Bias in calculating gross nitrification rates in forested catchments using the

triple oxygen isotopic composition (Δ^{17} O) of stream nitrate

Weitian Ding¹, Urumu Tsunogai¹, Fumiko Nakagawa¹

¹Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-

ku, Nagoya 464-8601, Japan

Corresponding to: Weitian Ding (dwt530754556@gmail.com)

1 Abstract

2	A novel method has been proposed and applied in recent studies to quantify gross
3	nitrification rate (GNR) in forested catchments using the triple oxygen isotopic
4	composition (Δ^{17} O) of stream nitrate. However, the equations used in these
5	calculations assume that the Δ^{17} O value of nitrate consumed through assimilation or
6	denitrification in forest soils is equal to the Δ^{17} O value of stream nitrate. The GNR
7	estimated from the Δ^{17} O value of stream nitrate was significantly higher than the
8	GNRs in our simulated calculations for a forested catchment where the soil nitrate had
9	Δ^{17} O values higher than those the stream nitrate. Because most of the reported soil
10	nitrate in forested catchments showed Δ^{17} O values higher than those of the stream
11	nitrate, we concluded that the GNR estimated from the Δ^{17} O value of stream nitrate
12	was, to an extent, an overestimate of the actual GNR.

13

14 **1 Introduction**

Nitrate (NO₃⁻) is an important nitrogen nutrient for primary production in soils. 15 16 Nitrification is the microbial process that produces NO₃⁻ in forested ecosystems. Thus, quantifying the nitrification rate can assist in the evaluation of the present and 17 future states of forested ecosystems. The net nitrification rate can be estimated from 18 an increase in NO₃⁻ concentration during a certain period. However, the gross 19 nitrification rate (GNR), which includes the net nitrification rate plus the consumption 20 21 rate of NO₃⁻ (e.g., through plant assimilation or denitrification), reflects the internal N 22 cycling better than the net nitrification rate (Bengtsson et al., 2003), especially in

23	forested ecosystems. Although the net nitrification rate is often negligible (Stark and
24	Hart, 1997), the consumption rate is significant in forested ecosystems, such that the
25	GNR often exceeds the net nitrification rate by several orders of magnitude (Verchot
26	et al., 2001).

27	Recent studies have successfully estimated the GNR in aquatic environments, such
28	as lakes, using the Δ^{17} O values of NO ₃ ⁻ as a conservative tracer to determine the
29	mixing ratio between atmospheric nitrate (NO3 ⁻ atm) and biologically produced nitrate
30	(NO _{3⁻bio}) (Tsunogai et al., 2011, 2018). The NO _{3⁻atm} is deposited in the water
31	environment, while $NO_{3\begin{subarray}{c}bio}{}^{-}$ is produced through nitrification. The $NO_{3\begin{subarray}{c}bio}{}^{-}$ always
32	shows the Δ^{17} O value close to 0 ‰ because its oxygen atoms are derived from either
33	terrestrial O_2 or H_2O through nitrification. Contrarily, the NO_3^- atm always displays an
34	anomalous enrichment in ^{17}O with $\Delta^{17}O$ value being approximately +26 \pm 3 ‰ in
35	Japan (Tsunogai et al., 2010, 2016; Ding et al., 2022, 2023) because of oxygen
36	transfers from atmospheric ozone (Michalski et al., 2003; Nelson et al., 2018).
37	Additionally, Δ^{17} O is almost stable during "mass-dependent" isotope fractionation
38	processes (Michalski et al., 2004; Tsunogai et al., 2016). This is because possible
39	variations in the $\delta^{17}O$ and $\delta^{18}O$ values during the processes of biogeochemical isotope
40	fractionation follow the relation of $\delta^{17}O\approx 0.5~\delta^{18}O,$ which cancels out the variations
41	in the Δ^{17} O value. Thus, regardless of the partial consumption through denitrification
42	or assimilation after deposition in a water column, the Δ^{17} O can be used as a

43 conservative tracer of NO_{3}^{-} atm to calculate the mixing ratio of NO_{3}^{-} atm to total NO_{3}^{-}

44 $(NO_3^{-}atm/NO_3^{-}total)$ in a water column using the following equation:

45
$$[NO_3^{-}atm]/[NO_3^{-}tota] = [NO_3^{-}atm]/([NO_3^{-}bio] + [NO_3^{-}atm]) = \Delta^{17}O/\Delta^{17}Oatm$$
 (1)

where the $\Delta^{17}O_{atm}$ and $\Delta^{17}O$ denote the $\Delta^{17}O$ values of NO₃⁻_{atm} and NO₃⁻ dissolved in 46 the water environment, respectively. Using the NO_{3⁻atm}/NO_{3⁻total} ratio estimated from 47 the Δ^{17} O value of NO₃⁻ in a lake water column and the deposition rate of NO₃⁻ atm into 48 the lake, the GNR (i.e., production rate of NO_{3⁻bio}) can be successfully estimated. This 49 approach works because the NO_{3⁻atm}/NO_{3⁻total} ratios are homogeneous in the water 50 column due to the active vertical mixing; thus, we can constrain the NO_{3⁻atm}/NO_{3⁻total} 51 52 ratios of NO₃⁻ consumed in the lake water column (Tsunogai et al., 2011, 2018). In addition to applications in water environments, the Δ^{17} O method has been 53 applied to forested catchments to determine GNR (Fang et al., 2015; Hattori et al., 54 55 2019; Huang et al., 2020). Using the deposition flux of NO_{3⁻atm} into the catchment and the leaching flux of unprocessed NO3⁻atm and NO3⁻bio via streams, the GNR in a 56 forested catchment was estimated similarly to the estimation for water environments 57 (Fang et al., 2015). However, unlike in water environments, where the 58 NO_{3⁻atm}/NO_{3⁻total} ratio of nitrate consumed in the water column can be easily 59 measured, it is often difficult to determine the NO₃⁻_{atm}/NO₃⁻_{total} ratio of NO₃⁻ 60 consumed in soil layers. Consequently, past studies have approximated these values as 61 equal to those of stream NO₃⁻ leached from forested catchments without actual 62 observation (Fang et al., 2015, Hattori et al., 2019, Huang et al., 2020). Such an 63

64	approximation should be used with extreme caution, as the NO_3^- atm/ NO_3^- total ratio
65	(Δ^{17} O values) of soil NO ₃ ⁻ are not always equal to those of stream NO ₃ ⁻ (Hattori et
66	al., 2019, Rose, 2014, Nakagawa et al., 2018). To clarify the details of the
67	approximation and its impact on the final estimated GNR, we present an accurate
68	relationship between the Δ^{17} O of soil NO ₃ ⁻ and the GNR, using basic isotope mass
69	balance equations. Thereafter, we present possible range of variation in the GNRs
70	estimated for a forested catchment, using parameters such as Δ^{17} O values of stream
71	NO3 ⁻ reported in a past study. Finally, we compared the GNRs estimated in this study
72	with those obtained from the Δ^{17} O values of stream NO ₃ ⁻ .
73	
74	2 Calculation
75	The total mass balance equation of NO_3^- including the GNR in catchments can be
76	expressed as follows:
77	$NO_{3}^{-}_{deposition} + GNR = NO_{3}^{-}_{leaching} + NO_{3}^{-}_{uptake} + GDR $ (2)
78	where NO ₃ ⁻ deposition, GNR, NO ₃ ⁻ leaching, NO ₃ ⁻ uptake, and GDR denote the deposition flux
79	of NO_3^- into the catchment, GNR in the catchment, leaching flux of NO_3^- from the
80	catchment, uptake rate of NO_3^- in the catchment, and gross denitrification rate in the
81	catchment, respectively.
82	The isotope mass balance for each Δ^{17} O value of NO ₃ ⁻ in the catchment can be

84	$NO_{3}^{-}_{deposition} \times \Delta^{17}O(NO_{3}^{-})_{atm} + GNR \times \Delta^{17}O(NO_{3}^{-})_{nitrification} = NO_{3}^{-}_{leaching} \times \Delta^{17}O(NO_{3}^{-})_{atm} + GNR \times \Delta^{17}O(NO_{3}^{-})_{nitrification} = NO_{3}^{-}_{leaching} \times \Delta^{17}O(NO_{3}^{-})_{nitrifi$
85	$_{3}^{-}$) _{stream} + NO ₃ ⁻ _{uptake} × $\Delta^{17}O(NO_3^{-})$ _{uptake} + GDR × $\Delta^{17}O(NO_3^{-})$ _{denitrification} (3)
86	where $\Delta^{17}O(NO_3^-)_{atm}$, $\Delta^{17}O(NO_3^-)_{nitrification}$, $\Delta^{17}O(NO_3^-)_{stream}$, $\Delta^{17}O(NO_3^-)_{uptake}$, and
87	$\Delta^{17}O(NO_3^-)_{denitrification}$ denote the $\Delta^{17}O$ value of NO_3^{atm} deposited into the catchment,
88	that of the NO_3^- bio produced through nitrification, that of the NO_3^- leached from the
89	catchment, that of the NO_3^- assimilated by plants and other organisms in the
90	catchment, and that of the NO3 ⁻ decomposed through denitrification in the catchment,
91	respectively.
92	If the Δ^{17} O values of the NO ₃ ⁻ in the forested soil layers, where the NO ₃ ⁻ was
93	consumed through assimilation or denitrification, are equal to the Δ^{17} O value of NO ₃ ⁻
94	in the stream, we could obtain Eq. 4:
95	$\Delta^{17}O(NO_3^{-})_{uptake} = \Delta^{17}O(NO_3^{-})_{denitrification} = \Delta^{17}O(NO_3^{-})_{stream} $ (4)
96	Consequently, by combining Eqs. 3 and 4, we could obtain Eq. 5:
97	$NO_{3}^{-}deposition \times \Delta^{17}O(NO_{3}^{-})_{atm} + GNR \times \Delta^{17}O(NO_{3}^{-})_{nitrification} = (NO_{3}^{-}leaching + NO_{3}^{-}uptak)$
98	$e + GDR) \times \Delta^{17}O(NO_3^{-})_{stream}$ (5)
99	We could estimate the GNR using Eq. 6 obtained from Eqs. 2 and 5 because we can
100	approximate the Δ^{17} O values of NO ₃ ⁻ _{bio} produced through nitrification
101	$(\Delta^{17}O(NO_3^-)_{nitrification})$ to 0 (Michalski et al., 2003; Tsunogai et al., 2010):
102	$GNR = NO_3^{-}_{deposition} \times (\Delta^{17}O(NO_3^{-})_{atm} - \Delta^{17}O(NO_3^{-})_{stream}) / \Delta^{17}O(NO_3^{-})_{stream} $ (6)

Eq. 6 corresponds to the equations used in previous studies to quantify the GNR in the forested catchments (Eq. 4 in Fang et al., 2015; Eq. 8 in Hattori et al., 2019; Eq. 4 in Huang et al., 2020).

106

3 Results and Discussion

107	The Δ^{17} O values of NO ₃ ⁻ in forested soil layers should be equal to those of stream
108	NO_3^- in Eq. 6, as presented in Eq. 4 to obtain Eq. 6. While the number of
109	simultaneous observations of the oxygen isotopes of NO_3^- in soil and stream in a
110	given forested catchment is limited (Hattori et al., 2019, Osaka et al., 2010, Rose,
111	2014, Nakagawa et al., 2018), the observations showed that the oxygen isotopic ratios
112	of soil NO_3^- are often heterogeneous. In addition, the oxygen isotopic ratios of soil
113	NO ₃ ⁻ mostly exceeded those of stream NO ₃ ⁻ . Different from water environments,
114	vertical mixing of water/soil is limited in forested soil, so the Δ^{17} O values of soil
115	NO ₃ ⁻ are often heterogeneous. For example, Hattori et al. (2019) found a decreasing
116	Δ^{17} O trend in soil NO ₃ ⁻ with depth, ranging from over +20 ‰ at the surface to less
117	than +3 ‰ at depths of 25–90 cm. Additionally, more than 60 % of the soil samples
118	exhibited Δ^{17} O values significantly higher than those of stream NO ₃ ⁻ determined
119	simultaneously ($\Delta^{17}O(NO_3^{-})_{stream} = +1$ to +3 ‰). A similar trend in the vertical
120	distribution was observed in the δ^{18} O values of NO ₃ ⁻ in another forested catchment,
121	from above $+35$ ‰ at the surface soil to less than $+10$ ‰ at depths of 30–50 cm from
122	the soil surface (Osaka et al., 2010). In addition, most of the soil NO_3^- also exhibited
123	δ^{18} O values higher than those of the stream NO ₃ ⁻ (Osaka et al., 2010). Rose (2014)

124	monitored the horizontal distribution of the $\Delta^{17}O$ of soil NO ₃ ⁻ by randomly setting 15
125	tension-free lysimeters at depths of 0–10 cm in a 39-ha forested catchment. They
126	reported significantly higher Δ^{17} O values in soil NO ₃ ⁻ (+9.1 ± 5.8 ‰ on average) than
127	those of stream NO_3^- (+0.5 ‰ on average) leached from the forested catchment. As
128	most fine roots and root biomass are concentrated in the top 10 cm of the soil in
129	forested catchments (Jackson et al., 1996; Li et al., 2020), most assimilation (uptake
130	reactions) of NO_3^- should occur in that top 10 cm of soil. Consequently, the
131	significant difference in the Δ^{17} O values between soil NO ₃ ⁻ and stream NO ₃ ⁻ ,
132	particularly in surface soil layers, implies that the estimated GNRs in forested
133	catchments obtained from Eq. 6 were inaccurate.
134	To demonstrate the impact of this approximation on GNR estimation, we simulated
135	GNR for two different forest soils within the same catchment. In the first scenario,
136	soil NO ₃ ⁻ exhibited a Δ^{17} O value close to that of Δ^{17} O(NO ₃ ⁻) _{atm} at the surface, which
137	decreased to the Δ^{17} O of stream NO ₃ ⁻ at depth (heterogeneous soil) (Figs. 1a and 1b).
138	In the second scenario, soil NO ₃ ⁻ had Δ^{17} O values equal to those of stream NO ₃ ⁻
139	throughout the soil profile (homogeneous soil) (Figs. 2a and 2b).
140	To simulate the forested catchment studied by Hattori et al. (2019), we used the
141	same parameters values for the current calculation, including 7.0 kg N ha ^{-1} y ^{-1} for
142	NO ₃ ⁻ deposition, 2.6 kg N ha ⁻¹ y ⁻¹ for NO ₃ ⁻ leaching, +28.0 ‰ for $\Delta^{17}O(NO_3^-)$ atm, and +2.2
143	% for $\Delta^{17}O(NO_3^{-})_{stream}$. All symbols (e.g., GNR) are consistent with those used by
144	Hattori et al. (2019).

145	To estimate GNR in each forest soil type, we divided the soils into 10 vertical
146	layers (i.e., 10 steps). In the heterogeneous soil, the Δ^{17} O values of NO ₃ ⁻ gradually
147	decreased with depth, from +28.0% to +2.2%, at a rate of -2.58% per step (Fig. 1b).
148	In the homogeneous soil, $\Delta^{17}O$ values of NO ₃ ⁻ were constant at +2.2‰ across all
149	layers (Fig. 2b). Note that the y-axes in the models were layers, not depths (Tables S1,
150	S2, and S3). While the Δ^{17} O values of soil NO ₃ ⁻ always showed decreasing trends
151	with depths irrespective to the seasons, Δ^{17} O values of soil NO ₃ ⁻ showed significant
152	temporal variation at each depth (Hattori et al., 2019). This was the reason why the
153	layers were adopted for the y-axes in our models, instead of depths. As a result, the
154	specific depth of each layer varies over time. In addition, the relation between depth
155	and layer is not always linear. The temporal variation found in the vertical
156	distributions of Δ^{17} O values in the forested catchment (Hattori et al., 2019) can be
157	explained by our model as well without contradiction because the Δ^{17} O values of soil
158	NO3 ⁻ , while showing large temporal variation at each depth, always showed
159	decreasing trend with depth throughout their observation (Hattori et al., 2019).
160	To estimate GNR in each layer, both the Δ^{17} O value and the NO ₃ ⁻ leaching flux in
161	soil are required. While Hattori et al. (2019) reported soil NO3 ⁻ concentrations for
162	each layer, indicating little vertical variation within the forested catchment, they did
163	not measure the catchment water flux. Consequently, it is difficult to constrain the
164	NO_3^- leaching flux for each layer of forest soil. Nevertheless, NO_3^- _{deposition} was 7.0 kg
165	N ha ⁻¹ y ⁻¹ and NO ₃ ⁻¹ leaching was 2.6 kg N ha ⁻¹ y ⁻¹ in the catchment (Hattori et al.,

166	2019). Additionally, because water fluxes decrease gradually with depth in various
167	forest settings (e.g., Christiansen et al., 2006), we assumed a gradual decrease in
168	NO ₃ ⁻ , leaching flux from 7.0 to 2.6 kg N ha ⁻¹ y ⁻¹ at a rate of -0.44 kg N ha ⁻¹ y ⁻¹ per
169	layer (Figs. 1c and 2c). Similar trends in the NO_3^- leaching flux of soil have been
170	observed in other forested catchments (Callesen et al., 1999; Inoue et al., 2021).
171	Applying the total mass balance and isotope mass balance equations (Eqs. 2 and 3)
172	to each layer, we estimated GNR (Figs. 1e and 2e) and the total consumption rate of
173	NO_3^- (GDR + uptake) (Figs. 1d and 2d) in each layer. In this calculation, we assumed
174	the following: (1) Δ^{17} O values of NO ₃ ⁻ were constant in each layer; (2) vertical flow
175	of NO_3^- in soil layers proceeds downward from the surface to the final layer (No. 10);
176	and (3) GNR and the NO ₃ ⁻ consumption rate (GDR + uptake) are 0 in layers beyond
177	the final layer. By summing the GNR determined for each layer, we estimated the
178	total GNR in the forested catchment.
179	The total GNR estimated for the catchment with the homogeneous Δ^{17} O values in
180	soil NO ₃ ⁻ (homogeneous soil) was 83.6 kg of N ha ⁻¹ y ⁻¹ (Fig. 2e), exactly equal to
181	that estimated by Hattori et al. (2019) using Eq. 6. This result allows us to further
182	verify that past studies estimating GNR using Eq. 6 implicitly approximated that $\Delta^{17}O$
183	values of soil NO_3^- consumed in forested catchments were homogeneous and always
184	equal to those of stream NO ₃ ⁻ . However, the total GNR estimated for the catchment
185	with heterogeneous Δ^{17} O values in soil NO ₃ ⁻ (heterogeneous soil) was considerably

186	lower (13.0 kg of N ha ^{-1} y ^{-1} ; Fig. 1e), while the same parameters were used for
187	NO ₃ ⁻ deposition, NO ₃ ⁻ leaching, $\Delta^{17}O(NO_3^-)_{atm}$, and $\Delta^{17}O(NO_3^-)_{stream}$.
188	As we increased the number of layers in the forest soils to 20, 30, 50, 100, and
189	1000, the estimated GNR for the heterogeneous soil decreased to 11.4, 11.0, 10.5,
190	10.3, and 10.1 kg N ha ^{-1} y ^{-1} , respectively. Moreover, when we changed the
191	calculation method from stepwise summation to integration, the estimated GNR was
192	11.2 kg N ha ^{-1} y ^{-1} . Furthermore, even if we assumed non-linear variation for the
193	leaching flux of soil NO_3^- , in which the leaching flux of soil NO_3^- increased with soil
194	depth from layers 1 to 5 with an increasing rate of 0.44 kg of N ha ^{-1} y ^{-1} layer ^{-1} , while
195	the leaching flux decreased with soil depth from layers 6 to 10 with a decreasing rate
196	of 1.32 kg of N ha ^{-1} y ^{-1} layer ^{-1} (Table S3), the newly estimated total GNR (19.1 kg of
197	N ha ^{-1} y ^{-1}) was still comparable with that estimated for the forested catchment with
198	the heterogeneous soil shown by Figure 1 (13.0 kg of N ha ^{-1} y ^{-1}). As a result, we
199	concluded that the differences in the Δ^{17} O values of the soil NO ₃ ⁻ consumed in a
200	forested catchment from that of stream NO ₃ ⁻ resulted in a significant deviation in the
201	GNR estimated using Eq. 6 from the actual GNR. In addition, the most important
202	parameter to determine GNR was the Δ^{17} O values of NO ₃ ⁻ consumed in soil layers.
203	That is, the other parameters such as the number of layers and the vertical changes in
204	the leaching flux of soil NO ₃ ⁻ had little impact on total GNR.
205	By combining the total mass balance and isotope mass balance shown in Eqs. 2 and
206	3, Eq. 7 was obtained to accurately estimate the total GNR:

207
$$\text{GNR} = \text{NO}_3^-\text{leaching} - \text{NO}_3^-\text{deposition} + (\text{NO}_3^-\text{deposition} \times \Delta^{17}\text{O}(\text{NO}_3^-)_{\text{atm}} -$$

208
$$NO_3^-leaching \times \Delta^{17}O(NO_3^-)_{stream}) / \Delta^{17}O(NO_3^-)_{soil}$$
 (7)
209 where $\Delta^{17}O(NO_3^-)_{soil}$ denotes the "average" $\Delta^{17}O$ of NO_3^- consumed through
210 assimilation or denitrification in the forested catchment. Most of the soil NO_3^-
211 measured to date exhibited $\Delta^{17}O$ values higher than those of stream NO_3^- leached

from the catchments (Hattori et al., 2019, Rose, 2014). Consequently, the total GNR

estimated from stream NO_3^- using Eq. 6 exceeded the total GNR estimated from soil

- 214 NO₃⁻ using Eq. 7, to an extent. Therefore, the total GNR estimated from Eq. 6 was
- 215 overestimated to an extent.

If we can estimate the downward water flux at each soil layer, along with the NO_3^-

217 concentration and Δ^{17} O value of NO₃⁻ in each soil layer using, e.g., a tension-free

lysimeter (Inoue et al., 2021), we could estimate the vertical change in the NO_3^-

leaching flux for each soil layer, along with the Δ^{17} O values of soil NO₃⁻. Thereafter,

applying Eq. 7 to each layer, we can more estimate the total GNR for the forested

221 catchment accurately, by integrating the GNR estimated for each soil layer, together

with the NO_3^- consumption rate in the forested catchment.

223

224 4 Conclusion

Past studies have proposed the $\Delta^{17}O$ method for determining the GNR in forested catchments. The equations used in the calculation implicitly assumed that the $\Delta^{17}O$ values of NO₃⁻ consumed in forested soils are homogeneous and equal to those of the

228	stream NO ₃ ⁻ . However, the values are often heterogeneous and do not always equal
229	those of the stream in forested soils. It is essential to clarify/verify the Δ^{17} O values of
230	NO_3^- in forested soils and streams before applying the $\Delta^{17}O$ values of stream NO_3^- to
231	estimate the total GNR.
232	
233	Data availability. All data are presented in the Supplement.
234	
235	Author contributions. WD, UT, and FN designed the study. WD and UT performed
236	data analysis and wrote the paper.
237	
238	Competing interests. The authors declare that they have no conflict of interest.
239	
240	Acknowledgments
241	We thank Dr. Joel Bostic, Dr. Lucy Rose and other two anonymous referees for
242	their valuable remarks on an earlier version of this paper. We are grateful to the
243	members of the Biogeochemistry Group, Nagoya University, for their valuable
244	support throughout this study. This work was supported by a Grant-in-Aid for
245	Scientific Research from the Ministry of Education, Culture, Sports, Science, and
246	Technology of Japan under grant numbers 22H00561, 17H00780, 22K19846, the
247	Grant-in-Aid for JSPS Fellows under grant number 23KJ1088, the Yanmar
248	Environmental Sustainability Support Association, and the river fund of the river

249	foundation, Japan. Weitian Ding would like to take this opportunity to thank the
250	"Nagoya University Interdisciplinary Frontier Fellowship" supported by Nagoya
251	University and JST, the establishment of university fellowships towards the creation
252	of science technology innovation, Grant Number JPMJFS2120.
253	
254	References
255	Bengtsson, G., Bengtson, P. and Månsson, K. F.: Gross nitrogen mineralization-,
256	immobilization-, and nitrification rates as a function of soil C/N ratio and microbial
257	activity, Soil Biol. Biochem., 35(1), 143–154, doi:10.1016/S0038-0717(02)00248-1,
258	2003.
259	Callesen, I., Raulund-Rasmussen, K., Gundersen, P., and Stryhn, H.: Nitrate
260	concentrations in soil solutions below Danish forests, Forest Ecology and
261	Management, 114, 71-82, https://doi.org/10.1016/S0378-1127(98)00382-X, 1999.
262	Christiansen, J. R., Elberling, B., and Jansson, PE.: Modelling water balance and
263	nitrate leaching in temperate Norway spruce and beech forests located on the same
264	soil type with the CoupModel, Forest Ecology and Management, 237, 545-556,
265	https://doi.org/10.1016/j.foreco.2006.09.090, 2006.
266	Ding, W., Tsunogai, U., Nakagawa, F., Sambuichi, T., Sase, H., Morohashi, M., and
267	Yotsuyanagi, H.: Tracing the source of nitrate in a forested stream showing elevated
268	concentrations during storm events, Biogeosciences, 19, 3247-3261,
269	https://doi.org/10.5194/bg-19-3247-2022, 2022.

- 270 Ding, W., Tsunogai, U., Nakagawa, F., Sambuichi, T., Chiwa, M., Kasahara, T., and
- 271 Shinozuka, K.: Stable isotopic evidence for the excess leaching of unprocessed
- atmospheric nitrate from forested catchments under high nitrogen saturation,
- 273 Biogeosciences, 20, 753–766, https://doi.org/10.5194/bg-20-753-2023, 2023.
- Fang, Y., Koba, K., Makabe, A., Takahashi, C., Zhu, W., Hayashi, T., Hokari, A. A.,
- Urakawa, R., Bai, E., Houlton, B. Z., Xi, D., Zhang, S., Matsushita, K., Tu, Y., Liu,
- D., Zhu, F., Wang, Z., Zhou, G., Chen, D., Makita, T., Toda, H., Liu, X., Chen, Q.,
- 277 Zhang, D., Li, Y. and Yoh, M.: Microbial denitrification dominates nitrate losses from
- 278 forest ecosystems, Proc. Natl. Acad. Sci. U. S. A., 112(5), 1470–1474,
- doi:10.1073/pnas.1416776112, 2015.
- Hattori, S., Nuñez Palma, Y., Itoh, Y., Kawasaki, M., Fujihara, Y., Takase, K. and
- 281 Yoshida, N.: Isotopic evidence for seasonality of microbial internal nitrogen cycles in
- a temperate forested catchment with heavy snowfall, Sci. Total Environ., 690, 290-
- 283 299, doi:10.1016/j.scitotenv.2019.06.507, 2019.
- Huang, S., Wang, F., Elliott, E. M., Zhu, F., Zhu, W., Koba, K., Yu, Z., Hobbie, E.
- A., Michalski, G., Kang, R., Wang, A., Zhu, J., Fu, S. and Fang, Y.: Multiyear
- 286 Measurements on Δ^{17} O of Stream Nitrate Indicate High Nitrate Production in a
- 287 Temperate Forest, Environ. Sci. Technol., 54(7), 4231–4239,
- 288 doi:10.1021/acs.est.9b07839, 2020.
- 289 Inoue, T., Nakagawa, F., Shibata, H. and Tsunogai, U.: Vertical Changes in the Flux
- 290 of Atmospheric Nitrate From a Forest Canopy to the Surface Soil Based on Δ^{17} O

- 291 Values, J. Geophys. Res. Biogeosciences, 126(4), 1–18, doi:10.1029/2020JG005876,
 292 2021.
- Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E. and
- 294 Schulze, E. D.: A global analysis of root distributions for terrestrial biomes,
- 295 Oecologia, 108(3), 389–411, doi:10.1007/BF00333714, 1996.
- Li, F. L., McCormack, M. L., Liu, X., Hu, H., Feng, D. F., and Bao, W. K.: Vertical
- 297 fine-root distributions in five subalpine forest types shifts with soil properties across
- environmental gradients, Plant Soil, 456, 129–143, https://doi.org/10.1007/s11104-
- 299 020-04706-x, 2020.
- 300 Michalski, G., Scott, Z., Kabiling, M. and Thiemens, M. H.: First measurements and
- modeling of Δ^{17} O in atmospheric nitrate, Geophys. Res. Lett., 30(16), 3–6,
- 302 doi:10.1029/2003GL017015, 2003.
- 303 Michalski, G., Meixner, T., Fenn, M., Hernandez, L., Sirulnik, A., Allen, E. and
- 304 Thiemens, M.: Tracing Atmospheric Nitrate Deposition in a Complex Semiarid
- 305 Ecosystem Using Δ^{17} O, Environ. Sci. Technol., 38(7), 2175–2181,
- 306 doi:10.1021/es034980+, 2004.
- 307 Nakagawa, F., Tsunogai, U., Obata, Y., Ando, K., Yamashita, N., Saito, T.,
- 308 Uchiyama, S., Morohashi, M. and Sase, H.: Export flux of unprocessed atmospheric
- 309 nitrate from temperate forested catchments: A possible new index for nitrogen
- saturation, Biogeosciences, 15(22), 7025–7042, doi:10.5194/bg-15-7025-2018, 2018.

- 311 Nelson, D. M., Tsunogai, U., Ding, D., Ohyama, T., Komatsu, D. D., Nakagawa, F.,
- 312 Noguchi, I. and Yamaguchi, T.: Triple oxygen isotopes indicate urbanization affects
- sources of nitrate in wet and dry atmospheric deposition, Atmos. Chem. Phys., 18(9),
- 314 6381–6392, doi:10.5194/acp-18-6381-2018, 2018.
- 315 Osaka, K., Ohte, N., Koba, K., Yoshimizu, C., Katsuyama, M., Tani, M., Tayasu, I.
- and Nagata, T.: Hydrological influences on spatiotemporal variations of $\delta^{15}N$ and
- δ^{18} O of nitrate in a forested headwater catchment in central Japan: Denitrification
- 318 plays a critical role in groundwater, J. Geophys. Res. Biogeosciences, 115(G2), n/a-
- 319 n/a, doi:10.1029/2009jg000977, 2010.
- 320 Rose, L. A.: Assessing the nitrogen saturation status of appalachian forests using
- stable isotopes of nitrate [PhD thesis, University of Pittsburgh]. Retrieved from
- 322 http://d-scholarship.pitt.edu/22783/1/LRose_ETD_081914_revised1.pdf.
- 323 Stark, J. M. and Hart, S. C.: High rates of nitrification and nitrate turnover in
- undisturbed coniferous forests, Nature, 385(6611), 61–64, doi:10.1038/385061a0,
- 325 1997.
- 326 Tsunogai, U., Komatsu, D. D., Daita, S., Kazemi, G. A., Nakagawa, F., Noguchi, I.
- 327 and Zhang, J.: Tracing the fate of atmospheric nitrate deposited onto a forest
- ecosystem in Eastern Asia using Δ^{17} O, Atmos. Chem. Phys., 10(4), 1809–1820,
- doi:10.5194/acp-10-1809-2010, 2010.

330	Tsunogai, U., Daita, S., Komatsu, D. D., Nakagawa, F. and Tanaka, A.: Quantifying
331	nitrate dynamics in an oligotrophic lake using Δ^{17} O, Biogeosciences, 8(3), 687–702,
332	doi:10.5194/bg-8-687-2011, 2011.
333	Tsunogai, U., Miyauchi, T., Ohyama, T., Komatsu, D. D., Nakagawa, F., Obata, Y.,
334	Sato, K. and Ohizumi, T.: Accurate and precise quantification of atmospheric nitrate
335	in streams draining land of various uses by using triple oxygen isotopes as tracers,
336	Biogeosciences, 13(11), 3441-3459, doi:10.5194/bg-13-3441-2016, 2016.
337	Tsunogai, U., Miyauchi, T., Ohyama, T., Komatsu, D. D., Ito, M. and Nakagawa, F.:
338	Quantifying nitrate dynamics in a mesotrophic lake using triple oxygen isotopes as
339	tracers, Limnol. Oceanogr., 63, S458–S476, doi:10.1002/lno.10775, 2018.
340	Verchot, L. V., Holmes, Z., Mulon, L., Groffman, P. M. and Lovett, G. M.: Gross vs
341	net rates of N mineralization and nitrification as indicators of functional differences
342	between forest types, Soil Biol. Biochem., 33(14), 1889–1901, doi:10.1016/S0038-
343	0717(01)00095-5, 2001.

Figure. 1. Distribution of $NO_3^{-}atm$ in the simulated forested soil with heterogeneous distribution of $\Delta^{17}O$ values of NO_3^{-} (a). Vertical distribution of the following parameters in the forested soil: assumed $\Delta^{17}O$ values of NO_3^{-} (b), assumed leaching flux of NO_3^{-} (c), estimated NO_3^{-} consumption rate (GDR + uptake) (d), and estimated GNR (e).

Figure. 2. Distribution of $NO_{3^{-}atm}$ in the simulated forested soil with homogeneous distribution of $\Delta^{17}O$ values of $NO_{3^{-}}$ (a). Vertical distribution of the following parameters in the forested soil: assumed $\Delta^{17}O$ values of $NO_{3^{-}}$ (b), assumed leaching flux of $NO_{3^{-}}$ (c), estimated $NO_{3^{-}}$ consumption rate (GDR + uptake) (d), and estimated GNR (e).