem the authors are not unfamiliar with (e.g., Bocquet et al., 2010; Farchi and Bocquet,
2018), is really far apart from the goal of this paper which is to replace local metrics with nonlocal
ones in classical DA, which is the only focus of the paper.

Finally, to answer the end of the comment, the objective of the paper is not to come back to
the well-known (numerical) solution of the classical 3D-Var, but to address the extended hybrid
OTDA problem.

(3) Between (17) and (18), there are new introductions of xb and xo with Wasserstein metrics,
turning the problem from strongly convex to a mixed problem. The motivation is not very clearly
stated. The significantly increased computational cost associated with (18) has to be supported by
very strong reasons. For example, what properties can we achieve by combining these two different
cost functions?

This strongly convex problem is the basic 3D-Var cost function of classical data assimilation,
which is very common in geophysical data assimilation, which we indeed turn into a mixed problem
to tackle the double-penalty, location error issues.

The main motivation for introducing non-local metrics into classical data assimilation is that
of model error, and especially model error based on location errors, which is ubiquitous in the
geosciences and leads to the so-called double-penalty error. Following your comment and that
of reviewer 1, we have clarified the introduction (which is key to understanding why one would
move from Eq. (17) to Eq. (18)), especially its beginning which could have been misleading in
that regard. Note that this motivation was put forward in a long stream of works mentioned
in the introduction, e.g., Hoffman et al. (1995); Ravela et al. (2007); Ning et al. (2014); Feyeux
(2016) who also motivate the introduction of non-local metrics in the fields of verification and data
assimilation. We are to a very large extent making this motivation ours.

Also, please be aware that Sect. 1.4 of the (original and revised) introduction was precisely
building arguments in favour of Eq. (18).

To further address your concern, that should be partially alleviated by the revised introduction,
we have added the following text when emphasising the linearity of H:

Moving from Eq. (17) to Eq. (18) following the principles and guidance of the introductory
Sect. 1.4 is empirical, but no more than in Ning et al. (2014); Feyeux (2016). Showing its merits
is the goal of the present paper. As opposed to Feyeux et al. (2018), it can deal with sparse
and noisy observations, i.e. non-trivial H. We will show that classical DA is embedded in this
generalisation. Moreover, the merits of the new cost function will be a posteriori qualitatively
supported by the outcome of the numerical experiments (to the expert’s eyes), which improve over
previous formalism’s outcomes. We would like to point out that we have also developed a consistent
probabilistic and Bayesian formalism fully supporting the introduction of Eq. (18). However we
felt that the derivation is too long and technical for this paper, and would not be helpful in the
exploration of the direct consequences of Eq. (18).
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(4) Section 2.4 has too many details about the derivation that are standard steps in convex
optimization. I suggest putting many in an appendix and only stating the main formula.

The reviewer may have a strong mathematical/computer science background, which is not
very common to many experts in geophysical data assimilation. But we agree that the manuscript
could benefit from moving a few derivations in an appendix, which we did in the revised manuscript
following your advice. Here is what we have done:

1. we moved the lengthy derivation from the full primal problem to the dual problem in
Sect. 2.4.1 to Appendix A,

2. we moved the 3-page long two-step approach derivation of Sect. 2.4.2 and Sect. 2.4.3 to
Appendix B.

The rest of Sect. 2 is important to the paper and hopefully instructive.

(5) The numerical examples in Sections 3 & 4 are a bit too simple. Of course, 1D and 2D
OT are not so costly. However, when the dimension becomes large, the extra two terms in (18)
become increasingly cumbersome, and computational cost is forbidden. This work is for geoscience
applications with often high-dimensional state space.

We disagree with the reviewer. Firstly, the example that we provide are numerically signifi-
cantly more challenging than those provided earlier on the same attempt to bridge classical data
assimilation with optimal transport (Feyeux, 2016; Feyeux et al., 2018). Secondly and most impor-
tantly, the reviewer is mistaking the dimension of the vector space stemming from the discretised
physical space for the dimension of the physical space. Although the physical space is here
of dimensions 1 or 2, the discretised state space dimension goes here up to 104 (to
be multiplied by the number of control variable types, which is 3 here). Note that in
geophysical data assimilation, high-dimensional refers to the dimension of the discretised vector
space, not that of the underlying physical space (which is 1, 2, or 3, possibly but rarely 4).

Overall, I feel the paper title is too big of a summary for the paper, and the numerical examples,
on the other hand, are elementary. While I can relate the formulation from (6) to (7), which is
very neat and has a clear mathematical intuition, the hybrid sum in (18) seems to be a ”cocktail” of
two different metrics. Further understanding is necessary even if the authors don’t plan on proving
any mathematical properties.

Following your recommendation, we have changed the title. We believe that it is now really
faithful to what is developed in the paper.

We understand your feeling as to the cocktail of metrics. But, please understand that our
formalism is rather rigorous for the geophysical data assimilation and is actually shown to signif-
icantly improve upon the first attempts by Feyeux (2016). It also has the very pleasant property
that classical data assimilation was shown to be embedded in the OTDA formalism, as opposed to
the theories previously advocated. To us, this already makes a strong case for this cocktail.

Finally, to strengthen this approach, we have developed a consistent Bayesian and probabilistic
view on the OTDA formalism, a view often supported in classical data assimilation to back the
methods (Lorenc, 1986). However, we had the feeling it would have been too long and technical
to be reported here, and only marginally relevant to Nonlinear Processes in Geophysics so that is
was not included in the manuscript.
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Grenoble Alpes, https://inria.hal.science/tel-01480695, 2016.

Feyeux, N., Vidard, A., and Nodet, M.: Optimal transport for variational data assimilation, Nonlin.
Processes Geophys., 25, 55–66, https://doi.org/10.5194/npg-25-55-2018, 2018.

Hoffman, R. N., Liu, Z., Louis, J.-F., and Grassoti, C.: Distortion representa-
tion of forecast errors, Mon. Wea. Rev., 123, 2758–2770, https://doi.org/10.1175/1520-
0493(1995)123¡2758:DROFE¿2.0.CO;2, 1995.

Lorenc, A. C.: Analysis methods for numerical weather prediction, Q. J. R. Meteorol. Soc., 112,
1177–1194, https://doi.org/10.1002/qj.49711247414, 1986.

Ning, L.and Carli, F. P., Ebtehaj, A. M., Foufoula-Georgiou, E., and Georgiou, T. T.: Coping
with model error in variational data assimilation using optimal mass transport, Water Resources
Research, 50, 5817–5830, https://doi.org/https://doi.org/10.1002/2013WR014966, 2014.

Ravela, S., Emanuel, K., and McLaughlin, D.: Data assimilation by field alignement, Physica D,
230, 127–145, https://doi.org/10.1016/j.physd.2006.09.035, 2007.

4


