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Abstract. The quality of geothermal carbonate reservoirs is controlled by, for instance, depositional environment, lithology,

diagenesis, karstification, fracture networks, and tectonic deformation. Carbonatic rock formations are thus often extremely

heterogeneous, and reservoir parameters and their spatial distribution difficult to predict. Using a 3D seismic dataset com-

bined with well data from Munich, Germany, we demonstrate how a comprehensive seismic attribute analysis can significantly

improve the understanding of a complex carbonate reservoir. We deliver an improved reservoir model concept and identify5

possible exploitation targets within the Upper Jurassic carbonates. We use seismic attributes and different carbonate litholo-

gies from well logs to identify parameter correlations. From this, we obtain a supervised neural-network based 3D lithology

model of the geothermal reservoir. Furthermore, we compare fracture orientations measured in seismic (ant-tracking analysis)

and well scale (image log analysis), to address scalability. Our results show that, for example, acoustic impedance is suit-

able to identify reefs and karst-related dolines, and sweetness proves useful to analyse the internal reef architecture. Whereas,10

frequency- and phase-related attributes allow the detection of karst. In addition, reef edges, dolines, and fractures, associated

with high permeabilities, are characterized by strong phase changes. Fractures are also identified using variance and ant track-

ing. Morphological characteristics, like dolines, are captured using the shape index. Regarding the diagenetic evolution of the

reservoir and the corresponding lithology distribution, we show that the Upper Jurassic carbonate reservoir experienced a com-

plex evolution, consisting of at least three dolomitization phases, two karstification phases, and a phase of tectonic deformation.15

We observe spatial trends in the degree of dolomitization and show that it is mainly facies-controlled and that karstification

is facies- and fault-controlled. Karstification improves porosity and permeability, whereas dolomitization can either increase

or decrease porosity. Therefore, reservoir zones should be exploited that experienced only weak diagenetic alteration, i.e. the

dolomitic limestone in the upper part of the Upper Jurassic carbonates. Regarding the fracture scalability across seismic and

well scales, we note that a general scalability is, due to a combination of methodological limitations and geological reasons, not20

possible. Nevertheless, both methods provide an improved understanding of the fracture system, and possible fluid pathways.

By integrating all the results, we are able to improve and adapt recent reservoir concepts, to outline the different phases of
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the reservoir’s structural and diagenetic evolution, and to identify high-quality reservoir zones in the Munich area. These are

located southeast at the Ottobrunn Fault and north of the Munich Fault close to the Nymphenburg Fault.

1 Introduction25

The quality of a geothermal carbonate reservoir is controlled by different factors and processes, such as the depositional

environment, lithology, diagenesis, karstification, fracture networks, and tectonic deformation (Andres, 1985; Lemcke, 1988;

Mraz, 2019). Carbonate rock formations are thus often extremely heterogeneous (Birner et al., 2012; Konrad et al., 2019;

Bohnsack et al., 2020; Fadel et al., 2022) and important reservoir parameters, such as reservoir volume, porosity, permeability,

temperature, and their spatial distribution, are difficult to predict (Veeken, 2007; Huenges, 2010; Agemar et al., 2014; Glassley,30

2014; Moeck, 2014; Bauer et al., 2019). However, a good understanding of these parameters and their distribution are required

for a successful geothermal project (Backers et al., 2022; Fadel et al., 2022).

Most carbonate reservoirs are located within deposits of a former shallow marine environment, e.g., the Upper Jurassic

carbonates of the German Molasse Basin. Shallow marine carbonates can be often separated into two hyper facies types, a

massive facies consisting of reefs and a bedded facies consisting of layered carbonates (Reinhold, 1998). Another distinguish-35

ing feature is the lithology type. The main process that alters the lithology type in carbonates after deposition is dolomitization

(Machel, 2004; Lucia, 2007). During this process, calcium is replaced by magnesium. Depending on the degree of dolomitiza-

tion, carbonate rocks can be assigned to different lithology types: limestone (90% to 100% CaCO3), dolomitic limestone (50%

to 90% CaCO3), calcareous dolomite (50% to 90% CaMg(CO3)2), and dolomite (90% to 100% CaMg(CO3)2). Dolomitization

can lead to a reduction of the rock volume and therefore, to an increase of the total porosity by creating secondary porosity40

(Sajed & Glover, 2020). Furthermore, early dolomitization can increase rock strength and thus preserve primary porosity by

creating a stable framework, which hinders compaction (Lucia, 2007). Therefore, dolomitization can cause heterogeneity of

petrophysical rock properties (Ehrenberg & Nadeau, 2005; Ehrenberg, 2006) and a redistribution of the pore space (Moun-

tjoy & Marquez, 1997). Dolomite is also more resistent against erosion and less soluble than limestone, which makes it less

prone to karstification (Steidtmann, 1911). The influence of dolomitization on the porosity distribution has been investigated45

by many studies. For example, for the Jurassic carbonates in southern Germany, Bohnsack et al. (2020) and Wadas & von

Hartmann (2022) have shown that, in order of decreasing porosity, the dolomitic limestone has the highest porosities, followed

by limestone, and dolomite and calcareous dolomite have the lowest porosities within the carbonate reservoir.

Another reservoir-quality control factor is karstification, which describes the dissolution of calcite or aragonite due to the

percolation of unsaturated meteoric- or groundwater, e.g., caused by fluid migration along fracture zones, or a falling sea level50

and resulting subaerial exposure of the carbonates. This process can improve the reservoir quality by enlargement of primary

pore space and thus fluid pathways, and the formation of secondary porosity and large cavities, which can also develop into

dolines (Kendall & Schlager, 1981; Xu et al., 2017). Karstification is often more intense close to faults because of the often

increased fracture intensity (Closson & Abou Karaki, 2009; Del Prete et al., 2010; Wadas et al., 2017).
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Permeability is also strongly controlled by fractures, which are often associated with tectonic- and fault-related deformation.55

However, permeability provided by fractures can also lead to unwanted fluid flow behaviour like a channelized fluid flow,

which can cause an early thermal breakthrough (e.g., Toublanc et al., 2005; Jolley et al., 2007; Bauer et al., 2019; Boersma

et al., 2020; Fadel et al., 2022). Therefore, understanding the local and regional fracture network, e.g., the fracture orientations,

connectivity, and the fracture density, is of high importance when characterizing complex reservoirs (Boersma et al., 2020).

Normally, reservoir parameters are derived from well data or outcrop analogues (Bauer et al., 2017). Wells can deliver direct60

information of the local reservoir properties such as porosity, permeability, fracture orientation and -intensity, lithology, and

facies types, but sparsely-located wells are unable to depict the spatial distribution of the properties. A method that is espe-

cially suited to depict the spatial changes related to geological and petrophysical variations is 3D seismic attribute analysis of

3D reflection seismic (Chopra & Marfurt, 2007; Ashraf et al., 2019; Zahmatkesh et al., 2021). Seismic attributes are quanti-

ties derived from seismic data, based on, e.g., time, amplitude, frequency, phase, velocity, and attenuation (Chopra & Marfurt,65

2007). For a long time they have been used for hydrocarbon reservoir characterization, prediction and monitoring, by delivering

information on geological structures, lithology, reservoir properties, parameter relationships and patterns that might not be rec-

ognized otherwise (Taner, 2001; Chopra & Marfurt, 2007; Sarhan, 2017). For example, Banerjee & Ahmed Salim (2020) used

seismic attributes to analyse the structural features and the depositional patterns of the NW Sabah Carbonate Platform in the

South China Sea. Using spectral decomposition, they identified paleo-lows and depocentres; sweetness helped them to identify70

channels, reef structures and lithofacies boundaries; variance and amplitude extraction maps revealed the reefal development

on top of the carbonate platform. Al-Maghlouth et al. (2017) used frequency decomposition and a colour-blend of geometric

attributes, such as semblance and conformance, to characterize the Cenozoic carbonates facies in North-West Australia, and to

define edges and discontinuities associated with depositional geometries, such as reefs. Spectral decomposition and coherency

have also been used by Skirius et al. (1999) to locate faults and fractures, and reef margins and isolated buildups, as targets75

for increased hydrocarbon production, e.g., at the Leduc carbonate reef bank in Canada and the Tor Field area in the North

Sea. Furthermore, Wang et al. (2016) used seismic attributes to describe the reef growth and the evolution of channel systems

for Eocene carbonates in the Sirte Basin in Libya. Edge- or discontinuity detection attributes, like variance and chaos, have

been used to conduct a small-scale seismic-based fracture analysis (Jaglan et al., 2015; Williams et al., 2017; Albesher et al.,

2020; Boersma et al., 2020; Loza Espejel et al., 2020). Nonetheless, seismic data lacks the high vertical resolution of well and80

outcrop data. Various studies have therefore attempted to show the benefits of a combined approach using both seismic and

well data, in order to reduce the uncertainties of reservoir characterization (Toublanc et al., 2005; Fang et al., 2017; Albesher

et al., 2020; Boersma et al., 2020; Méndez et al., 2020). Another aspect to consider is that manual interpretation of seismic data

can be a very time-consuming task due to the high amount of data, which is why computational solutions, such as supervised

and unsupervised neural networks have been increasingly used for seismic interpretation, pattern recognition, and lithology85

classification in recent years (Saggaf et al., 2003; Baaske et al., 2007; Bagheri & Riahi, 2015; Roden et al., 2015; Brcković

et al., 2017; Zahmatkesh et al., 2021). Besides the long-time use for hydrocarbon reservoir investigation, seismic attribute

analysis has also been increasingly used in geothermal exploration in recent years, especially for complex structured reservoirs
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(Pendrel, 2001; Chopra & Marfurt, 2007; Doyen, 2007; Abdel-Fattah et al., 2020), e.g., in Poland (Pussak et al., 2014) and

Denmark (Bredesen et al., 2020). Another such complex carbonate reservoir is located in the South German Molasse Basin.90

Based on a case study in Munich, Germany, we perform an advanced analysis of a 3D seismic dataset and well logs for

the Upper Jurassic geothermal carbonate reservoir, which has beeen described as a complex lithology- and facies-dependent,

fracture-and karst-controlled reservoir by other studies (Birner et al., 2012; Cacace et al., 2013; Homuth et al., 2015; Moeck

et al., 2020). The aim of this study is to deliver an improved reservoir model concept and to identify possible exploitation targets

within the Upper Jurassic carbonates. To accomplish this goal, this paper is structured in three main parts. First, several seismic95

single- and multi-attributes are analysed to identify and better understand the physical and structural reservoir characteristics.

Second, parameter correlations between the seismic attributes and the different carbonate lithologies are investigated to obtain a

3D lithology model of the geothermal reservoir based on a supervised neural network. And third, a seismic fracture orientation

analysis (FOA) workflow is adapted, based on other studies (e.g., Albesher et al., 2020; Boersma et al., 2020), and applied to

the 3D seismic dataset. The FOA results on seismic scale are compared with those at image log scale, in order to address the100

scalability of the FOA results.

2 Study site

The study site of the GRAME 3D seismic dataset covers about 170 km2 and is located below the city of Munich within the

South German Molasse Basin (Fig. 1a). This area includes the geothermal plant Schäftlarnstraße (Sls) that consists of six

horizontally-deviated wells (three injection and three production wells, Fig. 1b). The reservoir section of the Upper Jurassic105

carbonates (Malm) is at a depth of around 1750 to 2600 m depth below sealevel (1380 to 1750 ms two-way traveltime (TWT)).

2.1 Geological evolution

The German Molasse Basin (GMB) is part of the North Alpine Foreland Basin, which experienced a complex structural

evolution with a Permo-Carboniferous graben phase, a Triassic to Middle Jurassic epicontinental or shelf phase, a Middle

Jurassic to Cretaceous passive margin phase, and a Tertiary foreland phase (Bachmann et al., 1987; Bachmann & Müller,110

1992). During the Upper Jurassic, up to 600 m of carbonates, partly forming reef buildups, were deposited in the study area,

which at that time was covered by the Tethys Sea (Schmid et al., 2005; Pieńkowski, 2008). At the Jurassic-Cretaceous boundary,

regression of the Tethys led to the exposure of the carbonate deposits and caused strong karstification (Bachmann et al., 1987;

Bachmann & Müller, 1992). Several isolated sinkholes and also sinkhole clusters can be observed at fault terminations or

within the reservoir (Lemcke, 1988; Ziesch, 2019; Wadas & von Hartmann, 2022). From Late Cretaceous to Early Tertiary,115

southern Germany was uplifted, resulting in extensive compressional deformation due to the Alpine Orogeny. As a result,

antithetic and synthetic normal faults developed parallel to the Alpine front (Ziegler, 1987). Furthermore, the underthrusting

of the European plate below the Adriatic-African plate in the Late Eocene caused the Alpine nappes to extend to the north,

which led to isostatic-induced downflexing of the GMB (Frisch, 1979). The development of the GMB was accompanied by

two major transgressive-regressive cycles (Eisbacher, 1974), each causing the accumulation of marine deposits followed by120
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Figure 1. Geological context and study area. (a) Simplified overview of the German Molasse Basin with tectono-stratigraphic units and

major faults (blue lines). The study area and the location of the GRAME 3D seismic are marked by a red star/rectangle, respectively. (b)

Further input data is gathered from geophysical logging of the geothermal site ’Schäftlarnstraße (Sls)’ in the city of Munich, which contains

six horizontally deviated wells (Th1 to Th6). Based on the horizon interpretation of the 3D seismic data carried out by Ziesch (2019), the

Upper Jurassic reservoir is located at a depth between 1380 to 1750 ms TWT or around 1750 to 2600 m depth below sealevel.

terrestrial sediments, e.g., from rivers and lakes, known as ‘Marine Molasse’ and ‘Freshwater Molasse’, respectively. Finally,

the Molasse sediments were overlain by Pleistocene glacial and interglacial deposits.

2.2 Geothermal reservoir

The southward-dipping Upper Jurassic carbonates (Malm) form a carbonate platform which is the geothermal reservoir (Schmid

et al., 2005; Pieńkowski, 2008). Due to the southwards increase in depth, the temperatures increase towards the south from125

approximately 70°C to 150°C. This allows extraction of geothermal energy for heating in the Munich area and even electricity

generation further south (Böhm, 2012; Agemar et al., 2014; Homuth et al., 2015).

With regards to the depositional system, the Malm of the greater Munich area can be separated into two hyper facies:

a massive facies (consisting of reefs) and a bedded facies (Reinhold, 1998; Machel, 2004; Lucia, 2007; Bohnsack et al.,

2020). Several studies have shown that reefs are suitable exploitation targets because they are often prone to dolomitization,130

karstification, and brittle deformation, and therefore often exhibit enhanced groundwater flow (Andres, 1985; Stier & Prestel,

1991; Birner et al., 2012). A lithofacies-based, hydrostratigraphic classification for the greater Munich area carried out by Böhm

(2012), shows that the lowermost units Malm α to Malm γ, which mainly consist of marly limestones, can be characterized as

an aquitard. Malm δ to Malm ε are described as a regional aquifer due to a laterally-persistent dolomitic massive facies. Malm

ζ contains local aquifers in dolomitized massive facies as well as aquitards.135

Structural analysis of the GRAME 3D seismic dataset reveals that the study area is influenced by karstification and fault-

related deformation. Several isolated sinkholes and also sinkhole clusters are observed along the fault traces and at fault

terminations (Sell et al., 2019; Ziesch, 2019; Wadas & von Hartmann, 2022). The seismic data also shows that the greater
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Munich area is traversed by a complex fault pattern, mainly consisting of normal faults. The largest fault with a maximum

vertical offset of 350 m is the Munich Fault (Fig. 1b), which splits eastward into several branches that subdivide the area140

around the geothermal site ’Sls’ into a footwall block, an intermediate block and a hanging-wall block. The large fault system

in the southeast is the Ottobrunn Fault that also splits into several small antithetic and synthetic faults with small vertical offsets

up to 80 m, forming a horsetail splay. This indicates this fault has both normal fault- and strike-slip components (Ziesch, 2019).

Overall, the Upper Jurassic carbonates of the Munich area are characterized as a strongly heterogeneous, lithology- and facies-

dependent, fracture- and karst-controlled reservoir (Birner et al., 2012; Cacace et al., 2013; Homuth et al., 2015; Moeck et al.,145

2020).

3 Methods

3.1 Database

For a better insight into the structure and diagenesis of the reservoir, we performed an advanced seismic data analyses of the

GRAME dataset using the seismic interpretation software Schlumberger Petrelr. The GRAME 3D seismic dataset, which was150

surveyed and processed in 2015/2016 by DMT Petrologic GmbH (Scholze & Wolf, 2016a, b), had a variable line distances

of 400 to 500 m, and a source and receiver spacing of 50 m with a sweep frequency of 12 to 95 Hz, 5 seconds of record

length and a 2 ms sample rate. This configuration enabled the acquisition of a high-resolution 3D cube with a good signal-

to-noise ratio. The seismic data processing consisted, e.g., of static corrections, deconvolution, common reflection surface

(CRS) analysis, migration velocity analysis based on tomographic inversion, and Kirchhoff Pre-Stack Depth-Migration (for155

details see tabular overview in Wadas & von Hartmann (2022), and the acquisition and processing reports by Scholze & Wolf

(2016a, b)). Based on this data, we performed an advanced seismic data analysis that comprised of single- and multi-attribute

analysis. Furthermore, an attribute and neural-network based lithology classification, and an ant-track based seismic fracture

orientation analysis were carried out. For this purpose, we implemented datasets of the six Schäftlarnstraße wells, which were

geologically and geophysically investigated. The well logging was carried out in 2018/2019 by the company Daldrup & Söhne160

AG, on behalf of the Stadtwerke München (SWM). The available data includes, e.g., stratigraphic and lithological information

from cuttings (Böhm & Dax, 2019) and image logs (SWM, 2019). The drill cuttings were used to determine the dolomite and

calcite content at intervals of 2.5 to 5 m by calcimetry, in order to derive a lithology log. The image logs show the electrical

resistivity of the borehole walls and allow for a classification of different rock types and fractures (e.g., Schlumberger, 2004;

Böhm, 2012; Lai et al., 2018).165

3.2 Seismic single-attribute analysis

Seismic attributes are quantities computed from the seismic data and describe the shape or physical characteristics of one

or more seismic traces, mostly over specified time intervals. The characteristics of a seismic wave, e.g., velocity, amplitude,

frequency, phase, and attenuation, change while the wave propagates through the subsurface. These changes are caused by
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the different physical rock properties of the various rocks in the subsurface. Therefore, they are used to highlight specific170

geological, physical, and/or reservoir properties, and to help recognize patterns and parameter relationships (Taner, 2001;

Chopra & Marfurt, 2007; Veeken, 2007). Seismic single-attributes can be categorized by different taxonomies (Dewett et al.,

2021). In this work, we group them by the properties they measure, namely amplitude-related attributes, phase- and frequency-

related attributes, and discontinuity-related attributes. See also the appendix for more detailed information regarding the seismic

attributes and the chosen parameters for the attribute analysis.175

Amplitude-related attributes: These attributes (e.g., root mean square (RMS) amplitude, envelope, reflection intensity, and

acoustic impedance) are used to depict stratigraphic and lithologic contrasts. The RMS amplitude is described as the square root

of the sum of squared amplitudes divided by the number of samples within a specified time window. The reflection intensity

is the average amplitude over a specified time window multiplied with the sample interval. And the envelope is the magnitude

of the complex trace and is independent of phase (Chopra & Marfurt, 2007; Sarhan, 2017). These three attributes mainly180

identify only strong anomalies (see appendix figure A1) and to depict smaller variations, as expected in our study area, we also

used acoustic impedance. Every reflection changes the amplitude of the returning wave due to a contrast in acoustic impedance,

which is the product of the seismic velocity of the wave travelling through the subsurface and the density of the rock. Therefore,

the reflection amplitudes can be inverted to get impedance values (Pendrel, 2001; Barclay et al., 2008; Filippova et al., 2011)

by using, e.g., a stochastic seismic amplitude inversion, as carried out in this study area by Wadas & von Hartmann (2022).185

Phase- and frequency-related attributes: Phase- and frequency-related attributes (e.g., instantaneous phase, instantaneous

frequency, and dominant frequency) show the continuity of weak reflectors and indicate unconformities, faults, fracture zones,

lithology- and stratigraphic sequences, and sequence boundaries (Van Tuyl et al., 2018). The instantaneous phase measures the

phase shift of a specific reflection event, e.g., resulting from a polarity reversal of the reflection coefficient or due to a curved

interface (Chopra & Marfurt, 2007). The instantaneous frequency is the rate of change of the instantaneous phase, and the190

dominant frequency is the square of the instantaneous frequency summed with the square of the instantaneous bandwidth and

then the square root of the sum is calculated (Schlumberger, 2020). So the dominant frequency indicates where the energy of

the seismic signal is concentrated in the frequency domain.

Discontinuity-related attributes: Such attributes (e.g., variance and chaos) are able to image vertical and lateral disconti-

nuities, and can therefore highlight stratigraphic and structural boundaries like faults, fractures, dolines, and reef edges (Chopra195

& Marfurt, 2007). For the variance, a trace-by-trace analysis is performed in order to quantify the dissimilarity of the seismic

waveform of neighbouring traces within a specified time window (Bahorich & Farmer, 1995; Marfurt et al., 1998; Wang et al.,

2016). Chaos is a similar attribute that maps the ’chaoticness´ of the seismic signal from statistical analysis of dip/azimuth

estimates.

3.3 Seismic multi-attribute analysis200

The complexity of carbonates makes a combined analyses of several different attributes necessary in order to characterize and

better understand the reservoir. In a multi-attribute analysis, several single-attributes, which are mathematically independent

but linked through the underlying geology, can be combined by corendering and colour-blending, or by using them to calculate
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new attributes (Marfurt, 2015). Since a good seismic attribute should represent important aspects of the underlying geology,

showing more than one attribute in the same image can give improved geological insight. See also the appendix for more205

detailed information regarding the seismic attributes and the chosen parameters for the attribute analysis.

Sweetness: Sweetness can enhance the visibility of lithological and structural changes (Chen & Sidney, 1997). It is the

mathematical combination of instantaneous frequency and envelope (Radovich & Oliveros, 1998), and the combination of

these two attributes is able to detect general energy changes of the seismic wave. High sweetness values are correlated with

both high envelope and low instantaneous frequencies, whereas for low sweetness values it is the opposite.210

Spectral decomposition: Spectral decomposition is a useful tool for qualitative and quantitative interpretation, because it

allows to delineate geological features in more detail due to tuning at a specific frequency (Henderson et al., 2008; Wang

et al., 2016). Therefore, it can enhance subtle structural features, like thin beds, reefs, channels, and pinch-outs (Chopra &

Marfurt, 2007; Marfurt & Kirlin, 2001; Marfurt, 2015), and it can also be used for seismic geomorphology analysis (Marfurt &

Kirlin, 2001). In principle, spectral decomposition (Fig. A2) separates the seismic signal into its frequency components. Three215

different frequencies are then corendered and displayed by RGB colour-blending, where frequencies 1, 2 and 3 are plotted as

red, green and blue, respectively (Chopra & Marfurt, 2007; Al-Maghlouth et al., 2017).

Curvature: Curvature is used to detect changes in depositional- and geological trends, e.g., tectonic features and lineaments.

Therefore it is useful to identify, e.g., channels/valleys, karst/dolines, and mounds/reef buildups (Al-Dossary & Marfurt, 2006).

Curvature measures how much a seismic reflector is bent. In case of a planar reflector, the corresponding vectors are parallel220

and the reflector has zero curvature. In contrast, anticlinal features result in diverging vectors and the curvature is positive.

Synclinal features result in converging vectors and the curvature is negative (Roberts, 2001; Al-Dossary & Marfurt, 2006;

Wang et al., 2016). Most positive (Kpos) and most negative (Kneg) curvature are often corendered and used for morphological

analysis (Chopra & Marfurt, 2007; Marfurt, 2015).

Shape index & Curvedness: Additionally, curvature can be used to calculate new attributes such as the shape index and the225

curvedness that allow a quantitative definition of the local morphology of a seismic reflector/seismic horizon, independent of

scale (Roberts, 2001; Chopra & Marfurt, 2007; Veeken, 2007; Wang et al., 2016; Sarhan, 2017). The Shape Index describes

the type of shape of a specific surface and the index differentiates between dome (+1), ridge (+0.5), saddle (0), valley (-0.5)

and bowl (-1) shapes (Chopra & Marfurt, 2007; Marfurt, 2015). The curvedness measures the magnitude of curvature which

is zero for a planar surface (Roberts, 2001)). Both attributes are often corendered together with variance or chaos to visualize230

reflector morphology (Marfurt, 2015).

3.4 Neural network based lithology classification

The lithology classification in this study is based on a rock-physics workflow, which predicts the most probable lithologies

utilizing an artificial supervised neural network using the software Schlumberger Petrelr. 3D seismic volumes, well logs and

geological interpretations can serve as input datasets. At first, a class definition (class 1: limestone, class 2: dolomitic limestone,235

class 3: dolomite, class 4: calcareous dolomite) using well logs is carried out, after which the classification algorithm can be

generated, and finally used for lithology prediction (Schlumberger, 2020).
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To obtain input parameters for the neural network it was tested whether parameter relationships between the lithology classes

and the physical parameters derived from the seismic attributes exist. This was accomplished by cross-plotting the lithology

logs from the six wells against the seismic attributes that were extracted from the 3D volumes along the well paths. A correlation240

analysis was carried out and the correlation coefficients between the lithology classes and the attributes were determined. Based

on the results, the following attributes were chosen: acoustic impedance, dominant frequency, reflection intensity, variance,

envelope, and the 28 Hz frequency band, and then a cluster analysis was carried out to develop a classification algorithm. This

cluster analysis was performed by utilizing a supervised artificial neural network (ANN), which automatically searched for the

best relationships between the seismic attribute values and the lithology classes. The ANN is a type of computational model,245

which tries to mimic pattern recognition and data interpretation of the human brain (Da Silva, 2017). The supervised ANN is

trained with both the input data (seismic attribute ’logs’) and the desired output data (lithology logs). The network architecture

consists of an input layer, a hidden layer, and an output layer. The input layer consists of input neurons also called nodes and

takes the input data, in our case the seismic attribute data, and passes it to the hidden layer. In the hidden layer, the ANN learns

the relationship/connection between the different nodes and the output values by applying weight functions between them.250

Then the sum of all weighted inputs is calculated and the output layer gives the predicted output values of the ANN (Da Silva,

2017). In our case, these output values are the four carbonate classes. From this neural-network based cluster analysis, 2D and

3D probability density estimates were derived (Figs. 2a & b). Training the estimation model/neural net was an iterative process

and at the end of each iteration the training error was calculated. The error was assessed by comparing the neural network result

with the desired output, in this case the lithology logs. At the beginning, the training data was split into two parts, one part was255

used for the training and the other was used to calculate the error by cross validation (Schlumberger, 2020). The chosen ratio

was 50:50, so 50% of the data were used for training of the neural network and the other 50% were used to cross validate the

results. To quality control the performance of the classification algorithm a confusion matrix was generated (Fig. 2c). It allows

the user to identify whether the algorithm became confused when defining the different classes (Sammut & Webb, 2017).

The upper confusion matrix shows the probability of a classification occurring given the true class. The rows contain the true260

classes and the columns contain the predicted classes. For example, 8.18% of the samples that belong to the limestone class

were wrongly predicted as dolomite, and 86.17% of the samples that belong to the dolomite class were correctly predicted as

dolomite. The lower confusion matrix shows the data the other way around. High-confidence classification results have large

values along the diagonal of the matrix, as it is the case in our study, indicating a reliable classification result. Furthermore, the

data quality was also visually inspected by comparing the actual lithology logs from the six wells with estimated logs based on265

the neural network, and it also shows a good classification result (Fig. 2d). The successfully trained neural net was then used

to create a 3D model with the predicted lithologies based on the 3D seismic attribute volumes (Schlumberger, 2020).

3.5 Ant-track based fracture orientation analysis

Several studies have shown the applicability of 3D seismic data for fracture analysis (Jaglan et al., 2015; Fang et al., 2017;

Albesher et al., 2020; Boersma et al., 2020; Loza Espejel et al., 2020; Méndez et al., 2020), which can be used to address the270

often-raised question of scalability of reservoir properties (e.g., Lake & Srinivasan, 2004; Li et al., 2019), i.e., can information
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lithology limestone dol. limestone dolomite cal. dolomite 
limestone 87.46 % 06.50 % 08.18 % 00.00 %
dol. limestone 04.36 % 86.55 % 05.20 % 00.00 %
dolomite 07.53 % 06.95 % 86.17 % 00.00 %
cal. dolomite 00.65 % 00.00 % 00.46 % 100.00 %

lithology limestone dol. limestone dolomite cal. dolomite 
limestone 86.28 % 05.24 % 07.40 % 01.51 %
dol. limestone 05.45 % 88.35 % 05.80 % 00.00 %
dolomite 08.27 % 06.41 % 86.81 % 01.08 %
cal. dolomite 00.00 % 00.00% 00.00 % 97.41 %
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Figure 2. Lithology classification using a supervised neural network based on parameter relationships between the input data (e.g., seismic

attributes) and the desired output data (e.g., lithology classes from logs). (a & b) After choosing appropriate seismic attributes for the clas-

sification, these attributes were used to create probability density estimates, e.g., in 2D and 3D (exemplarily shown for acoustic impedance,

variance, and dominant (dom.) frequency). The results of the lithology classification were validated by examining (c) a confusion matrix

table and (d) a comparison between the actual lithology log (l) and the predicted lithology log (nn) derived from the neural net. The upper

confusion matrix table shows the probability of a classification occurring given the true class. The lower confusion matrix table shows the

probability of a sample belonging to a particular class given the predicted class. A reliable classification with high-confidence has large

values along the diagonal of the matrix (marked in green).

regarding fracture properties be transferred from the well scale to the seismic scale and vice versa? To address this question, an

adapted seismic fracture orientation analysis (FOA) workflow based on e.g., Albesher et al. (2020) and Boersma et al. (2020)

was applied. Afterwards the FOA results on the seismic scale were compared with those on the image log scale.

The FOA workflow, based on the 3D reflection seismic volume, consisted of several steps, starting with the extraction of an275

edge-detection volume, in this case, variance (Fig. 3 – step 1), which images lateral and vertical discontinuities (Marfurt et al.,

1998; Chopra & Marfurt, 2007). Then the edge evidence attribute was applied to enhance the edges and thus, the fractures

in the variance volume (Fig. 3 – step 2). The edge evidence attribute searches for segments in which the variance values

differ significantly from the surrounding values, in order to enhance them (Schlumberger, 2020). Afterwards Schlumberger’s

patented ant-tracking algorithm (Schlumberger, 2020) was applied (Fig. 3 – step 3). Ant tracking can be used to extract faults280

and fractures from a discontinuity volume. This is accomplished by simulating the behaviour of ants, which use pheromones to

optimize their search for food by marking their paths. Following the same principle, artificial ants (agents) are used to search for

faults and fractures generating a detailed attribute volume with very sharp edges. A choice can be made between a passive and
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an aggressive ant tracking mode, and since our investigation focus is on small structures like fractures and not large structures

such as faults, we chose an aggressive mode and adapted its parameters to our data (see additional explanation in appendix).285

After the 1st ant tracking a 2nd ant tracking was applied to further sharpen the detected edges (Fig. 3 – step 4). Afterwards

automatic fracture extraction (Schlumberger, 2020) was used to create 3D fracture patches from the ant-tracked volume (Fig. 3

– step 5). Then the fractures from the patch volume were extracted along the well paths, including an area with a diameter of

one kilometre around each well, in order to capture enough fractures for the analysis (Fig. 3 – step 6). Afterwards, visual quality

control was carried out and fracture patches that deviated from the ant tracks were manually removed from the dataset (Fig. 3 –290

step 7). The fracture patches along the well paths (Fig. 3 – step 8) and their corresponding fracture orientation values were then

exported from Petrel and imported into the software Stereo32 to create rose diagrams and stereogram pole plots in order to

analyse the fracture orientations and to determine fracture clusters. Subsequently, the results were compared for the complete

drill paths and sections of it, with those of image log analyses, to show where the fractures matched. The Compact Micro

Imager (CMI) images the rock’s electrical resistivity and is presented as an unrolled figure of the wells surface (Schlumberger,295

2004). Since fractures have a different resistivity compared to the surrounding rock, they are visible as sinusoids. We traced

their orientation manually by using the software WellCAD (ALT, 2021). The image is referenced according to the well path,

so that the software calculates the true orientation of the fractures.

Figure 3. Fracture orientation analysis workflow, shown on a zoomed-in section of the GRAME dataset, based on seismic attributes and

ant-tracking.

4 Results

In the following, the results of the physical and structural reservoir characterization, the lithology prediction model, and the300

fracture orientation comparison are shown. Please note that the carbonate formations of the GMB generally dip to the south

11



and additionally, our study area shows a fault-related downward-stepping to the south. Therefore, the carbonate deposits on the

footwall of the Munich Fault are located at shallower depths/time slices compared to the hanging wall.

4.1 Physical and structural reservoir characterization

4.1.1 Geological main targets305

In the GRAME area, several of the main exploration targets can be identified based on the acoustic impedance volume, e.g.,

reef buildups and dolines, as described by Wadas & von Hartmann (2022). For example, in the west of the footwall block, an

elongated reef (Fig. 4a) with high impedance values of up to 18000 kPa*s/m in the reef core and low impedance values down

to around 10000 kPa*s/m at the reef margins can be seen. Comparable characteristics are observable for another reef in the

east of the intermediate block (Fig. 4b). The identified dolines are typically characterized by a circular shape. In the study area,310

large dolines and doline clusters are often located close to faults. This is because the fracture zones around faults can lead to

enhanced fluid migration, and therefore increased dissolution of soluble rocks and the development of secondary porosity, as

it can be observed, e.g., at the Munich Fault (Fig. 4c, d) and the Ottobrunn Fault (Fig. 4e). The dolines have low impedance

values in the center and often larger impedance values around them. Another observed feature is an incised narrow channel in

the upper reservoir part in the east of the hanging wall, crossing the area from northeast to southwest (Fig. 4f). This channel315

is associated with a low-stand sea level and subaerial exposure of carbonates. The channel fill is clearly visible due to its

low impedance values, which show a strong contrast compared to the impedance of the surrounding rocks. In the deeper time

slices, e.g., at 1590 ms, the channel is only slightly curved and follows a more or less straight northeast-southwest direction.

Over time, the channel started to meander (e.g., at 1580 ms and 1572 ms), also resulting in the development of oxbow lakes.

A derived porosity model based on an impedance/porosity relationship, which associates low impedance values with higher320

porosities, shows a complex porosity distribution within the study area (Wadas & von Hartmann, 2022). The reef core has

mainly porosities < 3% and the highest porosities of 7 to 14% are observed at the reef cap, in the upper third of the reef and

on the reef slopes. Wadas & von Hartmann (2022) assume that this is the result of intense karstification and gravitational mass

flows on the slopes. Overall, the footwall of the Munich Fault shows higher porosities than the hanging wall to the south, and

the porosity also displays a W-E trend with higher porosities in the western part of the study area. Furthermore, based on a325

comparison of their results with well data, they describe that dolomitic limestone has the highest porosities and calcareous

dolomite has the lowest porosities. Thus, preferential exploitation targets in terms of high porosity are more likely to be found

in the upper part of the reservoir (Berriasian to Malm ζ1), in particular, in dolomitic limestones due to their high porosity

and/or in strongly karstified areas within bedded and reef facies.

Besides amplitude/impedance, other physical properties describing the signal of a reflected seismic wave are phase and330

frequency. In our study area noticeable changes of seismic phase are observed at interface boundaries of dolines and reefs.

Additional to the already identified dolines and doline clusters (Fig. 4), we found smaller circular features in the north of the

footwall which were also interpreted as dolines (Fig. 5a). The already identified dolines at the Munich Fault (Fig. 5b) and

at the Ottobrunn Fault (Fig. 5c) also produce clear phase changes of the seismic signal. Furthermore, two additional circular
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Figure 4. Time slices through the acoustic impedance volume, calculated by Wadas & von Hartmann (2022), which is used to depict

stratigraphic and lithological contrasts. The results reveal impedance contrasts of different carbonate structures associated with a shallow

marine environment and sea-level variations, such as reef buildups (a & b), karst features (c, d & e) and a channel (f). Low impedance values

correlate with high porosities. IL = inline and XL = crossline.

features can be seen north of the already identified doline cluster at the Ottobrunn Fault. Phase changes are also observed at335

reef boundaries and within the reefs. For example, the reef to the east of the intermediate block (Fig. 5d) shows a clear phase

change at the outer reef edge, but internally, further phase changes can be observed, in part almost parallel to the outer edge.

Whereas in the center, there is an area with a laterally almost constant phase, e.g., at 1470 ms. This is the reef core and the

surrounding phase changes reflect the shifting of the reef edge, and thus the reef growth that has led to the enlargement of the

reef over time. Furthermore, at the southeastern edge of this reef, the areas of the same phase have sometimes a significantly340

smaller lateral extent than at the southwestern edge, e.g., at 1490 ms and 1500 ms. This indicates that in the southwest of the
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reef the same lithology/facies occupies a larger spatial area than in the southeast. Thus, we assume that this reef has either

not uniformly spatially grown or was affected by spatially uneven erosion, due to, e.g., spatial differences in water motion,

sediment dynamics, and/or subaerial exposure.
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Figure 5. Time slices through the instantaneous phase volume, which is used to identify phase shifts in the data. Strong phase changes,

independent of amplitude, are observable at structural and interface boundaries, e.g., dolines (a, b & c) and reefs (d). IL = inline and XL =

crossline.

With regard to the investigation of the dominant frequencies in our study area, it has been shown that the frequencies are345

mostly below 40 Hz, indicating strong frequency attenuation. Nevertheless, the degree of frequency attenuation differs, even

for the same type of structural feature. For example, a reef buildup in the west of the hanging wall (Fig. 6a) shows much

lower dominant frequencies of mostly less than 20 Hz, compared to the reef in the east of the intermediate block (Fig. 6b)

with frequencies of mostly around 20 to 40 Hz. For the latter, only the reef slopes and the cap have frequencies below 20 Hz.

This correlates with the results of the impedance analysis, which show that these zones are characterized by lower impedance350

values, and therefore higher porosities (Figs. 4a & b). This might result from mass redistribution at the slopes and more intense

karstification leading to stronger attenuation of higher frequencies. For the reef in the west of the hanging wall, this means
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Figure 6. Time slices through the dominant frequency volume showing the varying frequency attenuation across the study area, e.g., (a & b)

within reefs, (c & d) dolines, and (e) channels. Lower dominant frequencies indicate increased karstification and/or fault-related deformation.

IL = inline and XL = crossline.

that it might be more karstified. The correlation of karstification and low frequencies is also observable for the large dolines at

the Munich Fault (Fig. 6c) and the Ottobrunn Fault (Fig. 6d). The doline margins are characterized by very low frequencies of

mostly below 20 Hz, while the doline center shows slightly higher frequencies of around 25 to 30 Hz. As shown by other doline355

studies, their margins are often strongly fractured (e.g., Waltham et al., 2005; Al-Halbouni et al., 2018; Wadas et al., 2018),

leading to a loss of high frequencies. Besides reefs and karst, the filling of the narrow channel, identified in the impedance
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volume, is also characterized by lower frequencies compared to the surrounding material (Fig. 6e). Although the frequencies

differ along the channel indicating variation of the channel fill.

Another way to analyse the frequency content of a seismic dataset is by spectral decomposition, because the examination of360

individual frequency components enables a better spatial differentiation and correlation. The reef buildups, the karst features

(dolines and widespread dissolution along bedding planes) and also the meandering channel are all characterized by mainly

low frequencies of 18 Hz and partly high frequencies of 50 Hz, represented by red, pink and to a lesser degree by purple colours

(Fig. 7). This frequency attenuation due to scattering at e.g., fractures and reef edges, could be caused by intensive karstification

and mass redistribution. In addition, lithological variations can also lead to frequency differences. Regarding regional trends,365

the footwall of the Munich Fault (Fig. 7a) shows a north–south differentiation towards the deeper time slices. The northern part

of the footwall is mainly dominated by the 28 Hz frequency component and partly by the 50 Hz frequency component, which

is represented by the green and green-blue colours. The southern part of the footwall is characterized by increasingly lower

frequencies towards deeper time slices, more exactly at 1358 ms all three frequency components are present, at 1380 ms the

28 Hz component dominates together with the 18 Hz component, and at 1396 ms the 18 Hz band dominates. The upper part of370

the hanging wall of the Munich Fault (Fig. 7b) shows a west–east frequency differentiation. The western part contains mostly

the 18 Hz and partly the 50 Hz frequency components, and only in greater depths the 28 Hz component is also present. To the

east, a bright coloured area can be seen, e.g., at 1524 and 1544 ms, indicating that all three frequency components are present

and no general loss of high and/or low frequencies occurs. Overall, the hanging wall of the Munich Fault is more dominated

by the blue 50 Hz frequency band than the footwall, the only exception for the hanging wall is the easternmost area containing375

the Ottobrunn Fault, which shows lower frequencies.

4.1.2 Internal reef architecture

To investigate the internal reef architecture, the seismic multi-attribute sweetness was analysed. In our study area, the bedded

facies is characterised by low sweetness values (brown, dark blue and grey colours), indicating a low envelope and high

frequencies (Fig. 8). In contrast, the reefs that show a strong variation in sweetness, are characterized by a higher sweetness380

due to increased envelope values compared to the surrounding material. The reef base (Fig. 8a – 1462 ms) and parts of the

reef core show very high sweetness values (white, light blue and yellow colours). This results from very high envelope values

combined with relatively low frequencies. Such a combination of envelop and frequency could indicate a mudstone or a

generally compacted and cemented (fine-grained, microcrystalline) limestone (Dunham, 1962; Flügel, 2010). The reef core

has medium to high sweetness values resulting from medium envelope values and low to medium frequency values (Fig. 8;385

light green, pink, orange, medium blue and red colours). This indicates a mixed mud- and grain-supported carbonate texture

which is typical for a reef core that consists of different types of biogenic components like sponges, bivalves, corals and

bryozoans surrounded by a matrix (Flügel, 2010; Böhm, 2012; Homuth et al., 2015). The different biogenic components cause

variations in rock properties, such as rock density or seismic wave velocity, which result in stronger amplitude differences and

lower frequencies due to increased attenuation. The reef slopes have medium sweetness values (dark green and purple colours),390

resulting from low frequency and low to medium envelope values. This corresponds to other studies which have shown that
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Figure 7. Time slices through the spectral decomposition volume with 18 Hz plotted against red, 28 Hz plotted against green, and 50 Hz

plotted against blue. It enables the examination of individual frequency components, showing spatial frequency variations (a) on the footwall

and (b) on the hanging wall of the Munich Fault.

reef slopes often consist of a grain-dominated and strongly-disturbed debris facies (Flügel, 2010; Playton et al., 2010), which

will lead to low internal reflection coefficients and strong frequency attenuation. The sweetness attribute also allows a more
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detailed interpretation of the reef development. For example, in the case of the reef to the west of the hanging wall (Fig. 8a),
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Figure 8. Time slices through the sweetness volume, which detects general energy changes of the seismic wave in order to identify changes

in lithology and stratigraphy. For the studied reservoir, the internal architecture of two exemplary reefs (a) in the west of the hanging wall

and (b) to the east of the intermediate block of the Munich fault are shown, revealing a complex reef development. IL = inline and XL =

crossline.

we observe that, starting from the reef base at 1462 ms, two closely spaced but separate reef cores developed (1452 ms and395

1448 ms), ultimately forming one large reef (1440 ms). The western reef core shows a bending orientation where the southern

part has a SW–NE orientation and the northern part has SE–NW orientation. Whereas, the eastern reef core shows only a
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NW–SE orientation. In contrast, the reef to the east of the intermediate block (Fig. 8b) shows a slightly different development.

The reef base, which is not shown, is spatially coherent and also the reef core (from 1490 ms to 1460 ms) had a spatially mostly

uniform development. However, in the upper part, at 1428 ms and 1416 ms, the reef core starts to develop the shape of a three-400

armed star with NNW–SSE, N–S, and NE–SW orientations. During further reef growth the NE–SW arm died out and only a

NW–SE oriented reef core remains (1400 ms). This change in reef core shape might result from a change in ocean currents or

other local environmental changes.

4.1.3 Structural boundaries & lineaments

Variance and chaos are able to highlight structural boundaries and lineaments. However, both attributes deliver comparable405

results, so only the results of the variance analysis are shown. High variance values indicate high dissimilarities between

neighbouring traces, especially on the footwall (Fig. 9a) and the intermediate block of the Munich Fault (Fig. 9b). Long linear

variance
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Figure 9. Time slices through the variance volume, which is used to detect faults and fracture zones (a & b), karst features (c & d) or other

structural features with sharp edges, such as reefs (e). In (d) and (e) the second subfigures on the right show variance with an additionally-

applied edge-enhancement filter to better highlight the vertical discontinuities on an inline (IL), a crossline (XL) and a random line.

features and chaotic patterns are visible along the fault itself and in the surrounding areas, respectively. The former results
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from the strong discontinuities due to the fault displacement, and the latter is induced by fault-related deformation. Fault-

related deformation can cause an increase in fracture intensity which generate more discontinuities, which is observable by410

high variance values. But discontinuities can also be caused by karst-related deformation, as it can be seen, e.g., for the dolines

at the Ottobrunn Fault (Fig. 9c) and the Munich Fault (Fig. 9d). In the top view, the strongly disturbed doline edge is shown by

circular high variance values and in the side view, the collapse crater is clearly visible due to vertical discontinuities. In addition,

reef margins are also characterized by high variance values (Fig. 9e). These are presumably caused by mass redistribution due

to debris flows at the margins, intensified karstification, and fracturing.415

4.1.4 Morphological features

To analyse morphological features within the reservoir, we used most positive curvature (Fig. 10a) and most negative curvature

(Fig. 10b) corendered with variance (Fig. 10c). In our study area, most positive curvature reveals many anticlinal and most

negative curvature reveals many synclinal features, as shown by an exemplary time slice at 1510 ms. Along the Munich Fault

and it’s fault branches, long linear features can be seen (Fig. 10c). The positive curvature anomalies are associated with the420

upthrown side of the normal faults and the negative curvatures with the downthrown side (Roberts, 2001). And the distance

between both anomalies gives an impression of the fault heave. Since the distance is quite small, this indicates a short lateral

displacement of the fault, which also fits well with the finding that the faults in this study area are steeply dipping (Ziesch,

2019). Besides this, many small-scale lineaments that form a chaotic pattern are visible, especially on the intermediate block

and the footwall. These small linear features are interpreted as fractures resulting from intense fault-related deformation along425

the Munich Fault, in particular within the area where the fault splits into two fault branches forming the intermediate block.

Along this fault, but also along the Ottobrunn Fault to the south, and within the fault blocks, many circular features can be seen,

which are interpreted as karst-related dolines (Figs. 10d & e). The doline margins show a distinct positive anomaly indicating

an anticlinal structure, whereas the doline center shows a negative anomaly which is typical for a synclinal structure.

Curvature distinguishes only between planar, anticlinal and synclinal structures, but it can be used to calculate new attributes,430

such as the shape index and the curvedness (Fig. 11) that allow a quantitative definition of the local morphology (Roberts,

2001). Therefore, we corendered the shape index with curvedness and variance. In our study area, zones with planar or almost

planar features, shown by dark grey colours, are observable on the hanging wall of the Munich Fault. Zones with highly-curved

morphologies, visible by bright colours, are seen on the footwall and the intermediate block of the Munich Fault, and to the

south at the Ottobrunn Fault, e.g., at 1510 ms (Fig. 11a). The tectonically-deformed fractured area in the east of the footwall435

block is characterized by a chaotic pattern of mainly ridge- and valley-shaped surfaces (Fig. 11b), but we also identified many

small-scale bowl-shaped structures that are distributed across the entire area. Larger bowl-shaped dolines are only located in the

north of the footwall. They have a ridge-shaped outer margin and a valley-shaped inner margin that changes to a bowl-shaped

structure in the centre (Fig. 11c). Along the Munich Fault itself the footwall is characterized by a ridge-shaped lineament

and directly adjacent to the south is a valley-shaped lineament, which defines the transition towards the intermediate block.440

Although this transition zone is less pronounced regarding morphology than the transition zone between the intermediate block

and the hanging wall (Fig. 11d). To the south at the Ottobrunn Fault, the shape index shows that the identified horse-tail splay
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Figure 10. Time slices through the curvature volumes that are utilized to detect changes in structural- and depositional trends. (a) The

most positive curvature reveals anticlinal and (b) the most negative curvature synclinal features. (c) For a comprehensive interpretation

both curvature volumes are superimposed and corendered with variance. The joint interpretation allows the detection of faults and the

determination of the upthrown and downthrown sides, and it is also a suitable tool for doline detection (d & e).

(Ziesch, 2019) has a valley-shape in the west and a ridge-shape in the east, showing that the fault is downthrown to the west

(Fig. 11e). The identified large dolines show the same characteristics regarding their shape as the large dolines to the north.

The shape index also shows other small bowl-shaped objects, some of which can also be found along the fault and due to445

the lack of a valley-shaped margin they have only a low morphological contrast compared to the surrounding area. They are

either comparatively small dolines with a shallow collapse crater or small and shallow sagging structures, which do not have a

collapse crater and therefore no strong curvature change at the margin.
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Figure 11. Time slices through the co-rendered shape index and curvedness volumes (left panels), also together with the variance volume

(right panels). The shape index describes the type of shape of a specific surface and the curvedness measures the magnitude of curvature.

Together with variance they are suited to visualize morphology (Marfurt, 2015), e.g., like (b) damage zones, (c & e) karst-related dolines, (d

& e) and faults.

4.2 Lithology prediction model

The main process influencing the lithology type in carbonates is dolomitization (Machel, 2004; Lucia, 2007). In the study area450

four types of carbonate with regards to their degree of dolomitization can be found: limestone, dolomitic limestone, dolomite,

and calcareous dolomite. For the study area, the 3D lithology model derived from the neural network classification reveals
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that calcareous rocks (limestone and dolomitic limestone) with a total fraction of 76% are more common than dolomitic rocks

(dolomite and calcareous dolomite) with a fraction of 24% . The examination of vertical cross-sections (Fig. 12a – c) shows

considerable variations in lithology distributions, especially within the reef buildups, e.g., on the intermediate block and the455

footwall of the Munich Fault. These show that reef cores that are only slightly porous consist of mainly dolomite. However,

also interbedded sequences with limestone and dolomitic limestone occur, especially in the upper part of the reef buildups, but

sometimes also in areas closer to the reef base.

By investigating individual time slices in the top view (Fig. 12d & e), we noticed that areas can be defined in which certain

lithology types are dominant. For the entire reservoir of the GRAME study site, the upper part is dominated by limestone460

and dolomitic limestone, both for the footwall block (e.g., at 1380 ms) and for the hanging-wall block (e.g., at 1540 ms and

1580 ms). Apart from that, it is noticeable that the footwall block shows higher degrees of dolomitization in the west and

northwest compared to the east and southeast (e.g., at 1460 ms). On the other hand, the hanging wall shows the opposite

trend with increased dolomitization to the east and in the central part (e.g., at 1600 ms and 1620 ms), although this spatial

trend diminishes towards greater depths (e.g., at 1660 ms). Overall, dolomitization appears to be slightly more pronounced465

on the hanging-wall block than on the footwall block. Additionally, the subdivision of the reservoir into a lower part with

almost completely dolomitized carbonates and an upper part with more partially dolomitized carbonates, could indicate several

dolomitization and dedolomitization phases.

With regard to the reefs, the time slices show the same lithology distribution as observed in the cross sections, with mainly

dolomite in the reef cores and dolomitic limestone and limestone at the reef slopes and in the upper parts of the reefs (e.g., at470

1380 ms and 1580 ms). According to the results of Wadas & von Hartmann (2022), who showed that the reef slopes and the

reef caps have higher porosities compared to the reef cores due to karstification, it is assumed that limestone and dolomitic

limestone in the reefs appear to be more prone to karstification than the areas of pure dolomite. Similar observations can

be made in areas that comprise mostly of limestone-dominated carbonates and show intense karstification, e.g., the sinkhole

cluster in the north of the footwall block (e.g., at 1380 ms) or the western part of the hanging wall (e.g., at 1540 ms) with475

karstification along bedding planes according to Wadas & von Hartmann (2022).

In addition, we could not find any other correlations between structural characteristics and the spatial distribution of dolomi-

tization. For example, the amount of dolomite is not increased at faults, or intensely fractured areas with increased permeability,

such as in the east of the footwall block. This indicates that dolomitization in the Munich area is more facies-controlled than

fault-controlled.480

4.3 Comparison of FOA derived from well and seismic data

An important question that is often raised in reservoir exploration addresses the scalability of fracture properties like the

orientation and size. To address this question, we compared fracture orientations (FO) in the vicinity of the well paths derived

from the seismic attribute analysis with the CMI results. Results are in the following grouped according to the tectonic blocks,

to facilitate comparisons within the three fault blocks of the Munich Fault.485
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On the footwall the fracture orientations (dip direction/dip angle) and derived fracture clusters for the wells show both good

and poor agreement. Regarding Th3, only the seismic results are shown due to data restrictions of the corresponding image

interpretations. Overall, the seismic data (Fig. 13) reveals three fracture clusters at 346/01, 290/01, and 233/01. However, we

observe a change in the fracture systems with depth. In the depth range between 1730 m and 1810 m, we observe two fracture

cluster at 338/01 and 67/06. In the depth range between 1810 m and 2050 m, we observe three fracture clusters, the main490

cluster (173/11) is comparable to the upper part, but we observe two new clusters at 72/09 and 310/26. In the deepest part

between 2050 m and 2190 m, we observe a broad range in fracture orientations and no distinct clusters can be identified. For

the well Th5, which was drilled mainly in dolomitic limestone, the fracture clusters show a variable match between the seismic

and image analyses. (Fig. 13). In general, the seismic data shows with four clusters a more diverse distribution in fracture

orientations than the CMI data with just two clusters. A good match with ±15◦ is accomplished for the 282/01 cluster (from495

seismic data) and the 284/03 cluster (from CMI data). A moderate match with ±30◦ is observed for the 159/05 fracture cluster

(from seismic data) and the 176/06 cluster (from CMI data). Two other fracture orientation clusters that we observe in the

seismic data are not present in the CMI data. To analyse whether the variable match holds for the complete well path or not,

we also compare fracture orientations within different depth sections separately. We observe that in the upper depth range

between 1680 m and 2000 m that consist of bedded and massive facies, one of the two clusters shows a good match. A second500

cluster identified in the seismic is not observable in the well. In the lower part from 2000 m to 2130 m, which is mostly of

bedded facies, the fracture clusters show a poorer match, whereby in the seismic the E-W striking fracture set is split into two

(conjugate) sets.

On the intermediate block, a strong well-dependent distinction with respect to matching fracture clusters between seismic-

and CMI data is evident. For well Th4, which was drilled mostly in dolomitic limestone of the massive facies and to a minor505

degree of limestone and dolomite, a poor cluster match is found, with the closest match for one cluster within an angle of

±30◦ (Fig. 13). Notably, fracture orientations are stable along the entire well path. In contrast, Th1 (Fig. 13) in the east of the

intermediate block, which was drilled in dolomite, dolomitic limestone and calcareous dolomite, shows a good fit of fracture

orientations, with two clusters fitting with±15◦ (seismic data: 280/06 & 214/05; CMI data: 273/06 & 44/04) and one matching

with±30◦ (seismic data: 337/03; CMI data: 139/03). Similar to Th5, the quality of the cluster match between CMI and seismic510

data changes with depth, i.e. the fit between the clusters is better in the upper part of the reservoir (1840 m to 2180 m), compared

to the lower part (2180 m to 2290 m). The upper part consists mostly of a bedded and a mixed facies, whereas the lower part

consist of massive dolomite.

On the hanging-wall block (Th2a and Th6), when comparing fracture orientations over the entire well paths, we observe

that the quality of the match between seismic and CMI data is better for the well Th6. The Th6 was drilled mostly in massive515

limestone and in the upper part to a minor amount in bedded limestone. In the seismic data we found three fracture clusters that

show either a good (seismic: 240/04; CMI: 233/01) to moderate (seismic: 117/02; CMI: 137/01) fit with ±15◦ to ±30◦, or no

fit (002/16) with the CMI-data (Fig. 14). Furthermore, we observe variations of the fit with respect to depth. For example, the

upper and lower part of Th6 have both clusters that match good within ±15◦, and clusters that match moderate within ±30◦.

In the middle part the fit is poor, i.e. only two clusters match within ±30◦. For the entire well Th2a (Fig. 14), drilled mostly520
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in massive dolomite and massive dolomitic limestone, only a poor cluster fit is found. Only one fracture cluster fits within

±30◦ (seismic: 333/12; CMI: 001/04). Additionally, in the seismic as well as in the CMI data one fracture set exists, that was

not identified by the other method. The depth dependent fracture fit shows that in the upper part between 2020 m and 2400 m

depth at least the rough orientation fits. In the lower part a reliable comparison is not possible because of the low number of

measurements in the CMI data. However, both methods show a roughly NE–SW and a NW–SE striking fracture set.525

In summary, correlations between lithology/facies and well location are evident with respect to the matching of fracture

clusters. Fracture orientations in massive limestone show a better match than in massive dolomite. Independent of facies, the

degree of dolomitization seems to correlate negatively with scalability. With regard to the well locations, differences can be

detected within the fault blocks in terms of corresponding fracture orientations. On the footwall, Th3 in the west is located

in mostly undisturbed material compared to Th5 which is situated in disturbed rocks, according to the discontinuity-attribute530

analysis. Furthermore, the area around Th5 also has slightly higher porosities than the area around Th3 according to the porosity

model (Wadas & von Hartmann, 2022), indicating that the area around Th5 is more affected by fault- and probably karst-related

deformation. This led to the generation of fractures with more diverse orientations, as observed for Th5. Therefore, Th5 shows

a poorer match than other wells. Based on this assumption, we expect a much better FO match for Th3 because the well

and its surrounding are situated in mostly undeformed material and as a result, the preferred fracture orientations should also535

show up more clearly in the seismic data compared to Th5. On the intermediate block, Th4 shows almost no fitting fracture

orientations compared to Th1, which is probably also a result of more intense fault-related deformation, because Th4 is located

at the branching point of the Munich Fault where it splits into two fault branches. On the hanging wall, Th6 in the west shows

a slightly better FO match than Th2a probably due to slightly enhanced fault-related fracturing more to the eastern part of

the fault block. Overall, the seismic analysis is able to distinguish several fracture orientation sets/groups, similar to the CMI540

analysis, striking NNE–SSW, NE–SW, ENE–WSW, NW–SE, and NNW–SSE.

5 Discussion

The benefit of seismic attributes is to highlight contrasts in the data. However, the more complex a reservoir is, the more difficult

it is to interpret these contrasts. Due to their strong heterogeneity, the characterization of carbonate reservoirs is therefore a

major challenge in exploration (e.g., Ehrenberg & Nadeau, 2005; Lucia, 2007). In the following, first the chosen methodical545

approach is inspected and afterwards we discuss the scalability of fracture orientations, and the structural and diagenetic

evolution of the reservoir. Taking all results into account, we provide new exploitation targets in the Munich area for possible

future geothermal projects.

5.1 Methodical approach

We have demonstrated the benefits and a number of applications of seismic attribute analysis for the characterization of a550

geothermal carbonate reservoir in the GMB. In the following, we discuss aspects regarding the calculation and the usage of

seismic attributes that need to be considered.
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Figure 14. Comparison of fracture orientations from seismic and CMI data for the wells on the hanging wall (Th2a and Th6) of the Munich

Fault using rose diagrams and stereographic pole plots. Seismic fracture orientations are shown by white rose-diagrams and CMI fracture

orientations are shown by grey rose-diagrams, together with colour-coded fracture cluster matching. For each well, the lithologies, the facies

types, and the stratigraphy are given.

Seismic attributes are a quantitative measure of the seismic data. They are sensitive to geology, and thus allow to draw

conclusions about the structural interpretation or characterization of the depositional environment, e.g., faults, stratigraphy
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and geomorphology (Chopra & Marfurt, 2007). Since their first application in the 1970s, a large number of seismic attributes555

have been developed, which makes it difficult to select the appropriate ones for a specific analysis (Chopra & Marfurt, 2007).

According to Barnes (2006), the following criteria should be considered to avoid the use of unnecessary attributes: discard

duplicate seismic attributes and if there are multiple attributes that measure the same property, choose the one that works best

for your data, and prefer attributes with geological or geophysical meaning. To avoid duplicate attributes in our study, crossplot

analyses were not only performed between the attributes and the lithology logs, but also between the attributes themselves. In560

case of a linear or quadratic relationship, which indicates that the attributes contain nearly the same information, one of the

attributes was discarded from further analyses. Furthermore, all chosen attributes have geological/geophysical meaning linked

to the reservoir characterization.

The effectiveness of seismic attribute analysis is also controlled by the type of reservoir. The great advantage of seismic

attributes is to highlight contrasts in the data. However, the more complex a reservoir is, e.g., regarding control factors (reef565

development, karstification, and dolomitization), the more difficult it is to interpret these contrasts. Therefore, prior knowledge

of possible reservoir control factors that might affect the physical rock characteristics, e.g., density, is important when perform-

ing the seismic attribute analysis itself. This is because the properties of a seismic wave, e.g., velocity, amplitude, frequency,

phase, and attenuation, change while the wave propagates through the subsurface and these changes are caused by the physical

differences of the various rocks and geological structures (Taner, 2001; Chopra & Marfurt, 2007; Veeken, 2007). In addition,570

it should be kept in mind that the quality of a seismic attribute analysis can be negatively influenced, e.g., by acquisition foot-

prints, processing artefacts, and noise (Marfurt & Alves, 2015). Therefore, a quality check of the seismic data prior to analysis

is a necessity.

Almost all attribute analyses can be adapted to the object under investigation to obtain viable results by changing parameters

such as the inline and crossline radii, or the number of samples or traces (Chopra & Marfurt, 2007; Schlumberger, 2020). If575

the goal is, e.g., the interpretation of large-scale faults, rather large spatial parameters should be chosen, e.g., in the variance

analysis a lateral range of 8 inlines and crosslines should be used. Whereas for the investigation of fractures, the analysis should

be carried out on a smaller scale, which is why we chose a range of 3 inlines and crosslines in our study. The same holds for

the identification of karst structures, such as dolines, that are characterized by small-scale lateral and vertical variations, which

is why small investigation windows were chosen. The investigation scale also played an important role for the ant-tracking580

algorithm, because the presented workflow can also be used for the identification of large-scale faults and the extraction of

corresponding fault patches. If the parameters are adjusted accordingly, for example, by changing the ant-tracking mode from

aggressive to passive, and e.g., the initial ant boundary from a close distribution (2 voxels) to a coarse distribution (6 voxels).

Therefore, it must be clear beforehand, what is to be highlighted with the attribute analysis, in order to select the appropriate

parameters for the calculation.585

Besides single-attribute analyses, the application of multiple seismic attributes in a combined plot is a key element of our

study. They are generally usable in various clustering techniques, like self-organized maps (Roden et al., 2015; Zhao et al.,

2015), geostatistics (Janson & Madriz, 2012; Ba et al., 2019), and neural networks (Brcković et al., 2017; Gogoi & Chatterjee,

2019; Abdel-Fattah et al., 2020) that have gained a lot of attention in recent years, because they enable parameter-based
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classifications, e.g., to obtain a 3D lithology or facies reservoir model. The quality of the results strongly depends on the input590

data such as seismic attributes and, in case of availability, the desired output data (e.g., lithology logs from wells). With regard

to the input data, it is important to note that these must show a correlation between the physical parameters derived from the

seismic attributes and the desired classes. A correlation coefficient close to 1 indicates a perfect or almost perfect match between

the datasets. However, this is usually not the case for geological correlations, because rocks are generally heterogeneous, e.g.,

with regard to their petrophysical parameters or their composition. A correlation coefficient close to zero indicates that there is595

no relationship between the different datasets, which would make it impossible to achieve a good mathematical model that can

be used for lithology prediction. Thus, only attributes with acceptable correlations should be implemented in the classification,

because incorporation of attributes with low or no correlations would degrade the quality of the classification (Zhao et al., 2015).

Therefore, we decided to choose only a small number of attributes that enable an acceptable classification. However, it should

be kept in mind that the classification carried out in this study is based solely on different types of carbonates, which show600

minor physical differences. High correlation coefficients are therefore not to be expected. Besides the correlation analysis, we

were also able to use a supervised neural network for the lithology classification, since six wells with corresponding lithology

logs were available, which were used as the desired output data. Due to the fact that no large variations of the physical

parameters between the different carbonate types were to be expected, a manual classification or an automatic classification

with an unsupervised neural network that only looks for data trends would have hardly yielded promising classification results605

with a geological meaning. When using logs as boundary parameters, however, it should be noted that these should cover

the entire range of the classes and therefore the heterogeneity of the reservoir, in order to enable a reliable assignment. As a

consequence, the more heterogeneous the reservoir, the more wells should be implemented into the classification. With regard

to our study, the implementation of only one or two wells might not be sufficient enough to obtain a representative lithology

classification of the heterogeneously distributed carbonate types, e.g., Th5 contains mostly dolomitic limestone, Th2a contains610

mostly dolomite, and Th6 contains mostly limestone. Therefore, implementation of all six lithology logs delivered a more

comprehensive overview of the different carbonate lithology types within the reservoir. Nevertheless, it is important to keep in

mind that only a small part of the reservoir is covered by the six wells, which will always lead to a certain degree of uncertainty.

With respect to the identified classes, we chose to differentiate between the four carbonate types limestone, dolomitic lime-

stone, dolomite, and calcareous dolomite, although the latter appears only sporadically. We chose this classification because615

other studies have shown that, for example, dolomitization can have a major influence on reservoir quality, especially on poros-

ity and permeability (Reinhold, 1998; Koch et al., 2010; Böhm, 2012; Mraz, 2019; Bohnsack et al., 2020). There are other

classification options, but a classification, e.g., according to the two hyper-facies types (massive- and bedded facies), would

not have made geological sense, as many studies have shown that the presence of massive facies alone is no guarantee for good

reservoir conditions. For example, massive facies can also have poor poro/perm conditions due to, e.g., cementation, com-620

paction and overdolomitization (Schmoker & Halley, 1982; Lucia, 2007; Wolfgramm et al., 2011; Homuth, 2014), whereas

bedded facies can also be suitable for exploitation, e.g., due to karstification along bedding planes and thus increased poro/perm

values (Lucia, 2007; Mraz, 2019; Wadas & von Hartmann, 2022). A further facies differentiation incorporating the lithology

types and also the fabric types (e.g., laminated, banded, ordered/unordered clasts, clast size) would be necessary, but since the
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different facies classes did not show clear correlations with the seismic attributes because the rock-physics based parameters625

did not vary strongly enough due to too many subdivisions, a reliable classification was not possible. Therefore, we limited the

classification to the lithology types.

It should also be noted that we used only volume attributes in this study but no horizon attributes because surface or horizon

attributes require that the horizons or surfaces were accurately picked. Regarding the Jurassic carbonates, this would only be

possible for the top of the reservoir. Internally, however, no horizons or surfaces could be picked due to the complex structural630

conditions (e.g., the presence of faults, fractures, and dolines) and the complex lithology- and facies distribution (e.g., bedded

and massive facies). Seismic pre-stack attributes based on amplitude-versus-offset (AVO) analyses, for example, were also

not investigated, since an AVO analysis had not been carried out for the GRAME dataset at the time of this study and only

the finished stacked datasets were available. AVO attributes enable the offset-dependent investigation of physically-relevant

parameters of the reservoir and have provided promising results in other reservoir studies (Veeken, 2007; Barclay et al., 2008;635

Bredesen et al., 2020). For this reason, we recommend that AVO analyses should be carried out together with the classical

post-stack attribute analysis in the exploration phase of future geothermal projects.

5.2 Scalability of fracture orientations

The comparison of fracture analyses from seismic and CMI data allows to draw conclusions regarding the scalability of frac-

tures in the GRAME area. As shown, the fracture orientations fit only under certain circumstances, thus, a general scalability640

across the two scales, namely seismic- and well scales, is not given.

Possible reasons that fractures can not be scaled between seismic and drilling scales may be of geological, but also of

methodological origin. Regarding the geological reasons, von Hartmann et al. (2012), Lüschen et al. (2014) and Ziesch (2019)

have proven the existence of fault-related deformation for the Munich region, which according to our study seems to influences

scalability. Areas that are more affected by tectonic stress show poorer scalability than areas with less deformation, e.g., the645

fault damage zones in the intermediate block and between the Munich Fault and the Nymphenburg Fault lead to intenser

fracturing, not only on seismic scale but also on sub-seismic scale (Lohr, 2008; Ziesch, 2016; Ashton et al., 2018). Therefore,

not all fractures in these areas are detectable by the seismic survey, especially if the fractures on the sub-seismic scale have

a different orientation than those on the seismic scale, resulting in non matching fracture clusters. Another control factor is

karst-related deformation. Dissolution of rocks can lead to cavities and over time new, especially small-scale, fractures can650

form in the surrounding areas due to collapse and local stress redistribution (e.g., Parise & Lollino, 2011; Salmiet al., 2017;

Al-Halbouni et al., 2018; Shiau & Hassan, 2021). These fracture orientations do not have to follow the local stress field, but can

spread, e.g., radially away from the cavity (Schneider-Löbens et al., 2015; Rawal et al., 2016; Al-Halbouni et al., 2018). Thus,

differences in the identified fracture orientations and fracture scalability can arise because these locally restricted fractures

may not be detected on seismic scale, but they can be captured on CMI scale. However, the results of this study indicate that655

dolomitization is another factor that influences scalability, e.g., scalability decreases with increasing degree of dolomitization.

During dolomitization, recrystallisation leads to a reduction in rock volume, which can cause further fracturing and for that

reason, dolomite tends to have a higher fracture intensity compared to limestone (Korneva et al., 2018; Liu et al., 2020). To
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further validate these assumptions, additional analyses at other study sites are necessary. In summary, fracture scalability is

possible, but depends much on the complexity of the geological conditions on sub-seismic scale.660

Regarding the methodological reasons for different fracture orientations in seismic and CMI data, the different resolution

limits of the two methods have already been mentioned. However, another important point is that a CMI analysis only covers

a very small volume, whereas 3D seismic attribute analysis allows a more comprehensive spatial analysis (Fang et al., 2017;

Albesher et al., 2020; Boersma et al., 2020; Loza Espejel et al., 2020), and this may result in the detection of differing fracture

orientations. In nature, fractures can change their orientation along the fracture path. Therefore, dip directions and dip angles665

can vary depending on where along the fracture path the orientation is measured. As a result, the values of the fracture orien-

tations from the seismic data always represent an average value over the entire fracture path and not only a small part of the

fracture path, as is the case with the CMI data, although the CMI delivers a more accurate result for a specific investigation

point. Therefore, the CMI may be less accurate in detecting large-scale structures than the 3D seismic, so the abundance distri-

bution or intensity (n-value) of the preferred fracture orientations may be different based on the chosen method since different670

fracture sets may be captured. Furthermore, it also has to be considered that the n-value in the CMI and the seismic data can vary

considerably, because, e.g., several parallel to sub-parallel fractures visible in the CMI data are imaged individually, whereas

the seismic data may only image them as a single fracture (with an averaged orientation) due to the seismic resolution. This

means that a comparison of the n-values between seismic and CMI is not very meaningful. In addition, the different imaging

of fracture orientations in the CMI data compared to the seismic data could be influenced by the well orientation, which intro-675

duces an orientational bias, e.g., fractures (sub-)parallel to the well can become underrepresented. With regard to the reflection

seismic data, there are also methodical pitfalls that should be kept in mind. For example, not every discontinuity detected by

the seismic attributes has to be a real fracture, since it could be, e.g., an imaging artefact. Even if it is a real fracture, the derived

geometric properties might be incorrect due to a wrong analysis window for the attribute calculation. For example, according

to Marfurt & Alves (2015), coherence anomalies become increasingly more vertical the larger the analysis window is, resulting680

in a stair-step structure. Therefore, when analysing small features like fractures, small analysis windows must be chosen, as

we have tried to do (see also details on the chosen attribute parameters in the appendix). Nevertheless, a small percentage

of uncertainty in the derived fracture geometries, which can not directly be quantified, must be expected. Another problem

are possible lateral velocity variations of the seismic wave, inducing velocity pull-ups and push-downs that can cause false

structures in the seismic image. For example, high velocity anomalies result in a velocity pull-up and can generate subvertical685

’fractures’ (Marfurt & Alves, 2015). Furthermore, it must be considered that not all fractures, which are theoretically present

in the seismic raw data, are captured by the attribute analysis. Processing steps, especially filters or smoothing algorithms that

are often used to enhance horizons, might remove real fracture information from the data unintentionally, instead of preserv-

ing/highlighting them, when processing parameters are chosen incorrectly. Another reason for the possible capture of too few

fractures is scattering of the seismic wave at objects that are smaller then the wavelength. The resulting energy dispersion can690

then lead to fracture zones appearing as shadow zones in the seismic image and thus the fractures are not directly visible (e.g.,

Beilecke et al., 2016).
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Overall, we conclude that both methods have their advantages and disadvantages. In our results we show that even with

such a high data density in an comparatively small volume both methods produce results that are not generally comparable.

However, we recommend to use both fracture orientation analysis methods. The seismic-based FOA is a useful addition to the695

CMI-based FOA, as it allows fracture orientations to be investigated at different scales and the combination of both analyses

provides a more complete picture of the fracture inventory and local fracture orientation trends. This can also be helpful when

implementing fractures in other analysis methods such as hydraulic-mechanical modelling (Dussel et al., 2016; Bauer et al.,

2019; Konrad et al., 2019). The seismic-based FOA can also be used to improve the planning of well paths. However, the

seismic analysis cannot replace a later detailed CMI analysis, especially in areas with complex geological conditions as the700

Munich region.

5.3 Diagenetic and structural evolution of the reservoir below Munich

With the increasing economic use of the subsurface in the GMB, especially in the context of geothermal exploitation and the

associated scientific exploration, more has become known about the geological development of the region. A better understand-

ing of the geological evolution of the GMB, especially of the geothermal reservoir, is of great importance in order to identify705

controlling factors and to better estimate the exploitation potential. As already mentioned, the most important reservoir control

factors in our study area are (I) the lithology and thus, the diagenetic evolution of the carbonates, (II) the distribution of massive

and bedded facies, (III) the tectonic evolution and the influence of faults and fault-related fractures, e.g., on fluid pathways, and

(IV) the karstification processes that can also improve permeability through the formation of cavities and additional fractures

due to stress redistribution. So far, these control factors have been determined primarily by well log analyses. 3D seismic data710

is not always available, and even when such data has been measured, it has been used primarily for structural geological inter-

pretations in the past. However, 3D seismic data, particularly seismic attributes, also allow spatial interpretation of lithology,

diagenesis, and karstification as shown in this study. Therefore, in the following, existing concepts for reservoir development

from spatially-constrained drilling studies in the GMB, e.g., cutting analyses and FMI analyses (Reinhold, 1998; Koch et al.,

2010; Koch, 2011; Wolfgramm et al., 2011; Böhm, 2012; Beichel et al., 2014; Mraz, 2019; Bohnsack et al., 2020), are dis-715

cussed, and an extended conceptual reservoir model for the Munich area is presented that also incorporates spatial variations

based on the 3D seismic analyses carried out in this study.

A recent reservoir concept of the Upper Jurassic carbonates in the GMB, presented by Mraz (2019) and based on older works,

e.g., by Reinhold (1998), separates the diagenetic evolution of the Upper Jurassic carbonates into five phases: sedimentation,

early diagenesis and first dolomitization, burial diagenesis and second dolomitization, late burial diagenesis, and the present-720

day reservoir. Taking into account the spatial analyses based on the seismic results of this study, it is concluded that, in addition

to the different dolomitization phases, there were at least two karstification phases, and also various events that significantly

influenced the fluid pathways, whereby these processes also partially influenced or triggered each other. We have therefore

expanded the reservoir development concept accordingly. Our extended reservoir development concept comprises the following

steps: (1) sedimentation and reef development, (2) early diagenesis and first dolomitization, (3) burial diagenesis and second725
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dolomitization, (4) subaerial exposure and widespread karstification and erosion, (5) Alpine orogeny and fault development, (6)

late burial diagenesis and third dolomitization, (7) intense karstification along faults, and (8) continued subsidence (Fig. 15).

(1) Sedimentation and reef development: During the Upper Jurassic high amounts of carbonates were deposited in the study

area that was covered by the Tethys Sea at that time (Schmid et al., 2005; Pieńkowski, 2008), which was also accompanied by

the development of the reef buildups found in the GRAME area. As shown by the high-resolution acoustic impedance model730

derived from the GRAME 3D seismic by Wadas & von Hartmann (2022), the massive facies of the reef slopes interfinger

with the surrounding bedded facies forming rounded ’pine-tree’-shaped edges. This was interpreted as an indication of syn-

sedimentary reef development with varying growth rates. The reef geometry also seems to narrow towards the top, especially

in the upper third of the reef. This narrowing is postulated to result from long-term sea-level changes during the Upper Jurassic.

According to Haq (2017), the sea level in the Oxfordian (Malm α to Malm β) and Kimmerdigian (Malm γ to Malm ε) rose735

from approx. +50 m to approx. +150 m (compared to today’s sea level) and it dropped again to about +100 m until the end of

the Tithonian (Malm ζ). Since our study area was located in a shallow marine environment at that time, we assume that these

sea-level fluctuations had a significant influence on the carbonate production rates and thus also on the reef structure in the

Munich area. A sea-level rise often enhances carbonate production, while a sea level fall can hamper carbonate production and

therefore reef growth, especially in combination with enhanced erosion at the shallow coastline (Kendall & Schlager, 1981;740

Pomar & Ward, 1995). This is confirmed by the observation that the upper part of the reef buildups, mainly consisting of Malm

ζ, shows a decrease in lateral reef growth. Furthermore, the observed varying ’pine-tree’-shaped reef slopes (Wadas & von

Hartmann, 2022) might correlate with short-term sea-level changes. The fact that sea-level fluctuations have had an impact on

our study area is important because they can also influence diagenetic processes, especially in shallow marine environments,

e.g., at low sea-levels, freshwater diagenesis dominates, whereas at high sea-level, seawater diagenesis dominates, and if the745

area is completely exposed, erosion and karstification may also occur (Kendall & Schlager, 1981; Tucker & Wright, 1990;

Bachmann & Müller, 1992). With regard to the further reservoir development, it is therefore important to know that, in general,

the sea-level fell further at the beginning of the Early Cretaceous down to +50 m and then rose again during the Cretaceous to

up to +250 m, only to fall again in the Tertiary and Quaternary until it reached the present sea level (Haq, 2017).

(2) Early diagenesis and first dolomitization & (3) burial diagenesis and second dolomitization: The early burial diagen-750

esis directly after deposition of the carbonates caused the first dolomitization phase and therefore the formation of matrix

dolomite due to the contact with Mg-rich basinal fluids at 50 to 70°C (Mraz, 2019). This was directly followed by the second

dolomitization phase during burial diagenesis. According to several studies which investigated deep wells in the GMB and

outcrops in the Franconian and Swabian Alb, the second dolomitization phase occurred at temperatures between 70 to 100°C

and involved an enormous fluid flow, e.g., through highly permeable limestone (Lucia, 2007), with high-amounts of Mg-rich755

fluids causing intense dolomitization (Reinhold, 1998; Machel, 2004; Mraz, 2019). The fluids might have originated from sea

water stored within the carbonate formations, which migrated through the permeable formations of the massive and bedded

facies during burial diagenesis, e.g., due to compaction-driven fluid flow (Reinhold, 1998; Machel, 2004). Our 3D lithology

model (Fig. 12) shows clear spatial trends in the degree of dolomitization that can be assigned to the first two dolomitization

phases and the later third dolomitization phase. Overall, the Upper Jurassic carbonates in the lower part of the reservoir are760
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Figure 15. Schematic illustration of the reservoir development concept with its different phases: (1) sedimentation and reef development, (2)

early diagenesis and first dolomitization, (3) burial diagenesis and second dolomitization, (4) subaerial exposure and widespread karstification

and erosion, (5) alpine orogenesis and fault development, (6) late burial diagenesis and third dolomitization, (7) intense karstification along

faults, (8) and further subsidence. Phases 8 is not shown.

more completely dolomitized than in the upper part, especially on the hanging-wall block to the south, creating a lithological

subdivision (Fig. 12). Furthermore, the footwall block shows a west-east to northwest-southeast trend, with higher degrees of

dolomitization in the west, and on the hanging wall a rough trend with more intense dolomitization in the central part and the

east can be seen. The intense dolomitization in the lower half probably results from the compaction-driven fluid flow of stored

Mg-rich sea water during burial diagenesis. The reason for the slightly stronger complete dolomitization in the south of the765

study area could be that the former coastline of the Tethys was located to the north, and therefore the compaction pressure

towards the south, induced by sediment and water load, will have been slightly higher, which may have enhanced mobilization

of Mg-rich fluids. On the other hand, the west-east dolomitization trend on the footwall block and the east-west trend on the
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hanging-wall block, seems to be more facies controlled. According to several studies, e.g., by Reinhold (1998); Mraz (2019),

massive facies (reefs) is more prone to dolomitization than bedded facies. As a result, completely dolomitized areas partly770

correlate with reef buildups. Reefs are often characterized by grain-supported carbonates with biogenic components which are

mostly highly permeable (Flügel, 2010; Böhm, 2012; Homuth et al., 2015), at least during and shortly after deposition and

burial, enabling good conditions for enhanced fluid flow. This resulted in strongly dolomitized areas at the reef base and within

the reef cores, especially in the lower half of the reservoir.

(4) Subaerial exposure and widespread karstification and erosion: The falling sea-level during the Tithonian and especially775

at the Jurassic/Cretaceous boundary led to subaerial exposure of the study site due to a regression of the Tethys. This enabled

widespread dissolution of the near-surface carbonate formations due to the contact with meteoric water (Bachmann et al.,

1987; Bachmann & Müller, 1992; Reinhold, 1998; Koch, 2011), which created a strong karst topography with many small-

scale dolines or sags, visible as blue-coloured dots in the shape index attribute (Fig. 11), covering the entire carbonate surface.

Dissolution and the associated karstification lead to the formation of secondary porosity, an enlargement of the already existing780

pore space, and the formation of cavities. Furthermore, later cavity collapse can result in the formation of new fractures due to

local stress redistribution in the surrounding material, which is visible in the seismic attribute analysis by a strong scattering

of the seismic waves at the doline edges, e.g., shown by low frequencies (Fig. 6) and high variance values (Fig. 9). Thus,

karstification can improve both the porosity and the permeability conditions of a reservoir. However, should the fluid solution

become supersaturated at some point, or in case of pressure and temperature changes, precipitation and thus cementation785

can occur, which in turn can have a negative effect on porosity and permeability. The same applies for dedolomitization

which is often triggered due to contact with Ca-rich meteoric water, which enables the transformation of dolomite back into

limestone (Raines & Dewers, 1997; Reinhold, 1998; Koch, 2011), which in turn is usually accompanied by a deterioration

in poro/perm conditions. Since only the upper part of the reservoir was affected by Ca-rich meteoric fluids over a long time,

no dedolomitization is expected to have happened in the deeper parts of the reservoir (Mraz, 2019). However, since it is not790

possible to distinguish between partially dolomitized limestone and partially dedolomitized dolomite in the reflection seismics,

because it is expected that the physical properties of both types would be the same, possible dedolomitization is therefore not

further discussed. Besides the karstification, another indication for the subaerial exposure at the Jurassic/Cretaceous boundary,

is the northeast-southwest oriented channel cut into the carbonate deposits, which can be seen in the acoustic impedance (Fig. 4)

and the spectral decomposition (Fig. 7). All these processes ended with the rise of the sea level during the Cretaceous, which795

again led to a flooding of the study area.

(5) Alpine Orogeny and fault development: The beginning of the Alpine Orogeny at the Cretaceous/Tertiary boundary

led to extensive compressional deformation, and therefore to the uplift of southern Germany (Lemcke, 1988). The tectonic

deformation also led to faulting and the formation of fault-controlled fracture networks, which serve as fluid pathways for

hydrothermal water, even in recent times (Mraz et al., 2018; Moeck et al., 2020). We analysed these fracture networks and their800

orientations in detail in the reflection seismic data and compared the seismic results with CMI results from the six wells at the

’Schäftlarnstraße’ geothermal site. The results reveal W–E striking fractures parallel to the Alpine front, N–S striking fractures

perpendicular to the Alpine front and therefore parallel to SHmax, and NW–SE and NE–SW striking conjugate shear fractures.
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However, the fracture orientations, especially in the seismic data, show a wide range of orientations and it can be assumed that

non-tectonic fractures, such as those caused by karstification and the collapse of cavities, also play a role in the fluid pathways805

and thus the permeability of the reservoir.

(6) Late burial diagenesis and third dolomitization & (7) intense karstification along faults: The fault and fracture-controlled

fluid flow also influenced the further development of the reservoir enabling a third dolomitization phase during late burial dia-

genesis, and a second karstification phase. Diagenesis continued especially in the Eocene and Miocene, where fault-controlled

dolomitization occurred due to sea water migrating downward along the faults into convection cells (density driven circulation810

of fluids) where it was heated up and the Mg-rich hydrothermal water then migrated back upward along the fracture networks,

enabling dolomitization in the younger carbonate formations (Benjakul et al., 2020). The upper part of the reservoir contains

mostly only partly dolomitized limestones, so we assume that either the fluid flow rates or the magnesium contents of the fluids

were significantly lower than during the second dolomitization phase or even both together, which is why the dolomitization

in the upper part of the reservoir area is less pronounced than in the lower part. Fluid migration of unsaturated water along the815

fractured fault zones was also the trigger for the second karstification phase. However, the dissolution processes and thus the

karstification were concentrated along the fault zones and their immediate surroundings. As a result of the higher fluid flow

rates and the resulting intensified dissolution, significantly larger and deeper, and this time fault-related, dolines were formed,

e.g., along the Munich Fault and the Ottobrunn Fault. Both the third dolomitization phase and the second karstification phase

thus altered the poro/perm ratios of the reservoir again, creating more secondary pore space, especially in the upper part of the820

reservoir area, namely Malm ζ.

(8) Further subsidence: The underthrusting of the European plate below the Adriatic-African plate in the Late Eocene caused

the Alpine nappes to extend northwards, which led to subsidence-induced development of the GMB (Frisch, 1979; Bachmann

et al., 1987; Bachmann & Müller, 1992) and the formation of further faults, e.g., flexure-induced normal faults (Lemcke, 1988;

Bachmann & Müller, 1992; Shipilin et al., 2020).825

Overall, the Upper Jurassic carbonate reservoir experienced a complex evolution, consisting of at least three dolomitization

phases, two karstification phases, and a phase dominated by tectonic deformation. We show that dolomitization in the GRAME

area is mainly facies-controlled and that karstification is both, facies- and fault-controlled. Karstification and cavity collapse

generally lead to improved porosity/permeability conditions for hydrothermal exploitation, while dolomitization can lead to

both, an increase in secondary porosity, but also a possible porosity decrease due to overdolomitization.830

5.4 Exploitation targets

Based on the comprehensive 3D seismic characterization of the Upper Jurassic carbonate reservoir, two regions are identified

that are likely to have suitable porosity and permeability conditions for future geothermal projects in the greater Munich area.

The regions were selected according to the following criteria that are indicative of the important parameters permeability and

porosity: lithology-type, degree of dolomitization, facies-type, karstification intensity, and fracture intensity.835

The first recommended region is located in the southeast, at the Ottobrunn Fault. High porosities are expected here, according

to the seismic inversion results by Wadas & von Hartmann (2022), due to partly dolomitized limestones and karstification along
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the fault zones. Furthermore, the area also contains some reefs with good permeability conditions because of high fracture

intensities caused by mainly fault-related deformation, but also mass redistribution at the reef slopes, and due to cavity collapse

and doline formation. The second region is located north of the Munich Fault in the vicinity of the Nymphenburg Fault. High840

porosities are caused by partly dolomitized limestone and widespread karstification. In contrast to the first region, this area is

located in mostly bedded facies and the karstification does not seem to be fault-controlled because no significantly large dolines

are observed along the Nymphenburg Fault. Instead mainly widespread karstification with large clusters of very small-scale

dolines are observed. The widespread karstificatiion and the influence of the fault zone also resulted in the generation of a

presumably highly permeable reservoir.845

6 Conclusions

With our case study from the South German Molasse Basin, we show that a comprehensive seismic attribute analysis can

significantly improve the understanding of complex carbonate reservoirs. We address the following points: the physical and

structural characterization of the reservoir, the question of the scalability of fracture orientations on seismic and well scale,

the creation of a 3D lithology model, the temporal development of the reservoir, and the identification of further suitable850

exploitation targets in the GRAME area.

For the carbonates in the Munich area, we conclude that acoustic impedance is suitable to identify reefs, and sweetness

has proven to be a useful tool to analyse the internal reef architecture. Whereas, frequency- and phase-related attributes are

well suited for the detection of karst. In addition, reef edges, dolines, and fractures are characterized by strong phase changes.

Fractures can also be identified using, e.g., variance and ant tracking. Morphological characteristics, like bowl-shaped dolines,855

are captured using the shape index (see also appendix table B1).

Regarding fracture scalability across seismic and well scale, we state that a general scalability is not possible, although

the fracture orientations are partially in good agreement. Limiting factors are methodological differences between seismic-

based FOA and CMI-based FOA, as well as complex structural and lithological conditions, such as fault- and karst-related

deformation on subseismic scale and the degree of dolomitization. Nonetheless, we argue that seismic-based FOA can be a860

useful addition to the CMI-based FOA, since it allows to investigate the fracture systems at different scales and the combination

of both analyses provides a more complete picture of the fracture inventory and local fracture orientation trends.

With our 3D lithology model, based on a neural network, we investigated the reservoir development and exploitation targets.

In terms of lithology, the dolomitized limestone should be targeted because of increased secondary porosity. Therefore, only

those reservoir zones should be exploited which have not been affected by strong diagenetic alteration. This concerns mainly865

the upper half of the Upper Jurassic carbonates with the Tithonian deposits. With regard to karstification, we conclude that it

can lead to good porosity/permeability conditions for geothermal exploitation. As preferred karstification areas, we identify

the upper part of the reservoir due to a previous suaberial exposure at the Jurassic/Cretaceous boundary, and a later intensive

karstification along faults related to the fault evolution during the Alpine orogeny and the development of the foreland basin.

Taking all the results into account, we identified two more locations in the Munich area that are likely to have preferable870
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conditions for future geothermal exploitation projects; the region in the southeast at the Ottobrunn Fault and the region north

of the Munich Fault in the vicinity of the Nymphenburg Fault.

Based on the promising results of our study, we recommend that in future geothermal projects much more comprehensive

seismic analysis should be carried out. This comprehensive seismic analysis includes methods, such as attribute analysis,

inversion methods to calculate an impedance model in order to estimate a 3D porosity model, lithology and facies classification,875

and seismic fracture orientation analysis. The knowledge gained can help to develop a better understanding of the reservoir,

its evolution and the distribution of relevant exploitation parameters. Furthermore, the obtained data can also serve as input

parameters for further studies, such as dynamic modelling, which strongly depend on the defined constraints. For example,

when modelling stress changes in the uppermost crust during the theoretical operation of a geothermal doublet, it is important

to have a comprehensive understanding of the fracture inventory. Information on fracture densities and fracture orientations,880

but also the spatial distribution of certain lithology and facies types, and karstification zones are also important in the context

of thermal-hydraulic modelling.

Data availability. The data that support the findings of this study are available from the Stadtwerke München (SWM) and the Leibniz

Institute of Applied Geophysics (LIAG), but restrictions apply to the availability of these data, which were used under license and so are not

publicly available. Data are, however, available from the authors upon request and with permission of SWM and LIAG.885

Appendix A: Methods

Amplitude-related attributes

Three often used amplitude-related attributes are the root mean square (RMS) amplitude, the reflection intensity, and the enve-

lope. The RMS amplitude is described as the square root of the sum of squared amplitudes divided by the number of samples

within a specified time window (Chopra & Marfurt, 2007). The default window length in Petrel is 9 samples (Schlumberger,890

2020), but since we expected very small-scale variations of the energy content of the seismic data, e.g., at dolines and reef

buildups, a window length of 5 samples was chosen after testing different windows. Another amplitude-related attribute that

can help to distinguish different lithologies, and which was tested in this study, is the reflection intensity (Chopra & Marfurt,

2007; Sarhan, 2017), which is the average amplitude over a specified time window (5 samples) multiplied with the sam-

ple interval. The envelope, also known as the instantaneous amplitude, is the magnitude of the complex trace described by895

Envelope=
√
f2 + g2 where f and g are the real and imaginary components of the seismic trace. It is independent of the

phase and can therefore highlight lithological changes, sequence boundaries, and thin-bed tuning effects (Chopra & Marfurt,

2007). The default window length in Petrel is 33 samples (Schlumberger, 2020), but we chose 15 samples in order to depict

small-scale variations.

As shown in the appendix figure A1, these three attributes can highlight areas with a much higher energy content compared900

to their surroundings, as it can be seen, e.g., in the western part of the footwall block (Fig. A1a, d & g) of the Munich Fault
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and the eastern part of the intermediate block (Fig. A1b, c, e, f, h & i). Such a strong difference in the amplitude-, intensity-

or envelope values can be an indicator for lithological, diagenetic and/or depositional changes that effect the rock properties.

Therefore, the larger but locally restricted high amplitude anomalies on the footwall and the intermediate block are presumed

to result from reef buildups. Such high amplitude values for reefs are also observed by other studies, e.g., Sarhan (2017).905

However, it has to be noted that since RMS amplitude, reflection intensity, and envelope mainly identify strong anomalies, they

are unsuitable to depict small variations in energy content, e.g., caused by karst-related dolines, especially on a small area, as

it is the case in our study area. In general, this can hamper a sophisticated identification of structures/features and a detailed

interpretation, e.g., of the internal architecture of the reservoir features.
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Figure A1. Time slices and zoom-ins of the RMS amplitude volume (a-c), the reflection intensity volume (d-f) and the envelope volume

(g-i). The time slices show locally restricted high amplitude anomalies interpreted as a possible reef buildups.

.

One attribute that allows the identification of small variations is the acoustic impedance (Fig. 4). Every reflection changes910

the amplitude of the returning wave due to a contrast in acoustic impedance, which is the product of the seismic velocity of the

wave travelling through the subsurface and the density of the rock (Barclay et al., 2008). Therefore, the reflection amplitudes

can be used to invert the data to get impedance values by using, e.g., a stochastic seismic amplitude inversion as carried out

for our study area by Wadas & von Hartmann (2022). The advantages are that (1) the calculated impedance model delivers a
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subsurface image with higher resolution due to a reduced tuning effect (Hill, 2005), which allows a more detailed structural and915

lithological interpretation compared to the classical amplitude attributes, (2) the impedance data can be calibrated with well log

data, (3) the data has an increased bandwidth due to implementation of frequencies beyond the seismic bandwidth, e.g., from

well logs, (4) it enables the integration of horizons and geological structures, and (5) the derivation of reservoir parameters

based on a strong relationship between acoustic impedance and petrophysical properties (Pendrel & Van Riel, 1997; Hill, 2005;

Sarhan, 2017; Gogoi & Chatterjee, 2019).920

Phase- and frequency-related attributes

The instantaneous phase (Fig. 5) of the seismic data is calculated by Phase= arctan( gf ), where f and g are the real and imag-

inary components of the seismic trace. It measures the phase shift of a specific reflection event, e.g., resulting from a polarity

reversal of the reflection coefficient or due to a curved interface (Chopra & Marfurt, 2007). It is calculated sample by sample

without regard of the waveform over a specified window. The default window length in Petrel is 33 samples (Schlumberger,925

2020), but we chose 15 samples in order to better depict small-scale variations.

The instantaneous frequency is the rate of change of the instantaneous phase from one time sample to the next, Inst.frequency =
Delta phase
Delta time , over a specified window. The dominant frequency (Fig. 6) is the square of the instantaneous frequency summed

with the square of the instantaneous bandwidth and then the square root of the sum is calculated (Schlumberger, 2020). The

dominant frequency thus indicates where the energy of the seismic signal is concentrated in the frequency domain. The chosen930

window length for both attributes was 15 samples in order to depict small-scale variations. Both frequency attributes are good

indicators of bed thickness and changes caused by, e.g., fault- and fracture zones or differing lithology (Van Tuyl et al., 2018),

by distinguishing low and high frequency areas (Sarhan, 2017).

Discontinuity-related attributes

For the variance (Fig. 9) a trace-by-trace analysis was performed in order to quantify the dissimilarity of the seismic waveform935

of neighboring traces within a specified time window (Bahorich & Farmer, 1995; Marfurt et al., 1998; Wang et al., 2016). The

default inline and crossline ranges in Petrel are 3 and we chose a range of 2 in order to enhance small-scale dissimilarities. For

vertical smoothing only a mild smoother with 12 samples was applied to prevent smearing of the detected edges. Furthermore,

since we wanted to enhance not only faults but also stratigraphic and karstic features, no dip correction/guidence was applied.

The attribute chaos is used to map the “chaoticness” of the seismic signal from statistical analysis of dip/azimuth estimates.940

With directional sigma values the user can define the window radius for calculating the chaoticness of the seismic data and the

larger the sigma, the smoother the result. Therefore, in order to depict small-scale discontinuities a value of 1.0 was chosen for

Sigma X, Sigma Y and Sigma Z (Schlumberger, 2020). Both variance and chaos are commonly utilized to visualize geological

features that are characterized by lateral discontinuities, such as stratigraphic terminations or structural lineaments like faults,

fractures, dolines, and reef edges (Chopra & Marfurt, 2007). Since both attributes deliver similar results, only variance is shown945

(Fig. 9).
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Sweetness

Sweetness (Fig. 8) is the combination of instantaneous frequency and envelope and is described by Sweetness= Envelope√
Instantaneous frequency

(Radovich & Oliveros, 1998). High sweetness values are correlated with both high envelope and low instantaneous frequencies,

whereas low sweetness values result from low envelope and high instantaneous frequencies.950

Spectral decomposition

Spectral decomposition (Fig. A2) separates the seismic signal into its frequency components. Three different frequencies are

then co-rendered and displayed by RGB colour-blending, where frequency 1 is plotted against red, frequency 2 is plotted

against green and frequency 3 is plotted against blue. Since this is an additive colour model, three equally strong signals of

the frequency components will result in a white response (Chopra & Marfurt, 2007; Al-Maghlouth et al., 2017). In Petrel a955

hybrid method, combining a Short Time Fourier Transform (STFT) and a Continuous Wavelet Transform (CWT), is applied

that allows to control both the vertical- and the frequency resolution (Schlumberger, 2020). After iteratively testing different

frequency components and their combinations, 18 Hz, 28 Hz, and 50 Hz were chosen as the best suited frequencies using three

cycles (a small number of oscillations will deliver a better vertical resolution due to the short wavelet).
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Figure A2. Spectral decomposition of the GRAME data with 18 Hz plotted as red, 28 Hz plotted as green and 50 Hz plotted as blue.

Curvature960

Curvature (Fig. 10) measures how much a seismic reflector is bent. In case of a planar reflector, the corresponding vectors are

parallel and as a consequence the reflector has zero curvature at this location. In contrast, anticlinal features result in diverging

vectors and the curvature is defined as positive and synclinal features result in converging vectors and the curvature is defined as

negative (Roberts, 2001; Al-Dossary & Marfurt, 2006; Wang et al., 2016). Different curvature types that can be calculated are,
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e.g., gaussian curvature, mean curvature, minimum/maximum curvature, and most positive/most negative curvature. According965

to Chopra & Marfurt (2007), the latter are the most suitable to visually correlate with geological features. The most positive

curvature is described as the most positive value of all possible normal curvatures at a point, and the most negative curvature is

defined as the most negative value of all possible normal curvatures at a given point. The search radius of the algorithm must be

selected depending on the research question/the object to be investigated (Roberts, 2001), e.g., a large search radius is needed

for detection of regional trends (long wavelength structures) and a small search radius is necessary for small local features970

(short wavelength structures). Since in our study especially small-scale structures, like buildups and dolines, were investigated,

a small search radius was chosen with a vertical radius of 10 samples (the window size is two times the vertical radius plus 1)

and an inline/crossline radius of 2 (Schlumberger, 2020).

Shape index & Curvedness

Formula to calculate the Shape Index→ S = 2
Π ∗ tan

−1 Kmin+Kmax

Kmin−Kmax
(Al-Dossary & Marfurt, 2006).975

Formula to calculate the Curvedness→ C =

√
K2

max+K2
min

2 (Al-Dossary & Marfurt, 2006).

Ant-tracking

In the following Schlumberger’s patented ant-tracking algorithm and the chosen parameters are described in detail: The initial

ant boundary that defines the initial search radius of the agents by a number of voxels (a voxel is defined as the volume around

one sample, which in our case relates to the sample rate of the variance cube) in which the agent tries to find a local maximum980

was set to 2 voxels. So if the agent is unable to find a local maximum within this radius, the agent is removed. This close

distribution enabled the mapping of small fractures. With the ant-track deviation parameter the maximum allowed deviation

while tracking can be determined. For example, a value of 2, as chosen in our study, enables the agent to deviate by 2 voxels

in every direction in order to find the next local maximum (values between 0 and 3 voxels are possible, default is 2). If none

is found this would be considered an illegal step. With the ant step size the user can define the number of voxels the ant agent985

can advance during each searching step. As a result, large values allow the agent to search further away for a local maximum,

although this will reduce the resolution of the resulting ant-tracking volume. Since our aim was to get a high resolution volume,

the step size was set to 2 voxels (values between 2 and 10 voxels are possible, default is 3). The user can also specify the number

of allowed legal and illegal steps. The legal steps parameter describes the number of steps that must contain a valid edge value

for the agent to continue. For example, when the agent encounters a valid edge (local maximum), this would represent the990

1st legal step. When the agent continues its search and finds another valid edge this would be the 2nd legal step. In case the

user has set this parameter to 2 legal steps (values between 0 and 3 steps are possible, default is 3 for passive mode and 2 for

aggressive mode), as it was done in this study, this ant track would be considered as legitimate and the agent can continue

further. If the parameter would have been set to 3 legal steps and no edge had been found after the 2nd legal step, the track

would not be forwarded to the final ant-track volume. The illegal steps parameter, which was set to 2, defines how far the ant995

track can continue without finding a local maximum (values between 0 and 3 steps possible, default is 1 for passive mode
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and 2 for aggressive mode). An agent can accumulate illegal steps over time until they represent a significant portion of the

entire ant track leading to uncertainties. To prevent this, a stop criteria given in percent can be defined, which automatically

terminates the ant track when the illegal steps exceed the given percentage. In our study we chose a stop criteria of 10% (values

between 0% and 50% possible, default is 5% for passive mode and 10% for aggressive mode). For the 2nd ant track the same1000

parameters were chosen as for the 1st ant tracking, except for the initial ant boundary, which was set to 4 voxels. Afterwards,

automatic fault/fracture extraction (Schlumberger, 2020) was used to extract 3D fracture patches from the ant-track volume.

The extraction sampling threshold, which sets the minimum signal level from which extraction points were created, was set to

the top 30% of the data, meaning that only the highest ant-track values, the sharpest edges, were used for the patch extraction

process. Furthermore, the minimum patch size was set to 100 connected voxels.1005

Appendix B: Recommended seismic attributes
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