<u>Bias</u> Errors associated with calculating the gross nitrification rates in forested catchments using the triple oxygen isotopic composition (Δ^{17} O) of stream nitrate

Weitian Ding¹, Urumu Tsunogai¹, Fumiko Nakagawa¹

¹Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-

ku, Nagoya 464-8601, Japan

Corresponding to: Weitian Ding (ding.weitian.v2@s.mail.nagoya-u.ac.jp)

1 Abstract

2	A novel method for quantifying the gross nitrification rate (GNR) in each-forested
3	catchments using the triple oxygen isotopic composition ($\Delta^{17}O$) of stream nitrate
4	elutedleached from the catchments has been proposed and applied in several recent
5	studies. However, the equations used in the calculations include the approximation
6	that the Δ^{17} O value of nitrate metabolized consumed through either assimilation or
7	denitrification within the forested soil is equal to the Δ^{17} O value of stream nitrate-in-
8	the stream. The GNR estimated from the Δ^{17} O value of stream nitrate was more than
9	six times the actual GNR in our simulated calculation for a forested catchment where
10	the <u>soil</u> nitrate in the soil <u>had exhibited</u> Δ^{17} O values larger <u>higher</u> than those in the
11	stream <u>nitrate</u> . The Δ^{17} O values of the soil nitrate decreased while showing a
12	decreasing trend with an increase in depth to increasing depths until that of the stream
13	nitrate at the bottom. As most Most of the reported soil nitrate in forested catchments
14	from past studies showed Δ^{17} O values higher than those of the stream nitrate
15	elutedleached from the each catchments., Thus, we concluded that the GNR estimated
16	from the Δ^{17} O value of stream nitrate in the forested catchments was, to <u>some an</u>
17	extent, an overestimate of the actual GNR.
10	

18

19 **1 Introduction**

Nitrate (NO_3^-) is <u>one of thean</u> important nitrogen nutrients for primary production in forested ecosystems. Nitrification is the microbial process that produces NO_3^- in <u>each</u>-forested ecosystem<u>s</u>. Thus, quantifying the nitrification rate can assist in the

23	evaluation of the present and future states of each forested ecosystems. While tThe net
24	nitrification rate can be estimated from the an increase in NO ₃ ⁻ concentration during a
25	certain period., <u>However</u> , the gross nitrification rate (GNR), which includes the (net
26	nitrification rate and the <u>metabolic</u> consumption rate of nitrate (e.g., that assimilated
27	by plants or decomposed through denitrification)), reflects the internal N cycling
28	better than the net nitrification rate (Bengtsson et al., 2003), especially in forested
29	ecosystems, where WhileAlthough the net nitrification rate is often negligible (Stark
30	and Hart, 1997) while the metabolic consumption rate is significant in forested
31	ecosystems, so that such the GNR often exceeds the net nitrification rate by several
32	order <u>s</u> of magnitude(Verchot et al., 2001).
33	Recently, several studies have successfully estimated the GNR in water
34	environments, such as lakes, using the Δ^{17} O values of NO ₃ , as a conserved
35	conservative tracer of the mixing ratio between the atmospheric nitrate (NO _{3⁻atm})
36	deposited into the water environment and the remineralized biologically produced
37	nitrate (NO ₃ ⁻ biore) produced through nitrification therein (Tsunogai et al., 2011, 2018).
38	The NO ₃ _{atm} is deposited in the water environment, and the NO ₃ _{bio} is produced
39	<u>through nitrification</u> . <u>Although The NO₃ rebio</u> always shows the Δ^{17} O values close to
40	0 ‰ because its oxygen atoms derive are derived from either terrestrial O_2 or H_2O
41	through nitrification., In contrastContrarily, the NO3 ⁻ atm always displays an
42	anomalous enrichment in $^{17}\mathrm{O}$ with $\Delta^{17}\mathrm{O}$ values being approximately +26 \pm 3 ‰ in
43	Japan (Tsunogai et al., 2010, 2016; Ding et al., 2022, 2023) because of oxygen

44	transfers from atmospheric ozone (Michalski et al., 2003; Nelson et al., 2018).
45	Additionally, Δ^{17} O is almost stable during "mass-dependent" isotope fractionation
46	processes (Michalski et al., 2004; Tsunogai et al., 2016).; This is because possible
47	variations in the δ^{17} O and δ^{18} O values during the processes of biogeochemical isotope
48	fractionation follow the relation of δ^{17} O $\approx 0.5 \delta^{18}$ O, which cancels out the variations
49	in the Δ^{17} O value. Therefore Thus, regardless of the partial metabolism consumption
50	through denitrification or assimilation after deposition in a water column, the $\Delta^{17}O$
51	can be used as a conservative d tracer of $NO_{3}^{-}_{atm}$ to calculate the mixing ratio of
52	$NO_{3}^{-}atm$ to total $NO_{3}^{-}(NO_{3}^{-}atm/NO_{3}^{-}total)$ in a water column using the following
53	equation:
54	$[NO_{3}^{-}atm]/[NO_{3}^{-}total] = [NO_{3}^{-}atm]/([NO_{3}^{-}biore] + [NO_{3}^{-}atm]) = \Delta^{17}O/\Delta^{17}O_{atm} $ (1)
55	where the $\Delta^{17}O_{atm}$ and $\Delta^{17}O$ denote the $\Delta^{17}O$ values of NO ₃ ⁻ _{atm} and NO ₃ ⁻ dissolved in
56	each-the water environment, respectively. Using both the NO3 ⁻ atm/NO3 ⁻ total ratio
57	estimated from the Δ^{17} O value of NO ₃ ⁻ in a lake water column and the deposition rate
58	of NO _{3⁻atm} into the lake, the GNR has been was successfully estimated. This is because
59	the partial consumption of NO ₃ ⁻ has little influence on the NO ₃ ^{-$_{atm}/NO_3$-$_{total}$ ratio in}
60	the lake water column (Tsunogai et al., 2011, 2018).
61	In addition to application in water environments, the $\Delta^{17}O$ method has-also been
62	applied to forested catchments for to determine their GNR determination (Fang et al.,
63	2015; Hattori et al., 2019; Huang et al., 2020). By uUsing the deposition flux of
64	NO _{3⁻atm} into the catchment as well as and the elutionleaching flux of both unprocessed

65	NO_3^- and NO_3^- from the streams, which can be determined from the $\Delta^{17}O^-$
66	values of NO ₃ ⁻ in stream water eluted from the catchment, the GNR in each athe
67	forested catchment has been was estimated in a manner similar similarly to the
68	estimation for the water environments (Fang et al., 2015). Contrary to water
69	environments, where the Δ^{17} O values of NO ₃ ⁻ within the water layers are
70	homogeneous in the water column due to the active vertical mixing of waterand can
71	be measured easily, it is often difficult to determine the $\Delta^{17}O$ values of the NO ₃ ⁻
72	metabolized consumed in soil layers. Consequently, past studies have approximated
73	the values to be equal to the Δ^{17} O value of stream NO ₃ ⁻ eluted<u>leached</u> from <u>each</u>
74	forested catchments without actual observation (Fang et al., 2015, Hattori et al., 2019,
75	Huang et al., 2020). However, such an approximation should be conducted with
76	extreme caution, as the Δ^{17} O values of soil NO ₃ ⁻ are not always equal to those of the
77	streams(Hattori et al., 2019, Rose, 2014,- <u>Nakagawa et al., 2018</u> Osaka et al.,
78	2010). To clarify the details of the approximation along withand its impact on the
79	final estimated GNR, we present an accurate relationship between the Δ^{17} O of soil
80	NO_3^- and <u>the</u> GNR, starting from the <u>using</u> basic isotope mass balance equations.
81	Then, we present the GNR estimated GNR for a forested catchment in which
82	the <u>whose</u> Δ^{17} O values of <u>soil</u> NO ₃ ⁻ in <u>soil arewere</u> measured. Finally, we compare <u>d</u>
83	the GNR estimated in this study with the GNR estimated from the Δ^{17} O values of
84	stream NO ₃ ⁻ .
0.5	

86 2 Calculation

- 87 The total mass balance equation of NO_3^- including the GNR in <u>each</u>-catchments
- 88 can be expressed as follows:

89
$$NO_3^-$$
 deposition + GNR = NO_3^- leaching + NO_3^- uptake + GDR (2)

- 90 where NO₃⁻_{deposition}, GNR, NO₃⁻_{leaching}, NO₃⁻_{uptake}, and GDR denote the deposition flux
- 91 of NO₃⁻ into the each-catchment, gross nitrification rateGNR in the each-catchment,
- 92 leaching flux of NO_3^- from the each-catchment, uptake rate of NO_3^- in the each-
- 93 catchment, and gross denitrification rate in <u>the each</u>-catchment, respectively.
- 94 The isotope mass balance for each Δ^{17} O value of NO₃⁻ in the catchment can also be
- 95 <u>be expressed using athe similar equation</u>calculated using the same method:

96
$$NO_3^-$$
 deposition $\times \Delta^{17}O(NO_3^-)_{atm} + GNR \times \Delta^{17}O(NO_3^-)_{nitrification} = NO_3^-$ leaching $\times \Delta^{17}O(NO_3^-)_{atm}$

97
$$_{3}^{-}$$
)_{stream} + NO₃⁻_{uptake} × $\Delta^{17}O(NO_3^{-})$ _{uptake} + GDR × $\Delta^{17}O(NO_3^{-})$ _{denitrification} (3)

98 where
$$\Delta^{17}O(NO_3^{-})_{atm}$$
, $\Delta^{17}O(NO_3^{-})_{nitrification}$, $\Delta^{17}O(NO_3^{-})_{stream}$, $\Delta^{17}O(NO_3^{-})_{uptake}$, and

- 99 $\Delta^{17}O(NO_3^-)_{denitrification}$ denote the $\Delta^{17}O$ value of $NO_3^-_{atm}$ deposited into the each-
- 100 catchment, that of <u>the</u> NO_3^- produced through nitrification, that of <u>the</u> NO_3^-
- 101 eluted<u>leached</u> from the each-catchment, that of the NO_3^- assimilated by plants and
- 102 other organisms in the each-catchment, and that of the NO_3^- decomposed through
- 103 denitrification in the each-catchment, respectively.
- 104 If the Δ^{17} O values of <u>the</u> NO₃⁻ in the forested soil layers, where the NO₃⁻ was
- 105 metabolized consumed through either assimilation (by plants and other organisms) or
- 106 denitrification, are equal to the Δ^{17} O values of NO₃⁻ in the stream, we could obtain
- 107 Eq. 4 can be expressed as follows:

$$\Delta^{17}O(NO_3^{-})_{uptake} = \Delta^{17}O(NO_3^{-})_{denitrification} = \Delta^{17}O(NO_3^{-})_{stream}$$
(4)
Consequently, by combining Eqs. 3 and 4, we could obtain the following
relationship:
$$NO_3^{-}_{deposition} \times \Delta^{17}O(NO_3^{-})_{atm} + GNR \times \Delta^{17}O(NO_3^{-})_{nitrification} = (NO_3^{-}_{leaching} + NO_3^{-}_{uptak})$$
(5)
We could estimate the GNR using Eq. 6 obtained from Eqs. 2 and 5 because we can
approximate the $\Delta^{17}O(NO_3^{-})_{stream}$ (5)
($\Delta^{17}O(NO_3^{-})_{nitrification}$) to be 0 (Michalski et al., 2003; Tsunogai et al., 2010):
GNR = $NO_3^{-}_{deposition} \times (\Delta^{17}O(NO_3^{-})_{atm} - \Delta^{17}O(NO_3^{-})_{stream})/\Delta^{17}O(NO_3^{-})_{stream}$ (6)
Eq. 6 corresponds to the equationg used in previous studies for to quantifying the
GNR in the each-forested catchments (Eq. 4 in Fang et al., 2015; Eq. 8 in Hattori et
al., 2019; Eq. 4 in Huang et al., 2020).

3 Results and Discussion
The $\Delta^{17}O$ values of NO_3^{-} in forested soil layers should be equal to those of stream
NO_3^{-} in the stream, as presented in Eq. 4 to obtain Eq. 6. While the number of
simultaneous observations of the oxygen isotopes of NO_3^{-} in both the soil and stream

- in a given forested catchment is limited (Hattori et al., 2019, Osaka et al., 2010, Rose, 125
- 126 2014, Nakagawa et al., 2018), the limited observations show that the oxygen isotopic
- ratios of soil NO₃⁻ are mostly higher than those of stream NO₃⁻. <u>Differ from water</u> 127
- environments, vertical mixing of water/soil is difficult in forested soil, so the $\Delta^{17}O$ 128

129	<u>values of soil NO₃⁻ are often heterogeneous.</u> For example, Hattori et al. (2019)
130	reported that more than over 60 % of the soil exhibited Δ^{17} O values significantly
131	higher than those of stream NO ₃ ⁻ determined simultaneously ($\Delta^{17}O(NO_3^{-})_{stream} \Delta^{17}O$
132	=_+1 to +3 ‰). In addition, they found a decreasing Δ^{17} O trend in soil NO ₃ ⁻ with
133	depth, declining from greater than $+20$ ‰ at the surface to less than $+3$ ‰ at depths of
134	25–90 cm from the surface. A similar decreasing trend in the vertical distribution had-
135	been foundwas observed in δ^{18} O in another forested catchment, from greater
136	thanabove +35 ‰ at the surface soil to less than +10 ‰ at depths of 30–50 cm from
137	the soil surface (Osaka et al., 2010). Besides In addition, most of the soil NO ₃ ⁻ also
138	exhibited δ^{18} O values higher than those in <u>of</u> the stream <u>NO₃</u> = (Osaka et al., 2010).
139	Furthermore, Rose (2014) monitored the horizontal distribution of the Δ^{17} O of soil
140	NO_3^- by randomly setting 15 tension-free lysimeters at depths of 0–10 cm in a 39 ha
141	forested catchment, reporting Δ^{17} O values. They reported significantly higher Δ^{17} O
142	<u>values</u> in soil NO ₃ ⁻ (+9.1 \pm 5.8 ‰ on average) than <u>in the those of</u> stream NO ₃ ⁻
143	(+0.5 ‰ on average) elutedleached from the forested catchment. As most of the fine
144	roots and root biomass is are concentrated in the top 10 cm of the soil in forested
145	catchments (Jackson et al., 1996; Li et al., 2020), most uptake reactions should occur
146	in that top 10 cm of soil. Consequently, the significant difference in the Δ^{17} O values
147	between soil NO ₃ ⁻ and stream NO ₃ ⁻ , particularly in the surface soil layers, impliesy
148	that the estimated GNRs in the forested catchments obtained from Eq. 6 were
149	inaccurate.

150	To demonstrate the impact of the differences in the $\Delta^{17}O$ values of between soil
151	NO ₃ ⁻ and stream NO ₃ ⁻ on the GNR <u>and present, along with presenting</u> the problems
152	associated with the approximation to obtain Eq. 6, we estimated the GNR offer two
153	simulated forested soils. The Δ^{17} O of the first soil — one with NO ₃ ⁻ decreased
154	showing a decreasing trend in Δ^{17} O down to the Δ^{17} O of the stream NO ₃ ⁻
155	(heterogeneous soil) (Figs. 1a and 1b). The second soil and one with NO3 ⁻ showing
156	the same Δ^{17} O values as those of <u>the</u> stream NO ₃ ⁻ (homogeneous soil) (Fig <u>s</u> . 2a and
157	2b). With <u>Because</u> Hattori et al. (2019) reporteding the NO ₃ -deposition as 7.0 kg of N
158	ha ⁻¹ y ⁻¹ , NO ₃ ⁻¹ _{leaching} as 2.6 kg of N ha ⁻¹ y ⁻¹ , $\Delta^{17}O(NO_3^-)_{atm}$ as +28.0 ‰, and
159	$\Delta^{17}O(NO_3^-)_{stream}$ as +2.2 ‰ in their forested catchment they studied y., Www adopted
160	the same values in our the present calculation to simulate the same forested soil. All
161	the symbols (e.g., GNR) used in this studyhere were in accordance consistent with
162	those of Hattori et al. (2019) as well.
163	To estimate the GNR, wWe divided the soils in the heterogeneous forest soils into
164	10 layers (i.e., 10 steps) in the vertical direction., simulating the soils observed by
165	Hattori et al. (2019), in which t <u>T</u> he Δ^{17} O values of NO ₃ ⁻ gradually decreased with
166	increasing an increase in depth, varying from +28.0 to +2.2 ‰ with a rate of
167	<u>decrease of +</u> 2.58 ‰ for each step (Fig. 1b). Similarly, we assumed a gradual
168	decrease with <u>an</u> increasing <u>in</u> depth in the leaching flux of NO ₃ ⁻ , <u>i.e., (</u> from 7 to 2.6
169	kg of N ha ⁻¹ y ⁻¹ <u>atwith</u> a rate of <u>decrease of</u> -0.44 kg of N ha ⁻¹ y ⁻¹ for each per step)
170	(Fig. 1c).; which This simulated the gradual net consumption of NO ₃ ⁻ in accordance
•	

171 with water flow in forested soils. In tThe homogeneous forest soils, wase also divided 172 the forested soils into 10 layers in the vertical direction. The change with depth in the 173 leaching flux of NO_3^- with depth was the same as that in the heterogeneous soils (Fig. 174 2c), whereas the $\Delta^{17}O$ values of NO_3^- were constant at +2.2 ‰ in the soil layers (Fig. 175 2b).

Applying the total mass balance and isotope mass balance of NO₃⁻ shown in Eqs. 2 176 177 and 3 to each layer, we estimated both the GNR (Figs. 1e and 2e) and total consumptionmetabolic rate of NO₃⁻ (GDR + uptake) (Figs. 1d and 2d) in each layer. 178 179 We assumeding the following.s: (1) The Δ^{17} O values of NO₃⁻ wereare constant in each layer... (2) The vertical flow of NO₃⁻ in the soil layers proceeded downward from 180 the surface to the water final layer (No. 10) with a uniform residence time in each 181 layer., and Finally, (3) the GNR and consumption metabolic rate of NO₃⁻ (GDR + 182 183 uptake) wasis zero in the soil/water layer (layers beyond the no. 10 soilfinal layer) (No. 10). The<u>reaftern</u>, by integrating the GNR determined for each layer, we 184 185 estimated the total GNR in each-the forested catchment. Although the GNR estimated for the catchment with the homogeneous Δ^{17} O values 186 in soil NO₃⁻ (homogeneous soil) was 83.6 kg of N ha⁻¹ y⁻¹ (Fig. 2e), exactly equal to 187 that estimated by Hattori et al. (2019) using Eq. 6 (Fig. 2e), the total GNR estimated 188 for the catchment with the heterogeneous Δ^{17} O values in soil NO₃⁻ (heterogeneous-189 soil) was considerably lower a much smaller (13.0 kg of N ha⁻¹ y⁻¹; Fig. 1e), while 190 the same parameters with the homogeneous Δ^{17} O values in soil NO₃⁻ were used for 191

i.	
192	<u>NO₃-deposition</u> , NO ₃ -leaching, $\Delta^{17}O(NO_3^-)_{atm}$, and $\Delta^{17}O(NO_3^-)_{stream}$. Simulated for the
193	catchment with the heterogeneous Δ^{17} O values in soil NO ₃ ⁻ (Fig. 1e). Even if we
194	increased the number of the layers in the forested soils was increased into 20, 30, 50,
195	100, and 1000 to enhance the precision of the GNR simulated for the catchment with
196	the heterogeneous $A^{17}O$ values in soil NO_3^{-} , the GNR was 11.4, 11.0, 10.5, 10.3, and
197	<u>10.1 kg of N ha⁻¹ y⁻¹, respectively.</u> Consequently, we conclude <u>d</u> the following.s: (1)
198	<u>P</u> past studies estimat <u>eding</u> the GNR using Eq. 6 <u>did</u> approximated the Δ^{17} O value <u>s</u> of
199	soil NO3 ⁻ consumed in the forested catchments werewas homogeneous and always
200	equal to that of stream NO ₃ ^{mathematically and.} (2) <u>T</u> the differences between the
201	Δ^{17} O values of the soil NO ₃ ⁻ metabolized consumed in a forested catchment and that
202	of stream NO_3^- resulted in a significant deviation in the GNR estimated using Eq. 6
203	from the actual GNR
204	By combining the mass balance and isotope mass balance shown in Eqs. 2 and 3,
205	Eq. 7 can be was obtained as the equation to estimate the GNR accurately:
206	$\underline{\text{GNR} = \text{NO}_3} = \underline{\text{NO}_3} = \underline{\text{MO}_3} = \underline{\text{MO}$
207	$\underline{\mathrm{NO}_{3}}_{-\underline{\mathrm{leaching}}} \times \underline{\Delta^{17}\mathrm{O}(\mathrm{NO}_{3})}_{\mathrm{stream}} / \underline{\Delta^{17}\mathrm{O}(\mathrm{NO}_{3})}_{\mathrm{soil}} $ (7)
208	where $\Delta^{17}O(NO_3^{-})_{soil}$ denotes the "average" $\Delta^{17}O$ value of NO_3^{-} consumed through-
209	either assimilation or denitrification in the forested catchment. As mMost of the soil
210	<u>NO₃⁻ measured to date exhibited Δ^{17}O values higher than those of the stream NO₃⁻.</u>
211	leached from the catchments (Hattori et al., 2019, Rose, 2014), Consequently, the
212	GNR estimated from stream NO ₃ ⁻ using Eq. 6 was higher thanexceeded the GNR

213	estimated from soil NO ₃ ⁻ using Eq. 7, to ansome extent. In other words Therefore, the
214	GNR estimated from Eq. 6 was overestimated the GNR in each forested catchment to
215	somean extent.
216	Note that t <u>T</u> he linear variation in the leaching flux and Δ^{17} O values of soil NO ₃ ⁻
217	used in the simulated calculations (Fig. 1) is just one of many possible variations in-
218	the forested catchments. It is impossible to decide determine whether the linear
219	variation was realistic or not until the downward water flux, along with the
220	concentration and Δ^{17} O values of NO ₃ ⁻ , <u>was</u> is determined for each soil layer.
221	However, the simultaneous observations of the oxygen isotopes of soil NO_3^- and
222	stream NO ₃ ⁻ (Hattori et al., 2019; Osaka et al., 2010; Nakagawa et al., 2018; Rose,
223	2014) impliedy that the approximation of the Δ^{17} O values of the soil NO ₃ ⁻
224	metabolized through assimilation or denitrification to be always equal to the $\Delta^{17}O$
225	value <u>that</u> of the stream NO ₃ ^{-, shown in (Fig. 2b), wasis unrealistic.}
226	By combining the mass balance and isotope mass balance shown in Eqs. 2 and 3,
227	Eq. 7 can be obtained to accurately estimate the GNR:
228	$GNR = NO_3^{-1}_{leaching} = NO_3^{-1}_{deposition} + (NO_3^{-1}_{deposition} \times \Delta^{47}O(NO_3^{-1})_{atm} = -$
229	$NO_{3}^{-}_{leaching} \times \Delta^{17}O(NO_{3}^{-})_{stream}) / \Delta^{17}O(NO_{3}^{-})_{soil} $ (7)
230	where $\Delta^{47}O(NO_3^{-})_{soil}$ denotes the $\Delta^{47}O$ values of NO_3^{-} in forested soil, from which
231	the NO3 ⁻ was metabolized through either assimilation or denitrification. As most of
232	the soil NO ₃ ⁻ measured to date exhibit Δ^{17} O values higher than those of the stream -
233	NO3 ⁻ -eluted from each catchment (Hattori et al., 2019, Rose, 2014), the GNR-

236 overestimated the GNR in each forested catchment to some extent.

237	If we estimated the downward water flux at each soil layer, together with the NO_3^-
238	concentration and Δ^{17} O value of NO ₃ ⁻ in each soil layer <u>through the methods such as</u>
239	those using, e.g., a tension-free lysimeter (Inoue et al., 2021), we could estimate the
240	vertical change in the leaching flux of NO_3^- for each soil layer along with the $\Delta^{17}O$
241	value of soil NO ₃ in each layer. The <u>reafter</u> , applying Eq. (7) toin each layer, we can_
242	more accurately more accurately estimate the GNR for the forested catchment more
243	accurately, by integrating the GNR estimated for each soil layer together with a more
244	accurate <u>NO₃</u> - <u>consumption</u> metabolic rate of NO_3 - <u>(GDR + uptake) of</u> the forested
245	catchment. However, wWithout such an observation of the distribution and the
246	<u>leaching flux</u> of the Δ^{17} O value of NO ₃ ⁻ ,together with the Δ^{17} O values in forest soil,
247	it is difficult to assume that the Δ^{17} O values of soil NO ₃ ⁻ are always equal to those of
248	stream NO ₃ ⁻ ; thus, the GNR estimated by using Eq. (6), assuming that the Δ^{17} O
249	values of soil NO ₃ ⁻ are always equal to those of stream NO ₃ ⁻ , should be reported with_
250	significant errors in which the possible variations in the Δ^{17} O values of soil NO ₃ ⁻ are
251	considered.

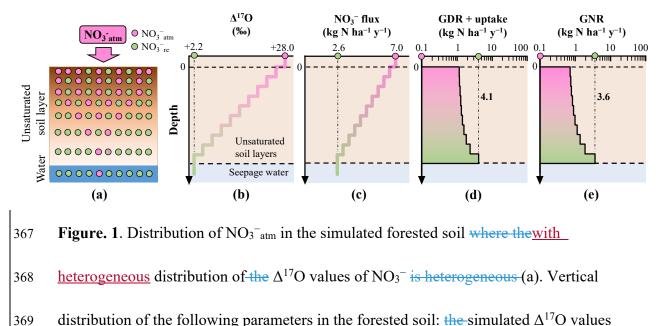
252

234

235

253 4 Conclusion

254	Past studies have proposed the Δ^{17} O method to determine for determining the GNR
255	in each-forested catchments. The equations used in the calculation presuppose that the
256	Δ^{17} O values of NO ₃ ⁻ <u>consumed</u> in forested soils are homogeneous and equal to those
257	of NO_3 in the stream NO_3 .; <u>H</u> however, in reality, the values are often heterogeneous
258	and do not always equal to those corresponding toof the stream. It is essential to
259	clarify/verify the Δ^{17} O values of NO ₃ ⁻ in the forested soils and streams before
260	applying the stream $NO_3^- \Delta^{17}O$ values of stream NO_3^- to estimate the GNR.
261	
262	Data availability. All data are presented in the Supplement.
263	
264	Author contributions. WD, UT, and FN designed the study. WD and UT performed
265	data analysis and wrote the paper.
266	
267	Competing interests. The authors declare that they have no conflict of interest.
268	
269	Acknowledgments
270	We thank two anonymous referees, Dr. Joel Bostic, and Dr. Lucy Rose and other
271	two anonymous referees, for their valuable remarks on an earlier version of this paper.
272	We are grateful to the members of the Biogeochemistry Group, Nagoya University,
273	for their valuable support throughout this study. This work was supported by a Grant-
274	in-Aid for Scientific Research from the Ministry of Education, Culture, Sports,


275	Science, and Technology of Japan under grant numbers 22H00561, 17H00780,
276	22K19846, the Grant-in-Aid for JSPS Fellows under grant number 23KJ1088, the
277	Yanmar Environmental Sustainability Support Association, and the river fund of the
278	river foundation, Japan. Weitian Ding would like to take this opportunity to thank the
279	"Nagoya University Interdisciplinary Frontier Fellowship" supported by Nagoya
280	University and JST, the establishment of university fellowships towards the creation
281	of science technology innovation, Grant Number JPMJFS2120.
282	
283	References
284	Bengtsson, G., Bengtson, P. and Månsson, K. F.: Gross nitrogen mineralization-,
285	immobilization-, and nitrification rates as a function of soil C/N ratio and microbial
286	activity, Soil Biol. Biochem., 35(1), 143-154, doi:10.1016/S0038-0717(02)00248-1,
287	2003.
288	Ding, W., Tsunogai, U., Nakagawa, F., Sambuichi, T., Sase, H., Morohashi, M., and
289	Yotsuyanagi, H.: Tracing the source of nitrate in a forested stream showing elevated
290	concentrations during storm events, Biogeosciences, 19, 3247-3261,
291	https://doi.org/10.5194/bg-19-3247-2022, 2022.
292	Ding, W., Tsunogai, U., Nakagawa, F., Sambuichi, T., Chiwa, M., Kasahara, T., and
293	Shinozuka, K.: Stable isotopic evidence for the excess leaching of unprocessed
294	atmospheric nitrate from forested catchments under high nitrogen saturation,
295	Biogeosciences, 20, 753-766, https://doi.org/10.5194/bg-20-753-2023, 2023.

- 296 Fang, Y., Koba, K., Makabe, A., Takahashi, C., Zhu, W., Hayashi, T., Hokari, A. A.,
- 297 Urakawa, R., Bai, E., Houlton, B. Z., Xi, D., Zhang, S., Matsushita, K., Tu, Y., Liu,
- 298 D., Zhu, F., Wang, Z., Zhou, G., Chen, D., Makita, T., Toda, H., Liu, X., Chen, Q.,
- 299 Zhang, D., Li, Y. and Yoh, M.: Microbial denitrification dominates nitrate losses from
- 300 forest ecosystems, Proc. Natl. Acad. Sci. U. S. A., 112(5), 1470–1474,
- 301 doi:10.1073/pnas.1416776112, 2015.
- 302 Hattori, S., Nuñez Palma, Y., Itoh, Y., Kawasaki, M., Fujihara, Y., Takase, K. and
- 303 Yoshida, N.: Isotopic evidence for seasonality of microbial internal nitrogen cycles in
- a temperate forested catchment with heavy snowfall, Sci. Total Environ., 690, 290-
- 305 299, doi:10.1016/j.scitotenv.2019.06.507, 2019.
- Huang, S., Wang, F., Elliott, E. M., Zhu, F., Zhu, W., Koba, K., Yu, Z., Hobbie, E.
- 307 A., Michalski, G., Kang, R., Wang, A., Zhu, J., Fu, S. and Fang, Y.: Multiyear
- 308 Measurements on Δ^{17} O of Stream Nitrate Indicate High Nitrate Production in a
- 309 Temperate Forest, Environ. Sci. Technol., 54(7), 4231–4239,
- 310 doi:10.1021/acs.est.9b07839, 2020.
- 311 Inoue, T., Nakagawa, F., Shibata, H. and Tsunogai, U.: Vertical Changes in the Flux
- of Atmospheric Nitrate From a Forest Canopy to the Surface Soil Based on Δ^{17} O
- 313 Values, J. Geophys. Res. Biogeosciences, 126(4), 1–18, doi:10.1029/2020JG005876,
- 314 2021.

- Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E. and
- 316 Schulze, E. D.: A global analysis of root distributions for terrestrial biomes,
- 317 Oecologia, 108(3), 389–411, doi:10.1007/BF00333714, 1996.
- 318 Li, F. L., McCormack, M. L., Liu, X., Hu, H., Feng, D. F., and Bao, W. K.: Vertical
- 319 <u>fine-root distributions in five subalpine forest types shifts with soil properties across</u>
- 320 environmental gradients, Plant Soil, 456, 129–143, https://doi.org/10.1007/s11104-
- 321 <u>020-04706-x, 2020.</u>
- 322 Michalski, G., Scott, Z., Kabiling, M. and Thiemens, M. H.: First measurements and
- modeling of Δ^{17} O in atmospheric nitrate, Geophys. Res. Lett., 30(16), 3–6,
- doi:10.1029/2003GL017015, 2003.
- 325 Michalski, G., Meixner, T., Fenn, M., Hernandez, L., Sirulnik, A., Allen, E. and
- 326 Thiemens, M.: Tracing Atmospheric Nitrate Deposition in a Complex Semiarid
- 327 Ecosystem Using Δ^{17} O, Environ. Sci. Technol., 38(7), 2175–2181,
- 328 doi:10.1021/es034980+, 2004.
- 329 Nakagawa, F., Tsunogai, U., Obata, Y., Ando, K., Yamashita, N., Saito, T.,
- 330 Uchiyama, S., Morohashi, M. and Sase, H.: Export flux of unprocessed atmospheric
- 331 nitrate from temperate forested catchments: A possible new index for nitrogen
- 332 saturation, Biogeosciences, 15(22), 7025–7042, doi:10.5194/bg-15-7025-2018, 2018.
- 333 Nelson, D. M., Tsunogai, U., Ding, D., Ohyama, T., Komatsu, D. D., Nakagawa, F.,
- 334 Noguchi, I. and Yamaguchi, T.: Triple oxygen isotopes indicate urbanization affects

- sources of nitrate in wet and dry atmospheric deposition, Atmos. Chem. Phys., 18(9),
- 336 6381–6392, doi:10.5194/acp-18-6381-2018, 2018.
- 337 Osaka, K., Ohte, N., Koba, K., Yoshimizu, C., Katsuyama, M., Tani, M., Tayasu, I.
- and Nagata, T.: Hydrological influences on spatiotemporal variations of $\delta^{15}N$ and
- δ^{18} O of nitrate in a forested headwater catchment in central Japan: Denitrification
- 340 plays a critical role in groundwater, J. Geophys. Res. Biogeosciences, 115(G2), n/a-
- 341 n/a, doi:10.1029/2009jg000977, 2010.
- 342 Rose, L. A.: Assessing the nitrogen saturation status of appalachian forests using
- 343 stable isotopes of nitrate [PhD thesis, University of Pittsburgh]. Retrieved from
- 344 http://d-scholarship.pitt.edu/22783/1/LRose_ETD_081914_revised1.pdf.
- 345 Stark, J. M. and Hart, S. C.: High rates of nitrification and nitrate turnover in
- undisturbed coniferous forests, Nature, 385(6611), 61–64, doi:10.1038/385061a0,
- 347 1997.
- 348 Tsunogai, U., Komatsu, D. D., Daita, S., Kazemi, G. A., Nakagawa, F., Noguchi, I.
- 349 and Zhang, J.: Tracing the fate of atmospheric nitrate deposited onto a forest
- ecosystem in Eastern Asia using Δ^{17} O, Atmos. Chem. Phys., 10(4), 1809–1820,
- doi:10.5194/acp-10-1809-2010, 2010.
- 352 Tsunogai, U., Daita, S., Komatsu, D. D., Nakagawa, F. and Tanaka, A.: Quantifying
- nitrate dynamics in an oligotrophic lake using Δ^{17} O, Biogeosciences, 8(3), 687–702,
- doi:10.5194/bg-8-687-2011, 2011.

355	Tsunogai, U., Miyauchi, T., Ohyama, T., Komatsu, D. D., Nakagawa, F., Obata, Y.,
356	Sato, K. and Ohizumi, T.: Accurate and precise quantification of atmospheric nitrate
357	in streams draining land of various uses by using triple oxygen isotopes as tracers,
358	Biogeosciences, 13(11), 3441-3459, doi:10.5194/bg-13-3441-2016, 2016.
359	Tsunogai, U., Miyauchi, T., Ohyama, T., Komatsu, D. D., Ito, M. and Nakagawa, F.:
360	Quantifying nitrate dynamics in a mesotrophic lake using triple oxygen isotopes as
361	tracers, Limnol. Oceanogr., 63, S458–S476, doi:10.1002/lno.10775, 2018.
362	Verchot, L. V., Holmes, Z., Mulon, L., Groffman, P. M. and Lovett, G. M.: Gross vs
363	net rates of N mineralization and nitrification as indicators of functional differences
364	between forest types, Soil Biol. Biochem., 33(14), 1889–1901, doi:10.1016/S0038-
365	0717(01)00095-5, 2001.

distribution of the following parameters in the following parameters in the following parameters in the following parameters in the following solution of the following solution of the following parameters in the following solution of the follo

370 of NO₃⁻ (b), simulated leaching flux of NO₃⁻ (c), estimated NO₃⁻ consumption rate

- 371 (GDR + uptake) (d), and estimated GNR (e).
- 372

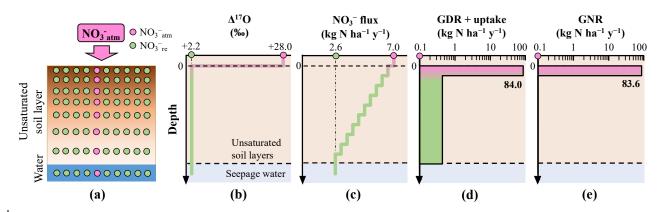


Figure. 2. Distribution of NO_3^- in the simulated forested soil with homogeneous where the distribution of the $\Delta^{17}O$ values of NO_3^- is homogeneous (a). Vertical distribution of the following parameters in the forested soil: the simulated $\Delta^{17}O$ values of NO_3^- (b), simulated leaching flux of NO_3^- (c), estimated NO_3^- consumption rate (GDR + uptake) (d), and estimated GNR (e).