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Abstract10

Our study utilizes global reanalysis of near-surface daily air temperature data, spanning from 1949 to11

2019, to construct climate networks. By employing community detection for each year, we reveal the12

evolving community structure of the climate network within the context of global warming. Our13

findings indicate significant changes in measures such as the network modularity and the number of14

communities, over the past 30 years. Notably, the community structure of the climate network15

undergoes a discernible transition since the early 1980s. We attribute this transition to the substantial16

increase in isolated nodes, primarily concentrated in tropical ocean regions. Additionally, we17

demonstrate that nodes experiencing amplified isolation tend to diminish connectivity with other nodes18

globally, particularly those within the same tropical oceanic basin, while showing a significant19

strengthening of teleconnection with the Eurasian and North African continents. The amplified20

isolation in the climate network could be associated with the weakening of tropical circulations such as21
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the Hadley cell and the Walker circulation in response to increasing greenhouse gases.22

Key words：Climate network, community detection, modularity, isolated nodes.23

1 Introduction24

Since the 20th century, with the continuous increase of greenhouse gas emissions, the global25

climate system is undergoing warming (IPCC, 2023; Christopher et al., 2012; Hallegatte et al., 2011;26

Hunt and Watkiss, 2011). Global warming has led to a significant increase in various extreme weather27

events, encompassing extreme heatwaves, cold spells, heavy precipitation, droughts, and severe28

hurricanes etc. (Doney et al., 2009, Mondal et al., 2021, Konapala et al,. 2020, Mukherjee et al., 2020).29

In addition, it has a serious impact on global air quality, food production, energy consumption,30

transportation, water resources, economic and ecosystems, etc. (Thomas et al., 2004; Salehyan and31

Hendrix, 2014; Nordhaus and William D., 2017; Burke et al., 2015). Global warming has triggered32

significant transformations in atmospheric circulation and ocean circulation patterns, impacting the33

dynamics of the Earth's climate system (Shepherd, T., 2014; Vecchi, Gabriel A. and Brian J. Soden,34

2007). The rise in global temperatures is a key driver of alterations in atmospheric circulation patterns,35

especially in the tropical belt, influencing phenomena such as the Hadley Cell, Walker Circulation, and36

the Madden-Julian oscillation (Lu et al., 2007; Tokinaga et al., 2012; Hu et al., 2021; Chang et al.,37

2015). The expansion of the tropics and changes in the distribution of sea surface temperatures38

contribute to shifts in the intensity and frequency of tropical cyclones and the behavior of the El39

Niño-Southern Oscillation (ENSO) (Emanuel et al., 2005; Kossin et al., 2020; Cai et al., 2021). These40

modifications in tropical circulations have widespread implications for precipitation patterns, extreme41

weather events, and regional climate variability. Additionally, the Atlantic Meridional Overturning42

Circulation (AMOC) may undergo a transition, with potential collapse having severe impacts on the43
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climate in the North Atlantic and European regions (Rahmstorf et al., 2015; Boers, 2021). Previous44

studies have argued that the global climate experienced a shift in the 1970s (Graham, 1994; Tsonis et45

al., 2007; Swanson et al., 2009). Understanding these systematic changes is imperative for predicting46

future climate scenarios (e.g., precipitation, temperature, wind) and formulating effective adaptation47

and mitigation strategies.48

Faced with these climatic systematic changes, the adoption of complex network analysis has49

become increasingly essential in the realm of climate science. The climate system is intricately50

complex, marked by multivariable and multiscale nonlinear dynamics. Unveiling the internal structure51

of the climate system necessitates the application of sound research methods. Complex network52

analysis emerges as a potent tool for investigating the nonlinear dynamics and structural characteristics53

of complex systems (Newman, 2018; Zou et al., 2019). Over the past several years, complex network54

methodologies have gained widespread application in the realm of climate science. In the climate55

network, nodes represent geographical locations where time series data for temperature (or other56

climate variables) are accessible. Links are established through bivariate similarity measures such as57

correlation, mutual information, or event synchronization between these time series (Tsonis et al.,58

2004; Donges et al., 2009; Quiroga et al., 2002). Climate network techniques have proven effective in59

enhancing our understanding of various climate and weather phenomena, including ENSO,60

teleconnection patterns of weather, and atmospheric pollution (Tsonis et al., 2008; Yamasaki et al.,61

2008; Fan et al., 2017; Kittel et al., 2021; Zhou et al., 2015; Boers et al., 2019; Di Capua et al., 2020;62

Zhang et al., 2019). Notably, complex network analysis has unveiled the weakening of tropical63

circulation under global warming (Geng et al., 2021; Fan et al., 2018). Furthermore, these techniques64
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have demonstrated utility in forecasting climate events (Boers et al., 2014; Ludescher et al., 2014;65

Meng et al., 2018; Ludescher et al., 2021).66

Complex systems naturally exhibit partitioning into multiple modules or communities, a67

significant feature of complex networks (Palla et al., 2005). In the context of climate networks, each68

community serves as a representation of a climate subsystem, shedding light on the interrelationships69

between different components (Tsonis et al. 2011). Community detection algorithms, rooted in70

modularity maximization (Newman, 2006; Cherifi et al., 2019), have been pivotal in unveiling71

structures within climate networks. These algorithms have successfully identified community structures72

in diverse contexts, including rainfall networks (Agarwal et al., 2018), interaction networks of sea73

surface temperature observations (Tantet et al., 2014), global climate responses to ENSO phases (Kittel74

et al., 2021) and the quantification of climate indices. Yet, scant attention has been given to the impact75

of global warming on the community structure of climate networks, particularly those with small sizes.76

This research endeavors to employ network analysis and community detection to investigate how77

global warming is reshaping the structure of the global temperature network. The ultimate goal is to78

deepen our understanding of climate change and inform strategies for addressing its impacts.79

Therefore, based on the near-surface temperature structure climate network, this paper studies the80

impact of global warming on climate network. Employing the Louvain community detection algorithm,81

it analyzes the evolution of network topology and reveals the underlying factors driving changes in the82

network structure. The main structure of this paper is as follows: Section 2 introduces the data and83

methods; Section 3 discusses the evolution of climate network topology in the context of global84

warming; Section 4 summarizes the results.85
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2 Data86

This study utilizes daily air temperature reanalysis data from the National Centers for87

Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) at a88

resolution of 2.5° × 2.5° , spanning the near-surface (sig995 level) temperatures from 1949 to 2019.89

The dataset comprises 10,512 grid points over the global. We select 726 nodes to construct the network90

and maintain the spatial density homogeneity within the climate network nodes in the sphere as91

suggested in previous studies (Zhou et al., 2015; Guez et al., 2014). These nodes are strategically92

spaced to ensure uniform coverage of the Earth in Euclidean space, as depicted in Supplementary93

Figure S1(a). The nodes are equally distributed, with distances between any two neighboring nodes94

approximately 850 km, as illustrated in Supplementary Figure S1(b).95

3 Methods96

3.1 Constructing the climate network97

Climate networks are constructed based on the near-surface air temperature data for each year98

from 1949 to 2019, resulting in a total of 71 established climate networks. The time series of a node99

(denoted as �) undergoes deseasonalization by subtracting the average seasonal cycle and dividing by100

the standard deviation of the cycle, resulting in the temperature anomaly (denoted as ��
�(�)，where �101

is the index of year)(Fan et al.,2018). To obtain the link strength between each pair of nodes � and �,102

we then calculate the time-lagged cross-correlation function(Fan et al., 2021):103

��,�
� ( − �) =

��
�(�)��

�(�−�) − ��
�(�) ��
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where denotes the mean value, based on which � � = 1
365 �=1

365 � � − �� ; t represents time and106

the time lag is denoted as τ ∈ 0,200 days.107

Therefore, the link strength between each pair of nodes in the network is denoted as follows:108

��,�
� =

��� ��,�
� � −���� ��,�

� �

��� ��,�
� �

, (3)109

in this context, “max”,”mean” and “std” denote the maximum value, mean, and standard110

deviation of the cross-correlation over all time lags from -200 to 200 days between nodes i and j.111

Strong autocorrelation can inflate the significance of cross-correlation. In contrast, the link strength112

Wi,j
y is more effective in mitigating the effects of autocorrelation, offering a more reasonable reflection113

of the relationship between two nodes (Guez et al., 2014). This approach has proven valuable in114

predicting climate phenomena (Ludescher et al., 2021). To select meaningful links in the network and115

eliminate false associations, we retain the top 5% of links in the network such that a threshold of θ =116

3.5 (corresponding to a p-value of 0.03 (Palus et al., 2011) signifying that 97% of the values in the117

shuffled data fall below this threshold in Supplementary Figure S2) is applied to obtain an adjacency118

matrix A (when Wi,j
y ≥ θ, the element Aij = 1, otherwise, the element Aij = 0).119

3.2 Community Detection120

Subsequently, the obtained sequence of climate networks underwent community detection using121

the Louvain community detection algorithm. The key steps of this method involve traversing each node122

in the network and attempting to relocate it to a neighboring node in a different community to optimize123

the modularity � . If moving a node to another community increases the modularity, the move is124

executed; otherwise, it remains unchanged. In other words, the process assesses whether the increment125

in modularity ∆� resulting from the move is positive, and this procedure is repeated until no further126

node movements are possible. Here is the formula for calculating modularity(Blondel et al., 2008):127

� = 1
2� �,� [��� −

����
2�

]�(�� , ��)� , (4)128
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where ki = jAij� and kj = iAij� (i ≠ j) are the number of links connected to vertex (node) i and j, ci129

represents the community to which node � belongs, �(�, �) equals 1 if � = �, otherwise 0, and � =130

1
2 ������ . Modularity has become a metric for assessing the quality of community divisions, with high131

modularity indicating strong internal connections within a community and weaker connections with132

other communities.133

4 Results134

In order to investigate the evolution of the network's topology in the context of global warming,135

we construct the network for each year from 1949 to 2019 and apply community detection to the136

network. In Figure 1(a), we show that the network modularity for the early years (1949-1981) is largely137

below the average level. While in the recent years (1982-2019), the network modularity remain138

consistently above the average level. There is a significant transition in the modularity around 1982.139

Supplementary Figure S3 illustrates the modularity values obtained by four distinct algorithms, as140

outlined in Ref (Kittel et al., 2021). The results highlight the robustness of the modularity transition141

around 1982 across different algorithms. Notably, the Louvain algorithm produces the highest142

modularity values, indicating its superior effectiveness in identifying community structures. The143

number of communities and modularity exhibit similar evolutionary patterns as shown in Figure 1(b).144

Although the trend in the change of the number of communities is not as pronounced as the trend in145

network modularity, it is still evident that the number of communities was mostly below the average146

level in the first 33 years, while in the recent 38 years, the majority of community numbers are above147

the average level (as shown in Figure 1(b)). Figure 1(c) also shows the escalating count of isolated148

nodes since 1982. The isolated node is identified by the Louvain algorithm with a community size of 1149

(equivalent to a degree of zero, ki = 0). The observed systematic change in community structure since150
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the early 1980s could be linked to the reported climate shift, as indicated by Refs (Graham, 1994;151

Tsonis et al., 2007; Swanson, 2009) utilizing both reanalysis data and climate simulations. The152

substantial increase in greenhouse gas emissions has contributed to a shift in the mean climate state153

since the 1980s in the tropical belt (Cai et al., 2021 ). This shift is further evident in the altered154

properties of El Niño since the early 1980s (Gan et al., 2023 ).155

156
Figure 1: Temporal evolution of (a) network modularity, (b) the number of communities and (c) the number157

of isolated nodes from 1949 to 2019, illustrated by the green dashed line denoting the average level, and the158

red dashed line represents the transition around 1982. Scatter plot of (d) the network modularity, (e) the159

number of communities versus the number of isolated nodes during the period 1949-2019. (f) The160

normalized frequencies of community size for 1949-1981 and 1982-2019 respectively (normalized by the161

total number of communities for each period), where the first bar represents the normalized frequency of162

the community with a node.163

Since 1982, the number of communities has been on the rise. This trend appears to be closely linked to164
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the increasing count of isolated nodes. We observe the relationship between modularity and the number165

of isolated nodes and find a strong positive correlation with a correlation coefficient of 0.674 (as shown166

in Figure 1(d)). The high correlation with network modularity indicates that the trend in the number of167

isolated nodes is consistent with changes in the network's topological structure. Furthermore, from168

Figure 1(e), we observe that the correlation between the number of isolated nodes and the number of169

communities reaches 0.929. The high correlation with the number of communities suggests that the170

overall increase in the number of communities is driven by the increase in isolated nodes. To further171

strengthen the verification of whether the changes in the number of communities and network172

modularity since 1982 are related to the number of isolated nodes. We examine represents the173

normalized frequency of community sizes in 1949-1981 and 1982-2019 (as shown in Figure 1(f)).174

There are two peaks for the isolated node and the community with size around 60 for both 1949-1981175

and 1982-2019. In 1949-1981, the proportion of isolated nodes in the overall community is not176

prominent. However, in 1982-2019, the proportion of isolated nodes has dramatically increased and has177

become the largest component in the community distribution. Therefore, the transition in modularity178

and the number of communities since 1982 can be attributed to the substantial increase in the number179

of isolated nodes.180

181

182

Figure 2: Occurrence probability maps of isolated nodes for (a) 1949-1981, and (b) 1982-2019.183

184

Next, we will further study the relationship between changes in climate network structure and185

isolated nodes. The occurrence probability maps of isolated nodes for 1949-1981 and 1982-2019 are186

shown in Figure 2. From 1949 to 1981, few isolated nodes are mainly distributed in the Equatorial East187

Pacific and Equatorial Atlantic oceans, with a low occurrence probability. However, from 1982 to 2019,188
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the isolated nodes with higher occurrence probabilities can appear almost everywhere in the equatorial189

regions such that the total number of communities increase. The occurrence probability of isolated190

nodes in the last 38 years is not only higher than the first 33 years but also covers a larger area than the191

first 33 years. Hence, isolated nodes in the equatorial region have been systematically increasing since192

the early 1980s, resulting in changes to the climate network structure. To establish robustness, we193

conduct the analysis using different community detection algorithms, the maximum time lag of 365194

days, the shuffled nodes and a 6-month shift for the time window. The obtained results are consistent,195

as illustrated in Supplementary Figures. S3-S12.196

To gain a deeper understanding and verify how the isolation in climate networks is amplified in197

the Equatorial regions, we select three nodes with the highest frequency of isolation in three regions:198

the Indian Ocean, the Pacific Ocean, and the Atlantic Ocean, respectively. We study the relationships199

between the three nodes and other nodes across the climate network structure. Specifically, we200

calculate the probability of the selected node and each of other 725 nodes belonging to the same201

community for time periods 1949-1981 and 1982-2019, and compute the difference the two time202

periods. This probability can reflect which important region responds to the amplified isolation of the203

selected node.204

In Figure 3(a), for 1949-1981, the selected Indian Ocean node exhibits high probability with205

surrounding nodes belonging to the same community. However, for the 1982-2019 in Figure 3(b), this206

probability is weakened, particularly in their association with the oceanic regions. the difference of the207

probability between 1982-2019 and 1949-1981 is shown in Figure 3(c). Blue (red) points in Figure 3(c)208

represent the decreased (increased) probability with time. In general, most areas have decreased209

probability. Still, some areas i.e., the Eurasian and North Africa continent have increased probability to210
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connect to the selected Indian Ocean node.211

Since the 1980s, the probabilities of the nodes in the Pacific and the equatorial Pacific region212

belonging to the same community are noticeably diminished (as shown in Figure 4). Examining the213

probability map of the selected Atlantic Ocean node and other global nodes belonging to the same214

community in Figure 5, it is observed a similar behavior. The selected three high-frequency isolated215

nodes are surrounded by relatively strong connectivity regions during the first 33 years. However, these216

regions experience varying degrees of weakening in connectivity during the subsequent 38 years. It is217

worth noting that since the 1980s, the connectivity between high-frequency isolated nodes in the Indian218

Ocean, Atlantic Ocean, and Pacific Ocean with global oceanic regions is diminishing, especially the219

strength of their connections with their respective oceanic regions significantly decreasing. However,220

the association with the Eurasian and North Africa continent is strengthening. Previous studies have221

suggested the weakening of tropical circulations such as the Hadley cell and the Walker circulation, in222

response to increasing greenhouse gases (Lu et al., 2007; Tokinaga et al., 2012; Cai et al., 2021). The223

weakened tropical circulations can be associated with reduced link strength, a decrease in the number224

of links, leading to a subsequent increase in the number of isolated nodes. To further illustrate this225

phenomenon, we present the averaged strength (W) and the number of links over the tropical Pacific226

Ocean, Indian Ocean, and Atlantic Ocean as functions of years in Supplementary Figure S13, which227

indeed indicates significantly decreasing trends in the averaged strength (W) and the number of links228

for these oceans. Additionally, the weakened tropical circulation could potentially trigger extreme229

climate phenomena, such as the intensification of El Niño, with more pronounced teleconnection230

impacts on distant regions (Fan et al., 2017 ; Hu et al., 2021). This could, in turn, strengthen the linkage231

between equatorial regions and continents in climate networks.232
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233

Figure 3: Probability maps of the Indian Ocean node and other global nodes belonging to the same234

community for (a) 1949-1981, (b) 1982-2019, and (c) the difference of the probability between 1982-2019 and235

1949-1981. The symbol of cyan cross represents the selected Indian Ocean node.236

237

Figure 4: Probability maps of the Eastern Pacific Ocean node and other global nodes belonging to the same238

community for (a) 1949-1981, (b) 1982-2019, and (c) the difference of the probability between 1982-2019 and239

1949-1981. The symbol of cyan cross represents the selected Eastern Pacific Ocean node.240



13

241

242

Figure 5: Probability maps of the Atlantic Ocean node and other global nodes belonging to the same243

community for (a) 1949-1981, (b) 1982-2019, and (c) the difference of the probability between 1982-2019 and244

1949-1981. The symbol of cyan cross represents the selected Atlantic Ocean node.245

246

5 Conclusions247

In this investigation, we constructed a climate network using near-surface air temperature data248

spanning from 1949 to 2019. Our aim was to examine the evolution of climate network topology within249

the context of global warming. To explore how global warming affects the structure of the global250

climate network, we applied the Louvain community detection algorithm.251

Notably, we observed that the network modularity between 1949 and 1981 remained below the252

overall average, whereas between 1982 and 2019, it exceeded the overall average. Concurrently, the253

trend in the number of communities from 1949 to 2019 followed a similar pattern to that of modularity.254

Furthermore, the correlation coefficient between modularity and the number of isolated nodes was255
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found to be 0.674. Additionally, the correlation between the number of isolated nodes and the number256

of communities reached 0.929, both of which demonstrated statistical significance. Furthermore, we257

noted a substantial increase in the number of isolated nodes since 1982. Hence, the shift in modularity258

and the number of communities since 1982 are significantly associated with the notable surge in the259

number of isolated nodes. This systematic shift in community structure since the early 1980s could be260

related to the climate shift and the change of mean state associated with the altered properties of El261

Niño since the early 1980s (Graham, 1994; Tsonis et al., 2007; Swanson, 2009; Cai et al., 2021; Gan et262

al., 2023).263

Between 1949 and 1981, isolated nodes were sporadic and dispersed, mainly concentrated in the264

equatorial Pacific and equatorial Atlantic regions. However, from 1982 to 2019, isolated nodes were265

pervasive across the entire equatorial oceanic region. We further examined the relationship between266

temperature network structure and isolated nodes in the context of global warming. By selecting key267

nodes with the highest frequency of isolation in the equatorial Pacific, equatorial Atlantic, and268

equatorial Indian Ocean regions, we investigated their likelihood of belonging to the same community269

as other nodes during 1949-1981 and 1982-2019. Our findings suggested that the connectivity of highly270

isolated nodes along the equator is decreasing, potentially associated with the weakening of tropical271

circulations such as the Hadley cell and the Walker circulation in response to increasing greenhouse272

gases. This is particularly notable concerning their associations with neighboring regions within the273

same oceanic basin. Simultaneously, their connections with certain continents have significantly274

strengthened.275
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