
RESPONSES TO REVIEWER COMMENTS

We thank the reviewer for their constructive comments which helped us to substantially improve

the manuscript. We have fully addressed the comments of the reviewer. For your convenience, we

now provide below a point-by-point response to all the comments of the reviewers. Note that the

reviewer’ comments are indicated using blue Italian font, whereas our reply is indicated using

black and regular fonts. The corrections in the revised manuscript (and quoted here) are indicated

using red color.

Cheng et al. discuss the community structure of functional climate networks based on
correlations among daily near-surface air temperature variations around the globe. They report
systematic changes in the statistical properties of the network communities since the early 1980s
and attempt to uncover the backbone of those changes in terms of a changing abundance of
“isolated nodes”. With its topical scope, the manuscript adds to a growing body of research
utilizing network methods for studying the spatial organization of strong correlations in the global
temperature field, as well as other climate variables at global and regional scales. The reported
findings could be interesting, but are in my opinion not well enough explained, reflected regarding,
and embedded into the context of existing knowledge on both climate variability and change and
the methodological potentials and limitations of the employed type of network approach.

Response: We thank the reviewer for the positive remarks regarding our results. We have tried to
address the reviewer’s comments. See our response below.

In more detail, I have the following remarks that the authors should take into consideration
when revising their presented work:

Line 18: It appears physically implausible, at least questionable, to speak of “nodes [grid
points] experiencing amplified insolation”. The insolation (i.e. amount of solar radiation directly
reaching the Earth’s surface) has not changed markedly over the period under study (except for
changes in solar activity and maybe different atmospheric absorption by different types of
aerosols). What likely has gradually changed is the amount of backscattered radiation that is kept
within the atmosphere due to changing concentration and distribution of greenhouse gases and
thereby contributes to warming the planet.

Response: We appreciate the reviewer's comment. To clarify, the term used in the text is
"isolation," not "insolation." Our current study does not delve into aspects related to sunlight
exposure.

Correction: (Lines 18, Par 1, Page 1) Additionally, we demonstrate that nodes experiencing
amplified isolation.

Lines 21-22: It is not clear how the authors reach the conclusion that weakening ocean current



interactions may be responsible for the observed findings. The presented manuscript does not
study oceanic variables, but only near-surface atmospheric conditions, and hence allows at most
for very indirect inference of possible links with changes in ocean circulation. Moreover, it is not
clear what kind of “interactions” the authors may have in mind. (Do they mean tropical basin
interactions via atmospheric pathways?)

Response: We sincerely appreciate the reviewer for providing the insightful comment. In the
manuscript, our primary focus is on investigating near-surface air temperatures rather than oceanic
variables. Given that the majority of nodes exhibiting heightened isolation are located in
equatorial ocean regions, we deduce that the mechanism driving amplified isolation in the climate
network may be comprehended through weakened interactions within tropical basins, linked to
atmospheric pathways under global warming. We have addressed and clarified this aspect in the
revised manuscript.

Correction: (Lines 20-23, Par 1, Page 1-2) We deduce that the mechanism driving amplified
isolation in the climate network may be comprehended through the weakening of tropical
circulations such as the Hadley cell and the Walker circulation in response to increasing
greenhouse gases.

Line 27: Ocean acidification and glacier melting are not extreme events and hence referred to
here out of context.

Response: Thanks for points the misleading text. In the revised manuscript, we have addressed the
raised issues and included pertinent references to support the modifications.

Correction: (Lines 28-30, Par 2, Page 2) Global warming has led to a significant increase in
various extreme weather events, encompassing extreme heatwaves, cold spells, heavy
precipitation, droughts, and severe hurricanes etc. (Doney et al., 2009, Mondal et al., 2021,
Komapala et al,. 2020, Mukherjee et al., 2020).

Scott C Doney , Victoria J Fabry, Richard A Feely and Joan A Kleypas: Ocean Acidification: The
other CO2 problem, Annu. Rev. Mar. Sci. 1,
169-192 ,https://doi.org/10.1146/annurev.marine.010908.163834, 2009.

Mondal, S. and Mishra, A. K. : Complex networks reveal heatwave patterns and propagations over
the USA, Geophys. Res. Lett., 48, e2020GL090411 , https://doi.org/10.1029/2020GL090411,
2021.

Konapala, G., Mishra, A. K., Wada, Y. et al.: Climate change will affect global water availability
through compounding changes in seasonal precipitation and evaporation, Nat Commun 11, 3044 ,
https://doi.org/10.1038/s41467-020-16757-w, 2020.

Mukherjee, S., Mishra, A. K. : Increase in compound drought and heatwaves in a Warming World,
Geophys. Res. Lett., 48(1), e2020GL090617, https://doi.org/10.1029/2020GL090617, 2020.

https://doi.org/10.1038/s41467-020-16757-w,
https://doi.org/10.1029/2020GL090617,


Lines 31-41: The authors cite here three recent, apparently randomly selected studies, the
relationship of which with the topic and/or methodology of the present paper is not really clear to
me. I would expect a more careful selection and discussion of relevant references at this
prominent place of the Introduction.

Response: Thank you. In response to your comments. In our revised introduction, we have
ensured a more discerning choice of studies that are directly relevant to the topic and methodology
at hand as follows.

Correction: (Lines 33-49, Par 1, Page 2-3) Global warming has triggered significant
transformations in atmospheric circulation and ocean circulation patterns, impacting the dynamics
of the Earth's climate system (Shepherd, T., 2014; Vecchi, Gabriel A. and Brian J. Soden, 2007).
The rise in global temperatures is a key driver of alterations in atmospheric circulation patterns,
especially in the tropical belt, influencing phenomena such as the Hadley Cell, Walker Circulation,
and the Madden-Julian oscillation (Lu et al., 2007; Tokinaga et al., 2012; Hu et al., 2021; Chang et
al., 2015). The expansion of the tropics and changes in the distribution of sea surface temperatures
contribute to shifts in the intensity and frequency of tropical cyclones and the behavior of the El
Niño-Southern Oscillation (ENSO) (Emanuel et al., 2005; Kossin et al., 2020; Cai et al.,2021 ).
These modifications in tropical circulations have widespread implications for precipitation
patterns, extreme weather events, and regional climate variability. Additionally, the Atlantic
Meridional Overturning Circulation (AMOC) may undergo a transition, with potential collapse
having severe impacts on the climate in the North Atlantic and European regions (Rahmstorf et al.
2015; Boers, 2021). Previous studies have argued that the global climate experienced a shift in the
1970s (Graham, 1994; Tsonis et al., 2007; Swanson, 2009). Understanding these systematic
changes is imperative for predicting future climate scenarios (e.g., precipitation, temperature, wind)
and formulating effective adaptation and mitigation strategies.

Shepherd, T.: Atmospheric circulation as a source of uncertainty in climate change projections.
Nature Geosci 7, 703–708 , https://doi.org/10.1038/ngeo2253, 2014.

Vecchi, Gabriel A., and Brian J. Soden: Global warming and the weakening of the tropical
circulation, J. Climate 20(17) : 4316-4340, doi: https://doi.org/10.1175/JCLI4258.1, 2007.

Lu, J., G. A. Vecchi, and T. Reichler: Expansion of the Hadley cell under global warming,
Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443, 2007.

Tokinaga, H., Xie, SP., Deser, C. et al.: Slowdown of the Walker circulation driven by tropical
Indo-Pacific warming, Nature 491, 439–443, https://doi.org/10.1038/nature11576, 2012.

Hu K., Huang, G., Huang, P. et al.: Intensification of El Niño-induced atmospheric anomalies
under greenhouse warming, Nat. Geosci. 14, 377 – 382,
https://doi.org/10.1038/s41561-021-00730-3, 2021.



Chang, C.-W. J., W.-L. Tseng, H.-H. Hsu, N. Keenlyside, and B.-J. Tsuang: The Madden-Julian
Oscillation in a warmer world, Geophys. Res. Lett., 42, 6034 – 6042,
https://doi.org/10.1002/2015GL065095, 2015.

Emanuel, K.: Increasing destructiveness of tropical cyclones over the past 30  years, Nature 436,
686–688, https://doi.org/10.1038/nature03906, 2005.

Kossin J P, Knapp K R, Olander T L, et al.: Global increase in major tropical cyclone exceedance
probability over the past four decades. Proceedings of the National Academy of Sciences, 117(22):
11975-11980, https://doi.org/10.1073/pnas.1920849117, 2020.

Cai, W., Santoso, A., Collins, M. et al.: Changing El Niño–Southern Oscillation in a warming
climate, Nat Rev Earth Environ 2, 628–644, https://doi.org/10.1038/s43017-021-00199-z, 2021.

Rahmstorf, S., Box, J., Feulner, G. et al.: Exceptional twentieth-century slowdown in Atlantic
Ocean overturning circulation, Nature Clim Change 5, 475 – 480,
https://doi.org/10.1038/nclimate2554, 2015.

Boers, N. Observation-based early-warning signals for a collapse of the Atlantic Meridional
Overturning Circulation. Nat. Clim. Chang. 11, 680 – 688,
https://doi.org/10.1038/s41558-021-01097-4, 2021.

Graham, N. E.: Decadal-scale climate variability in the tropical and North Pacific during the
1970s and 1980s: observations and model results, Clim. Dyn., 10, 135 – 162,
https://doi.org/10.1007/BF00210626, 1994.

A. A. Tsonis, K. Swanson, and S. Kravtsov: A new dynamical mechanism for major climate shifts,
Geophys, Res. Lett., 34, L13705, doi:10.1029/2007GL030288, 2007.

Swanson, K. L., and A. A. Tsonis: Has the climate recently shifted? Geophys. Res. Lett., 36,
L06711, doi:10.1029/2008GL037022, 2009.

Line 42: What do the authors mean by “diversity”? Diversity of what?

Response: We have revised the unclear sentence as follow.
Correction: (Lines 51-52, Par 2, Page 3) The climate system is intricately complex, marked by
multivariable and multiscale nonlinear dynamics.

Lines 45-63: Similar as in the first paragraph of the Introduction, the selection of references on
climate network analysis presented here appears not very systematic and concentrated on studies
topically relevant to the presented work.

Response: Thank you for the comments. In our revised manuscript, we have carefully reviewed
and refined the selection of references to enhance the coherence and topical relevance of our cited



studies as follows.

Correction:(Lines 53-80, Par 2, Page 3-4) Complex network analysis emerges as a potent tool for
investigating the nonlinear dynamics and structural characteristics of complex systems (Newman,
2018; Zou et al., 2019). Over the past several years, complex network methodologies have gained
widespread application in the realm of climate science. In the climate network, nodes represent
geographical locations where time series data for temperature (or other climate variables) are
accessible. Links are established through bivariate similarity measures such as correlation, mutual
information, or event synchronization between these time series (Tsonis et al., 2004; Donges et al.,
2009; Quiroga et al., 2002). Climate network techniques have proven effective in enhancing our
understanding of various climate and weather phenomena, including ENSO, teleconnection
patterns of weather, and atmospheric pollution (Tsonis et al., 2008; Yamasaki et al., 2008; Fan et
al., 2017; Kittel et al., 2021; Zhou et al., 2015; Boers et al., 2019; Di Capua et al., 2020; Zhang et
al., 2019). Notably, complex network analysis has unveiled the weakening of tropical circulation
under global warming (Geng et al., 2021; Fan et al., 2018). Furthermore, these techniques have
demonstrated utility in forecasting climate events (Boers et al., 2014; Ludescher et al., 2014;
Meng et al., 2018; Ludescher et al., 2021).

Complex systems naturally exhibit partitioning into multiple modules or communities, a
significant feature of complex networks (Palla et al., 2005). In the context of climate networks,
each community serves as a representation of a climate subsystem, shedding light on the
interrelationships between different components (Tsonis et al., 2011). Community detection
algorithms, rooted in modularity maximization (Newman, 2006; Cherifi et al., 2019), have been
pivotal in unveiling structures within climate networks. These algorithms have successfully
identified community structures in diverse contexts, including rainfall networks (Agarwal et al.,
2018), interaction networks of sea surface temperature observations (Tantet et al., 2014), global
climate responses to ENSO phases (Kittel et al., 2021) and the quantification of climate indices .
Yet, scant attention has been given to the impact of global warming on the community structure of
climate networks, particularly those with small sizes. This research endeavors to employ network
analysis and community detection to investigate how global warming is reshaping the structure of
the global temperature network. The ultimate goal is to deepen our understanding of climate
change and inform strategies for addressing its impacts.

M. E. J. Newman: Networks. Oxford university press, 2018.

Zou, Y., Donner, R. V., Marwan, N., Donges, J. F. and Kurths, J.: Complex network approaches to
nonlinear time series analysis, Phys. Rep., 787,
1-97.https://doi.org/10.1016/j.physrep.2018.10.005, 2019.

A. A. Tsonis, and Paul J. Roebber.: The architecture of the climate network, Physica A, 333:
497-504. https://doi.org/10.1016/j.physa.2003.10.045, 2004.

J. F. Donges, Y. Zou, N. Marwan and J. Kurths: Complex networks in climate dynamics, Eur. Phys.
J. Spec. Top. 174, 157–179, https://doi.org/10.1140/epjst/e2009-01098-2, 2009.



R. Quian Quiroga, T. Kreuz, and P. Grassberge: Event synchronization: A simple and fast method
to measure synchronicity and time delay patterns, Phys. Rev. E 66, 041904,
https://doi.org/10.1103/PhysRevE.66.041904, 2002.

A. A. Tsonis and Kyle L. Swanson: Topology and Predictability of El Niño and La Niña Networks,
Phys. Rev. Lett. 100, 228502, https://doi.org/10.1103/PhysRevLett.100.228502, 2008.

L.Yamasaki, A. Gozolchiani, and S. Havlin: Climate networks around the globe are significantly
affected by El Niño, Phys. Rev. Lett. 100, 228501,
https://doi.org/10.1103/PhysRevLett.100.228501, 2008.

J. Fan, J. Meng, Y. Ashkenazy, S. Havlin and H. J. Schellnhuber: Network analysis reveals
strongly localized impacts of El Niño, Proc. Natl. Acad. Sci. U.S.A. 114, 7543 – 7548,
https://doi.org/10.1073/pnas.1701214114, 2017.

Kittel, T., Ciemer, C., Lotfi, N. et al.: Evolving climate network perspectives on global surface air
temperature effects of ENSO and strong volcanic eruptions, Eur. Phys. J. Spec. Top. 230, 3075–
3100 , https://doi.org/10.1140/epjs/s11734-021-00269-9, 2021.

Zhou, Dong, et al.: Teleconnection paths via climate network direct link detection, Phys. Rev.
Lett. 115, 268501, https://doi.org/10.1103/PhysRevLett.115.268501, 2015.

Niklas Boers, Bedartha Goswami, Aljoscha Rheinwalt, Bodo Bookhagen, Brian Hoskins and
Jürgen Kurthsl: Complex networks reveal global pattern of extreme-rainfall teleconnections,
Nature 566, 373–377, https://doi.org/10.1038/s41586-018-0872-x, 2019.

Di Capua, G., Kretschmer, M., Donner, R. V., van den Hurk, B., Vellore, R., Krishnan, R., and
Coumou, D.: Tropical and mid-latitude teleconnections interacting with the Indian summer
monsoon rainfall: a theory-guided causal effect network approach, Earth Syst. Dynam., 11, 17–
34, https://doi.org/10.5194/esd-11-17-2020, 2020.

Zhang, Y., J. Fan., Chen, X., Ashkenazy, Y., and Havlin, S.: Significant impact of Rossby waves
on air pollution detected by network analysis, Geophys. Res. Lett., 46, 12476 – 12485,
https://doi.org/10.1029/2019GL084649, 2019.

Z. Geng, Y. Zhang, B. Lu, J. Fan, Z. Zhao and X. Chen: Network-Synchronization analysis reveals
the weakening tropical circulations, Geophys. Res. Lett. 48, e2021GL093582,
https://doi.org/10.1029/2021GL093582, 2021.

J. Fan, Meng, J., Ashkenazy, Y., Havlin, S., Schellnhuber and H.J.: Climate network percolation
reveals the expansion and weakeningof the tropical component under global warming, Proc. Natl.
Acad. Sci. USA , 115, E12128–E12134, https://doi.org/10.1073/pnas.1811068115, 2018.

Boers, N., Bookhagen, B., Barbosa, H. et al.: Prediction of extreme floods in the eastern Central



Andes based on a complex networks approach. Nat Commun 5, 5199,
https://doi.org/10.1038/ncomms6199, 2014.

J. Ludescher, A. Gozolchiani, M. I. Bogachev, A. Bunde, S. Havlin and H. J. Schellnhuber: Very
early warning of next El Niño, Proc. Natl. Acad. Sci. U.S.A. 111, 2064 – 2066,
https://doi.org/10.1073/pnas.1323058111, 2014.

J Meng, J. Fan, Y. Ashkenazy, A. Bunde and S. Havlin: Forecasting the magnitude and onset of El
Niño based on climate network, New J. Phys. 20, 043036,
https://doi.org/10.1088/1367-2630/aabb25, 2018.

J. Ludescher, Martin, M., Boers, N., Bunde, A., Ciemer, C., J.Fan, Havlin, S., Kretschmer, M.,
Kurths, J., Runge, J.; et al.: Network-based forecasting of climate phenomena, Proc. Natl. Acad.
Sci. USA , 118, e1922872118, https://doi.org/10.1073/pnas.1922872118, 2021.

Palla, G., Derényi, I., Farkas, I. et al.: Uncovering the overlapping community structure of
complex networks in nature and society, Nature 435, 814 – 818,
https://doi.org/10.1038/nature03607, 2005.

A. A. Tsonis, Wang, G., Swanson, K.L. et al.: Community structure and dynamics in climate
networks, Clim Dyn 37, 933–940, https://doi.org/10.1007/s00382-010-0874-3, 2011.

M. E. J. Newman: Modularity and community structure in networks, Proc. Natl. Acad. Sci. 103,
8577–8582, https://doi.org/10.1073/pnas.0601602103, 2006.

Cherifi, H., Palla, G., Szymanski, B.K. et al.: On community structure in complex networks:
challenges and opportunities. Appl Netw Sci 4, 117, https://doi.org/10.1007/s41109-019-0238-9,
2019.

A. Agarwal, N. Marwan and R. Maheswaran: Quantifying the roles of single stations within
homogeneous regions using complex network analysis, J. Hydrol. 563, S0022169418304724-,
https://doi.org/10.1016/j.jhydrol.2018.06.050, 2018.

Tantet, A. and Dijkstra, H. A.: An interaction network perspective on the relation between patterns
of sea surface temperature variability and global mean surface temperature, Earth Syst. Dynam., 5,
1–14, https://doi.org/10.5194/esd-5-1-2014, 2014.

Kittel, T., Ciemer, C., Lotfi, N. et al.: Evolving climate network perspectives on global surface air
temperature effects of ENSO and strong volcanic eruptions, Eur. Phys. J. Spec. Top. 230, 3075–
3100 , https://doi.org/10.1140/epjs/s11734-021-00269-9, 2021.

Line 48: The statement “variables such as temperature or geographical location are used as
network nodes” is nonsense. Nodes in a climate network are identified with geographical
locations at which temperature (or any other climate) time series are available for analyzing their

https://doi.org/10.1038/ncomms6199,


bivariate similarity (e.g. correlation). In this regard, it is quite uncommon to use covariance
instead of correlation (as suggested in line 49), since absence of normalization would lead to
regions with high variance of temperature would then dominate the network connectivity.

Response: Thanks. In the revised manuscript, we have modified the statement to avoid misleading
as follows.

Correction:(Lines 56-60, Par 1, Page 3) In the climate network, nodes represent geographical
locations where time series data for temperature (or other climate variables) are accessible. Links
are established through bivariate similarity measures such as correlation, mutual information, or
event synchronization between these time series (Tsonis et al., 2004; Donges et al., 2009; Quiroga
et al., 2002).

A. A. Tsonis, and Paul J. Roebber.: The architecture of the climate network, Physica A, 333:
497-504. https://doi.org/10.1016/j.physa.2003.10.045, 2004.

J. F. Donges, Y. Zou, N. Marwan and J. Kurths: Complex networks in climate dynamics, Eur. Phys.
J. Spec. Top. 174, 157–179, https://doi.org/10.1140/epjst/e2009-01098-2, 2009.

R. Quian Quiroga, T. Kreuz, and P. Grassberge: Event synchronization: A simple and fast method
to measure synchronicity and time delay patterns, Phys. Rev. E 66, 041904,
https://doi.org/10.1103/PhysRevE.66.041904, 2002.

Lines 73-79: The authors state that “there are many researches on the internal dynamics
mechanisms of [the] climate system based on community structure”, but cite just two of them. The
second part of this block of sentences, “some studies have identified novel dynamical mechanisms
of climate systems through the characteristics of community structures in networks”, however
cites a few studies, but all of them entirely out of context. Tsonis et al. (2007) is wrongly
referenced to have appeared in Chaos (correct would have been Geophysical Research Letters)
and just uses five climate indices, for which a consideration of network communities does not
make any sense. Gozolchiani et al. (2008) is also falsely attributed to the journal Chaos instead of
EPL and does not discuss climate network communities either. Swanson and Tsonis (2009) does
not make use of any community or network concept, too. Finally, Elsner et al. (2009) uses
visibility graphs, a concept entirely different from that used in the present work, without any
referencing to community detection. Hence, I have to conclude that all four references to this
sentence have nothing to do with the suggested statement.

Response: Thanks. We have improved the references in the revised manuscript as follows.

Correction: (Lines 68-76, Par 1, Page 4) Complex systems naturally exhibit partitioning into
multiple modules or communities, a significant feature of complex networks (Palla et al., 2005). In
the context of climate networks, each community serves as a representation of a climate
subsystem, shedding light on the interrelationships between different components (Tsonis et al.
2011). Community detection algorithms, rooted in modularity maximization (Newman, 2006;



Cherifi et al., 2019), have been pivotal in unveiling structures within climate networks. These
algorithms have successfully identified community structures in diverse contexts, including
rainfall networks (Agarwal et al., 2018), interaction networks of sea surface temperature
observations (Tantet et al., 2014), global climate responses to ENSO phases (Kittel et al., 2021)
and the quantification of climate indices.

Palla, G., Derényi, I., Farkas, I. et al.: Uncovering the overlapping community structure of
complex networks in nature and society, Nature 435, 814 – 818,
https://doi.org/10.1038/nature03607, 2005.

A. A. Tsonis., Wang, G., Swanson, K.L. et al.: Community structure and dynamics in climate
networks, Clim Dyn 37, 933–940, https://doi.org/10.1007/s00382-010-0874-3, 2011.

M. E. J. Newman: Modularity and community structure in networks, Proc. Natl. Acad. Sci. 103,
8577–8582, https://doi.org/10.1073/pnas.0601602103, 2006.

Cherifi, H., Palla, G., Szymanski, B.K. et al.: On community structure in complex networks:
challenges and opportunities. Appl Netw Sci 4, 117, https://doi.org/10.1007/s41109-019-0238-9,
2019.

A. Agarwal, N. Marwan and R. Maheswaran: Quantifying the roles of single stations within
homogeneous regions using complex network analysis, J. Hydrol. 563, S0022169418304724-,
https://doi.org/10.1016/j.jhydrol.2018.06.050, 2018.

Tantet, A. and Dijkstra, H. A.: An interaction network perspective on the relation between patterns
of sea surface temperature variability and global mean surface temperature, Earth Syst. Dynam., 5,
1–14, https://doi.org/10.5194/esd-5-1-2014, 2014.

Kittel, T., Ciemer, C., Lotfi, N. et al.: Evolving climate network perspectives on global surface air
temperature effects of ENSO and strong volcanic eruptions, Eur. Phys. J. Spec. Top. 230, 3075–
3100 , https://doi.org/10.1140/epjs/s11734-021-00269-9, 2021.

For community detection in their near-surface temperature network, the authors use the Louvain
algorithm; however, this choice is neither explained nor justified. I would like to draw the authors’
attention to Fig. 8 of Kittel et al. (Eur. Phys. J. ST, 2021). This figure compares the year-by-year
variability of modularity for a (full-resolution) evolving climate network of surface air
temperature anomalies (similar to that studied in the present work) obtained by different
community detection algorithms, demonstrating that the choice of methodology may be crucial for
the outcomes of community detection and may lack robustness.

Response: We thank the reviewer for the insightful comments. We have employed four different
algorithms to detect community structures based on Ref (Kittel et al., 2021). Figure S3 below
illustrates the modularity values obtained. The results highlight the robustness of the modularity
transition around 1982 across different algorithms. Notably, the Louvain algorithm produces the



highest modularity values, indicating its superior effectiveness in identifying community
structures.

Correction:(Lines 141-144, Par 2,Page 7)Supplementary Figure S3 illustrates the modularity
values obtained by four distinct algorithms, as outlined in Ref (Kittel et al., 2021). The results
highlight the robustness of the modularity transition around 1982 across different algorithms.
Notably, the Louvain algorithm produces the highest modularity values, indicating its superior
effectiveness in identifying community structures.

(Lines 194-197, Par 1,Page 10)To establish robustness, we conduct the analysis using different
community detection algorithms, the maximum time lag of 365 days, the shuffled nodes and a
6-month shift for the time window. The obtained results are consistent, as illustrated in
Supplementary Figures. S3-S12.

Kittel, T., Ciemer, C., Lotfi, N. et al.: Evolving climate network perspectives on global surface air
temperature effects of ENSO and strong volcanic eruptions, Eur. Phys. J. Spec. Top. 230, 3075–
3100, https://doi.org/10.1140/epjs/s11734-021-00269-9, 2021.

Figure S3: Time evolution of modularity for different algorithms, with red representing the Louvain

algorithm, blue representing the Walktrap algorithm, green representing the Fast Greedy algorithm, and

purple representing the Leading Eigenvector algorithm.

Figure S4: Probability graph of global isolated nodes using the Leading eigenvector algorithm for (a)



1949-1981 and (b) 1982-2019.

Figure S5: Probability graph of global isolated nodes using the Fast greedy algorithm for (a) 1949-1981 and

(b) 1982-2019.

Figure S6: Probability graph of global isolated nodes using the Walktrap algorithm for (a) 1949-1981 and (b)

1982-2019.

Lines 94-96: The authors report that they “strategically select” 726 out of 10,512 grid points, but
they do not describe how and why. With the information given in the Data section, the presented
analysis is not reproducible. In fact, the heterogeneity or homogeneity of the spatial density of the
considered nodes has a crucial effect on any network properties in climate networks, since nearby
nodes are likely to have larger statistical similarity of climate variability (and, hence, a higher
likelihood of being connected in the network). Possible solutions include consideration of
area-weighted network measures (Heitzig et al., Eur. Phys. J. B, 2012) or specific selections of
nodes when subsampling original fixed latitude-longitude grids in climate records (Radebach et
al., Phys. Rev. E, 2013). I am afraid that without such consideration (that I do not see reported in
the paper), the inter-node distance in high latitudes is much smaller than close to the equator, and
accordingly the spatial placement of network connectivity is heavily biased towards the polar
regions. Under such circumstances, it would be highly questionable to what extent the reported
findings of the present work can actually be interpreted meaningfully.

Response: Thanks. The homogeneity of the spatial density of the considered nodes within the
sphere has been a deliberate focus in our study. This rationale guides our selection of 726 nodes,
strategically spaced to ensure uniform coverage of the Earth in Euclidean space, as depicted in the
below Figure S1(a). The nodes are equally distributed in Euclidean space with distances between
any two neighboring nodes approximately 850 km, as illustrated in Figure S1(b). This



configuration eliminates the issue of "node spacing at high latitudes being much smaller than that
near the equator." It's worth noting that these 726 nodes have been consistently utilized in previous
studies for constructing climate networks (Guez et al., 2014).

Correction: (Lines 91-96, Par 1, Page 5) We select 726 nodes to construct the network and
maintain the spatial density homogeneity within the climate network nodes in the sphere as
suggested in previous studies (Zhou et al., 2015; Guez et al., 2014). These nodes are strategically
spaced to ensure uniform coverage of the Earth in Euclidean space, as depicted in Supplementary
Figure S1(a). The nodes are equally distributed, with distances between any two neighboring
nodes approximately 850 km, as illustrated in Supplementary Figure S1(b).

Guez, O. C., Gozolchiani, A. and Havlin, S.: Influence of autocorrelation on the topology of the
climate network, Phys. Rev. E, 90(6), 062814, https://doi.org/10.1103/PhysRevE.90.062814, 2014.

Zhou, Dong, et al.: Teleconnection paths via climate network direct link detection, Phys. Rev.
Lett. 115, 268501, https://doi.org/10.1103/PhysRevLett.115.268501, 2015.

Figure S1: (a) Spatial distribution of 726 network nodes in Earth and (b) the PDF of distances between

neighboring nodes.

Line 101: Detrending and subtracting the average seasonal cycle are two entirely different things.

Response: We have modified the sentence in the revised manuscript as follows.

Correction: (Lines 100-1025, Par 2, Page 5) The time series of a node (denoted as i) undergoes
deseasonalization by subtracting the average seasonal cycle and dividing by the standard deviation
of the cycle, resulting in the temperature anomaly.

Line 108: Why do the authors use a maximum lag of 200 days for an analysis of time windows of
just 365 days? How robust are the reported results regarding this choice?



Response: Upon comparing the results with a maximum time lag of 365 days, we observed
similarities with those obtained using a maximum time lag of 200 days, as depicted in the below
Figures S7 and S8. Therefore, the results demonstrate robustness across different time lag choices.

Correction:(Lines 193-197, Par 1, Page 10) To establish robustness, we conduct the analysis using
different community detection algorithms, the maximum time lag of 365 days, the shuffled nodes
and a 6-month shift for the time window. The obtained results are consistent, as illustrated in
Supplementary Figures. S3-S12.

Figure S7: Same as Fig. 1 of the main text but for the maximum time lag of 365 days.

Figure S8: Same as Fig. 2 of the main text but for the maximum time lag of 365 days.



Line 111: Why do the authors list “minimum value” here when it is not made use of? What are
maximum, (minimum,) mean and standard deviation taken from? In Equation (3), left and
right-hand side have the same indices, so this description is mathematically inconsistent. Also the
following text is quite problematic. It is correct that strong auto-correlation inflates the
significance of the cross-correlation, but not the cross-correlation itself. It is not clear how the
link strength can eliminate the effect of serial dependence. For the latter purpose, a better
alternative might be the consideration of p-values, as originally suggested by Palus et al. (Nonlin.
Proc. Geophys., 2011), which however have considered only lag-zero correlations.

Response: Thank you for the comment. We have modified the description of Eq. (3) in the revised
manuscript. In Eq. (3), "max," "mean," and "std" denote the maximum value, mean, and standard
deviation of the cross-correlation over all time lag days from -200 to 200 days between nodes i
and j. Ref (Guez et al., 2014) have demonstrated that the link strength W can eliminate the effect
of autocorrelation. Following the suggestion in Ref (Palus et al., 2011), we compared our results
with those derived from a shuffled dataset, where the time series of each node was randomized
without establishing any correlation between nodes. Specifically, we shuffled the time series of
each node for all years while maintaining the order of 365 days per year. This process was
repeated 100 times, and recalculations were performed for each shuffled dataset. The PDFs of the
link strength W for both the real and shuffled data are illustrated in Figure S5 below. A threshold
of theta=3.5 corresponds to a p-value of 0.03, signifying that 97% of the values in the shuffled
data fall below this threshold (see the below Figure S2). Consequently, the identified links are
considered significant.

Figure S2: The probability density function (PDF) of ��� for both the real and shuffled data. Red line

represents the threshold value ��� = 3.3 (signifying that 95% of the values in the shuffled data fall below

this threshold), and blue line represents the threshold value ��� = 3.5 (signifying that 97% of the values in

the shuffled data fall below this threshold). Black line represents the real data, yellow line represents the

shuffled data, where the time series of each node was randomized without establishing any correlation

between nodes. Specifically, we shuffled the time series of each node for all years while maintaining the

order of 365 days per year. This process was repeated 100 times, and recalculations were performed for

each shuffled dataset.



Correction: (Lines 109-120, Par 2, Page 6) Therefore, the link strength between each pair of nodes in
the network is denoted as follows:

��,�
� =

max ��,�
� � −���� ��,�

� �

��� ��,�
� �

, (3)

in this context, “���”,”����” and “���” denote the maximum value, mean, and standard deviation
of the cross-correlation over all time lags from -200 to 200 days between nodes i and j. Strong
autocorrelation can inflate the significance of cross-correlation. In contrast, the link strength ��,�

� is

more effective in mitigating the effects of autocorrelation, offering a more reasonable reflection of the
relationship between two nodes (Guez et al., 2014). This approach has proven valuable in predicting
climate phenomena (Ludescher et al., 2021). To select meaningful links in the network and eliminate
false association. A threshold of � = 3.5 (corresponding to a p-value of 0.03 (Palus et al., 2011)
signifying that 97% of the values in the shuffled data fall below this threshold in Supplementary Figure
S2) is applied to obtain an adjacency matrix � (when ��,�

� ≥ �, the element ��� = 1 , otherwise, the
element ��� = 0).

Guez, O. C., Gozolchiani, A. and Havlin, S.: Influence of autocorrelation on the topology of the
climate network, Phys. Rev. E, 90(6), 062814, https://doi.org/10.1103/PhysRevE.90.062814, 2014.

Paluš, M. and Novotná, D.: Northern Hemisphere patterns of phase coherence between
solar/geomagnetic activity and NCEP/NCAR and ERA40 near-surface air temperature in period 7–8
years oscillatory modes, Nonlin. Processes Geophys., 18, 251 – 260,
https://doi.org/10.5194/npg-18-251-2011, 2011.

J. Ludescher, Martin, M., Boers, N., Bunde, A., Ciemer, C., J.Fan., Havlin, S., Kretschmer, M.,
Kurths, J., Runge, J.; et al.: Network-based forecasting of climate phenomena, Proc. Natl. Acad.
Sci. USA , 118, e1922872118, https://doi.org/10.1073/pnas.1922872118, 2021.

Lines 120-122: Does the outcome of the Louvain algorithm depend on the order with which the
different nodes are considered in the algorithm? I would also recommend some brief discussion
on the convergence of the method to some global modularity optimum (respectively, the risk to
approach some local optimum by following this iterative methodology).

Response: Upon comparing the results with those derived after shuffling the order of nodes, we
noted consistent patterns in key outcomes such as modularity and the spatial distribution of
isolated nodes, as illustrated in Figures S9 and S10 below. Therefore, our main findings in this
study appear independent of the algorithm employed. The robustness of these results is further
affirmed by additional algorithms, as highlighted in the preceding response.

Correction:(Lines 193-197, Par 1, Page 10) To establish robustness, we conduct the analysis using
different community detection algorithms, the maximum time lag of 365 days, the shuffled nodes
and a 6-month shift for the time window. The obtained results are consistent, as illustrated in

https://doi.org/10.5194/npg-18-251-2011


Supplementary Figures. S3-S12.

Figure S9: Same as Fig. 1 of the main text but for after shuffling the order of nodes.

Figure S10: Same as Fig. 2 of the main text but for after shuffling the order of nodes.

Line 127: k_i and k_j are the degrees of the nodes i and j - not the sums of the link weights (which
would be the node strengths). The formula for modularity given in Eq. (4) applies to unweighted
networks.

Response: Thanks. We have modified "��" and "��".



Correction:(Lines 130, Par 3, Page 6) Where ki = j Aij� and kj = i Aij� (� ≠ �) are the number of
links connected to vertex (node) � and � .

The authors choose their running time windows to coincide with the calendar years. This may
bear the risk of mixing months affected by a declining El Nino (winter/spring) with those of an
approaching La Nina (fall/winter) – or vice versa - during the same year. From numerous
previous works, we know that El Nino and La Nina prominently affect global surface air
temperature anomaly based networks (see works by Gozolchiani et al. (2008), Yamasaki et al.
(Phys. Rev. Lett., 2008), Tsonis et al. (Phys. Rev. Lett., 2008), Ludescher et al. (PNAS, 2013),
Radebach et al. (Phys. Rev. E, 2013), and many others). Mixing the effects of opposite ENSO
phases might blur the analysis results (especially since the statistics of El Nino and La Nina
episodes has changed over the last decades). I would suggest repeating the presented analysis
with time windows shifted by 6 months to check for the robustness of the reported findings.

Response: We appreciate the reviewer for the comment. We have repeated our analysis with time
windows shifted by 6 months as shown in Figure S8 and S9 below. We also found consistent
patterns in key outcomes such as modularity and the spatial distribution of isolated nodes, as
illustrated in Figures S11 and S12 below.

Correction:(Lines 193-197, Par 1, Page 10) To establish robustness, we conduct the analysis using
different community detection algorithms, the maximum time lag of 365 days, the shuffled nodes
and a 6-month shift for the time window. The obtained results are consistent, as illustrated in
Supplementary Figures. S3-S12.



Figure S11: Same as Fig. 1 of the main text but for a 6-month shift for the time window.

Figure S12: Same as Fig. 2 of the main text but for a 6-month shift for the time window.

Lines 142-143: It is trivial that average community size and number of communities display
opposite trends, since both characteristics exhibit a trivial inverse proportionality: <s>=N/N_c.
So discussing both characteristics appears somewhat pointless to me.

Response: We are grateful for the valuable suggestion. We have modified the average community
size in Fig. 1c to now represent number of isolated nodes as a function of year. There is a



non-trivial relationship between number of communities and number of isolated nodes as shown
in Fig. 1e.

Correction: (Lines 149-151, Par 2, Page 7) Figure 1(c) also shows the escalating count of isolated
nodes since 1982. The isolated node is identified by the Louvain algorithm with a community size
of 1 (equivalent to a degree of zero, �� = 0).

The authors attribute the timing of the identified changes in community statistics around the year
1982 to the 1982/83 El Nino episode. I am wondering if there are any other findings
demonstrating a similarly long-lasting effect of this particular El Nino event on the global climate
system. Besides overall global temperature rise (being heterogeneously distributed in space and
time), other potential reasons for the reported marked shift in community properties have not been
discussed (including multidecadal variability). Tsonis et al. (2007) and Swanson and Tsonis (2009)
– two references cited in the present manuscript – have partly discussed a late-1970s climate shift,
and could serve as an initial source of inspiration for identifying further potential origins (but
there is far more, also more recent, literature). In terms of the used dataset, one should also not
forget that the availability of satellite data assimilated into the reanalysis products has started
only in the late 1970s, so that the observed changes could also be affected by underlying
heterogeneities in the considered data. I do not claim that this is the case, but this possibility
cannot be simply ruled out by the present analysis.

Response: We appreciate the reviewer's suggestions. The observed systematic change in
community structure since the early 1980s could be linked to the reported climate shift, as
indicated by Refs (Graham, N.E., 1994; Tsonis et al., 2007; Swanson, 2009) utilizing both
reanalysis data and climate simulations. The substantial increase in greenhouse gas emissions has
contributed to a shift in the mean climate state since the 1980s in the tropical belt (Cai et al., 2021).
This shift is further evident in the altered properties of El Niño since the early 1980s (Gan et al.,
2023).

Correction: (Lines 151-156, Par 2, Page 7-8) The observed systematic change in community
structure in since the early 1980s could be linked to the reported climate shift, as indicated by Refs
(Graham, 1994; Tsonis et al., 2007; Swanson, 2009) utilizing both reanalysis data and climate
simulations. The substantial increase in greenhouse gas emissions has contributed to a shift in the
mean climate state since the 1980s in the tropical belt (Cai et al., 2021). This shift is further
evident in the altered properties of El Niño since the early 1980s (Gan et al., 2023).

Graham, N.E.: Decadal-scale climate variability in the tropical and North Pacific during the 1970s
and 1980s: observations and model results, Clim. Dyn. 10, 135 – 162,
https://doi.org/10.1007/BF00210626, 1994.

A. A. Tsonis, K. Swanson, and S. Kravtsov: A new dynamical mechanism for major climate shifts,
Geophys. Res. Lett., 34, L13705, doi:10.1029/2007GL030288, 2007.

Swanson, K. L., and A. A. Tsonis: Has the climate recently shifted? Geophys. Res. Lett., 36,

https://doi.org/10.1007/BF00210626,


L06711, doi:10.1029/2008GL037022, 2009.

Cai, W., Santoso, A., Collins, M. et al.: Changing El Niño–Southern Oscillation in a warming
climate, Nat Rev Earth Environ 2, 628–644, https://doi.org/10.1038/s43017-021-00199-z, 2021.

Gan, R., Liu, Q., Huang, G. et al.: Greenhouse warming and internal variability increase extreme
and central Pacific El Niño frequency since 1980, Nat. Commun. 14, 394,
https://doi.org/10.1038/s41467-023-36053-7, 2023.

Figure 1f: Since the community sizes have been binned for showing the relative frequencies (likely
a more suitable term than “probability”), I would recommend showing them as a histogram with
bars instead of a line plot. Alternatively, a cumulative distribution plot taking all explicit values of
community sizes into account might be a reasonable alternative.
Response: Thanks for the comment. We have modified Fig. 1f in the revised manuscript as follows
to the histogram with the normalized frequencies (normalized by the total number of communities
for each period).

Correction: (Fig. 1(f))

https://doi.org/10.1038/s41467-023-36053-7


Figure 1: Temporal evolution of (a) network modularity, (b) the number of communities and (c) the number

of isolated nodes from 1949 to 2019, illustrated by the green dashed line denoting the average level, and the

red dashed line represents the transition around 1982. Scatter plot of (d) the network modularity, (e) the

number of communities versus the number of isolated nodes during the period 1949-2019. (f) The

normalized frequencies of community size for 1949-1981 and 1982-2019 respectively (normalized by the

total number of communities for each period), where the first bar represents the normalized frequency of

the community with a node.

Line 158: Nodes are commonly called isolated when their degree is zero (i.e., there do not exist
any links to other nodes). It is not clear if the definition of community size 1 considered here is
equivalent, or if nodes can also form a community of size 1 under the Louvain algorithm if there
exist such connections (and if so, why such nodes are not attributed to any community). This
should be clarified. In any case, I would recommend using the more standard definition of degree
k_i=0 for isolated nodes to avoid confusion. Note that the fact that “isolated nodes” are
commonly restricted to the tropical belt (Fig. 2, ll. 181-184) is compatible with my
aforementioned concern regarding a connectivity bias towards the poles due to the heterogeneous
spatial density of nodes.

Response: We have addressed this point in the revised manuscript. Specifically, the isolated node
identified by the Louvain algorithm with a community size of 1 is equivalent to having a degree of
zero (ki=0).
The presence of isolated nodes in the tropical belt cannot be attributed to the heterogeneous spatial
density of nodes since the nodes are strategically spaced to ensure uniform coverage of the Earth
in Euclidean space. Notably, utilizing the Pearson correlation coefficient instead of the strength W
for network construction yields very different results. When employing the Pearson correlation
coefficient, nodes in the tropical belt exhibit high connectivity. The distinctions between these two
types of network links have been extensively discussed by Ref (Guez et al., 2014). The lower
frequency of time series in the tropical belt, coupled with strong autocorrelation, results in an
overestimation of the cross-correlation by calculating the Pearson correlation coefficient between
two nodes. Guez et al. has also demonstrated that link strength W is more effective in mitigating
the effects of autocorrelation, providing a more reasonable reflection of the relationship between
two nodes. This approach has proven valuable in predicting climate phenomena (Ludescher et al.,
2021).

Correction: (Lines 150-151, Par 2, Page 7) The isolated node is identified by the Louvain algorithm
with a community size of 1 (equivalent to a degree of zero, �� = 0).

Guez, O. C., Gozolchiani, A. and Havlin, S.: Influence of autocorrelation on the topology of the
climate network, Phys. Rev. E, 90(6), 062814, https://doi.org/10.1103/PhysRevE.90.062814, 2014.

J. Ludescher, Martin, M., Boers, N., Bunde, A., Ciemer, C., J.Fan, Havlin, S., Kretschmer, M.,
Kurths, J., Runge, J.; et al.: Network-based forecasting of climate phenomena, Proc. Natl. Acad.
Sci. USA , 118, e1922872118, https://doi.org/10.1073/pnas.1922872118, 2021.



A non-mandatory suggestion: The authors study the number of communities (which, when viewed
from a statistical perspective as a clustering problem, is a matter of statistical model selection that
is not clearly described in the manuscript) – along with the equivalent information on average
community size – along with the corresponding modularity. In network theory, there is the more
fundamental concept of components (if the network is split into disconnected subgraphs), which
are less ambiguous than communities. (Besides both depending on the threshold for distinguishing
links from non-links.) I wonder if statistics used in the analysis based on network components
could be adapted to communities as well (e.g., the size of the largest group of nodes, the number
of groups with two elements, or others, which are often considered for network components in the
study of percolation processes). Maybe such measures might provide any useful additional
information beyond the two characteristics studied in the present manuscript.

Response: Thank you very much to the reviewer for the intriguing suggestion. The network
component indeed offers valuable information, such as the percolation threshold. In this study, our
emphasis lies in exploring the characteristics of amplified isolation in climate networks. This trait
should remain consistent for both components and communities due to the shared definition of
isolated nodes. Nevertheless, we anticipate that exploring various characteristics related to the
giant component and subgraphs, especially under global warming, could yield interesting results.
We plan to undertake this research in our future work.

Lines 186-188: Attributing the changes in community structure (especially increasing frequency of
isolated nodes) to global warming (i.e., the average temperature at all considered nodes) could be
merely a coincidence; a direct statistical link between these properties (which all change
gradually with time) has not been demonstrated nor discussed in a plausible manner. Especially,
lines 217-219 suggest increase ice melt as one reason for the reorganization of network
connectivity, which however hardly explains the changes reported by the authors, which are most
dominant in the tropics where there is hardly any ice to melt. Lines 221-224 appear as an attempt
to put the reported findings into a broader context, but any details are unfortunately missing.
What are specific processes, and could the authors support their corresponding claims by
appropriate references?

Response: Thank you for your valuable comments. We have made corresponding revisions to
these statements and have included appropriate references to support our claims.

Correction: (Lines 193-194, Par 1, Page 10) Hence, isolated nodes in the equatorial region have
been systematically increasing since the early 1980s, resulting in changes to the climate network
structure.

(Lines 222-229, Par 1, Page 11)Previous studies have suggested the weakening of tropical
circulations such as the Hadley cell and the Walker circulation, in response to increasing
greenhouse gases (Lu et al., 2007; Tokinaga et al., 2012; Cai et al., 2021). This weakening may
contribute to the amplified isolation of nodes in tropical oceans. Additionally, the weakened
tropical circulation could potentially trigger extreme climate phenomena, such as the
intensification of El Niño, with more pronounced teleconnection impacts on distant regions (Fan et



al., 2017; Hu et al., 2021). This could, in turn, strengthen the linkage between equatorial regions
and continents in climate networks.
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