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RE: egusphere-2023-2751, " Unveiling Amplified Isolation in Climate Networks due to Global 

Warming " by Yifan Cheng, Panjie Qiao, Meiyi Hou, Yuan Chen, Wenqi Liu and Yongwen Zhang 

Dear Dr. Ben Kravitz, 

Editor, Earth System Dynamics 

 

Thank you very much for your email and the two constructive reviewer reports on the manuscript. 

We are very happy that you and the reviewers find our work of considerable potential interest. In 

response to your and the reviewers' valuable comments, we have thoroughly clarified the evidence 

of physical mechanisms and extended the discussion of the main findings. All concerns raised by 

the reviewers have been addressed in detail and integrated into the revised manuscript. 

 

You will find below a full response to all the reviewers’ comments. We hope that you and the 

reviewers will find the revised manuscript suitable for publication in Earth System Dynamics. 

 

Yours sincerely, 

Yifan Cheng, Panjie Qiao, Meiyi Hou, Yuan Chen, Wenqi Liu and Yongwen Zhang 

 

 

 

 

 

 

 

 

 

 

 

 

 



Editor comments:  

The authors have clearly taken the review comments seriously and have spent considerable time 

revising the manuscript. While the authors are clearly experts in network science, I found the 

climate science intuition lacking. For example, the authors mention tropical circulation (and the 

oceans in the previous version), but with little evidence or physical mechanisms. I am less interested 

in hypothetical mechanisms than what we can actually learn from the analysis. After all, this is a 

journal about Earth System Dynamics. 

Before asking reviewers to take another look at this manuscript, I encourage the authors to go back 

through everything and ensure that there is evidence for their claims. 

 

Response: We appreciate the editor's insightful suggestion and have incorporated references to 

previous studies that highlight weakened tropical circulations under global warming in our revised  

manuscript. Moreover, our main finding aligns with and reinforces these observations from a 

network analysis perspective using reanalysis data. The strength of atmospheric and oceanic 

circulations significantly influences the link strength within the climate network. The weakened 

tropical circulations can be associated with reduced link strength, a decrease in the number of links, 

leading to a subsequent increase in the number of isolated nodes. To further illustrate this 

phenomenon, we present the averaged strength (W) and the number of links over the tropical Pacific 

Ocean, Indian Ocean, and Atlantic Ocean as functions of years (from -22.5°S to 22.5°N) in the 

below Figure S13. The results indeed indicate significantly decreasing trends in the averaged 

strength (W) and the number of links for these oceans.  

 

Correction: (Lines 221-229, Par 1, Page 11) Previous studies have suggested the weakening of 

tropical circulations such as the Hadley cell and the Walker circulation, in response to increasing 

greenhouse gases (Lu et al., 2007; Tokinaga et al., 2012; Cai et al., 2021). The weakened tropical 

circulations can be associated with reduced link strength, a decrease in the number of links, leading 

to a subsequent increase in the number of isolated nodes. To further illustrate this phenomenon, we 

present the averaged strength (W) and the number of links over the tropical Pacific Ocean, Indian 

Ocean, and Atlantic Ocean as functions of years in Supplementary Figure S13, which indeed 

indicates significantly decreasing trends in the averaged strength (W) and the number of links for 

these oceans.  

 



 

Figure S13: Time evolution of the averaged strength (W) over the tropical (a) Pacific Ocean, (c) Atlantic 

Ocean, and (e) Indian Ocean (from -22.5°S to 22.5°N). (b), (d) and (f) Same as (a), (c) and (e) but for the 

number of links (W≥3.5). The green dashed line denotes the average level over all years, the red dashed line 

represents year 1982 and the blue lines are the fitted linear lines with the R-value and P-value in up-right 

corner.             

 

 

 

 

 

 

 



RESPONSES TO REVIEWER#1 COMMENTS 

We thank the reviewer for their constructive comments which helped us to substantially improve 

the manuscript. We have fully addressed the comments of the reviewer. For your convenience, we 

now provide below a point-by-point response to all the comments of the reviewers. Note that the 

reviewer’ comments are indicated using blue Italian font, whereas our reply is indicated using black 

and regular fonts. The corrections in the revised manuscript (and quoted here) are indicated using 

red color.  

 

Cheng et al. discuss the community structure of functional climate networks based on 

correlations among daily near-surface air temperature variations around the globe. They report 

systematic changes in the statistical properties of the network communities since the early 1980s 

and attempt to uncover the backbone of those changes in terms of a changing abundance of 

“isolated nodes”. With its topical scope, the manuscript adds to a growing body of research 

utilizing network methods for studying the spatial organization of strong correlations in the global 

temperature field, as well as other climate variables at global and regional scales. The reported 

findings could be interesting, but are in my opinion not well enough explained, reflected 

regarding, and embedded into the context of existing knowledge on both climate variability and 

change and the methodological potentials and limitations of the employed type of network 

approach. 

 

Response: We thank the reviewer for the positive remarks regarding our results. We have tried to 

address the reviewer’s comments. See our response below. 

  

In more detail, I have the following remarks that the authors should take into consideration 

when revising their presented work: 

 

Line 18: It appears physically implausible, at least questionable, to speak of “nodes [grid 

points] experiencing amplified insolation”. The insolation (i.e. amount of solar radiation directly 

reaching the Earth’s surface) has not changed markedly over the period under study (except for 

changes in solar activity and maybe different atmospheric absorption by different types of 

aerosols). What likely has gradually changed is the amount of backscattered radiation that is kept 

within the atmosphere due to changing concentration and distribution of greenhouse gases and 

thereby contributes to warming the planet. 

 

Response: We appreciate the reviewer's comment. To clarify, the term used in the text is "isolation," 

not "insolation." Our current study does not delve into aspects related to sunlight exposure.  

 

Correction: (Lines 17-18, Par 1, Page 1) Additionally, we demonstrate that nodes experiencing 

amplified isolation. 

 

Lines 21-22: It is not clear how the authors reach the conclusion that weakening ocean current 



interactions may be responsible for the observed findings. The presented manuscript does not study 

oceanic variables, but only near-surface atmospheric conditions, and hence allows at most for very 

indirect inference of possible links with changes in ocean circulation. Moreover, it is not clear what 

kind of “interactions” the authors may have in mind. (Do they mean tropical basin interactions via 

atmospheric pathways?) 

 

Response: We sincerely appreciate the reviewer for providing the insightful comment. In the 

manuscript, our primary focus is on investigating near-surface air temperatures rather than oceanic 

variables. Given that the majority of nodes exhibiting heightened isolation are located in equatorial 

ocean regions, we deduce that the mechanism driving amplified isolation in the climate network 

may be comprehended through weakened interactions within tropical basins, linked to atmospheric 

pathways under global warming. We have addressed and clarified this aspect in the revised 

manuscript. 

 

Correction: (Lines 20-22, Par 1, Page 1-2) The amplified isolation in the climate network could be 

associated with the weakening of tropical circulations such as the Hadley cell and the Walker 

circulation in response to increasing greenhouse gases. 

 

Line 27: Ocean acidification and glacier melting are not extreme events and hence referred to here 

out of context. 

 

Response: Thanks for points the misleading text. In the revised manuscript, we have addressed the 

raised issues and included pertinent references to support the modifications. 

 

Correction: (Lines 27-29, Par 2, Page 2) Global warming has led to a significant increase in various 

extreme weather events, encompassing extreme heatwaves, cold spells, heavy precipitation, 

droughts, and severe hurricanes etc. (Doney et al., 2009, Mondal et al., 2021, Komapala et al,. 2020, 

Mukherjee et al., 2020). 

 

Scott C Doney , Victoria J Fabry, Richard A Feely and Joan A Kleypas: Ocean Acidification: The 

other CO2 problem, Annu. Rev. Mar. Sci. 1, 169-

192 ,https://doi.org/10.1146/annurev.marine.010908.163834, 2009. 

 

Mondal, S. and Mishra, A. K. : Complex networks reveal heatwave patterns and propagations over 

the USA, Geophys. Res. Lett., 48, e2020GL090411 , https://doi.org/10.1029/2020GL090411, 2021. 

 

Konapala, G., Mishra, A. K., Wada, Y. et al.: Climate change will affect global water availability 

through compounding changes in seasonal precipitation and evaporation, Nat Commun 11, 3044 , 

https://doi.org/10.1038/s41467-020-16757-w, 2020. 

 

Mukherjee, S., Mishra, A. K. : Increase in compound drought and heatwaves in a Warming World, 

Geophys. Res. Lett., 48(1), e2020GL090617, https://doi.org/10.1029/2020GL090617, 2020. 

 

Lines 31-41:  The authors cite here three recent, apparently randomly selected studies, the 

https://doi.org/10.1038/s41467-020-16757-w,
https://doi.org/10.1029/2020GL090617,


relationship of which with the topic and/or methodology of the present paper is not really clear to 

me. I would expect a more careful selection and discussion of relevant references at this prominent 

place of the Introduction. 

 

Response: Thank you. In response to your comments. In our revised introduction, we have ensured 

a more discerning choice of studies that are directly relevant to the topic and methodology at hand 

as follows.    

 

Correction: (Lines 32-48, Par 1, Page 2-3) Global warming has triggered significant transformations 

in atmospheric circulation and ocean circulation patterns, impacting the dynamics of the Earth's 

climate system (Shepherd, T., 2014; Vecchi, Gabriel A. and Brian J. Soden, 2007). The rise in global 

temperatures is a key driver of alterations in atmospheric circulation patterns, especially in the 

tropical belt, influencing phenomena such as the Hadley Cell, Walker Circulation, and the Madden-

Julian oscillation (Lu et al., 2007; Tokinaga et al., 2012; Hu et al., 2021; Chang et al., 2015). The 

expansion of the tropics and changes in the distribution of sea surface temperatures contribute to 

shifts in the intensity and frequency of tropical cyclones and the behavior of the El Niño-Southern 

Oscillation (ENSO) (Emanuel et al., 2005; Kossin et al., 2020; Cai et al.,2021 ). These modifications 

in tropical circulations have widespread implications for precipitation patterns, extreme weather 

events, and regional climate variability. Additionally, the Atlantic Meridional Overturning 

Circulation (AMOC) may undergo a transition, with potential collapse having severe impacts on the 

climate in the North Atlantic and European regions (Rahmstorf et al. 2015; Boers, 2021). Previous 

studies have argued that the global climate experienced a shift in the 1970s (Graham, 1994; Tsonis 

et al., 2007; Swanson, 2009). Understanding these systematic changes is imperative for predicting 

future climate scenarios (e.g., precipitation, temperature, wind) and formulating effective adaptation 

and mitigation strategies. 

 

Shepherd, T.: Atmospheric circulation as a source of uncertainty in climate change projections. 

Nature Geosci 7, 703–708 , https://doi.org/10.1038/ngeo2253, 2014. 

 

Vecchi, Gabriel A., and Brian J. Soden: Global warming and the weakening of the tropical 

circulation, J. Climate 20(17) : 4316-4340, doi: https://doi.org/10.1175/JCLI4258.1, 2007. 

 

Lu, J., G. A. Vecchi, and T. Reichler: Expansion of the Hadley cell under global warming, Geophys. 

Res. Lett., 34, L06805, doi:10.1029/2006GL028443, 2007. 

 

Tokinaga, H., Xie, SP., Deser, C. et al.: Slowdown of the Walker circulation driven by tropical Indo-

Pacific warming, Nature 491, 439–443, https://doi.org/10.1038/nature11576, 2012. 

 

Hu K., Huang, G., Huang, P. et al.: Intensification of El Niño-induced atmospheric anomalies under 

greenhouse warming, Nat. Geosci. 14, 377–382, https://doi.org/10.1038/s41561-021-00730-3, 

2021. 

 

Chang, C.-W. J., W.-L. Tseng, H.-H. Hsu, N. Keenlyside, and B.-J. Tsuang: The Madden-Julian 

Oscillation in a warmer world, Geophys. Res. Lett., 42, 6034 – 6042, 



https://doi.org/10.1002/2015GL065095, 2015. 

 

Emanuel, K.: Increasing destructiveness of tropical cyclones over the past 30 years, Nature 436, 

686–688, https://doi.org/10.1038/nature03906, 2005. 

 

Kossin J P, Knapp K R, Olander T L, et al.: Global increase in major tropical cyclone exceedance 

probability over the past four decades. Proceedings of the National Academy of Sciences, 117(22): 

11975-11980, https://doi.org/10.1073/pnas.1920849117, 2020. 

 

Cai, W., Santoso, A., Collins, M. et al.: Changing El Niño–Southern Oscillation in a warming 

climate, Nat Rev Earth Environ 2, 628–644, https://doi.org/10.1038/s43017-021-00199-z, 2021. 

 

Rahmstorf, S., Box, J., Feulner, G. et al.: Exceptional twentieth-century slowdown in Atlantic Ocean 

overturning circulation, Nature Clim Change 5, 475–480, https://doi.org/10.1038/nclimate2554, 

2015. 

 

Boers, N. Observation-based early-warning signals for a collapse of the Atlantic Meridional 

Overturning Circulation. Nat. Clim. Chang. 11, 680–688, https://doi.org/10.1038/s41558-021-

01097-4, 2021. 

 

Graham, N. E.: Decadal-scale climate variability in the tropical and North Pacific during the 1970s 

and 1980s: observations and model results, Clim. Dyn., 10, 135 – 162, 

https://doi.org/10.1007/BF00210626, 1994. 

 

A. A. Tsonis, K. Swanson, and S. Kravtsov: A new dynamical mechanism for major climate shifts, 

Geophys, Res. Lett., 34, L13705, doi:10.1029/2007GL030288, 2007. 

 

Swanson, K. L., and A. A. Tsonis: Has the climate recently shifted? Geophys. Res. Lett., 36, L06711, 

doi:10.1029/2008GL037022, 2009. 

 

Line 42: What do the authors mean by “diversity”? Diversity of what? 

 

Response: We have revised the unclear sentence as follow. 

Correction: (Lines 50-51, Par 2, Page 3) The climate system is intricately complex, marked by 

multivariable and multiscale nonlinear dynamics. 

  

Lines 45-63: Similar as in the first paragraph of the Introduction, the selection of references on 

climate network analysis presented here appears not very systematic and concentrated on studies 

topically relevant to the presented work. 

 

Response: Thank you for the comments. In our revised manuscript, we have carefully reviewed and 

refined the selection of references to enhance the coherence and topical relevance of our cited 

studies as follows.  

 



Correction:(Lines 52-79, Par 2, Page 3-4) Complex network analysis emerges as a potent tool for 

investigating the nonlinear dynamics and structural characteristics of complex systems (Newman, 

2018; Zou et al., 2019). Over the past several years, complex network methodologies have gained 

widespread application in the realm of climate science. In the climate network, nodes represent 

geographical locations where time series data for temperature (or other climate variables) are 

accessible. Links are established through bivariate similarity measures such as correlation, mutual 

information, or event synchronization between these time series (Tsonis et al., 2004; Donges et al., 

2009; Quiroga et al., 2002). Climate network techniques have proven effective in enhancing our 

understanding of various climate and weather phenomena, including ENSO, teleconnection patterns 

of weather, and atmospheric pollution (Tsonis et al., 2008; Yamasaki et al., 2008; Fan et al., 2017; 

Kittel et al., 2021; Zhou et al., 2015; Boers et al., 2019; Di Capua et al., 2020; Zhang et al., 2019). 

Notably, complex network analysis has unveiled the weakening of tropical circulation under global 

warming (Geng et al., 2021; Fan et al., 2018). Furthermore, these techniques have demonstrated 

utility in forecasting climate events (Boers et al., 2014; Ludescher et al., 2014; Meng et al., 2018; 

Ludescher et al., 2021).  

Complex systems naturally exhibit partitioning into multiple modules or communities, a 

significant feature of complex networks (Palla et al., 2005). In the context of climate networks, each 

community serves as a representation of a climate subsystem, shedding light on the 

interrelationships between different components (Tsonis et al., 2011). Community detection 

algorithms, rooted in modularity maximization (Newman, 2006; Cherifi et al., 2019), have been 

pivotal in unveiling structures within climate networks. These algorithms have successfully 

identified community structures in diverse contexts, including rainfall networks (Agarwal et al., 

2018), interaction networks of sea surface temperature observations (Tantet et al., 2014), global 

climate responses to ENSO phases (Kittel et al., 2021) and the quantification of climate indices . 

Yet, scant attention has been given to the impact of global warming on the community structure of 

climate networks, particularly those with small sizes. This research endeavors to employ network 

analysis and community detection to investigate how global warming is reshaping the structure of 

the global temperature network. The ultimate goal is to deepen our understanding of climate change 

and inform strategies for addressing its impacts. 

 

M. E. J. Newman: Networks. Oxford university press, 2018. 

 

Zou, Y., Donner, R. V., Marwan, N., Donges, J. F. and Kurths, J.: Complex network approaches to 

nonlinear time series analysis, Phys. Rep., 787, 1-97.https://doi.org/10.1016/j.physrep.2018.10.005, 

2019. 

 

A. A. Tsonis, and Paul J. Roebber.: The architecture of the climate network, Physica A, 333: 497-

504. https://doi.org/10.1016/j.physa.2003.10.045, 2004. 

 

J. F. Donges, Y. Zou, N. Marwan and J. Kurths: Complex networks in climate dynamics, Eur. Phys. 

J. Spec. Top. 174, 157–179, https://doi.org/10.1140/epjst/e2009-01098-2, 2009. 

 

R. Quian Quiroga, T. Kreuz, and P. Grassberge: Event synchronization: A simple and fast method 

to measure synchronicity and time delay patterns, Phys. Rev. E 66, 041904, 



https://doi.org/10.1103/PhysRevE.66.041904, 2002. 

 

A. A. Tsonis and Kyle L. Swanson: Topology and Predictability of El Niño and La Niña Networks, 

Phys. Rev. Lett. 100, 228502, https://doi.org/10.1103/PhysRevLett.100.228502, 2008. 

 

L.Yamasaki, A. Gozolchiani, and S. Havlin: Climate networks around the globe are significantly 

affected by El Niño, Phys. Rev. Lett. 100, 228501, https://doi.org/10.1103/PhysRevLett.100.228501, 

2008. 

 

J. Fan, J. Meng, Y. Ashkenazy, S. Havlin and H. J. Schellnhuber: Network analysis reveals strongly 

localized impacts of El Niño, Proc. Natl. Acad. Sci. U.S.A. 114, 7543 – 7548, 

https://doi.org/10.1073/pnas.1701214114, 2017. 

 

Kittel, T., Ciemer, C., Lotfi, N. et al.: Evolving climate network perspectives on global surface air 

temperature effects of ENSO and strong volcanic eruptions, Eur. Phys. J. Spec. Top. 230, 3075–

3100 , https://doi.org/10.1140/epjs/s11734-021-00269-9, 2021. 

 

Zhou, Dong, et al.: Teleconnection paths via climate network direct link detection, Phys. Rev. 

Lett. 115, 268501, https://doi.org/10.1103/PhysRevLett.115.268501, 2015. 

 

Niklas Boers, Bedartha Goswami, Aljoscha Rheinwalt, Bodo Bookhagen, Brian Hoskins and Jürgen 

Kurthsl: Complex networks reveal global pattern of extreme-rainfall teleconnections, Nature 566, 

373–377, https://doi.org/10.1038/s41586-018-0872-x, 2019. 

 

Di Capua, G., Kretschmer, M., Donner, R. V., van den Hurk, B., Vellore, R., Krishnan, R., and 

Coumou, D.: Tropical and mid-latitude teleconnections interacting with the Indian summer 

monsoon rainfall: a theory-guided causal effect network approach, Earth Syst. Dynam., 11, 17–34, 

https://doi.org/10.5194/esd-11-17-2020, 2020. 

 

Zhang, Y., J. Fan., Chen, X., Ashkenazy, Y., and Havlin, S.: Significant impact of Rossby waves on 

air pollution detected by network analysis, Geophys. Res. Lett., 46, 12476 – 12485, 

https://doi.org/10.1029/2019GL084649, 2019. 

 

Z. Geng, Y. Zhang, B. Lu, J. Fan, Z. Zhao and X. Chen: Network-Synchronization analysis reveals 

the weakening tropical circulations, Geophys. Res. Lett. 48, e2021GL093582, 

https://doi.org/10.1029/2021GL093582, 2021. 

 

J. Fan, Meng, J., Ashkenazy, Y., Havlin, S., Schellnhuber and H.J.: Climate network percolation 

reveals the expansion and weakeningof the tropical component under global warming, Proc. Natl. 

Acad. Sci. USA , 115, E12128–E12134, https://doi.org/10.1073/pnas.1811068115, 2018. 

 

Boers, N., Bookhagen, B., Barbosa, H. et al.: Prediction of extreme floods in the eastern Central 

Andes based on a complex networks approach. Nat Commun 5, 5199, 

https://doi.org/10.1038/ncomms6199, 2014. 

https://doi.org/10.1038/ncomms6199,


 

J. Ludescher, A. Gozolchiani, M. I. Bogachev, A. Bunde, S. Havlin and H. J. Schellnhuber: Very 

early warning of next El Niño, Proc. Natl. Acad. Sci. U.S.A. 111, 2064 – 2066, 

https://doi.org/10.1073/pnas.1323058111, 2014. 

 

J Meng, J. Fan, Y. Ashkenazy, A. Bunde and S. Havlin: Forecasting the magnitude and onset of El 

Niño based on climate network, New J. Phys. 20, 043036, https://doi.org/10.1088/1367-

2630/aabb25, 2018. 

 

J. Ludescher, Martin, M., Boers, N., Bunde, A., Ciemer, C., J.Fan, Havlin, S., Kretschmer, M., 

Kurths, J., Runge, J.; et al.: Network-based forecasting of climate phenomena, Proc. Natl. Acad. Sci. 

USA , 118, e1922872118, https://doi.org/10.1073/pnas.1922872118, 2021. 

 

Palla, G., Derényi, I., Farkas, I. et al.: Uncovering the overlapping community structure of complex 

networks in nature and society, Nature 435, 814–818, https://doi.org/10.1038/nature03607, 2005. 

 

A. A. Tsonis, Wang, G., Swanson, K.L. et al.: Community structure and dynamics in climate 

networks, Clim Dyn 37, 933–940, https://doi.org/10.1007/s00382-010-0874-3, 2011. 

 

M. E. J. Newman: Modularity and community structure in networks, Proc. Natl. Acad. Sci. 103, 

8577–8582, https://doi.org/10.1073/pnas.0601602103, 2006. 

 

Cherifi, H., Palla, G., Szymanski, B.K. et al.: On community structure in complex networks: 

challenges and opportunities. Appl Netw Sci 4, 117, https://doi.org/10.1007/s41109-019-0238-9, 

2019. 

 

A. Agarwal, N. Marwan and R. Maheswaran: Quantifying the roles of single stations within 

homogeneous regions using complex network analysis, J. Hydrol. 563, S0022169418304724-,  

https://doi.org/10.1016/j.jhydrol.2018.06.050, 2018. 

 

Tantet, A. and Dijkstra, H. A.: An interaction network perspective on the relation between patterns 

of sea surface temperature variability and global mean surface temperature, Earth Syst. Dynam., 5, 

1–14, https://doi.org/10.5194/esd-5-1-2014, 2014. 

 

Kittel, T., Ciemer, C., Lotfi, N. et al.: Evolving climate network perspectives on global surface air 

temperature effects of ENSO and strong volcanic eruptions, Eur. Phys. J. Spec. Top. 230, 3075–

3100 , https://doi.org/10.1140/epjs/s11734-021-00269-9, 2021. 

 

Line 48: The statement “variables such as temperature or geographical location are used as 

network nodes” is nonsense. Nodes in a climate network are identified with geographical locations 

at which temperature (or any other climate) time series are available for analyzing their bivariate 

similarity (e.g. correlation). In this regard, it is quite uncommon to use covariance instead of 

correlation (as suggested in line 49), since absence of normalization would lead to regions with 

high variance of temperature would then dominate the network connectivity. 



 

Response: Thanks. In the revised manuscript, we have modified the statement to avoid misleading 

as follows. 

 

Correction:(Lines 55-59, Par 1, Page 3) In the climate network, nodes represent geographical 

locations where time series data for temperature (or other climate variables) are accessible. Links 

are established through bivariate similarity measures such as correlation, mutual information, or 

event synchronization between these time series (Tsonis et al., 2004; Donges et al., 2009; Quiroga 

et al., 2002). 

 

A. A. Tsonis, and Paul J. Roebber.: The architecture of the climate network, Physica A, 333: 497-

504. https://doi.org/10.1016/j.physa.2003.10.045, 2004. 

 

J. F. Donges, Y. Zou, N. Marwan and J. Kurths: Complex networks in climate dynamics, Eur. Phys. 

J. Spec. Top. 174, 157–179, https://doi.org/10.1140/epjst/e2009-01098-2, 2009. 

 

R. Quian Quiroga, T. Kreuz, and P. Grassberge: Event synchronization: A simple and fast method 

to measure synchronicity and time delay patterns, Phys. Rev. E 66, 041904, 

https://doi.org/10.1103/PhysRevE.66.041904, 2002. 

 

Lines 73-79: The authors state that “there are many researches on the internal dynamics 

mechanisms of [the] climate system based on community structure”, but cite just two of them. The 

second part of this block of sentences, “some studies have identified novel dynamical mechanisms 

of climate systems through the characteristics of community structures in networks”, however cites 

a few studies, but all of them entirely out of context. Tsonis et al. (2007) is wrongly referenced to 

have appeared in Chaos (correct would have been Geophysical Research Letters) and just uses five 

climate indices, for which a consideration of network communities does not make any sense. 

Gozolchiani et al. (2008) is also falsely attributed to the journal Chaos instead of EPL and does not 

discuss climate network communities either. Swanson and Tsonis (2009) does not make use of any 

community or network concept, too. Finally, Elsner et al. (2009) uses visibility graphs, a concept 

entirely different from that used in the present work, without any referencing to community detection. 

Hence, I have to conclude that all four references to this sentence have nothing to do with the 

suggested statement. 

 

Response: Thanks. We have improved the references in the revised manuscript as follows.  

 

Correction: (Lines 67-75, Par 1, Page 4) Complex systems naturally exhibit partitioning into 

multiple modules or communities, a significant feature of complex networks (Palla et al., 2005). In 

the context of climate networks, each community serves as a representation of a climate subsystem, 

shedding light on the interrelationships between different components (Tsonis et al. 2011). 

Community detection algorithms, rooted in modularity maximization (Newman, 2006; Cherifi et 

al., 2019), have been pivotal in unveiling structures within climate networks. These algorithms have 

successfully identified community structures in diverse contexts, including rainfall networks 

(Agarwal et al., 2018), interaction networks of sea surface temperature observations (Tantet et al., 



2014), global climate responses to ENSO phases (Kittel et al., 2021) and the quantification of 

climate indices.  

 

Palla, G., Derényi, I., Farkas, I. et al.: Uncovering the overlapping community structure of complex 

networks in nature and society, Nature 435, 814–818, https://doi.org/10.1038/nature03607, 2005. 

 

A. A. Tsonis., Wang, G., Swanson, K.L. et al.: Community structure and dynamics in climate 

networks, Clim Dyn 37, 933–940, https://doi.org/10.1007/s00382-010-0874-3, 2011. 

 

M. E. J. Newman: Modularity and community structure in networks, Proc. Natl. Acad. Sci. 103, 

8577–8582, https://doi.org/10.1073/pnas.0601602103, 2006. 

 

Cherifi, H., Palla, G., Szymanski, B.K. et al.: On community structure in complex networks: 

challenges and opportunities. Appl Netw Sci 4, 117, https://doi.org/10.1007/s41109-019-0238-9, 

2019. 

 

A. Agarwal, N. Marwan and R. Maheswaran: Quantifying the roles of single stations within 

homogeneous regions using complex network analysis, J. Hydrol. 563, S0022169418304724-,  

https://doi.org/10.1016/j.jhydrol.2018.06.050, 2018. 

 

Tantet, A. and Dijkstra, H. A.: An interaction network perspective on the relation between patterns 

of sea surface temperature variability and global mean surface temperature, Earth Syst. Dynam., 5, 

1–14, https://doi.org/10.5194/esd-5-1-2014, 2014. 

 

Kittel, T., Ciemer, C., Lotfi, N. et al.: Evolving climate network perspectives on global surface air 

temperature effects of ENSO and strong volcanic eruptions, Eur. Phys. J. Spec. Top. 230, 3075–

3100 , https://doi.org/10.1140/epjs/s11734-021-00269-9, 2021. 

 

For community detection in their near-surface temperature network, the authors use the Louvain 

algorithm; however, this choice is neither explained nor justified. I would like to draw the authors’ 

attention to Fig. 8 of Kittel et al. (Eur. Phys. J. ST, 2021). This figure compares the year-by-year 

variability of modularity for a (full-resolution) evolving climate network of surface air temperature 

anomalies (similar to that studied in the present work) obtained by different community detection 

algorithms, demonstrating that the choice of methodology may be crucial for the outcomes of 

community detection and may lack robustness. 

 

Response: We thank the reviewer for the insightful comments. We have employed four different 

algorithms to detect community structures based on Ref (Kittel et al., 2021). Figure S3 below 

illustrates the modularity values obtained. The results highlight the robustness of the modularity 

transition around 1982 across different algorithms. Notably, the Louvain algorithm produces the 

highest modularity values, indicating its superior effectiveness in identifying community structures.  

 

Correction:(Lines 140-143, Par 2,Page 7)Supplementary Figure S3 illustrates the modularity values 

obtained by four distinct algorithms, as outlined in Ref (Kittel et al., 2021). The results highlight the 



robustness of the modularity transition around 1982 across different algorithms. Notably, the 

Louvain algorithm produces the highest modularity values, indicating its superior effectiveness in 

identifying community structures.  

 

(Lines 194-197, Par 1,Page 10)To establish robustness, we conduct the analysis using different 

community detection algorithms, the maximum time lag of 365 days, the shuffled nodes and a 6-

month shift for the time window. The obtained results are consistent, as illustrated in Supplementary 

Figures. S3-S12.   

 

Kittel, T., Ciemer, C., Lotfi, N. et al.: Evolving climate network perspectives on global surface air 

temperature effects of ENSO and strong volcanic eruptions, Eur. Phys. J. Spec. Top. 230, 3075–

3100, https://doi.org/10.1140/epjs/s11734-021-00269-9, 2021.  

 

 

Figure S3: Time evolution of modularity for different algorithms, with red representing the Louvain 

algorithm, blue representing the Walktrap algorithm, green representing the Fast Greedy algorithm, and 

purple representing the Leading Eigenvector algorithm. 

 

 
Figure S4: Probability graph of global isolated nodes using the Leading eigenvector algorithm for (a) 1949-

1981 and (b) 1982-2019. 



 
Figure S5: Probability graph of global isolated nodes using the Fast greedy algorithm for (a) 1949-1981 and 

(b) 1982-2019. 

 

 
Figure S6: Probability graph of global isolated nodes using the Walktrap algorithm for (a) 1949-1981 and 

(b) 1982-2019. 

 

 

Lines 94-96: The authors report that they “strategically select” 726 out of 10,512 grid points, but 

they do not describe how and why. With the information given in the Data section, the presented 

analysis is not reproducible. In fact, the heterogeneity or homogeneity of the spatial density of the 

considered nodes has a crucial effect on any network properties in climate networks, since nearby 

nodes are likely to have larger statistical similarity of climate variability (and, hence, a higher 

likelihood of being connected in the network). Possible solutions include consideration of area-

weighted network measures (Heitzig et al., Eur. Phys. J. B, 2012) or specific selections of nodes 

when subsampling original fixed latitude-longitude grids in climate records (Radebach et al., Phys. 

Rev. E, 2013). I am afraid that without such consideration (that I do not see reported in the paper), 

the inter-node distance in high latitudes is much smaller than close to the equator, and accordingly 

the spatial placement of network connectivity is heavily biased towards the polar regions. Under 

such circumstances, it would be highly questionable to what extent the reported findings of the 

present work can actually be interpreted meaningfully. 

 

Response: Thanks. The homogeneity of the spatial density of the considered nodes within the sphere 

has been a deliberate focus in our study. This rationale guides our selection of 726 nodes, 

strategically spaced to ensure uniform coverage of the Earth in Euclidean space, as depicted in the 

below Figure S1(a). The nodes are equally distributed in Euclidean space with distances between 

any two neighboring nodes approximately 850 km, as illustrated in Figure S1(b). This configuration 

eliminates the issue of "node spacing at high latitudes being much smaller than that near the 



equator." It's worth noting that these 726 nodes have been consistently utilized in previous studies 

for constructing climate networks (Guez et al., 2014).      

 

Correction: (Lines 90-95, Par 1, Page 5) We select 726 nodes to construct the network and maintain 

the spatial density homogeneity within the climate network nodes in the sphere as suggested in 

previous studies (Zhou et al., 2015; Guez et al., 2014). These nodes are strategically spaced to ensure 

uniform coverage of the Earth in Euclidean space, as depicted in Supplementary Figure S1(a). The 

nodes are equally distributed, with distances between any two neighboring nodes approximately 

850 km, as illustrated in Supplementary Figure S1(b).  

 

Guez, O. C., Gozolchiani, A. and Havlin, S.: Influence of autocorrelation on the topology of the 

climate network, Phys. Rev. E, 90(6), 062814, https://doi.org/10.1103/PhysRevE.90.062814, 2014. 

 

Zhou, Dong, et al.: Teleconnection paths via climate network direct link detection, Phys. Rev. 

Lett. 115, 268501, https://doi.org/10.1103/PhysRevLett.115.268501, 2015. 

 

 

 

 

Figure S1: (a) Spatial distribution of 726 network nodes in Earth and (b) the PDF of distances between 

neighboring nodes. 

 

Line 101: Detrending and subtracting the average seasonal cycle are two entirely different things. 

  

Response: We have modified the sentence in the revised manuscript as follows.   

 

Correction: (Lines 99-101, Par 2, Page 5) The time series of a node (denoted as i) undergoes 

deseasonalization by subtracting the average seasonal cycle and dividing by the standard deviation 

of the cycle, resulting in the temperature anomaly. 

 

Line 108: Why do the authors use a maximum lag of 200 days for an analysis of time windows of 

just 365 days? How robust are the reported results regarding this choice? 

 

Response: Upon comparing the results with a maximum time lag of 365 days, we observed 



similarities with those obtained using a maximum time lag of 200 days, as depicted in the below 

Figures S7 and S8. Therefore, the results demonstrate robustness across different time lag choices. 

 

Correction:(Lines 192-196, Par 1, Page 10) To establish robustness, we conduct the analysis using 

different community detection algorithms, the maximum time lag of 365 days, the shuffled nodes 

and a 6-month shift for the time window. The obtained results are consistent, as illustrated in 

Supplementary Figures. S3-S12.    

 

 

Figure S7: Same as Fig. 1 of the main text but for the maximum time lag of 365 days. 

 
Figure S8: Same as Fig. 2 of the main text but for the maximum time lag of 365 days. 

 



Line 111: Why do the authors list “minimum value” here when it is not made use of? What are 

maximum, (minimum,) mean and standard deviation taken from? In Equation (3), left and right-

hand side have the same indices, so this description is mathematically inconsistent. Also the 

following text is quite problematic. It is correct that strong auto-correlation inflates the significance 

of the cross-correlation, but not the cross-correlation itself. It is not clear how the link strength can 

eliminate the effect of serial dependence. For the latter purpose, a better alternative might be the 

consideration of p-values, as originally suggested by Palus et al. (Nonlin. Proc. Geophys., 2011), 

which however have considered only lag-zero correlations. 

 

Response: Thank you for the comment. We have modified the description of Eq. (3) in the revised 

manuscript. In Eq. (3), "max," "mean," and "std" denote the maximum value, mean, and standard 

deviation of the cross-correlation over all time lag days from -200 to 200 days between nodes i and 

j. Ref (Guez et al., 2014) have demonstrated that the link strength W can eliminate the effect of 

autocorrelation. Following the suggestion in Ref (Palus et al., 2011), we compared our results with 

those derived from a shuffled dataset, where the time series of each node was randomized without 

establishing any correlation between nodes. Specifically, we shuffled the time series of each node 

for all years while maintaining the order of 365 days per year. This process was repeated 100 times, 

and recalculations were performed for each shuffled dataset. The PDFs of the link strength W for 

both the real and shuffled data are illustrated in Figure S5 below. A threshold of theta=3.5 

corresponds to a p-value of 0.03, signifying that 97% of the values in the shuffled data fall below 

this threshold (see the below Figure S2). Consequently, the identified links are considered 

significant.         

   

 

 
Figure S2: The probability density function (PDF) of 𝐖𝐢𝐣  for both the real and shuffled data. Red line 

represents the threshold value  𝑊𝑖𝑗 = 3.3 (signifying that 95% of the values in the shuffled data fall below 

this threshold), and blue line represents the threshold value 𝑊𝑖𝑗 = 3.5 (signifying that 97% of the values in 

the shuffled data fall below this threshold). Black line represents the real data, yellow line represents the 

shuffled data, where the time series of each node was randomized without establishing any correlation 

between nodes. Specifically, we shuffled the time series of each node for all years while maintaining the order 

of 365 days per year. This process was repeated 100 times, and recalculations were performed for each 

shuffled dataset. 

 



Correction: (Lines 108-119, Par 2, Page 6) Therefore, the link strength between each pair of nodes in 

the network is denoted as follows: 

𝑊𝑖,𝑗
𝑦 =

max(𝐶𝑖,𝑗
𝑦 (𝜏))−𝑚𝑒𝑎𝑛(𝐶𝑖,𝑗

𝑦 (𝜏))

𝑠𝑡𝑑(𝐶
𝑖,𝑗
𝑦 (𝜏))

 ,                         (3)
 

in this context, “𝑚𝑎𝑥”,”𝑚𝑒𝑎𝑛” and “𝑠𝑡𝑑” denote the maximum value, mean, and standard deviation 

of the cross-correlation over all time lags from -200 to 200 days between nodes i and j. Strong 

autocorrelation can inflate the significance of cross-correlation. In contrast, the link strength 𝑊𝑖,𝑗
𝑦

 is 

more effective in mitigating the effects of autocorrelation, offering a more reasonable reflection of the 

relationship between two nodes (Guez et al., 2014). This approach has proven valuable in predicting 

climate phenomena (Ludescher et al., 2021). To select meaningful links in the network and eliminate 

false association. A threshold of 𝜃 = 3.5 (corresponding to a p-value of 0.03 (Palus et al., 2011) 

signifying that 97% of the values in the shuffled data fall below this threshold in Supplementary Figure 

S2) is applied to obtain an adjacency matrix 𝐴 (when 𝑊𝑖,𝑗
𝑦 ≥ 𝜃, the element 𝐴𝑖𝑗 = 1, otherwise, the 

element 𝐴𝑖𝑗 = 0). 

 

Guez, O. C., Gozolchiani, A. and Havlin, S.: Influence of autocorrelation on the topology of the climate 

network, Phys. Rev. E, 90(6), 062814, https://doi.org/10.1103/PhysRevE.90.062814, 2014. 

 

Palu š , M. and Novotn á , D.: Northern Hemisphere patterns of phase coherence between 

solar/geomagnetic activity and NCEP/NCAR and ERA40 near-surface air temperature in period 7–8 

years oscillatory modes, Nonlin. Processes Geophys., 18, 251–260, https://doi.org/10.5194/npg-18-

251-2011, 2011. 

 

J. Ludescher, Martin, M., Boers, N., Bunde, A., Ciemer, C., J.Fan., Havlin, S., Kretschmer, M., 

Kurths, J., Runge, J.; et al.: Network-based forecasting of climate phenomena, Proc. Natl. Acad. Sci. 

USA , 118, e1922872118, https://doi.org/10.1073/pnas.1922872118, 2021. 

 

Lines 120-122: Does the outcome of the Louvain algorithm depend on the order with which the 

different nodes are considered in the algorithm? I would also recommend some brief discussion on 

the convergence of the method to some global modularity optimum (respectively, the risk to 

approach some local optimum by following this iterative methodology). 

 

 

Response: Upon comparing the results with those derived after shuffling the order of nodes, we 

noted consistent patterns in key outcomes such as modularity and the spatial distribution of isolated 

nodes, as illustrated in Figures S9 and S10 below. Therefore, our main findings in this study appear 

independent of the algorithm employed. The robustness of these results is further affirmed by 

additional algorithms, as highlighted in the preceding response.  

 

Correction:(Lines 192-196, Par 1, Page 10) To establish robustness, we conduct the analysis using 

different community detection algorithms, the maximum time lag of 365 days, the shuffled nodes 

and a 6-month shift for the time window. The obtained results are consistent, as illustrated in 

Supplementary Figures. S3-S12.         

https://doi.org/10.5194/npg-18-251-2011
https://doi.org/10.5194/npg-18-251-2011


 

 

Figure S9: Same as Fig. 1 of the main text but for after shuffling the order of nodes. 

 
Figure S10: Same as Fig. 2 of the main text but for after shuffling the order of nodes. 

 

 

Line 127: k_i and k_j are the degrees of the nodes i and j - not the sums of the link weights (which 

would be the node strengths). The formula for modularity given in Eq. (4) applies to unweighted 

networks. 

 

Response: Thanks. We have modified "𝑘𝑖" and "𝑘𝑗". 

 

Correction:(Lines 129, Par 3, Page 6) Where ki = ∑ Aijj  and kj = ∑ Aiji  (𝑖 ≠ 𝑗) are the number 



of links connected to vertex (node) 𝑖 and  𝑗 . 

 

The authors choose their running time windows to coincide with the calendar years. This may bear 

the risk of mixing months affected by a declining El Nino (winter/spring) with those of an 

approaching La Nina (fall/winter) – or vice versa - during the same year. From numerous previous 

works, we know that El Nino and La Nina prominently affect global surface air temperature 

anomaly based networks (see works by Gozolchiani et al. (2008), Yamasaki et al. (Phys. Rev. Lett., 

2008), Tsonis et al. (Phys. Rev. Lett., 2008), Ludescher et al. (PNAS, 2013), Radebach et al. (Phys. 

Rev. E, 2013), and many others). Mixing the effects of opposite ENSO phases might blur the analysis 

results (especially since the statistics of El Nino and La Nina episodes has changed over the last 

decades). I would suggest repeating the presented analysis with time windows shifted by 6 months 

to check for the robustness of the reported findings. 

 

Response: We appreciate the reviewer for the comment. We have repeated our analysis with time 

windows shifted by 6 months as shown in Figure S8 and S9 below. We also found consistent patterns 

in key outcomes such as modularity and the spatial distribution of isolated nodes, as illustrated in 

Figures S11 and S12 below.  

 

Correction:(Lines 192-196, Par 1, Page 10) To establish robustness, we conduct the analysis using 

different community detection algorithms, the maximum time lag of 365 days, the shuffled nodes 

and a 6-month shift for the time window. The obtained results are consistent, as illustrated in 

Supplementary Figures. S3-S12.         

 

 



 

Figure S11: Same as Fig. 1 of the main text but for a 6-month shift for the time window. 

 

 
Figure S12: Same as Fig. 2 of the main text but for a 6-month shift for the time window. 

 

Lines 142-143: It is trivial that average community size and number of communities display opposite 

trends, since both characteristics exhibit a trivial inverse proportionality: <s>=N/N_c. So 

discussing both characteristics appears somewhat pointless to me. 

 

Response: We are grateful for the valuable suggestion. We have modified the average community 

size in Fig. 1c to now represent number of isolated nodes as a function of year. There is a non-trivial 



relationship between number of communities and number of isolated nodes as shown in Fig. 1e.     

 

Correction: (Lines 148-150, Par 2, Page 7) Figure 1(c) also shows the escalating count of isolated 

nodes since 1982. The isolated node is identified by the Louvain algorithm with a community size of 

1 (equivalent to a degree of zero, 𝑘𝑖 = 0). 

 

The authors attribute the timing of the identified changes in community statistics around the year 

1982 to the 1982/83 El Nino episode. I am wondering if there are any other findings demonstrating 

a similarly long-lasting effect of this particular El Nino event on the global climate system. Besides 

overall global temperature rise (being heterogeneously distributed in space and time), other 

potential reasons for the reported marked shift in community properties have not been discussed 

(including multidecadal variability). Tsonis et al. (2007) and Swanson and Tsonis (2009) – two 

references cited in the present manuscript – have partly discussed a late-1970s climate shift, and 

could serve as an initial source of inspiration for identifying further potential origins (but there is 

far more, also more recent, literature). In terms of the used dataset, one should also not forget that 

the availability of satellite data assimilated into the reanalysis products has started only in the late 

1970s, so that the observed changes could also be affected by underlying heterogeneities in the 

considered data. I do not claim that this is the case, but this possibility cannot be simply ruled out 

by the present analysis. 

 

Response: We appreciate the reviewer's suggestions. The observed systematic change in community 

structure since the early 1980s could be linked to the reported climate shift, as indicated by Refs 

(Graham, N.E., 1994; Tsonis et al., 2007; Swanson, 2009) utilizing both reanalysis data and climate 

simulations. The substantial increase in greenhouse gas emissions has contributed to a shift in the 

mean climate state since the 1980s in the tropical belt (Cai et al., 2021). This shift is further evident 

in the altered properties of El Niño since the early 1980s (Gan et al., 2023). 

 

Correction: (Lines 150-155, Par 2, Page 7-8) The observed systematic change in community 

structure in since the early 1980s could be linked to the reported climate shift, as indicated by Refs 

(Graham, 1994; Tsonis et al., 2007; Swanson, 2009) utilizing both reanalysis data and climate 

simulations. The substantial increase in greenhouse gas emissions has contributed to a shift in the 

mean climate state since the 1980s in the tropical belt (Cai et al., 2021). This shift is further evident 

in the altered properties of El Niño since the early 1980s (Gan et al., 2023).  

 

Graham, N.E.: Decadal-scale climate variability in the tropical and North Pacific during the 1970s 

and 1980s: observations and model results, Clim. Dyn. 10, 135 – 162, 

https://doi.org/10.1007/BF00210626, 1994. 

 

A. A. Tsonis, K. Swanson, and S. Kravtsov: A new dynamical mechanism for major climate shifts, 

Geophys. Res. Lett., 34, L13705, doi:10.1029/2007GL030288, 2007. 

 

Swanson, K. L., and A. A. Tsonis: Has the climate recently shifted? Geophys. Res. Lett., 36, L06711, 

doi:10.1029/2008GL037022, 2009. 

 

https://doi.org/10.1007/BF00210626,


Cai, W., Santoso, A., Collins, M. et al.: Changing El Niño–Southern Oscillation in a warming 

climate, Nat Rev Earth Environ 2, 628–644, https://doi.org/10.1038/s43017-021-00199-z, 2021. 

 

Gan, R., Liu, Q., Huang, G. et al.: Greenhouse warming and internal variability increase extreme 

and central Pacific El Niño frequency since 1980, Nat. Commun. 14, 394, 

https://doi.org/10.1038/s41467-023-36053-7, 2023. 

 

Figure 1f: Since the community sizes have been binned for showing the relative frequencies (likely 

a more suitable term than “probability”), I would recommend showing them as a histogram with 

bars instead of a line plot. Alternatively, a cumulative distribution plot taking all explicit values of 

community sizes into account might be a reasonable alternative. 

Response: Thanks for the comment. We have modified Fig. 1f in the revised manuscript as follows 

to the histogram with the normalized frequencies (normalized by the total number of communities 

for each period).   

 

Correction: (Fig. 1(f))     

 

 

 

 
Figure 1: Temporal evolution of (a) network modularity, (b) the number of communities and (c) the number 

of isolated nodes from 1949 to 2019, illustrated by the green dashed line denoting the average level, and the 

https://doi.org/10.1038/s41467-023-36053-7


red dashed line represents the transition around 1982. Scatter plot of (d) the network modularity, (e) the 

number of communities versus the number of isolated nodes during the period 1949-2019. (f) The normalized 

frequencies of community size for 1949-1981 and 1982-2019 respectively (normalized by the total number of 

communities for each period), where the first bar represents the normalized frequency of the community with 

a node. 

 

Line 158: Nodes are commonly called isolated when their degree is zero (i.e., there do not exist any 

links to other nodes). It is not clear if the definition of community size 1 considered here is equivalent, 

or if nodes can also form a community of size 1 under the Louvain algorithm if there exist such 

connections (and if so, why such nodes are not attributed to any community). This should be clarified. 

In any case, I would recommend using the more standard definition of degree k_i=0 for isolated 

nodes to avoid confusion. Note that the fact that “isolated nodes” are commonly restricted to the 

tropical belt (Fig. 2, ll. 181-184) is compatible with my aforementioned concern regarding a 

connectivity bias towards the poles due to the heterogeneous spatial density of nodes. 

 

Response: We have addressed this point in the revised manuscript. Specifically, the isolated node 

identified by the Louvain algorithm with a community size of 1 is equivalent to having a degree of 

zero (ki=0).  

The presence of isolated nodes in the tropical belt cannot be attributed to the heterogeneous spatial 

density of nodes since the nodes are strategically spaced to ensure uniform coverage of the Earth in 

Euclidean space. Notably, utilizing the Pearson correlation coefficient instead of the strength W for 

network construction yields very different results. When employing the Pearson correlation 

coefficient, nodes in the tropical belt exhibit high connectivity. The distinctions between these two 

types of network links have been extensively discussed by Ref (Guez et al., 2014). The lower 

frequency of time series in the tropical belt, coupled with strong autocorrelation, results in an 

overestimation of the cross-correlation by calculating the Pearson correlation coefficient between 

two nodes. Guez et al. has also demonstrated that link strength W is more effective in mitigating the 

effects of autocorrelation, providing a more reasonable reflection of the relationship between two 

nodes. This approach has proven valuable in predicting climate phenomena (Ludescher et al., 2021). 

 

Correction: (Lines 149-150, Par 2, Page 7) The isolated node is identified by the Louvain algorithm 

with a community size of 1 (equivalent to a degree of zero, 𝑘𝑖 = 0). 

 

Guez, O. C., Gozolchiani, A. and Havlin, S.: Influence of autocorrelation on the topology of the 

climate network, Phys. Rev. E, 90(6), 062814, https://doi.org/10.1103/PhysRevE.90.062814, 2014. 

 

J. Ludescher, Martin, M., Boers, N., Bunde, A., Ciemer, C., J.Fan, Havlin, S., Kretschmer, M., 

Kurths, J., Runge, J.; et al.: Network-based forecasting of climate phenomena, Proc. Natl. Acad. Sci. 

USA , 118, e1922872118, https://doi.org/10.1073/pnas.1922872118, 2021. 

 

A non-mandatory suggestion: The authors study the number of communities (which, when viewed 

from a statistical perspective as a clustering problem, is a matter of statistical model selection that 

is not clearly described in the manuscript) – along with the equivalent information on average 

community size – along with the corresponding modularity. In network theory, there is the more 



fundamental concept of components (if the network is split into disconnected subgraphs), which are 

less ambiguous than communities. (Besides both depending on the threshold for distinguishing links 

from non-links.) I wonder if statistics used in the analysis based on network components could be 

adapted to communities as well (e.g., the size of the largest group of nodes, the number of groups 

with two elements, or others, which are often considered for network components in the study of 

percolation processes). Maybe such measures might provide any useful additional information 

beyond the two characteristics studied in the present manuscript. 

 

Response: Thank you very much to the reviewer for the intriguing suggestion. The network 

component indeed offers valuable information, such as the percolation threshold. In this study, our 

emphasis lies in exploring the characteristics of amplified isolation in climate networks. This trait 

should remain consistent for both components and communities due to the shared definition of 

isolated nodes. Nevertheless, we anticipate that exploring various characteristics related to the giant 

component and subgraphs, especially under global warming, could yield interesting results. We plan 

to undertake this research in our future work.              

 

Lines 186-188: Attributing the changes in community structure (especially increasing frequency of 

isolated nodes) to global warming (i.e., the average temperature at all considered nodes) could be 

merely a coincidence; a direct statistical link between these properties (which all change gradually 

with time) has not been demonstrated nor discussed in a plausible manner. Especially, lines 217-

219 suggest increase ice melt as one reason for the reorganization of network connectivity, which 

however hardly explains the changes reported by the authors, which are most dominant in the 

tropics where there is hardly any ice to melt. Lines 221-224 appear as an attempt to put the reported 

findings into a broader context, but any details are unfortunately missing. What are specific 

processes, and could the authors support their corresponding claims by appropriate references? 

 

Response: Thank you for your valuable comments. We have made corresponding revisions to these 

statements and have included appropriate references to support our claims. 

 

Correction: (Lines 192-193, Par 1, Page 10) Hence, isolated nodes in the equatorial region have 

been systematically increasing since the early 1980s, resulting in changes to the climate network 

structure. 

 

(Lines 222-229, Par 1, Page 11)Previous studies have suggested the weakening of tropical 

circulations such as the Hadley cell and the Walker circulation, in response to increasing greenhouse 

gases (Lu et al., 2007; Tokinaga et al., 2012; Cai et al., 2021). This weakening may contribute to the 

amplified isolation of nodes in tropical oceans. Additionally, the weakened tropical circulation could 

potentially trigger extreme climate phenomena, such as the intensification of El Niño, with more 

pronounced teleconnection impacts on distant regions (Fan et al., 2017; Hu et al., 2021). This could, 

in turn, strengthen the linkage between equatorial regions and continents in climate networks. 

 

Lu, J., G. A. Vecchi, and T. Reichler: Expansion of the Hadley cell under global warming, Geophys. 

Res. Lett., 34, L06805, doi:10.1029/2006GL028443, 2007. 

 



Tokinaga, H., Xie, SP., Deser, C. et al.: Slowdown of the Walker circulation driven by tropical Indo-

Pacific warming, Nature 491, 439–443, https://doi.org/10.1038/nature11576, 2012. 

 

Cai, W., Santoso, A., Collins, M. et al.: Changing El Niño–Southern Oscillation in a warming 

climate, Nat Rev Earth Environ 2, 628–644, https://doi.org/10.1038/s43017-021-00199-z, 2021. 

 

J. Fan, Meng, J., Ashkenazy, Y., Havlin, S., and Schellnhuber, H. J.: Network analysis reveals 

strongly localized impacts of El Niño. Proceedings of the National Academy of Sciences, 114(29), 

7543-7548, https://doi.org/10.1073/pnas.1701214114, 2017. 

 

Hu K., Huang, G., Huang, P. et al.: Intensification of El Niño-induced atmospheric anomalies under 

greenhouse warming, Nat. Geosci. 14, 377–382, https://doi.org/10.1038/s41561-021-00730-3, 

2021. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESPONSES TO REVIEWER #2 COMMENTS 

We are grateful to you and the reviewers for the constructive feedback that significantly enhanced 

our manuscript. We have comprehensively addressed all of the reviewers' comments. For ease of 

reference, we offer a detailed response to each comment below. The reviewers' remarks are 

presented in blue italics, while our responses are in standard black font. Modifications made in the 

revised manuscript, also quoted here, are highlighted in red.  

 

The manuscript provides a comprehensive analysis of the climate system's evolution under 

the impact of global warming, employing climate network methods. The authors have effectively 

used climate network analysis and Louvain community detection to reveal a significant 

phenomenon: notable alterations in the climate network's structure. These changes include the 

network's modularization, the number of communities, and the average size of these communities. 

A particularly striking finding was the shift in the community structure around 1982, marked by a 

significant rise in isolated nodes, predominantly in the equatorial ocean regions. 

 

Response: We thank the reviewer for the positive remarks regarding our results. 

 

The study is engaging and well-articulated. Nonetheless, I have a few reservations that I 

believe, if addressed, could further solidify the scientific validity of this manuscript: 

The field of complex network studies presents a variety of community detection algorithms, among 

which Louvain is a prominent choice. It would enhance the manuscript if the authors could 

elucidate their preference for the Louvain algorithm over other available options. Alternatively, to 

affirm the robustness of their findings, the authors might consider applying and comparing results 

from different algorithms. 

 

Response: We thank the reviewer for the insightful comments. We have employed four different 

algorithms to detect community structures. Figure S3 below illustrates the modularity values 

obtained. The results highlight the robustness of the modularity transition around 1982 across 

different algorithms. Notably, the Louvain algorithm produces the highest modularity values, 

indicating its superior effectiveness in identifying community structures.  

 

Correction: (Lines 140-143, Par 2, Page 7) Supplementary Figure S3 illustrates the modularity 

values obtained by four distinct algorithms, as outlined in Ref (Kittel et al., 2021). The results 

highlight the robustness of the modularity transition around 1982 across different algorithms. 

Notably, the Louvain algorithm produces the highest modularity values, indicating its superior 

effectiveness in identifying community structures.  
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(Lines 193-196, Par 1, Page 10) To establish robustness, we conduct the analysis using different 

community detection algorithms, the maximum time lag of 365 days, the shuffled nodes and a 6-

month shift for the time window. The obtained results are consistent, as illustrated in Supplementary 

Figures. S3-S12.         

 

 

Figure S3: Time evolution of modularity for different algorithms, with red representing the Louvain 

algorithm, blue representing the Walktrap algorithm, green representing the Fast Greedy algorithm, and 

purple representing the Leading Eigenvector algorithm. 

 

 
Figure S4: Probability graph of global isolated nodes using the Leading eigenvector algorithm for (a) 1949-

1981 and (b) 1982-2019. 

 
Figure S5: Probability graph of global isolated nodes using the Fast greedy algorithm for (a) 1949-1981 and 

(b) 1982-2019. 

 

  



Lines 35-36: Previous papers have reported the collapse of AMOC; please provide more relevant 

references. 

Response: We thank the reviewer for the comment and added the relevant refs in the revised 

manuscript. 

 

Correction: (Lines 42-44, Par 2, Page 2) Additionally, the Atlantic Meridional Overturning 

Circulation (AMOC) may undergo a transition, with potential collapse having severe impacts on the 

climate in the North Atlantic and European regions (Rahmstorf et al., 2015; Boers, 2021). 
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01097-4, 2021. 

 

In lines 42-43, the statement "The climate system is highly complex, characterized by diversity, 

multiscale dynamics, and nonlinearity" is vague and should be clarified. 

 

Response: We sincerely appreciate the reviewer for taking the time to provide insightful feedback 

on our manuscript. We have made additions to the revised manuscript based on your comments. 

 

Correction:(Lines 49-52, Par 2, Page 3) Faced with these climatic systematic changes, the adoption 

of complex network analysis has become increasingly essential in the realm of climate science. The 

climate system is intricately complex, marked by multivariable and multiscale nonlinear dynamics. 

Unveiling the internal structure of the climate system necessitates the application of sound research 

methods.   

 

In line 47, change to "(e.g., precipitation, temperature, and wind)." 

 

Response: Thank you so much for your comment. Based on your suggestions, we have made the 

following adjustments. 

Correction:(Lines 46-48, Par 1, Page 3) Understanding these systematic changes is imperative for 

predicting future climate scenarios (e.g., precipitation, temperature, wind) and formulating effective 

adaptation and mitigation strategies.  

 

Line 49: The link of the climate network can be defined in various ways, such as synchronization 

and mutual information. 

Response: We made changes as follows. 

 

Correction:(Lines 55-59, Par 1, Page 3) In the climate network, nodes represent geographical 

locations where time series data for temperature (or other climate variables) are accessible. Links 

are established through bivariate similarity measures such as correlation, mutual information, or 



event synchronization between these time series (Tsonis et al., 2004; Donges et al., 2009; Quiroga 

et al., 2002). 
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In line 52, use past tense in "Donges et al. employed..." and ensure consistency with tenses in 

surrounding sentences. 

Response: Done! We rewrote the sentence as follows. 

 

Correction:(Lines 55-66, Par 1, Page 3-4) In the climate network, nodes represent geographical 

locations where time series data for temperature (or other climate variables) are accessible. Links 

are established through bivariate similarity measures such as correlation, mutual information, or 

event synchronization between these time series (Tsonis et al., 2004; Donges et al., 2009; Quiroga 

et al., 2002). Climate network techniques have proven effective in enhancing our understanding of 

various climate and weather phenomena, including ENSO, teleconnection patterns of weather, and 

atmospheric pollution (Tsonis et al., 2008; Yamasaki et al., 2008; Fan et al., 2017; Kittel et al., 2021; 

Zhou et al., 2015; Boers et al., 2019; Di Capua et al., 2020; Zhang et al., 2019). Notably, complex 

network analysis has unveiled the weakening of tropical circulation under global warming (Geng et 

al., 2021; Fan et al., 2018). Furthermore, these techniques have demonstrated utility in forecasting 

climate events (Boers et al., 2014; Ludescher et al., 2014; Meng et al., 2018; Ludescher et al., 2021). 
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Line 70: Remove "deeper." 

Response: Thanks. We rewrote the sentence as follows.  

Correction:(Lines 67-70, Par 2, Page 4) Complex systems naturally exhibit partitioning into multiple 

modules or communities, a significant feature of complex networks (Palla et al., 2005). In the 

context of climate networks, each community serves as a representation of a climate subsystem, 

shedding light on the interrelationships between different components (Tsonis et al., 2011).   
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Line 95: Clarify why 726 nodes were chosen in detail. 

 

Response: Thanks. The homogeneity of the spatial density of the considered nodes within the sphere 

has been a deliberate focus in our study. This rationale guides our selection of 726 nodes, 

strategically spaced to ensure uniform coverage of the Earth in Euclidean space, as depicted in the 

below Figure S1(a). The nodes are equally distributed in Euclidean space with distances between 

any two neighboring nodes approximately 850 km, as illustrated in Figure S1(b).    

 

Correction: (Lines 90-95, Par 1, Page 5) We select 726 nodes to construct the network and maintain 

the spatial density homogeneity within the climate network nodes in the sphere as suggested in 

previous studies (Zhou et al., 2015; Guez et al., 2014). These nodes are strategically spaced to ensure 

uniform coverage of the Earth in Euclidean space, as depicted in Supplementary Figure S1(a). The 

nodes are equally distributed, with distances between any two neighboring nodes approximately 

850 km, as illustrated in Supplementary Figure S1(b).  
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Figure S1: (a) Spatial distribution of 726 network nodes in Earth and (b) the PDF of distances between 

neighboring nodes. 

 

 

Line 108: Add the unit of the time lag. 

 

Response: Done. 

 

Correction:(Lines 106-107, Par 1, Page 6) 𝑡 represents time and the time lag is denoted as 𝜏 ∈ [0,200] 

days.  

 

Lines 112-114: The statement “The strength W_{ij} reflects the deviation and serves to eliminate 

the effect of autocorrelation, aiming for a more desirable outcome.” needs additional support or 

citation of a relevant study. 

Response: Thanks for the comment. In accordance with your request, we have added the relevant 

references. 

Correction: (Lines 112-116, Par 2, Page 6) Strong autocorrelation can inflate the significance of cross-

correlation. In contrast, the link strength 𝑊𝑖,𝑗
𝑦

 is more effective in mitigating the effects of 

autocorrelation, offering a more reasonable reflection of the relationship between two nodes (Guez et al., 

2014). This approach has proven valuable in predicting climate phenomena (Ludescher et al., 2021). 
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Lines 221-224: The conclusion mentions enhanced connectivity between nodes in the equatorial 

region and the European continent due to changes in atmospheric circulation patterns. Consider 

citing relevant literature to support this claim. 



 

Response: Thank you for your valuable comments. We have made corresponding revisions to these 

statements and have included appropriate references to support our claims. 

 

Correction: (Lines 221-229, Par 1, Page 11) Previous studies have suggested the weakening of 

tropical circulations such as the Hadley cell and the Walker circulation, in response to increasing 

greenhouse gases (Lu et al., 2007; Tokinaga et al., 2012; Cai et al., 2021).  The weakened tropical 

circulations can be associated with reduced link strength, a decrease in the number of links, leading 

to a subsequent increase in the number of isolated nodes. To further illustrate this phenomenon, we 

present the averaged strength (W) and the number of links over the tropical Pacific Ocean, Indian 

Ocean, and Atlantic Ocean as functions of years in Supplementary Figure S13, which indeed 

indicates significantly decreasing trends in the averaged strength (W) and the number of links for 

these oceans. 

 

Lu, J., G. A. Vecchi, and T. Reichler: Expansion of the Hadley cell under global warming, Geophys. 

Res. Lett., 34, L06805, doi:10.1029/2006GL028443, 2007. 

 

Tokinaga, H., Xie, SP., Deser, C. et al.: Slowdown of the Walker circulation driven by tropical Indo-

Pacific warming, Nature 491, 439–443, https://doi.org/10.1038/nature11576, 2012. 

 

Cai, W., Santoso, A., Collins, M. et al.: Changing El Niño–Southern Oscillation in a warming 

climate, Nat Rev Earth Environ 2, 628–644, https://doi.org/10.1038/s43017-021-00199-z, 2021. 


