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Abstract. The quality of geothermal carbonate reservoirs is controlled by, for instance, depositional environment, lithology,
diagenesis, karstification, fracture networks, and tectonic deformation. Carbonatic rock formations are thus often extremely
heterogeneous, and reservoir parameters and their spatial distribution difficult to predict. Using a 3D seismic dataset com-
bined with well data from Munich, Germany, we demonstrate how a comprehensive seismic attribute analysis can significantly
improve the understanding of a complex carbonate reservoir. We deliver an improved reservoir model concept and identify
possible exploitation targets within the Upper Jurassic carbonates. We use seismic attributes and different carbonate litholo-
gies from well logs to identify parameter correlations. From this, we obtain a supervised neural-network based 3D lithology
model of the geothermal reservoir. Furthermore, we compare fracture orientations measured in seismic (ant-tracking analysis)
and well scale (image log analysis), to address scalability. Our results show that, for example, acoustic impedance is suit-
able to identify reefs and karst-related dolines, and sweetness proves useful to analyse the internal reef architecture. Whereas,
frequency- and phase-related attributes allow the detection of karst. In addition, reef edges, dolines, and fractures, associated
with high permeabilities, are characterized by strong phase changes. Fractures are also identified using variance and ant track-
ing. Morphological characteristics, like dolines, are captured using the shape index. Regarding the diagenetic evolution of the
reservoir and the corresponding lithology distribution, we show that the Upper Jurassic carbonate reservoir experienced a com-
plex evolution, consisting of at least three dolomitization phases, two karstification phases, and a phase of tectonic deformation.
We observe spatial trends in the degree of dolomitization and show that it is mainly facies-controlled and that karstification
is facies- and fault-controlled. Karstification improves porosity and permeability, whereas dolomitization can either increase
or decrease porosity. Therefore, reservoir zones should be exploited that experienced only weak diagenetic alteration, i.e. the
dolomitic limestone in the upper part of the Upper Jurassic carbonates. Regarding the fracture scalability across seismic and
well scales, we note that a general scalability is, due to a combination of methodological limitations and geological reasons, not
possible. Nevertheless, both methods provide an improved understanding of the fracture system, and possible fluid pathways.

By integrating all the results, we are able to improve and adapt recent reservoir concepts, to outline the different phases of
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the reservoir’s structural and diagenetic evolution, and to identify high-quality reservoir zones in the Munich area. These are

located southeast at the Ottobrunn Fault and north of the Munich Fault close to the Nymphenburg Fault.

1 Introduction

The quality of a geothermal carbonate reservoir is controlled by different factors and processes, such as the depositional
environment, lithology, diagenesis, karstification, fracture networks, and tectonic deformation (Andres, 1985; Lemcke, 1988;
Mraz, 2019). Carbonate rock formations are thus often extremely heterogeneous (Birner et al., 2012; Konrad et al., 2019;
Bohnsack et al., 2020; Fadel et al., 2022) and important reservoir parameters, such as reservoir volume, porosity, permeability,
temperature, and their spatial distribution, are difficult to predict (Veeken, 2007; Huenges, 2010; Agemar et al., 2014; Glassley,
2014; Moeck, 2014; Bauer et al., 2019). However, a good understanding of these parameters and their distribution are required
for a successful geothermal project (Backers et al., 2022; Fadel et al., 2022).

Most carbonate reservoirs are located within deposits of a former shallow marine environment, e.g., the Upper Jurassic
carbonates of the German Molasse Basin. Shallow marine carbonates can be often separated into two hyper facies types, a
massive facies consisting of reefs and a bedded facies consisting of layered carbonates (Reinhold, 1998). Another distinguish-
ing feature is the lithology type. The main process that alters the lithology type in carbonates after deposition is dolomitization
(Machel, 2004; Lucia, 2007). During this process, calcium is replaced by magnesium. Depending on the degree of dolomitiza-
tion, carbonate rocks can be assigned to different lithology types: limestone (90% to 100% CaCQs), dolomitic limestone (50%
to 90% CaCQs3), calcareous dolomite (50% to 90% CaMg(COj3)s), and dolomite (90% to 100% CaMg(COs3)s). Dolomitization
can lead to a reduction of the rock volume and therefore, to an increase of the total porosity by creating secondary porosity
(Sajed & Glover, 2020). Furthermore, early dolomitization can increase rock strength and thus preserve primary porosity by
creating a stable framework, which hinders compaction (Lucia, 2007). Therefore, dolomitization can cause heterogeneity of
petrophysical rock properties (Ehrenberg & Nadeau, 2005; Ehrenberg, 2006) and a redistribution of the pore space (Moun-
tjoy & Marquez, 1997). Dolomite is also more resistent against erosion and less soluble than limestone, which makes it less
prone to karstification (Steidtmann, 1911). The influence of dolomitization on the porosity distribution has been investigated
by many studies. For example, for the Jurassic carbonates in southern Germany, Bohnsack et al. (2020) and Wadas & von
Hartmann (2022) have shown that, in order of decreasing porosity, the dolomitic limestone has the highest porosities, followed
by limestone, and dolomite and calcareous dolomite have the lowest porosities within the carbonate reservoir.

Another reservoir-quality control factor is karstification, which describes the dissolution of calcite or aragonite due to the
percolation of unsaturated meteoric- or groundwater, e.g., caused by fluid migration along fracture zones, or a falling sea level
and resulting subaerial exposure of the carbonates. This process can improve the reservoir quality by enlargement of primary
pore space and thus fluid pathways, and the formation of secondary porosity and large cavities, which can also develop into
dolines (Kendall & Schlager, 1981; Xu et al., 2017). Karstification is often more intense close to faults because of the often
increased fracture intensity (Closson & Abou Karaki, 2009; Del Prete et al., 2010; Wadas et al., 2017).
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Permeability is also strongly controlled by fractures, which are often associated with tectonic- and fault-related deformation.
However, permeability provided by fractures can also lead to unwanted fluid flow behaviour like a channelized fluid flow,
which can cause an early thermal breakthrough (e.g., Toublanc et al., 2005; Jolley et al., 2007; Bauer et al., 2019; Boersma
et al., 2020; Fadel et al., 2022). Therefore, understanding the local and regional fracture network, e.g., the fracture orientations,
connectivity, and the fracture density, is of high importance when characterizing complex reservoirs (Boersma et al., 2020).

Normally, reservoir parameters are derived from well data or outcrop analogues (Bauer et al., 2017). Wells can deliver direct
information of the local reservoir properties such as porosity, permeability, fracture orientation and -intensity, lithology, and
facies types, but sparsely-located wells are unable to depict the spatial distribution of the properties. A method that is espe-
cially suited to depict the spatial changes related to geological and petrophysical variations is 3D seismic attribute analysis of
3D reflection seismic (Chopra & Marfurt, 2007; Ashraf et al., 2019; Zahmatkesh et al., 2021). Seismic attributes are quanti-
ties derived from seismic data, based on, e.g., time, amplitude, frequency, phase, velocity, and attenuation (Chopra & Marfurt,
2007). For a long time they have been used for hydrocarbon reservoir characterization, prediction and monitoring, by delivering
information on geological structures, lithology, reservoir properties, parameter relationships and patterns that might not be rec-
ognized otherwise (Taner, 2001; Chopra & Marfurt, 2007; Sarhan, 2017). For example, Banerjee & Ahmed Salim (2020) used
seismic attributes to analyse the structural features and the depositional patterns of the NW Sabah Carbonate Platform in the
South China Sea. Using spectral decomposition, they identified paleo-lows and depocentres; sweetness helped them to identify
channels, reef structures and lithofacies boundaries; variance and amplitude extraction maps revealed the reefal development
on top of the carbonate platform. Al-Maghlouth et al. (2017) used frequency decomposition and a colour-blend of geometric
attributes, such as semblance and conformance, to characterize the Cenozoic carbonates facies in North-West Australia, and to
define edges and discontinuities associated with depositional geometries, such as reefs. Spectral decomposition and coherency
have also been used by Skirius et al. (1999) to locate faults and fractures, and reef margins and isolated buildups, as targets
for increased hydrocarbon production, e.g., at the Leduc carbonate reef bank in Canada and the Tor Field area in the North
Sea. Furthermore, Wang et al. (2016) used seismic attributes to describe the reef growth and the evolution of channel systems
for Eocene carbonates in the Sirte Basin in Libya. Edge- or discontinuity detection attributes, like variance and chaos, have
been used to conduct a small-scale seismic-based fracture analysis (Jaglan et al., 2015; Williams et al., 2017; Albesher et al.,
2020; Boersma et al., 2020; Loza Espejel et al., 2020). Nonetheless, seismic data lacks the high vertical resolution of well and
outcrop data. Various studies have therefore attempted to show the benefits of a combined approach using both seismic and
well data, in order to reduce the uncertainties of reservoir characterization (Toublanc et al., 2005; Fang et al., 2017; Albesher
et al., 2020; Boersma et al., 2020; Méndez et al., 2020). Another aspect to consider is that manual interpretation of seismic data
can be a very time-consuming task due to the high amount of data, which is why computational solutions, such as supervised
and unsupervised neural networks have been increasingly used for seismic interpretation, pattern recognition, and lithology
classification in recent years (Saggaf et al., 2003; Baaske et al., 2007; Bagheri & Riahi, 2015; Roden et al., 2015; Brckovié
et al., 2017; Zahmatkesh et al., 2021). Besides the long-time use for hydrocarbon reservoir investigation, seismic attribute

analysis has also been increasingly used in geothermal exploration in recent years, especially for complex structured reservoirs
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(Pendrel, 2001; Chopra & Marfurt, 2007; Doyen, 2007; Abdel-Fattah et al., 2020), e.g., in Poland (Pussak et al., 2014) and
Denmark (Bredesen et al., 2020). Another such complex carbonate reservoir is located in the South German Molasse Basin.
Based on a case study in Munich, Germany, we perform an advanced analysis of a 3D seismic dataset and well logs for
the Upper Jurassic geothermal carbonate reservoir, which has beeen described as a complex lithology- and facies-dependent,
fracture-and karst-controlled reservoir by other studies (Birner et al., 2012; Cacace et al., 2013; Homuth et al., 2015; Moeck
et al., 2020). The aim of this study is to deliver an improved reservoir model concept and to identify possible exploitation targets
within the Upper Jurassic carbonates. To accomplish this goal, this paper is structured in three main parts. First, several seismic
single- and multi-attributes are analysed to identify and better understand the physical and structural reservoir characteristics.
Second, parameter correlations between the seismic attributes and the different carbonate lithologies are investigated to obtain a
3D lithology model of the geothermal reservoir based on a supervised neural network. And third, a seismic fracture orientation
analysis (FOA) workflow is adapted, based on other studies (e.g., Albesher et al., 2020; Boersma et al., 2020), and applied to
the 3D seismic dataset. The FOA results on seismic scale are compared with those at image log scale, in order to address the

scalability of the FOA results.

2 Study site

The study site of the GRAME 3D seismic dataset covers about 170 km? and is located below the city of Munich within the
South German Molasse Basin (Fig. 1a). This area includes the geothermal plant Schéftlarnstrale (Sls) that consists of six
horizontally-deviated wells (three injection and three production wells, Fig. 1b). The reservoir section of the Upper Jurassic

carbonates (Malm) is at a depth of around 1750 to 2600 m depth below sealevel (1380 to 1750 ms two-way traveltime (TWT)).
2.1 Geological evolution

The German Molasse Basin (GMB) is part of the North Alpine Foreland Basin, which experienced a complex structural
evolution with a Permo-Carboniferous graben phase, a Triassic to Middle Jurassic epicontinental or shelf phase, a Middle
Jurassic to Cretaceous passive margin phase, and a Tertiary foreland phase (Bachmann et al., 1987; Bachmann & Miiller,
1992). During the Upper Jurassic, up to 600 m of carbonates, partly forming reef buildups, were deposited in the study area,
which at that time was covered by the Tethys Sea (Schmid et al., 2005; Piefikowski, 2008). At the Jurassic-Cretaceous boundary,
regression of the Tethys led to the exposure of the carbonate deposits and caused strong karstification (Bachmann et al., 1987;
Bachmann & Miiller, 1992). Several isolated sinkholes and also sinkhole clusters can be observed at fault terminations or
within the reservoir (Lemcke, 1988; Ziesch, 2019; Wadas & von Hartmann, 2022). From Late Cretaceous to Early Tertiary,
southern Germany was uplifted, resulting in extensive compressional deformation due to the Alpine Orogeny. As a result,
antithetic and synthetic normal faults developed parallel to the Alpine front (Ziegler, 1987). Furthermore, the underthrusting
of the European plate below the Adriatic-African plate in the Late Eocene caused the Alpine nappes to extend to the north,
which led to isostatic-induced downflexing of the GMB (Frisch, 1979). The development of the GMB was accompanied by

two major transgressive-regressive cycles (Eisbacher, 1974), each causing the accumulation of marine deposits followed by
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Figure 1. Geological context and study area. (a) Simplified overview of the German Molasse Basin with tectono-stratigraphic units and
major faults (blue lines). The study area and the location of the GRAME 3D seismic are marked by a red star/rectangle, respectively. (b)
Further input data is gathered from geophysical logging of the geothermal site ’Schiftlarnstrae (Sls)’ in the city of Munich, which contains
six horizontally deviated wells (Th1 to Th6). Based on the horizon interpretation of the 3D seismic data carried out by Ziesch (2019), the
Upper Jurassic reservoir is located at a depth between 1380 to 1750 ms TWT or around 1750 to 2600 m depth below sealevel.

terrestrial sediments, e.g., from rivers and lakes, known as ‘Marine Molasse’ and ‘Freshwater Molasse’, respectively. Finally,

the Molasse sediments were overlain by Pleistocene glacial and interglacial deposits.
2.2 Geothermal reservoir

The southward-dipping Upper Jurassic carbonates (Malm) form a carbonate platform which is the geothermal reservoir (Schmid
et al., 2005; Pierikowski, 2008). Due to the southwards increase in depth, the temperatures increase towards the south from
approximately 70°C to 150°C. This allows extraction of geothermal energy for heating in the Munich area and even electricity
generation further south (Bohm, 2012; Agemar et al., 2014; Homuth et al., 2015).

With regards to the depositional system, the Malm of the greater Munich area can be separated into two hyper facies:
a massive facies (consisting of reefs) and a bedded facies (Reinhold, 1998; Machel, 2004; Lucia, 2007; Bohnsack et al.,
2020). Several studies have shown that reefs are suitable exploitation targets because they are often prone to dolomitization,
karstification, and brittle deformation, and therefore often exhibit enhanced groundwater flow (Andres, 1985; Stier & Prestel,
1991; Birner et al., 2012). A lithofacies-based, hydrostratigraphic classification for the greater Munich area carried out by Bohm
(2012), shows that the lowermost units Malm « to Malm ~, which mainly consist of marly limestones, can be characterized as
an aquitard. Malm 6 to Malm e are described as a regional aquifer due to a laterally-persistent dolomitic massive facies. Malm
¢ contains local aquifers in dolomitized massive facies as well as aquitards.

Structural analysis of the GRAME 3D seismic dataset reveals that the study area is influenced by karstification and fault-
related deformation. Several isolated sinkholes and also sinkhole clusters are observed along the fault traces and at fault

terminations (Sell et al., 2019; Ziesch, 2019; Wadas & von Hartmann, 2022). The seismic data also shows that the greater
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Munich area is traversed by a complex fault pattern, mainly consisting of normal faults. The largest fault with a maximum
vertical offset of 350 m is the Munich Fault (Fig. 1b), which splits eastward into several branches that subdivide the area
around the geothermal site ’Sls’ into a footwall block, an intermediate block and a hanging-wall block. The large fault system
in the southeast is the Ottobrunn Fault that also splits into several small antithetic and synthetic faults with small vertical offsets
up to 80 m, forming a horsetail splay. This indicates this fault has both normal fault- and strike-slip components (Ziesch, 2019).
Overall, the Upper Jurassic carbonates of the Munich area are characterized as a strongly heterogeneous, lithology- and facies-
dependent, fracture- and karst-controlled reservoir (Birner et al., 2012; Cacace et al., 2013; Homuth et al., 2015; Moeck et al.,
2020).

3 Methods
3.1 Database

For a better insight into the structure and diagenesis of the reservoir, we performed an advanced seismic data analyses of the
GRAME dataset using the seismic interpretation software Schlumberger Petrel®. The GRAME 3D seismic dataset, which was
surveyed and processed in 2015/2016 by DMT Petrologic GmbH (Scholze & Wolf, 20164, b), had a variable line distances
of 400 to 500m, and a source and receiver spacing of 50 m with a sweep frequency of 12 to 95Hz, 5 seconds of record
length and a 2 ms sample rate. This configuration enabled the acquisition of a high-resolution 3D cube with a good signal-
to-noise ratio. The seismic data processing consisted, e.g., of static corrections, deconvolution, common reflection surface
(CRS) analysis, migration velocity analysis based on tomographic inversion, and Kirchhoff Pre-Stack Depth-Migration (for
details see tabular overview in Wadas & von Hartmann (2022), and the acquisition and processing reports by Scholze & Wolf
(20164, b)). Based on this data, we performed an advanced seismic data analysis that comprised of single- and multi-attribute
analysis. Furthermore, an attribute and neural-network based lithology classification, and an ant-track based seismic fracture
orientation analysis were carried out. For this purpose, we implemented datasets of the six Schiftlarnstrae wells, which were
geologically and geophysically investigated. The well logging was carried out in 2018/2019 by the company Daldrup & S6hne
AG, on behalf of the Stadtwerke Miinchen (SWM). The available data includes, e.g., stratigraphic and lithological information
from cuttings (Bohm & Dax, 2019) and image logs (SWM, 2019). The drill cuttings were used to determine the dolomite and
calcite content at intervals of 2.5 to 5 m by calcimetry, in order to derive a lithology log. The image logs show the electrical
resistivity of the borehole walls and allow for a classification of different rock types and fractures (e.g., Schlumberger, 2004;
Bohm, 2012; Lai et al., 2018).

3.2 Seismic single-attribute analysis

Seismic attributes are quantities computed from the seismic data and describe the shape or physical characteristics of one
or more seismic traces, mostly over specified time intervals. The characteristics of a seismic wave, e.g., velocity, amplitude,

frequency, phase, and attenuation, change while the wave propagates through the subsurface. These changes are caused by
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the different physical rock properties of the various rocks in the subsurface. Therefore, they are used to highlight specific
geological, physical, and/or reservoir properties, and to help recognize patterns and parameter relationships (Taner, 2001;
Chopra & Marfurt, 2007; Veeken, 2007). Seismic single-attributes can be categorized by different taxonomies (Dewett et al.,
2021). In this work, we group them by the properties they measure, namely amplitude-related attributes, phase- and frequency-
related attributes, and discontinuity-related attributes. See also the appendix for more detailed information regarding the seismic
attributes and the chosen parameters for the attribute analysis.

Amplitude-related attributes: These attributes (e.g., root mean square (RMS) amplitude, envelope, reflection intensity, and
acoustic impedance) are used to depict stratigraphic and lithologic contrasts. The RMS amplitude is described as the square root
of the sum of squared amplitudes divided by the number of samples within a specified time window. The reflection intensity
is the average amplitude over a specified time window multiplied with the sample interval. And the envelope is the magnitude
of the complex trace and is independent of phase (Chopra & Marfurt, 2007; Sarhan, 2017). These three attributes mainly
identify only strong anomalies (see appendix figure A1) and to depict smaller variations, as expected in our study area, we also
used acoustic impedance. Every reflection changes the amplitude of the returning wave due to a contrast in acoustic impedance,
which is the product of the seismic velocity of the wave travelling through the subsurface and the density of the rock. Therefore,
the reflection amplitudes can be inverted to get impedance values (Pendrel, 2001; Barclay et al., 2008; Filippova et al., 2011)
by using, e.g., a stochastic seismic amplitude inversion, as carried out in this study area by Wadas & von Hartmann (2022).

Phase- and frequency-related attributes: Phase- and frequency-related attributes (e.g., instantaneous phase, instantaneous
frequency, and dominant frequency) show the continuity of weak reflectors and indicate unconformities, faults, fracture zones,
lithology- and stratigraphic sequences, and sequence boundaries (Van Tuyl et al., 2018). The instantaneous phase measures the
phase shift of a specific reflection event, e.g., resulting from a polarity reversal of the reflection coefficient or due to a curved
interface (Chopra & Marfurt, 2007). The instantaneous frequency is the rate of change of the instantaneous phase, and the
dominant frequency is the square of the instantaneous frequency summed with the square of the instantaneous bandwidth and
then the square root of the sum is calculated (Schlumberger, 2020). So the dominant frequency indicates where the energy of
the seismic signal is concentrated in the frequency domain.

Discontinuity-related attributes: Such attributes (e.g., variance and chaos) are able to image vertical and lateral disconti-
nuities, and can therefore highlight stratigraphic and structural boundaries like faults, fractures, dolines, and reef edges (Chopra
& Marfurt, 2007). For the variance, a trace-by-trace analysis is performed in order to quantify the dissimilarity of the seismic
waveform of neighbouring traces within a specified time window (Bahorich & Farmer, 1995; Marfurt et al., 1998; Wang et al.,
2016). Chaos is a similar attribute that maps the ’chaoticness” of the seismic signal from statistical analysis of dip/azimuth

estimates.
3.3 Seismic multi-attribute analysis

The complexity of carbonates makes a combined analyses of several different attributes necessary in order to characterize and
better understand the reservoir. In a multi-attribute analysis, several single-attributes, which are mathematically independent

but linked through the underlying geology, can be combined by corendering and colour-blending, or by using them to calculate
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new attributes (Marfurt, 2015). Since a good seismic attribute should represent important aspects of the underlying geology,
showing more than one attribute in the same image can give improved geological insight. See also the appendix for more
detailed information regarding the seismic attributes and the chosen parameters for the attribute analysis.

Sweetness: Sweetness can enhance the visibility of lithological and structural changes (Chen & Sidney, 1997). It is the
mathematical combination of instantaneous frequency and envelope (Radovich & Oliveros, 1998), and the combination of
these two attributes is able to detect general energy changes of the seismic wave. High sweetness values are correlated with
both high envelope and low instantaneous frequencies, whereas for low sweetness values it is the opposite.

Spectral decomposition: Spectral decomposition is a useful tool for qualitative and quantitative interpretation, because it
allows to delineate geological features in more detail due to tuning at a specific frequency (Henderson et al., 2008; Wang
et al., 2016). Therefore, it can enhance subtle structural features, like thin beds, reefs, channels, and pinch-outs (Chopra &
Marfurt, 2007; Marfurt & Kirlin, 2001; Marfurt, 2015), and it can also be used for seismic geomorphology analysis (Marfurt &
Kirlin, 2001). In principle, spectral decomposition (Fig. A2) separates the seismic signal into its frequency components. Three
different frequencies are then corendered and displayed by RGB colour-blending, where frequencies 1, 2 and 3 are plotted as
red, green and blue, respectively (Chopra & Marfurt, 2007; Al-Maghlouth et al., 2017).

Curvature: Curvature is used to detect changes in depositional- and geological trends, e.g., tectonic features and lineaments.
Therefore it is useful to identify, e.g., channels/valleys, karst/dolines, and mounds/reef buildups (Al-Dossary & Marfurt, 2006).
Curvature measures how much a seismic reflector is bent. In case of a planar reflector, the corresponding vectors are parallel
and the reflector has zero curvature. In contrast, anticlinal features result in diverging vectors and the curvature is positive.
Synclinal features result in converging vectors and the curvature is negative (Roberts, 2001; Al-Dossary & Marfurt, 2006;
Wang et al., 2016). Most positive (K;,s) and most negative (K,,.4) curvature are often corendered and used for morphological
analysis (Chopra & Marfurt, 2007; Marfurt, 2015).

Shape index & Curvedness: Additionally, curvature can be used to calculate new attributes such as the shape index and the
curvedness that allow a quantitative definition of the local morphology of a seismic reflector/seismic horizon, independent of
scale (Roberts, 2001; Chopra & Marfurt, 2007; Veeken, 2007; Wang et al., 2016; Sarhan, 2017). The Shape Index describes
the type of shape of a specific surface and the index differentiates between dome (+1), ridge (+0.5), saddle (0), valley (-0.5)
and bowl (-1) shapes (Chopra & Marfurt, 2007; Marfurt, 2015). The curvedness measures the magnitude of curvature which
is zero for a planar surface (Roberts, 2001)). Both attributes are often corendered together with variance or chaos to visualize

reflector morphology (Marfurt, 2015).
3.4 Neural network based lithology classification

The lithology classification in this study is based on a rock-physics workflow, which predicts the most probable lithologies
utilizing an artificial supervised neural network using the software Schlumberger Petrel®. 3D seismic volumes, well logs and
geological interpretations can serve as input datasets. At first, a class definition (class 1: limestone, class 2: dolomitic limestone,
class 3: dolomite, class 4: calcareous dolomite) using well logs is carried out, after which the classification algorithm can be

generated, and finally used for lithology prediction (Schlumberger, 2020).
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To obtain input parameters for the neural network it was tested whether parameter relationships between the lithology classes
and the physical parameters derived from the seismic attributes exist. This was accomplished by cross-plotting the lithology
logs from the six wells against the seismic attributes that were extracted from the 3D volumes along the well paths. A correlation
analysis was carried out and the correlation coefficients between the lithology classes and the attributes were determined. Based
on the results, the following attributes were chosen: acoustic impedance, dominant frequency, reflection intensity, variance,
envelope, and the 28 Hz frequency band, and then a cluster analysis was carried out to develop a classification algorithm. This
cluster analysis was performed by utilizing a supervised artificial neural network (ANN), which automatically searched for the
best relationships between the seismic attribute values and the lithology classes. The ANN is a type of computational model,
which tries to mimic pattern recognition and data interpretation of the human brain (Da Silva, 2017). The supervised ANN is
trained with both the input data (seismic attribute ’logs’) and the desired output data (lithology logs). The network architecture
consists of an input layer, a hidden layer, and an output layer. The input layer consists of input neurons also called nodes and
takes the input data, in our case the seismic attribute data, and passes it to the hidden layer. In the hidden layer, the ANN learns
the relationship/connection between the different nodes and the output values by applying weight functions between them.
Then the sum of all weighted inputs is calculated and the output layer gives the predicted output values of the ANN (Da Silva,
2017). In our case, these output values are the four carbonate classes. From this neural-network based cluster analysis, 2D and
3D probability density estimates were derived (Figs. 2a & b). Training the estimation model/neural net was an iterative process
and at the end of each iteration the training error was calculated. The error was assessed by comparing the neural network result
with the desired output, in this case the lithology logs. At the beginning, the training data was split into two parts, one part was
used for the training and the other was used to calculate the error by cross validation (Schlumberger, 2020). The chosen ratio
was 50:50, so 50% of the data were used for training of the neural network and the other 50% were used to cross validate the
results. To quality control the performance of the classification algorithm a confusion matrix was generated (Fig. 2c). It allows
the user to identify whether the algorithm became confused when defining the different classes (Sammut & Webb, 2017).
The upper confusion matrix shows the probability of a classification occurring given the true class. The rows contain the true
classes and the columns contain the predicted classes. For example, 8.18% of the samples that belong to the limestone class
were wrongly predicted as dolomite, and 86.17% of the samples that belong to the dolomite class were correctly predicted as
dolomite. The lower confusion matrix shows the data the other way around. High-confidence classification results have large
values along the diagonal of the matrix, as it is the case in our study, indicating a reliable classification result. Furthermore, the
data quality was also visually inspected by comparing the actual lithology logs from the six wells with estimated logs based on
the neural network, and it also shows a good classification result (Fig. 2d). The successfully trained neural net was then used

to create a 3D model with the predicted lithologies based on the 3D seismic attribute volumes (Schlumberger, 2020).
3.5 Ant-track based fracture orientation analysis

Several studies have shown the applicability of 3D seismic data for fracture analysis (Jaglan et al., 2015; Fang et al., 2017;
Albesher et al., 2020; Boersma et al., 2020; Loza Espejel et al., 2020; Méndez et al., 2020), which can be used to address the

often-raised question of scalability of reservoir properties (e.g., Lake & Srinivasan, 2004; Li et al., 2019), i.e., can information
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Figure 2. Lithology classification using a supervised neural network based on parameter relationships between the input data (e.g., seismic
attributes) and the desired output data (e.g., lithology classes from logs). (a & b) After choosing appropriate seismic attributes for the clas-
sification, these attributes were used to create probability density estimates, e.g., in 2D and 3D (exemplarily shown for acoustic impedance,
variance, and dominant (dom.) frequency). The results of the lithology classification were validated by examining (c) a confusion matrix
table and (d) a comparison between the actual lithology log (1) and the predicted lithology log (nn) derived from the neural net. The upper
confusion matrix table shows the probability of a classification occurring given the true class. The lower confusion matrix table shows the
probability of a sample belonging to a particular class given the predicted class. A reliable classification with high-confidence has large

values along the diagonal of the matrix (marked in green).

regarding fracture properties be transferred from the well scale to the seismic scale and vice versa? To address this question, an
adapted seismic fracture orientation analysis (FOA) workflow based on e.g., Albesher et al. (2020) and Boersma et al. (2020)
was applied. Afterwards the FOA results on the seismic scale were compared with those on the image log scale.

The FOA workflow, based on the 3D reflection seismic volume, consisted of several steps, starting with the extraction of an
edge-detection volume, in this case, variance (Fig. 3 — step 1), which images lateral and vertical discontinuities (Marfurt et al.,
1998; Chopra & Marfurt, 2007). Then the edge evidence attribute was applied to enhance the edges and thus, the fractures
in the variance volume (Fig. 3 — step 2). The edge evidence attribute searches for segments in which the variance values
differ significantly from the surrounding values, in order to enhance them (Schlumberger, 2020). Afterwards Schlumberger’s
patented ant-tracking algorithm (Schlumberger, 2020) was applied (Fig. 3 — step 3). Ant tracking can be used to extract faults
and fractures from a discontinuity volume. This is accomplished by simulating the behaviour of ants, which use pheromones to
optimize their search for food by marking their paths. Following the same principle, artificial ants (agents) are used to search for

faults and fractures generating a detailed attribute volume with very sharp edges. A choice can be made between a passive and
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an aggressive ant tracking mode, and since our investigation focus is on small structures like fractures and not large structures
such as faults, we chose an aggressive mode and adapted its parameters to our data (see additional explanation in appendix).
After the 1st ant tracking a 2nd ant tracking was applied to further sharpen the detected edges (Fig. 3 — step 4). Afterwards
automatic fracture extraction (Schlumberger, 2020) was used to create 3D fracture patches from the ant-tracked volume (Fig. 3
— step 5). Then the fractures from the patch volume were extracted along the well paths, including an area with a diameter of
one kilometre around each well, in order to capture enough fractures for the analysis (Fig. 3 — step 6). Afterwards, visual quality
control was carried out and fracture patches that deviated from the ant tracks were manually removed from the dataset (Fig. 3 —
step 7). The fracture patches along the well paths (Fig. 3 — step 8) and their corresponding fracture orientation values were then
exported from Petrel and imported into the software Stereo32 to create rose diagrams and stereogram pole plots in order to
analyse the fracture orientations and to determine fracture clusters. Subsequently, the results were compared for the complete
drill paths and sections of it, with those of image log analyses, to show where the fractures matched. The Compact Micro
Imager (CMI) images the rock’s electrical resistivity and is presented as an unrolled figure of the wells surface (Schlumberger,
2004). Since fractures have a different resistivity compared to the surrounding rock, they are visible as sinusoids. We traced
their orientation manually by using the software WellCAD (ALT, 2021). The image is referenced according to the well path,

so that the software calculates the true orientation of the fractures.

e

input: seismic cube

e

step 2: edge evidence

step 6: select patches
around wells

)

step 7: manual editing

/% e

step 4: 2nd ant tracking step 5: automatic fracture step 8: fracture orientation analysis (FOA)
extraction

Figure 3. Fracture orientation analysis workflow, shown on a zoomed-in section of the GRAME dataset, based on seismic attributes and

ant-tracking.

4 Results

In the following, the results of the physical and structural reservoir characterization, the lithology prediction model, and the

fracture orientation comparison are shown. Please note that the carbonate formations of the GMB generally dip to the south
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and additionally, our study area shows a fault-related downward-stepping to the south. Therefore, the carbonate deposits on the

footwall of the Munich Fault are located at shallower depths/time slices compared to the hanging wall.
4.1 Physical and structural reservoir characterization
4.1.1 Geological main targets

In the GRAME area, several of the main exploration targets can be identified based on the acoustic impedance volume, e.g.,
reef buildups and dolines, as described by Wadas & von Hartmann (2022). For example, in the west of the footwall block, an
elongated reef (Fig. 4a) with high impedance values of up to 18000 kPa*s/m in the reef core and low impedance values down
to around 10000 kPa*s/m at the reef margins can be seen. Comparable characteristics are observable for another reef in the
east of the intermediate block (Fig. 4b). The identified dolines are typically characterized by a circular shape. In the study area,
large dolines and doline clusters are often located close to faults. This is because the fracture zones around faults can lead to
enhanced fluid migration, and therefore increased dissolution of soluble rocks and the development of secondary porosity, as
it can be observed, e.g., at the Munich Fault (Fig. 4c, d) and the Ottobrunn Fault (Fig. 4e). The dolines have low impedance
values in the center and often larger impedance values around them. Another observed feature is an incised narrow channel in
the upper reservoir part in the east of the hanging wall, crossing the area from northeast to southwest (Fig. 4f). This channel
is associated with a low-stand sea level and subaerial exposure of carbonates. The channel fill is clearly visible due to its
low impedance values, which show a strong contrast compared to the impedance of the surrounding rocks. In the deeper time
slices, e.g., at 1590 ms, the channel is only slightly curved and follows a more or less straight northeast-southwest direction.
Over time, the channel started to meander (e.g., at 1580 ms and 1572 ms), also resulting in the development of oxbow lakes.
A derived porosity model based on an impedance/porosity relationship, which associates low impedance values with higher
porosities, shows a complex porosity distribution within the study area (Wadas & von Hartmann, 2022). The reef core has
mainly porosities < 3% and the highest porosities of 7 to 14% are observed at the reef cap, in the upper third of the reef and
on the reef slopes. Wadas & von Hartmann (2022) assume that this is the result of intense karstification and gravitational mass
flows on the slopes. Overall, the footwall of the Munich Fault shows higher porosities than the hanging wall to the south, and
the porosity also displays a W-E trend with higher porosities in the western part of the study area. Furthermore, based on a
comparison of their results with well data, they describe that dolomitic limestone has the highest porosities and calcareous
dolomite has the lowest porosities. Thus, preferential exploitation targets in terms of high porosity are more likely to be found
in the upper part of the reservoir (Berriasian to Malm (1), in particular, in dolomitic limestones due to their high porosity
and/or in strongly karstified areas within bedded and reef facies.

Besides amplitude/impedance, other physical properties describing the signal of a reflected seismic wave are phase and
frequency. In our study area noticeable changes of seismic phase are observed at interface boundaries of dolines and reefs.
Additional to the already identified dolines and doline clusters (Fig. 4), we found smaller circular features in the north of the
footwall which were also interpreted as dolines (Fig. 5a). The already identified dolines at the Munich Fault (Fig. 5b) and

at the Ottobrunn Fault (Fig. 5c) also produce clear phase changes of the seismic signal. Furthermore, two additional circular
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Figure 4. Time slices through the acoustic impedance volume, calculated by Wadas & von Hartmann (2022), which is used to depict
stratigraphic and lithological contrasts. The results reveal impedance contrasts of different carbonate structures associated with a shallow
marine environment and sea-level variations, such as reef buildups (a & b), karst features (c, d & e) and a channel (f). Low impedance values

correlate with high porosities. IL = inline and XL = crossline.

features can be seen north of the already identified doline cluster at the Ottobrunn Fault. Phase changes are also observed at
reef boundaries and within the reefs. For example, the reef to the east of the intermediate block (Fig. 5d) shows a clear phase
change at the outer reef edge, but internally, further phase changes can be observed, in part almost parallel to the outer edge.
Whereas in the center, there is an area with a laterally almost constant phase, e.g., at 1470 ms. This is the reef core and the
surrounding phase changes reflect the shifting of the reef edge, and thus the reef growth that has led to the enlargement of the
reef over time. Furthermore, at the southeastern edge of this reef, the areas of the same phase have sometimes a significantly

smaller lateral extent than at the southwestern edge, e.g., at 1490 ms and 1500 ms. This indicates that in the southwest of the
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reef the same lithology/facies occupies a larger spatial area than in the southeast. Thus, we assume that this reef has either
not uniformly spatially grown or was affected by spatially uneven erosion, due to, e.g., spatial differences in water motion,

sediment dynamics, and/or subaerial exposure.

dolines

random line + 1538 ms

1350 ms
Ofttobrunn Fault
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Figure 5. Time slices through the instantaneous phase volume, which is used to identify phase shifts in the data. Strong phase changes,
independent of amplitude, are observable at structural and interface boundaries, e.g., dolines (a, b & c) and reefs (d). IL = inline and XL =

crossline.

With regard to the investigation of the dominant frequencies in our study area, it has been shown that the frequencies are
mostly below 40 Hz, indicating strong frequency attenuation. Nevertheless, the degree of frequency attenuation differs, even
for the same type of structural feature. For example, a reef buildup in the west of the hanging wall (Fig. 6a) shows much
lower dominant frequencies of mostly less than 20 Hz, compared to the reef in the east of the intermediate block (Fig. 6b)
with frequencies of mostly around 20 to 40 Hz. For the latter, only the reef slopes and the cap have frequencies below 20 Hz.
This correlates with the results of the impedance analysis, which show that these zones are characterized by lower impedance
values, and therefore higher porosities (Figs. 4a & b). This might result from mass redistribution at the slopes and more intense

karstification leading to stronger attenuation of higher frequencies. For the reef in the west of the hanging wall, this means
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Figure 6. Time slices through the dominant frequency volume showing the varying frequency attenuation across the study area, e.g., (a & b)

within reefs, (¢ & d) dolines, and (e) channels. Lower dominant frequencies indicate increased karstification and/or fault-related deformation.

IL = inline and XL = crossline.

that it might be more karstified. The correlation of karstification and low frequencies is also observable for the large dolines at

the Munich Fault (Fig. 6¢) and the Ottobrunn Fault (Fig. 6d). The doline margins are characterized by very low frequencies of

mostly below 20 Hz, while the doline center shows slightly higher frequencies of around 25 to 30 Hz. As shown by other doline

studies, their margins are often strongly fractured (e.g., Waltham et al., 2005; Al-Halbouni et al., 2018; Wadas et al., 2018),

leading to a loss of high frequencies. Besides reefs and karst, the filling of the narrow channel, identified in the impedance
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volume, is also characterized by lower frequencies compared to the surrounding material (Fig. 6e). Although the frequencies
differ along the channel indicating variation of the channel fill.

Another way to analyse the frequency content of a seismic dataset is by spectral decomposition, because the examination of
individual frequency components enables a better spatial differentiation and correlation. The reef buildups, the karst features
(dolines and widespread dissolution along bedding planes) and also the meandering channel are all characterized by mainly
low frequencies of 18 Hz and partly high frequencies of 50 Hz, represented by red, pink and to a lesser degree by purple colours
(Fig. 7). This frequency attenuation due to scattering at e.g., fractures and reef edges, could be caused by intensive karstification
and mass redistribution. In addition, lithological variations can also lead to frequency differences. Regarding regional trends,
the footwall of the Munich Fault (Fig. 7a) shows a north—south differentiation towards the deeper time slices. The northern part
of the footwall is mainly dominated by the 28 Hz frequency component and partly by the 50 Hz frequency component, which
is represented by the green and green-blue colours. The southern part of the footwall is characterized by increasingly lower
frequencies towards deeper time slices, more exactly at 1358 ms all three frequency components are present, at 1380 ms the
28 Hz component dominates together with the 18 Hz component, and at 1396 ms the 18 Hz band dominates. The upper part of
the hanging wall of the Munich Fault (Fig. 7b) shows a west—east frequency differentiation. The western part contains mostly
the 18 Hz and partly the 50 Hz frequency components, and only in greater depths the 28 Hz component is also present. To the
east, a bright coloured area can be seen, e.g., at 1524 and 1544 ms, indicating that all three frequency components are present
and no general loss of high and/or low frequencies occurs. Overall, the hanging wall of the Munich Fault is more dominated
by the blue 50 Hz frequency band than the footwall, the only exception for the hanging wall is the easternmost area containing

the Ottobrunn Fault, which shows lower frequencies.
4.1.2 Internal reef architecture

To investigate the internal reef architecture, the seismic multi-attribute sweetness was analysed. In our study area, the bedded
facies is characterised by low sweetness values (brown, dark blue and grey colours), indicating a low envelope and high
frequencies (Fig. 8). In contrast, the reefs that show a strong variation in sweetness, are characterized by a higher sweetness
due to increased envelope values compared to the surrounding material. The reef base (Fig. 8a — 1462 ms) and parts of the
reef core show very high sweetness values (white, light blue and yellow colours). This results from very high envelope values
combined with relatively low frequencies. Such a combination of envelop and frequency could indicate a mudstone or a
generally compacted and cemented (fine-grained, microcrystalline) limestone (Dunham, 1962; Fliigel, 2010). The reef core
has medium to high sweetness values resulting from medium envelope values and low to medium frequency values (Fig. 8;
light green, pink, orange, medium blue and red colours). This indicates a mixed mud- and grain-supported carbonate texture
which is typical for a reef core that consists of different types of biogenic components like sponges, bivalves, corals and
bryozoans surrounded by a matrix (Fliigel, 2010; Bohm, 2012; Homuth et al., 2015). The different biogenic components cause
variations in rock properties, such as rock density or seismic wave velocity, which result in stronger amplitude differences and
lower frequencies due to increased attenuation. The reef slopes have medium sweetness values (dark green and purple colours),

resulting from low frequency and low to medium envelope values. This corresponds to other studies which have shown that

16



spectral
decomposition
[Hz]

Vjo/ine cluster

reef buildup

1358 ms 1380 ms 1396 ms
karstification along bedding planes karstification along bedding planes

N 9
5 :’ :
channel

1570 ms 1580 ms

1590 ms

Figure 7. Time slices through the spectral decomposition volume with 18 Hz plotted against red, 28 Hz plotted against green, and 50 Hz
plotted against blue. It enables the examination of individual frequency components, showing spatial frequency variations (a) on the footwall

and (b) on the hanging wall of the Munich Fault.

reef slopes often consist of a grain-dominated and strongly-disturbed debris facies (Fliigel, 2010; Playton et al., 2010), which

will lead to low internal reflection coefficients and strong frequency attenuation. The sweetness attribute also allows a more
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detailed interpretation of the reef development. For example, in the case of the reef to the west of the hanging wall (Fig. 8a),
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Figure 8. Time slices through the sweetness volume, which detects general energy changes of the seismic wave in order to identify changes
in lithology and stratigraphy. For the studied reservoir, the internal architecture of two exemplary reefs (a) in the west of the hanging wall
and (b) to the east of the intermediate block of the Munich fault are shown, revealing a complex reef development. IL = inline and XL =

crossline.

we observe that, starting from the reef base at 1462 ms, two closely spaced but separate reef cores developed (1452 ms and
1448 ms), ultimately forming one large reef (1440 ms). The western reef core shows a bending orientation where the southern

part has a SW-NE orientation and the northern part has SE-NW orientation. Whereas, the eastern reef core shows only a
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NW-SE orientation. In contrast, the reef to the east of the intermediate block (Fig. 8b) shows a slightly different development.
The reef base, which is not shown, is spatially coherent and also the reef core (from 1490 ms to 1460 ms) had a spatially mostly
400 uniform development. However, in the upper part, at 1428 ms and 1416 ms, the reef core starts to develop the shape of a three-
armed star with NNW-SSE, N-S, and NE-SW orientations. During further reef growth the NE-SW arm died out and only a
NW-SE oriented reef core remains (1400 ms). This change in reef core shape might result from a change in ocean currents or

other local environmental changes.
4.1.3 Structural boundaries & lineaments

405 Variance and chaos are able to highlight structural boundaries and lineaments. However, both attributes deliver comparable
results, so only the results of the variance analysis are shown. High variance values indicate high dissimilarities between

neighbouring traces, especially on the footwall (Fig. 9a) and the intermediate block of the Munich Fault (Fig. 9b). Long linear
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Figure 9. Time slices through the variance volume, which is used to detect faults and fracture zones (a & b), karst features (c & d) or other
structural features with sharp edges, such as reefs (e). In (d) and (e) the second subfigures on the right show variance with an additionally-

applied edge-enhancement filter to better highlight the vertical discontinuities on an inline (IL), a crossline (XL) and a random line.

features and chaotic patterns are visible along the fault itself and in the surrounding areas, respectively. The former results
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from the strong discontinuities due to the fault displacement, and the latter is induced by fault-related deformation. Fault-
related deformation can cause an increase in fracture intensity which generate more discontinuities, which is observable by
high variance values. But discontinuities can also be caused by karst-related deformation, as it can be seen, e.g., for the dolines
at the Ottobrunn Fault (Fig. 9c) and the Munich Fault (Fig. 9d). In the top view, the strongly disturbed doline edge is shown by
circular high variance values and in the side view, the collapse crater is clearly visible due to vertical discontinuities. In addition,
reef margins are also characterized by high variance values (Fig. 9¢). These are presumably caused by mass redistribution due

to debris flows at the margins, intensified karstification, and fracturing.
4.1.4 Morphological features

To analyse morphological features within the reservoir, we used most positive curvature (Fig. 10a) and most negative curvature
(Fig. 10b) corendered with variance (Fig. 10c). In our study area, most positive curvature reveals many anticlinal and most
negative curvature reveals many synclinal features, as shown by an exemplary time slice at 1510 ms. Along the Munich Fault
and it’s fault branches, long linear features can be seen (Fig. 10c). The positive curvature anomalies are associated with the
upthrown side of the normal faults and the negative curvatures with the downthrown side (Roberts, 2001). And the distance
between both anomalies gives an impression of the fault heave. Since the distance is quite small, this indicates a short lateral
displacement of the fault, which also fits well with the finding that the faults in this study area are steeply dipping (Ziesch,
2019). Besides this, many small-scale lineaments that form a chaotic pattern are visible, especially on the intermediate block
and the footwall. These small linear features are interpreted as fractures resulting from intense fault-related deformation along
the Munich Fault, in particular within the area where the fault splits into two fault branches forming the intermediate block.
Along this fault, but also along the Ottobrunn Fault to the south, and within the fault blocks, many circular features can be seen,
which are interpreted as karst-related dolines (Figs. 10d & e). The doline margins show a distinct positive anomaly indicating
an anticlinal structure, whereas the doline center shows a negative anomaly which is typical for a synclinal structure.
Curvature distinguishes only between planar, anticlinal and synclinal structures, but it can be used to calculate new attributes,
such as the shape index and the curvedness (Fig. 11) that allow a quantitative definition of the local morphology (Roberts,
2001). Therefore, we corendered the shape index with curvedness and variance. In our study area, zones with planar or almost
planar features, shown by dark grey colours, are observable on the hanging wall of the Munich Fault. Zones with highly-curved
morphologies, visible by bright colours, are seen on the footwall and the intermediate block of the Munich Fault, and to the
south at the Ottobrunn Fault, e.g., at 1510 ms (Fig. 11a). The tectonically-deformed fractured area in the east of the footwall
block is characterized by a chaotic pattern of mainly ridge- and valley-shaped surfaces (Fig. 11b), but we also identified many
small-scale bowl-shaped structures that are distributed across the entire area. Larger bowl-shaped dolines are only located in the
north of the footwall. They have a ridge-shaped outer margin and a valley-shaped inner margin that changes to a bowl-shaped
structure in the centre (Fig. 11c). Along the Munich Fault itself the footwall is characterized by a ridge-shaped lineament
and directly adjacent to the south is a valley-shaped lineament, which defines the transition towards the intermediate block.
Although this transition zone is less pronounced regarding morphology than the transition zone between the intermediate block

and the hanging wall (Fig. 11d). To the south at the Ottobrunn Fault, the shape index shows that the identified horse-tail splay
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Figure 10. Time slices through the curvature volumes that are utilized to detect changes in structural- and depositional trends. (a) The
most positive curvature reveals anticlinal and (b) the most negative curvature synclinal features. (c) For a comprehensive interpretation
both curvature volumes are superimposed and corendered with variance. The joint interpretation allows the detection of faults and the

determination of the upthrown and downthrown sides, and it is also a suitable tool for doline detection (d & e).

(Ziesch, 2019) has a valley-shape in the west and a ridge-shape in the east, showing that the fault is downthrown to the west
(Fig. 11e). The identified large dolines show the same characteristics regarding their shape as the large dolines to the north.
The shape index also shows other small bowl-shaped objects, some of which can also be found along the fault and due to
the lack of a valley-shaped margin they have only a low morphological contrast compared to the surrounding area. They are
either comparatively small dolines with a shallow collapse crater or small and shallow sagging structures, which do not have a

collapse crater and therefore no strong curvature change at the margin.
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Figure 11. Time slices through the co-rendered shape index and curvedness volumes (left panels), also together with the variance volume
(right panels). The shape index describes the type of shape of a specific surface and the curvedness measures the magnitude of curvature.

Together with variance they are suited to visualize morphology (Marfurt, 2015), e.g., like (b) damage zones, (¢ & e) karst-related dolines, (d

& e) and faults.

4.2 Lithology prediction model
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four types of carbonate with regards to their degree of dolomitization can be found: limestone, dolomitic limestone, dolomite,

and calcareous dolomite. For the study area, the 3D lithology model derived from the neural network classification reveals

1410 ms

w

opacity [%]

valley-shaped
fault lineament

variance

1570 ms 1570 ms

ridge
shape index

bowl dome

valley saddle

ridge

100

£ 0 £
|5}

g g
6100 g

22

The main process influencing the lithology type in carbonates is dolomitization (Machel, 2004; Lucia, 2007). In the study area
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that calcareous rocks (limestone and dolomitic limestone) with a total fraction of 76% are more common than dolomitic rocks
(dolomite and calcareous dolomite) with a fraction of 24% . The examination of vertical cross-sections (Fig. 12a — c¢) shows
considerable variations in lithology distributions, especially within the reef buildups, e.g., on the intermediate block and the
footwall of the Munich Fault. These show that reef cores that are only slightly porous consist of mainly dolomite. However,
also interbedded sequences with limestone and dolomitic limestone occur, especially in the upper part of the reef buildups, but
sometimes also in areas closer to the reef base.

By investigating individual time slices in the top view (Fig. 12d & e), we noticed that areas can be defined in which certain
lithology types are dominant. For the entire reservoir of the GRAME study site, the upper part is dominated by limestone
and dolomitic limestone, both for the footwall block (e.g., at 1380 ms) and for the hanging-wall block (e.g., at 1540 ms and
1580 ms). Apart from that, it is noticeable that the footwall block shows higher degrees of dolomitization in the west and
northwest compared to the east and southeast (e.g., at 1460ms). On the other hand, the hanging wall shows the opposite
trend with increased dolomitization to the east and in the central part (e.g., at 1600 ms and 1620 ms), although this spatial
trend diminishes towards greater depths (e.g., at 1660 ms). Overall, dolomitization appears to be slightly more pronounced
on the hanging-wall block than on the footwall block. Additionally, the subdivision of the reservoir into a lower part with
almost completely dolomitized carbonates and an upper part with more partially dolomitized carbonates, could indicate several
dolomitization and dedolomitization phases.

With regard to the reefs, the time slices show the same lithology distribution as observed in the cross sections, with mainly
dolomite in the reef cores and dolomitic limestone and limestone at the reef slopes and in the upper parts of the reefs (e.g., at
1380 ms and 1580 ms). According to the results of Wadas & von Hartmann (2022), who showed that the reef slopes and the
reef caps have higher porosities compared to the reef cores due to karstification, it is assumed that limestone and dolomitic
limestone in the reefs appear to be more prone to karstification than the areas of pure dolomite. Similar observations can
be made in areas that comprise mostly of limestone-dominated carbonates and show intense karstification, e.g., the sinkhole
cluster in the north of the footwall block (e.g., at 1380 ms) or the western part of the hanging wall (e.g., at 1540 ms) with
karstification along bedding planes according to Wadas & von Hartmann (2022).

In addition, we could not find any other correlations between structural characteristics and the spatial distribution of dolomi-
tization. For example, the amount of dolomite is not increased at faults, or intensely fractured areas with increased permeability,
such as in the east of the footwall block. This indicates that dolomitization in the Munich area is more facies-controlled than

fault-controlled.
4.3 Comparison of FOA derived from well and seismic data

An important question that is often raised in reservoir exploration addresses the scalability of fracture properties like the
orientation and size. To address this question, we compared fracture orientations (FO) in the vicinity of the well paths derived
from the seismic attribute analysis with the CMI results. Results are in the following grouped according to the tectonic blocks,

to facilitate comparisons within the three fault blocks of the Munich Fault.
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On the footwall the fracture orientations (dip direction/dip angle) and derived fracture clusters for the wells show both good
and poor agreement. Regarding Th3, only the seismic results are shown due to data restrictions of the corresponding image
interpretations. Overall, the seismic data (Fig. 13) reveals three fracture clusters at 346/01, 290/01, and 233/01. However, we
observe a change in the fracture systems with depth. In the depth range between 1730 m and 1810 m, we observe two fracture
cluster at 338/01 and 67/06. In the depth range between 1810 m and 2050 m, we observe three fracture clusters, the main
cluster (173/11) is comparable to the upper part, but we observe two new clusters at 72/09 and 310/26. In the deepest part
between 2050 m and 2190 m, we observe a broad range in fracture orientations and no distinct clusters can be identified. For
the well ThS, which was drilled mainly in dolomitic limestone, the fracture clusters show a variable match between the seismic
and image analyses. (Fig. 13). In general, the seismic data shows with four clusters a more diverse distribution in fracture
orientations than the CMI data with just two clusters. A good match with +-15° is accomplished for the 282/01 cluster (from
seismic data) and the 284/03 cluster (from CMI data). A moderate match with +30° is observed for the 159/05 fracture cluster
(from seismic data) and the 176/06 cluster (from CMI data). Two other fracture orientation clusters that we observe in the
seismic data are not present in the CMI data. To analyse whether the variable match holds for the complete well path or not,
we also compare fracture orientations within different depth sections separately. We observe that in the upper depth range
between 1680 m and 2000 m that consist of bedded and massive facies, one of the two clusters shows a good match. A second
cluster identified in the seismic is not observable in the well. In the lower part from 2000 m to 2130 m, which is mostly of
bedded facies, the fracture clusters show a poorer match, whereby in the seismic the E-W striking fracture set is split into two
(conjugate) sets.

On the intermediate block, a strong well-dependent distinction with respect to matching fracture clusters between seismic-
and CMI data is evident. For well Th4, which was drilled mostly in dolomitic limestone of the massive facies and to a minor
degree of limestone and dolomite, a poor cluster match is found, with the closest match for one cluster within an angle of
4+30° (Fig. 13). Notably, fracture orientations are stable along the entire well path. In contrast, Th1 (Fig. 13) in the east of the
intermediate block, which was drilled in dolomite, dolomitic limestone and calcareous dolomite, shows a good fit of fracture
orientations, with two clusters fitting with £15° (seismic data: 280/06 & 214/05; CMI data: 273/06 & 44/04) and one matching
with £30° (seismic data: 337/03; CMI data: 139/03). Similar to ThS, the quality of the cluster match between CMI and seismic
data changes with depth, i.e. the fit between the clusters is better in the upper part of the reservoir (1840 m to 2180 m), compared
to the lower part (2180 m to 2290 m). The upper part consists mostly of a bedded and a mixed facies, whereas the lower part
consist of massive dolomite.

On the hanging-wall block (Th2a and Th6), when comparing fracture orientations over the entire well paths, we observe
that the quality of the match between seismic and CMI data is better for the well Th6. The Th6 was drilled mostly in massive
limestone and in the upper part to a minor amount in bedded limestone. In the seismic data we found three fracture clusters that
show either a good (seismic: 240/04; CMI: 233/01) to moderate (seismic: 117/02; CMI: 137/01) fit with £15° to +30°, or no
fit (002/16) with the CMI-data (Fig. 14). Furthermore, we observe variations of the fit with respect to depth. For example, the
upper and lower part of Th6 have both clusters that match good within +15°, and clusters that match moderate within +30°.

In the middle part the fit is poor, i.e. only two clusters match within £30°. For the entire well Th2a (Fig. 14), drilled mostly
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in massive dolomite and massive dolomitic limestone, only a poor cluster fit is found. Only one fracture cluster fits within
+30° (seismic: 333/12; CMI: 001/04). Additionally, in the seismic as well as in the CMI data one fracture set exists, that was
not identified by the other method. The depth dependent fracture fit shows that in the upper part between 2020 m and 2400 m
depth at least the rough orientation fits. In the lower part a reliable comparison is not possible because of the low number of
measurements in the CMI data. However, both methods show a roughly NE-SW and a NW-SE striking fracture set.

In summary, correlations between lithology/facies and well location are evident with respect to the matching of fracture
clusters. Fracture orientations in massive limestone show a better match than in massive dolomite. Independent of facies, the
degree of dolomitization seems to correlate negatively with scalability. With regard to the well locations, differences can be
detected within the fault blocks in terms of corresponding fracture orientations. On the footwall, Th3 in the west is located
in mostly undisturbed material compared to ThS which is situated in disturbed rocks, according to the discontinuity-attribute
analysis. Furthermore, the area around Th5 also has slightly higher porosities than the area around Th3 according to the porosity
model (Wadas & von Hartmann, 2022), indicating that the area around ThS5 is more affected by fault- and probably karst-related
deformation. This led to the generation of fractures with more diverse orientations, as observed for ThS. Therefore, Th5 shows
a poorer match than other wells. Based on this assumption, we expect a much better FO match for Th3 because the well
and its surrounding are situated in mostly undeformed material and as a result, the preferred fracture orientations should also
show up more clearly in the seismic data compared to Th5. On the intermediate block, Th4 shows almost no fitting fracture
orientations compared to Th1, which is probably also a result of more intense fault-related deformation, because Th4 is located
at the branching point of the Munich Fault where it splits into two fault branches. On the hanging wall, Th6 in the west shows
a slightly better FO match than Th2a probably due to slightly enhanced fault-related fracturing more to the eastern part of
the fault block. Overall, the seismic analysis is able to distinguish several fracture orientation sets/groups, similar to the CMI

analysis, striking NNE-SSW, NE-SW, ENE-WSW, NW-SE, and NNW-SSE.

5 Discussion

The benefit of seismic attributes is to highlight contrasts in the data. However, the more complex a reservoir is, the more difficult
it is to interpret these contrasts. Due to their strong heterogeneity, the characterization of carbonate reservoirs is therefore a
major challenge in exploration (e.g., Ehrenberg & Nadeau, 2005; Lucia, 2007). In the following, first the chosen methodical
approach is inspected and afterwards we discuss the scalability of fracture orientations, and the structural and diagenetic
evolution of the reservoir. Taking all results into account, we provide new exploitation targets in the Munich area for possible

future geothermal projects.
5.1 Methodical approach

We have demonstrated the benefits and a number of applications of seismic attribute analysis for the characterization of a
geothermal carbonate reservoir in the GMB. In the following, we discuss aspects regarding the calculation and the usage of

seismic attributes that need to be considered.
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Figure 14. Comparison of fracture orientations from seismic and CMI data for the wells on the hanging wall (Th2a and Th6) of the Munich
Fault using rose diagrams and stereographic pole plots. Seismic fracture orientations are shown by white rose-diagrams and CMI fracture

orientations are shown by grey rose-diagrams, together with colour-coded fracture cluster matching. For each well, the lithologies, the facies

Seismic attributes are a quantitative measure of the seismic data. They are sensitive to geology, and thus allow to draw

conclusions about the structural interpretation or characterization of the depositional environment, e.g., faults, stratigraphy
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and geomorphology (Chopra & Marfurt, 2007). Since their first application in the 1970s, a large number of seismic attributes
have been developed, which makes it difficult to select the appropriate ones for a specific analysis (Chopra & Marfurt, 2007).
According to Barnes (2006), the following criteria should be considered to avoid the use of unnecessary attributes: discard
duplicate seismic attributes and if there are multiple attributes that measure the same property, choose the one that works best
for your data, and prefer attributes with geological or geophysical meaning. To avoid duplicate attributes in our study, crossplot
analyses were not only performed between the attributes and the lithology logs, but also between the attributes themselves. In
case of a linear or quadratic relationship, which indicates that the attributes contain nearly the same information, one of the
attributes was discarded from further analyses. Furthermore, all chosen attributes have geological/geophysical meaning linked
to the reservoir characterization.

The effectiveness of seismic attribute analysis is also controlled by the type of reservoir. The great advantage of seismic
attributes is to highlight contrasts in the data. However, the more complex a reservoir is, e.g., regarding control factors (reef
development, karstification, and dolomitization), the more difficult it is to interpret these contrasts. Therefore, prior knowledge
of possible reservoir control factors that might affect the physical rock characteristics, e.g., density, is important when perform-
ing the seismic attribute analysis itself. This is because the properties of a seismic wave, e.g., velocity, amplitude, frequency,
phase, and attenuation, change while the wave propagates through the subsurface and these changes are caused by the physical
differences of the various rocks and geological structures (Taner, 2001; Chopra & Marfurt, 2007; Veeken, 2007). In addition,
it should be kept in mind that the quality of a seismic attribute analysis can be negatively influenced, e.g., by acquisition foot-
prints, processing artefacts, and noise (Marfurt & Alves, 2015). Therefore, a quality check of the seismic data prior to analysis
is a necessity.

Almost all attribute analyses can be adapted to the object under investigation to obtain viable results by changing parameters
such as the inline and crossline radii, or the number of samples or traces (Chopra & Marfurt, 2007; Schlumberger, 2020). If
the goal is, e.g., the interpretation of large-scale faults, rather large spatial parameters should be chosen, e.g., in the variance
analysis a lateral range of 8 inlines and crosslines should be used. Whereas for the investigation of fractures, the analysis should
be carried out on a smaller scale, which is why we chose a range of 3 inlines and crosslines in our study. The same holds for
the identification of karst structures, such as dolines, that are characterized by small-scale lateral and vertical variations, which
is why small investigation windows were chosen. The investigation scale also played an important role for the ant-tracking
algorithm, because the presented workflow can also be used for the identification of large-scale faults and the extraction of
corresponding fault patches. If the parameters are adjusted accordingly, for example, by changing the ant-tracking mode from
aggressive to passive, and e.g., the initial ant boundary from a close distribution (2 voxels) to a coarse distribution (6 voxels).
Therefore, it must be clear beforehand, what is to be highlighted with the attribute analysis, in order to select the appropriate
parameters for the calculation.

Besides single-attribute analyses, the application of multiple seismic attributes in a combined plot is a key element of our
study. They are generally usable in various clustering techniques, like self-organized maps (Roden et al., 2015; Zhao et al.,
2015), geostatistics (Janson & Madriz, 2012; Ba et al., 2019), and neural networks (Brckovic et al., 2017; Gogoi & Chatterjee,
2019; Abdel-Fattah et al., 2020) that have gained a lot of attention in recent years, because they enable parameter-based
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classifications, e.g., to obtain a 3D lithology or facies reservoir model. The quality of the results strongly depends on the input
data such as seismic attributes and, in case of availability, the desired output data (e.g., lithology logs from wells). With regard
to the input data, it is important to note that these must show a correlation between the physical parameters derived from the
seismic attributes and the desired classes. A correlation coefficient close to 1 indicates a perfect or almost perfect match between
the datasets. However, this is usually not the case for geological correlations, because rocks are generally heterogeneous, e.g.,
with regard to their petrophysical parameters or their composition. A correlation coefficient close to zero indicates that there is
no relationship between the different datasets, which would make it impossible to achieve a good mathematical model that can
be used for lithology prediction. Thus, only attributes with acceptable correlations should be implemented in the classification,
because incorporation of attributes with low or no correlations would degrade the quality of the classification (Zhao et al., 2015).
Therefore, we decided to choose only a small number of attributes that enable an acceptable classification. However, it should
be kept in mind that the classification carried out in this study is based solely on different types of carbonates, which show
minor physical differences. High correlation coefficients are therefore not to be expected. Besides the correlation analysis, we
were also able to use a supervised neural network for the lithology classification, since six wells with corresponding lithology
logs were available, which were used as the desired output data. Due to the fact that no large variations of the physical
parameters between the different carbonate types were to be expected, a manual classification or an automatic classification
with an unsupervised neural network that only looks for data trends would have hardly yielded promising classification results
with a geological meaning. When using logs as boundary parameters, however, it should be noted that these should cover
the entire range of the classes and therefore the heterogeneity of the reservoir, in order to enable a reliable assignment. As a
consequence, the more heterogeneous the reservoir, the more wells should be implemented into the classification. With regard
to our study, the implementation of only one or two wells might not be sufficient enough to obtain a representative lithology
classification of the heterogeneously distributed carbonate types, e.g., Th5 contains mostly dolomitic limestone, Th2a contains
mostly dolomite, and Th6 contains mostly limestone. Therefore, implementation of all six lithology logs delivered a more
comprehensive overview of the different carbonate lithology types within the reservoir. Nevertheless, it is important to keep in
mind that only a small part of the reservoir is covered by the six wells, which will always lead to a certain degree of uncertainty.

With respect to the identified classes, we chose to differentiate between the four carbonate types limestone, dolomitic lime-
stone, dolomite, and calcareous dolomite, although the latter appears only sporadically. We chose this classification because
other studies have shown that, for example, dolomitization can have a major influence on reservoir quality, especially on poros-
ity and permeability (Reinhold, 1998; Koch et al., 2010; Béhm, 2012; Mraz, 2019; Bohnsack et al., 2020). There are other
classification options, but a classification, e.g., according to the two hyper-facies types (massive- and bedded facies), would
not have made geological sense, as many studies have shown that the presence of massive facies alone is no guarantee for good
reservoir conditions. For example, massive facies can also have poor poro/perm conditions due to, e.g., cementation, com-
paction and overdolomitization (Schmoker & Halley, 1982; Lucia, 2007; Wolfgramm et al., 2011; Homuth, 2014), whereas
bedded facies can also be suitable for exploitation, e.g., due to karstification along bedding planes and thus increased poro/perm
values (Lucia, 2007; Mraz, 2019; Wadas & von Hartmann, 2022). A further facies differentiation incorporating the lithology

types and also the fabric types (e.g., laminated, banded, ordered/unordered clasts, clast size) would be necessary, but since the
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different facies classes did not show clear correlations with the seismic attributes because the rock-physics based parameters
did not vary strongly enough due to too many subdivisions, a reliable classification was not possible. Therefore, we limited the
classification to the lithology types.

It should also be noted that we used only volume attributes in this study but no horizon attributes because surface or horizon
attributes require that the horizons or surfaces were accurately picked. Regarding the Jurassic carbonates, this would only be
possible for the top of the reservoir. Internally, however, no horizons or surfaces could be picked due to the complex structural
conditions (e.g., the presence of faults, fractures, and dolines) and the complex lithology- and facies distribution (e.g., bedded
and massive facies). Seismic pre-stack attributes based on amplitude-versus-offset (AVO) analyses, for example, were also
not investigated, since an AVO analysis had not been carried out for the GRAME dataset at the time of this study and only
the finished stacked datasets were available. AVO attributes enable the offset-dependent investigation of physically-relevant
parameters of the reservoir and have provided promising results in other reservoir studies (Veeken, 2007; Barclay et al., 2008;
Bredesen et al., 2020). For this reason, we recommend that AVO analyses should be carried out together with the classical

post-stack attribute analysis in the exploration phase of future geothermal projects.
5.2 Scalability of fracture orientations

The comparison of fracture analyses from seismic and CMI data allows to draw conclusions regarding t