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Abstract10

Our study utilizes global reanalysis of near-surface daily air temperature data, spanning from 1949 to11

2019, to construct climate networks. By employing community detection for each year, we reveal the12

evolving community structure of the climate network within the context of global warming. Our13

findings indicate significant changes in measures such as the network modularity and the number of14

communities, over the past 30 years. Notably, the community structure of the climate network15

undergoes a discernible transition in the early 1980s. We attribute this transition to the substantial16

increase in isolated nodes since the 1980s, primarily concentrated in equatorial ocean regions.17

Additionally, we demonstrate that nodes experiencing amplified isolation tend to diminish connectivity18

with other nodes globally, particularly those within the same oceanic basin, while showing a significant19

strengthening of connections with the Eurasian and North African continents. We deduce that the20

mechanism driving amplified isolation in the climate network may be comprehended through the21
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weakening of tropical circulations such as the Hadley cell and the Walker circulation in response to22

increasing greenhouse gases.23

Key words：Climate network, community detection, modularity, isolated nodes.24

1 Introduction25

Since the 20th century, with the continuous increase of greenhouse gas emissions, the global26

climate system is undergoing warming (IPCC, 2023; Christopher et al., 2012; Hallegatte et al., 2011;27

Hunt and Watkiss, 2011). Global warming has led to a significant increase in various extreme weather28

events, encompassing extreme heatwaves, cold spells, heavy precipitation, droughts, and severe29

hurricanes etc. (Doney et al., 2009, Mondal et al., 2021, Konapala et al,. 2020, Mukherjee et al., 2020).30

In addition, it has a serious impact on global air quality, food production, energy consumption,31

transportation, water resources, economic and ecosystems, etc. (Thomas et al., 2004; Salehyan and32

Hendrix, 2014; Nordhaus and William D., 2017; Burke et al., 2015). Global warming has triggered33

significant transformations in atmospheric circulation and ocean circulation patterns, impacting the34

dynamics of the Earth's climate system (Shepherd, T., 2014; Vecchi, Gabriel A. and Brian J. Soden,35

2007). The rise in global temperatures is a key driver of alterations in atmospheric circulation patterns,36

especially in the tropical belt, influencing phenomena such as the Hadley Cell, Walker Circulation, and37

the Madden-Julian oscillation (Lu et al., 2007; Tokinaga et al., 2012; Hu et al., 2021; Chang et al.,38

2015). The expansion of the tropics and changes in the distribution of sea surface temperatures39

contribute to shifts in the intensity and frequency of tropical cyclones and the behavior of the El40

Niño-Southern Oscillation (ENSO) (Emanuel et al., 2005; Kossin et al., 2020; Cai et al., 2021). These41

modifications in tropical circulations have widespread implications for precipitation patterns, extreme42

weather events, and regional climate variability. Additionally, the Atlantic Meridional Overturning43
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Circulation (AMOC) may undergo a transition, with potential collapse having severe impacts on the44

climate in the North Atlantic and European regions (Rahmstorf et al., 2015; Boers, 2021). Previous45

studies have argued that the global climate experienced a shift in the 1970s (Graham, 1994; Tsonis et46

al., 2007; Swanson et al., 2009). Understanding these systematic changes is imperative for predicting47

future climate scenarios (e.g., precipitation, temperature, wind) and formulating effective adaptation48

and mitigation strategies.49

Faced with these climatic systematic changes, the adoption of complex network analysis has50

become increasingly essential in the realm of climate science. The climate system is intricately51

complex, marked by multivariable and multiscale nonlinear dynamics. Unveiling the internal structure52

of the climate system necessitates the application of sound research methods. Complex network53

analysis emerges as a potent tool for investigating the nonlinear dynamics and structural characteristics54

of complex systems (Newman, 2018; Zou et al., 2019). Over the past several years, complex network55

methodologies have gained widespread application in the realm of climate science. In the climate56

network, nodes represent geographical locations where time series data for temperature (or other57

climate variables) are accessible. Links are established through bivariate similarity measures such as58

correlation, mutual information, or event synchronization between these time series (Tsonis et al.,59

2004; Donges et al., 2009; Quiroga et al., 2002). Climate network techniques have proven effective in60

enhancing our understanding of various climate and weather phenomena, including ENSO,61

teleconnection patterns of weather, and atmospheric pollution (Tsonis et al., 2008; Yamasaki et al.,62

2008; Fan et al., 2017; Kittel et al., 2021; Zhou et al., 2015; Boers et al., 2019; Di Capua et al., 2020;63

Zhang et al., 2019). Notably, complex network analysis has unveiled the weakening of tropical64

circulation under global warming (Geng et al., 2021; Fan et al., 2018). Furthermore, these techniques65
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have demonstrated utility in forecasting climate events (Boers et al., 2014; Ludescher et al., 2014;66

Meng et al., 2018; Ludescher et al., 2021).67

Complex systems naturally exhibit partitioning into multiple modules or communities, a68

significant feature of complex networks (Palla et al., 2005). In the context of climate networks, each69

community serves as a representation of a climate subsystem, shedding light on the interrelationships70

between different components (Tsonis et al., 2011). Community detection algorithms, rooted in71

modularity maximization (Newman, 2006; Cherifi et al., 2019), have been pivotal in unveiling72

structures within climate networks. These algorithms have successfully identified community structures73

in diverse contexts, including rainfall networks (Agarwal et al., 2018), interaction networks of sea74

surface temperature observations (Tantet et al., 2014), global climate responses to ENSO phases (Kittel75

et al., 2021) and the quantification of climate indices. Yet, scant attention has been given to the impact76

of global warming on the community structure of climate networks, particularly those with small sizes.77

This research endeavors to employ network analysis and community detection to investigate how78

global warming is reshaping the structure of the global temperature network. The ultimate goal is to79

deepen our understanding of climate change and inform strategies for addressing its impacts.80

Therefore, based on the near-surface temperature structure climate network, this paper studies the81

impact of global warming on climate network. Employing the Louvain community detection algorithm,82

it analyzes the evolution of network topology and reveals the underlying factors driving changes in the83

network structure. The main structure of this paper is as follows: Section 2 introduces the data and84

methods; Section 3 discusses the evolution of climate network topology in the context of global85

warming; Section 4 summarizes the results.86
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2 Data87

This study utilizes daily air temperature reanalysis data from the National Centers for88

Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) at a89

resolution of 2.5° × 2.5° , spanning the near-surface (sig995 level) temperatures from 1949 to 2019.90

The dataset comprises 10,512 grid points over the global. We select 726 nodes to construct the network91

and maintain the spatial density homogeneity within the climate network nodes in the sphere as92

suggested in previous studies (Zhou et al., 2015; Guez et al., 2014). These nodes are strategically93

spaced to ensure uniform coverage of the Earth in Euclidean space, as depicted in Supplementary94

Figure S1(a). The nodes are equally distributed, with distances between any two neighboring nodes95

approximately 850 km, as illustrated in Supplementary Figure S1(b).96

3 Methods97

3.1 Constructing the climate network98

Climate networks are constructed based on the near-surface air temperature data for each year99

from 1949 to 2019, resulting in a total of 71 established climate networks. The time series of a node100

(denoted as �) undergoes deseasonalization by subtracting the average seasonal cycle and dividing by101

the standard deviation of the cycle, resulting in the temperature anomaly (denoted as ��
�(�)，where �102

is the index of year)(Fan et al.,2018). To obtain the link strength between each pair of nodes � and �,103

we then calculate the time-lagged cross-correlation function(Fan et al., 2021):104

��,�
� ( − �) =

��
�(�)��
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�(�) ��
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(��
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where denotes the mean value, based on which � � = 1
365 �=1

365 � � − �� ; t represents time and107

the time lag is denoted as τ ∈ 0,200 days.108

Therefore, the link strength between each pair of nodes in the network is denoted as follows:109

��,�
� =

��� ��,�
� � −���� ��,�

� �

��� ��,�
� �

, (3)110

in this context,“max”,”mean”and“std”denote the maximum value, mean, and standard deviation111

of the cross-correlation over all time lags from -200 to 200 days between nodes i and j. Strong112

autocorrelation can inflate the significance of cross-correlation. In contrast, the link strength Wi,j
y is113

more effective in mitigating the effects of autocorrelation, offering a more reasonable reflection of the114

relationship between two nodes (Guez et al., 2014). This approach has proven valuable in predicting115

climate phenomena (Ludescher et al., 2021). To select meaningful links in the network and eliminate116

false associations. A threshold of θ = 3.5 (corresponding to a p-value of 0.03 (Palus et al., 2011)117

signifying that 97% of the values in the shuffled data fall below this threshold in Supplementary Figure118

S2) is applied to obtain an adjacency matrix A (when Wi,j
y ≥ θ , the element Aij = 1 , otherwise, the119

element Aij = 0).120

3.2 Community Detection121

Subsequently, the obtained sequence of climate networks underwent community detection using122

the Louvain community detection algorithm. The key steps of this method involve traversing each node123

in the network and attempting to relocate it to a neighboring node in a different community to optimize124

the modularity � . If moving a node to another community increases the modularity, the move is125

executed; otherwise, it remains unchanged. In other words, the process assesses whether the increment126

in modularity ∆� resulting from the move is positive, and this procedure is repeated until no further127

node movements are possible. Here is the formula for calculating modularity(Blondel et al., 2008):128

� = 1
2� �,� [��� − ����

2�
]�(�� , ��)� , (4)129



7

where ki = j Aij� and kj = i Aij� (i ≠ j) are the number of links connected to vertex (node) i and j, ci130

represents the community to which node � belongs, �(�, �) equals 1 if � = �, otherwise 0, and � =131

1
2 �� ���� . Modularity has become a metric for assessing the quality of community divisions, with high132

modularity indicating strong internal connections within a community and weaker connections with133

other communities.134

4 Results135

In order to investigate the evolution of the network's topology in the context of global warming,136

we construct the network for each year from 1949 to 2019 and apply community detection to the137

network. In Figure 1(a), we show that the network modularity for the early years (1949-1981) is largely138

below the average level. While in the recent years (1982-2019), the network modularity remain139

consistently above the average level. There is a significant transition in the modularity around 1982.140

Supplementary Figure S3 illustrates the modularity values obtained by four distinct algorithms, as141

outlined in Ref (Kittel et al., 2021). The results highlight the robustness of the modularity transition142

around 1982 across different algorithms. Notably, the Louvain algorithm produces the highest143

modularity values, indicating its superior effectiveness in identifying community structures. The144

number of communities and modularity exhibit similar evolutionary patterns as shown in Figure 1(b).145

Although the trend in the change of the number of communities is not as pronounced as the trend in146

network modularity, it is still evident that the number of communities was mostly below the average147

level in the first 33 years, while in the recent 38 years, the majority of community numbers are above148

the average level (as shown in Figure 1(b)). Figure 1(c) also shows the escalating count of isolated149

nodes since 1982. The isolated node is identified by the Louvain algorithm with a community size of 1150

(equivalent to a degree of zero, ki = 0). The observed systematic change in community structure since151
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the early 1980s could be linked to the reported climate shift, as indicated by Refs (Graham, 1994;152

Tsonis et al., 2007; Swanson, 2009) utilizing both reanalysis data and climate simulations. The153

substantial increase in greenhouse gas emissions has contributed to a shift in the mean climate state154

since the 1980s in the tropical belt (Cai et al., 2021 ). This shift is further evident in the altered155

properties of El Niño since the early 1980s (Gan et al., 2023 ).156

157
Figure 1: Temporal evolution of (a) network modularity, (b) the number of communities and (c) the number158

of isolated nodes from 1949 to 2019, illustrated by the green dashed line denoting the average level, and the159

red dashed line represents the transition around 1982. Scatter plot of (d) the network modularity, (e) the160

number of communities versus the number of isolated nodes during the period 1949-2019. (f) The161

normalized frequencies of community size for 1949-1981 and 1982-2019 respectively (normalized by the162

total number of communities for each period), where the first bar represents the normalized frequency of163

the community with a node.164

Since 1982, the number of communities has been on the rise. This trend appears to be closely linked to165
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the increasing count of isolated nodes. We observe the relationship between modularity and the number166

of isolated nodes and find a strong positive correlation with a correlation coefficient of 0.674 (as shown167

in Figure 1(d)). The high correlation with network modularity indicates that the trend in the number of168

isolated nodes is consistent with changes in the network's topological structure. Furthermore, from169

Figure 1(e), we observe that the correlation between the number of isolated nodes and the number of170

communities reaches 0.929. The high correlation with the number of communities suggests that the171

overall increase in the number of communities is driven by the increase in isolated nodes. To further172

strengthen the verification of whether the changes in the number of communities and network173

modularity since 1982 are related to the number of isolated nodes. We examine represents the174

normalized frequency of community sizes in 1949-1981 and 1982-2019 (as shown in Figure 1(f)).175

There are two peaks for the isolated node and the community with size around 60 for both 1949-1981176

and 1982-2019. In 1949-1981, the proportion of isolated nodes in the overall community is not177

prominent. However, in 1982-2019, the proportion of isolated nodes has dramatically increased and has178

become the largest component in the community distribution. Therefore, the transition in modularity179

and the number of communities since 1982 can be attributed to the substantial increase in the number180

of isolated nodes.181

182

183

Figure 2: Occurrence probability maps of isolated nodes for (a) 1949-1981, and (b) 1982-2019.184

185

Next, we will further study the relationship between changes in climate network structure and186

isolated nodes. The occurrence probability maps of isolated nodes for 1949-1981 and 1982-2019 are187

shown in Figure 2. From 1949 to 1981, few isolated nodes are mainly distributed in the Equatorial East188

Pacific and Equatorial Atlantic oceans, with a low occurrence probability. However, from 1982 to 2019,189
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the isolated nodes with higher occurrence probabilities can appear almost everywhere in the equatorial190

regions such that the total number of communities increase. The occurrence probability of isolated191

nodes in the last 38 years is not only higher than the first 33 years but also covers a larger area than the192

first 33 years. Hence, isolated nodes in the equatorial region have been systematically increasing since193

the early 1980s, resulting in changes to the climate network structure. To establish robustness, we194

conduct the analysis using different community detection algorithms, the maximum time lag of 365195

days, the shuffled nodes and a 6-month shift for the time window. The obtained results are consistent,196

as illustrated in Supplementary Figures. S3-S12.197

To gain a deeper understanding and verify how the isolation in climate networks is amplified in198

the Equatorial regions, we select three nodes with the highest frequency of isolation in three regions:199

the Indian Ocean, the Pacific Ocean, and the Atlantic Ocean, respectively. We study the relationships200

between the three nodes and other nodes across the climate network structure. Specifically, we201

calculate the probability of the selected node and each of other 725 nodes belonging to the same202

community for time periods 1949-1981 and 1982-2019, and compute the difference the two time203

periods. This probability can reflect which important region responds to the amplified isolation of the204

selected node.205

In Figure 3(a), for 1949-1981, the selected Indian Ocean node exhibits high probability with206

surrounding nodes belonging to the same community. However, for the 1982-2019 in Figure 3(b), this207

probability is weakened, particularly in their association with the oceanic regions. the difference of the208

probability between 1982-2019 and 1949-1981 is shown in Figure 3(c). Blue (red) points in Figure 3(c)209

represent the decreased (increased) probability with time. In general, most areas have decreased210

probability. Still, some areas i.e., the Eurasian and North Africa continent have increased probability to211
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connect to the selected Indian Ocean node.212

Since the 1980s, the probabilities of the nodes in the Pacific and the equatorial Pacific region213

belonging to the same community are noticeably diminished (as shown in Figure 4). Examining the214

probability map of the selected Atlantic Ocean node and other global nodes belonging to the same215

community in Figure 5, it is observed a similar behavior. The selected three high-frequency isolated216

nodes are surrounded by relatively strong connectivity regions during the first 33 years. However, these217

regions experience varying degrees of weakening in connectivity during the subsequent 38 years. It is218

worth noting that since the 1980s, the connectivity between high-frequency isolated nodes in the Indian219

Ocean, Atlantic Ocean, and Pacific Ocean with global oceanic regions is diminishing, especially the220

strength of their connections with their respective oceanic regions significantly decreasing. However,221

the association with the Eurasian and North Africa continent is strengthening. Previous studies have222

suggested the weakening of tropical circulations such as the Hadley cell and the Walker circulation, in223

response to increasing greenhouse gases (Lu et al., 2007; Tokinaga et al., 2012; Cai et al., 2021). This224

weakening may contribute to the amplified isolation of nodes in tropical oceans. Additionally, the225

weakened tropical circulation could potentially trigger extreme climate phenomena, such as the226

intensification of El Niño, with more pronounced teleconnection impacts on distant regions (Fan et al.,227

2017 ; Hu et al., 2021). This could, in turn, strengthen the linkage between equatorial regions and228

continents in climate networks.229
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230

Figure 3: Probability maps of the Indian Ocean node and other global nodes belonging to the same231

community for (a) 1949-1981, (b) 1982-2019, and (c) the difference of the probability between 1982-2019 and232

1949-1981. The symbol of cyan cross represents the selected Indian Ocean node.233

234

Figure 4: Probability maps of the Eastern Pacific Ocean node and other global nodes belonging to the same235

community for (a) 1949-1981, (b) 1982-2019, and (c) the difference of the probability between 1982-2019 and236

1949-1981. The symbol of cyan cross represents the selected Eastern Pacific Ocean node.237
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238

239

Figure 5: Probability maps of the Atlantic Ocean node and other global nodes belonging to the same240

community for (a) 1949-1981, (b) 1982-2019, and (c) the difference of the probability between 1982-2019 and241

1949-1981. The symbol of cyan cross represents the selected Atlantic Ocean node.242

243

5 Conclusions244

In this investigation, we constructed a climate network using near-surface air temperature data245

spanning from 1949 to 2019. Our aim was to examine the evolution of climate network topology within246

the context of global warming. To explore how global warming affects the structure of the global247

climate network, we applied the Louvain community detection algorithm.248

Notably, we observed that the network modularity between 1949 and 1981 remained below the249

overall average, whereas between 1982 and 2019, it exceeded the overall average. Concurrently, the250

trend in the number of communities from 1949 to 2019 followed a similar pattern to that of modularity.251

Furthermore, the correlation coefficient between modularity and the number of isolated nodes was252
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found to be 0.674. Additionally, the correlation between the number of isolated nodes and the number253

of communities reached 0.929, both of which demonstrated statistical significance. Furthermore, we254

noted a substantial increase in the number of isolated nodes since 1982. Hence, the shift in modularity255

and the number of communities since 1982 are significantly associated with the notable surge in the256

number of isolated nodes. This systematic shift in community structure since the early 1980s could be257

related to the climate shift and the change of mean state associated with the altered properties of El258

Niño since the early 1980s (Graham, 1994; Tsonis et al., 2007; Swanson, 2009; Cai et al., 2021; Gan et259

al., 2023).260

Between 1949 and 1981, isolated nodes were sporadic and dispersed, mainly concentrated in the261

equatorial Pacific and equatorial Atlantic regions. However, from 1982 to 2019, isolated nodes were262

pervasive across the entire equatorial oceanic region. We further examined the relationship between263

temperature network structure and isolated nodes in the context of global warming. By selecting key264

nodes with the highest frequency of isolation in the equatorial Pacific, equatorial Atlantic, and265

equatorial Indian Ocean regions, we investigated their likelihood of belonging to the same community266

as other nodes during 1949-1981 and 1982-2019. Our findings suggested that the connectivity of highly267

isolated nodes along the equator is decreasing, potentially associated with the weakening of tropical268

circulations such as the Hadley cell and the Walker circulation in response to increasing greenhouse269

gases. This is particularly notable concerning their associations with neighboring regions within the270

same oceanic basin. Simultaneously, their connections with certain continents have significantly271

strengthened.272
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