
We thank two anonymous reviewers for their constructive comments. Below we provide a point by point 

response (blue, italics) to the individual reviewer comments (black) and specific changes made to the 

manuscript (red, italics). 

 

Reviewer 1: 

This is an interesting study on different bias-correction methods applied to CMIP6 Earth System Models 

(ESMs) surface-ozone results. The analysis explores the performance of each applied statistical bias-

correction method, to what extent this is sensitive to each individual ESM, and finally the nature and 

origin of the errors. The manuscript is well organized with qualitative and efficient presentation of the 

results. Yet, there are some points that need clarification and further investigation. I believe the study may 

be a valuable addition to the literature once the following comments are addressed. 

We thank the reviewer for the positive assessment of our manuscript and the valuable comments provided 

that helped strengthen our study. Please find our point by point response to the individual comments 

below. 

Main Comments 

1. More information on the gridded observational ozone dataset (used here for the evaluation) is needed. 

Do the authors use the Schnell et al. (2014) data? This assessment is for the 2000-2009 period. Is this an 

extension of this dataset? Is this dataset publicly available? Please describe (briefly) in the manuscript 

how this dataset was constructed. Is the inhomogeneous network of observations over Europe and USA 

affecting the results of your evaluation and how? This should be discussed. I suggest including a 

subsection in the Data & Methods Section about the gridded observational ozone data and relevant 

information. 

We thank the reviewer for this comment. We use an updated and extended version of the data set 

presented in Schnell et al. (2014). The data set comprises surface ozone observations from monitoring 

networks in Europe and the US. Precisely, for the US the data set is based on the EPA’s Air Quality 

System (AQS) and Clean Air Status and Trends Network (CASTNET), and Environment Canada’s 

National Air Pollution Surveillance Program (NAPS), while for Europe the data set combines the EMEP 

and the European Environment Agency’s AirBase network (excluding stations designated as traffic). 

Records from EMEP and AirBase are reported as μg m
−3

 and are converted to parts per billion (ppb = 

10
−9

 mol mol
−1

 = nmol mol
−1

) using a temperature of 20 °C. The gridded product is created following the 

procedures described in Section 2 of Schnell et al. (2014). We have included the following additional text 

in the revised manuscript: 

We also obtain observed MDA8 O3 with a spatial resolution of 1° x 1° per grid cell for both the European 

and the US domain using an extended dataset constructed using the methods of Schnell et al. [2014; 

2015] and Schnell and Prather [2017], one which was designed specifically to compare against gridded 

CCMs. The dataset is constructed using an inverse distance weighted interpolation method that includes 

a declustering component similar to kriging; i.e., clustered (within 100 km) observations’ weights are 

reduced such that those stations (often located around urban centers) are not disproportionately used in 

the interpolation. For the US domain, point based observations that are used in the interpolation include 



the US EPA’s Air Quality System (AQS), the US EPA Clean Air Status and Trends Network (CASTNET), 

and Environment Canada’s National Air Pollution Surveillance Program (NAPS); for the European 

Domain we include the EMEP and European Environment Agency’s AirBase network (excluding stations 

designated as traffic). The exponent for the distance component is 2.5 and a maximum distance of 500 km 

is used for the weights. Parameters were estimated using a leave-N-out cross-validation technique. 

Estimations are made at 25 equally spaced points within each 1° x 1° cell and trapezoidally averaged. 

Other recent work has used this extended dataset [e.g., Ducker et al., 2018; Garrido-Perez et al., 2019, 

Guo et al, 2018]. Schnell et al. [2014] estimated an RMSE of 6-9 ppb for individual stations and 0-3 ppb 

for the grid cell averages; Ducker et al. [2018] estimated a mean bias of 5-10 ppb with the updated 

dataset over their study locations. For the analysis here the interpolation is performed on hourly 

abundances and the MDA8 O3 is estimated using the interpolated hourly fields. Note, we apply the 

nomenclature of the European Union for the calculation of the MDA8 O3 values in both domains, i.e. the 

eight hour average for a given hour is derived using the data of that specific hour and the preceding 

seven hours [EUR-LEX, 2008]. For convenience, the data is provided along with this article, see data 

statement below. To allow for an optimal comparison, the model data is regridded using an ordinary 

inverse distance weighting algorithm to match the spatial extent of the observations. 

2. To explore the error sources, the authors select the daily maximum temperature and radiation for 

sensitivities to meteorology. Yet, wind and especially for high-ozone events stability (stagnation) are also 

important drivers. How are these two represented by the individual ensemble members? Attributing 

model error mainly to precursors emissions needs more evidence. What are the NOx and VOC PDFs for 

the ensemble members? Are there any model diagnostics for ozone production (PO3) and loss (PO3) to 

support this? 

We thank the reviewer for this comment. Following the reviewer’s suggestion we have included 

additional meteorological and chemical variables available from the CESM2-WACCM6 simulations in 

the analysis. These are daily mean wind speed, monthly mean concentrations of NO2, NO and HCHO (as 

VOC proxy). We detail this expanded analysis now in our but only a single ensemble member. Therefore, 

these metrics could not be included in the analysis here. manuscript in the revised section 3.4. We agree 

with the reviewer that ozone production and ozone loss would be useful terms, however those are 

unfortunately not available (as not archived) for the ensemble  

We updated section 3.4. as provided below: 

Having illustrated the MDA8 O3 biases of various CMIP6 models, the performance of various statistical 

bias techniques as well as the influence of the model response to changes in e.g. emissions on the 

performance of bias correction we turn here to shed light on the underlying cause of biased MDA8 O3 

model outputs. To this end we analyse the 13 members of the CESM2-WACCM6 ensemble in more detail, 

in order to examine for consistency within the individual realizations as well as a possible dominant 

cause(s) for the bias in the modelled surface ozone fields. Here two likely prime candidates exist: 1) 

issues with the sensitivity in chemical mechanisms to local/regional precursor emissions (note, 

anthropogenic emissions are consistent across individual models), 2) issues in meteorology simulated by 

the free running CCM. For the latter, we further include three climatological key drivers for ozone 

production/accumulation in our analysis, i.e. daily maximum temperature (TSMX), daily average down 

welling short wave radiation (FSDS) and daily average wind speed (WSPD), in order to differentiate 



whether the bias is predominantly driven by sensitivity to meteorology or chemistry. As chemical 

covariates we include monthly averages of NO, NO2, HCHO, the latter we consider as bulk proxy for 

VOCs [e.g. Shen et al., 2019; Zhu et al., 2017]. 

Figures 6 and 7 illustrate the PDFs of MDA8 O3, NO, NO2, HCHO, TSMX, FSDS, and WSPD for the 

individual ensemble members during spring and summer in 2005-2009 (the PDFs for 2010-2014 are 

shown in the supplemental Fig. S11 and 12). MAM and JJA MDA8 O3 (Fig. 6a,e) show a very similar 

distribution across ensemble members for both domains. For example the median MDA8 O3 value ranges 

across ensemble members roughly between 50 and 52 ppb (MAM) and 45 to 47 ppb (JJA) in the EU. For 

the US the median MDA8 O3 values are found to be slightly higher than in the EU, but the differences 

within the ensemble lie in the same narrow range (53 to 55 ppb for MAM and 54 to 55 ppb for JJA). 

Similarly, compact PDFs across the ensemble are found for NO, NO2 and HCHO. Interestingly 

differences emerge for HCHO in the US but not Europe which represents a larger influence of biogenic 

emissions.  

Similar results are found for the meteorological variables. Although slight variations occur for surface 

temperature radiation, and wind speed (which one would expect from a model generating its own 

meteorology), the PDFs are widely homogenous across the ensemble, thereby explaining the similarity of 

surface ozone distributions within the ensemble (as all ensemble members are driven with the same set of 

precursor emissions) in both domains. The analysis of the MDA8 O3, NO, NO2, HCHO, TSMX, FSDS, 

and WSPD distributions over the second time period (2010-2014, Figs. S11 and S12) yields similar 

results, thereby providing confidence for the robustness of our findings.  

The strong similarity across ensemble members indicates that the MDA8 O3 bias identified in CESM2-

WACCM6 stems most likely from sensitivities in the chemical mechanism and/or emissions and not from 

meteorological drivers and their variability. As the models use the same anthropogenic emissions, the 

differences are more likely to stem from the chemistry, which could include different mixes of emitted 

VOCs…. 

3. It would be interesting to see results for MDA8 O3 using a different gridded observational ozone 

dataset (if available). Moreover, since the ultimate purpose of the study is to support reliability of ozone-

health studies, the recent Global Burden of Disease (GBD) report (2019) applies the ozone season daily 

maximum 8 hour mixing ratio (OSDMA8) metric to estimate excess mortality from long-term ozone 

exposure. Gridded observational OSDMA8 data, as described in DeLang et al. (2021), are publicly 

available at https://zenodo.org/records/8320001. Are the statistical methods used here applicable for a 

long-term effect ozone metric like OSMDA8?  

Following the reviewer’s suggestion we have expanded the analysis towards OSDMA8. To this end we 

have computed OSDMA8 from our data set following the method described in DeLang et al. (2021).  

Our results show a varying OSDMA8 bias across CCMs for the periods 2005-2009 and 2010-2014 (see 

Figure R1). This is in agreement with the bias in MDA8 O3 we report on. As for MDA8 O3, after applying 

individual correction techniques the bias is substantially reduced (see Figures R2 and R3). For OSDMA8 

however, the individual bias correction techniques (despite all being able to substantially reduce the bias) 

show no pronounced difference in performance. We attribute this to properties of the OSDMA8 metric 

itself, which represents the annual maximum value of the running 6-month average of monthly mean 

MDA8 O3, i.e., a single value per calendar year. Given the long-term averaging time span considered for 

the OSDMA metric we do expect also no major difference among techniques explored here. More 



illustrative for the performance of the correction techniques across the full range of the ozone burden is 

the evaluation of the residual bias in the MDA8 O3 distribution function explored in Fig. S5 and S8 in our 

original manuscript. Therefore, for clarity and focus of the present study we prefer to restrict the analysis 

to MDA8 O3.   

 

Fig. R1: Boxplots of the residual bias in OSDMA8 pooled across grid cells in the individual CCMs in 

2005-2009 and 2010-2014 for the EU (a,b) and US domain (c,d). 



 

Fig. R2: Boxplots of the residual bias in OSDMA pooled across grid cells for individually bias corrected 

CCMs in 2005-2009 for the EU (a,b,c,d) and US domain (e,f,g,h). Blue, Green and red colour indicate 

the MB, RB and QM correction methods respectively.  



 
 

Fig. R3: as Fig. R2 but for 2010-2014. 



Comments 

L18-19: This is a strong statement as this is not explicitly shown from the results. See also main comment 

#2.  

Following the suggestion of the referee, we have included further available meteorological and chemical 

covariates in the analysis. These show all strong uniformity across the CESM2-WACCM6 ensemble, 

confirming our original postulated hypothesis. However, as we agree with the referee that we cannot 

show the root cause of model bias in full explicity, and only have a large ensemble for one global model 

available, we further have included a limiting qualifier in this abstract statement:  

Ensemble simulations available for one CCM indicate that model ozone biases are likely more sensitive 

to the process representation embedded in chemical mechanisms or emissions rather than to 

meteorology. 

L21-26: Tropospheric and therefore surface ozone has also a natural source, the transport from the 

stratosphere (Stohl et al., 2003) which over specific regions (Lin et al., 2015) or occasionally (Akritidis et 

al., 2010) contributes significantly. 

Thank you for this comment. We have updated the introduction section respectively. 

Tropospheric O3 abundance is also substantially influenced by stratospheric intrusions, which can in 

certain regions or during specific events alter concentrations significantly [Akritidis et al., 2010; Lin et 

al., 2015; Stohl et al., 2003]. 

L26: “O3 is associated with a variety of detrimental human health effects”. I suggest including here a 

couple of recent references on ozone effects on human health like Murray et al. (2020) and Pozzer et al. 

(2023). 

Thank you for this comment. We have included several references regarding health effects of ozone. 

O3 is associated with a variety of detrimental human health effects, especially in the context of the 

respiratory and cardiovascular system, resulting in about 5-20 % of premature deaths attributable to 

ambient air pollution [Gu et al., 2023; Malashock et al., 2022; Monks et al., 2015; Murray et al., 2020; 

Pozzer et al., 2023; Zhang et al., 2019]. 

L40: maybe “meteorology and deposition” 

Thank you, done. 

L65-66: Please clarify why only the first member of the ensemble is used in the main study. 

We have included the clarification in the revised manuscript. Please see also our response to comment 4 

of Reviewer 2. 

For most of our study, we use only the first ensemble member of CESM2-WACCM6 in analogy to the 

other CCMs given the overall heterogeneity in the number of members available per model. In section 



4.3, we focus on the chemical vs. meteorological driving of model biases and utilize the entire CESM2-

WACCM6 ensemble. 

L68: The period 1993 to 2014 is referred here. Are there any data used in the analysis except from the 

2005-2009 and 2010-2014 periods? Please clarify. 

No observational data beyond 2005-2014 has been used in our study. Note, we have overall revised 

section 2.1 following the comments provided by both referees.   

L183: Remove t. 

Thank you for spotting this typo. 

L285-286: As this is not explicitly shown to be related with precursors emissions but rather assumed I 

suggest rephrasing accordingly. 

We have revised this sentence accordingly. 

Given this result, we assume that the correction performance depends strongly on models being able to 

represent precursor emission changes over time as seen in observations.  

L360:  EB depends 

Thank you, done. 

L361: EB is 

Thank you, done. 

L363: “the strong base period performance”, maybe “the strong performance for the base period”? 

We have revised this sentence accordingly. 

On the contrary, the strong performance for the base period obtained with the QM and DC approaches 

are attributable to a very low   , which might deteriorate in projections if    is large. 
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Reviewer 2: 

The study presents different bias correction methods for surface ozone and apply them to four 

CMIP6generation Earth System Models (ESMs). The performance of each applied method is investigated 

along with the sensitivities of each individual ESM to these methods, and finally recommendations. The 

manuscript is well-organized and easy to follow. There are few points that need further clarification 

before it can be accepted in ACP. 

We thank the reviewer for the positive assessment of our manuscript and the valuable comments provided 

that helped strengthen our study. Please find our point by point response to the individual comments 

below.  

General comments 

1. More information is needed on the gridded observational ozone dataset, including how this dataset was 

generated briefly, referring to the observation networks in Europe and USA. 

Thank you for this comment. Following your comment and the comments of Ref #1 we have included the 

text below in the revised manuscript. 

We also obtain observed MDA8 O3 with a spatial resolution of 1° x 1° per grid cell for both the European 

and the US domain using an extended dataset constructed using the methods of Schnell et al. [2014; 

2015] and Schnell and Prather [2017], one which was designed specifically to compare against gridded 

CCMs. The dataset is constructed using an inverse distance weighted interpolation method that includes 

a declustering component similar to kriging; i.e., clustered (within 100 km) observations’ weights are 

reduced such that those stations (often located around urban centers) are not disproportionately used in 

the interpolation. For the US domain, point based observations that are used in the interpolation include 

the US EPA’s Air Quality System (AQS), the US EPA Clean Air Status and Trends Network (CASTNET), 

and Environment Canada’s National Air Pollution Surveillance Program (NAPS); for the European 

Domain we include the EMEP and European Environment Agency’s AirBase network (excluding stations 

designated as traffic). The exponent for the distance component is 2.5 and a maximum distance of 500 km 

is used for the weights. Parameters were estimated using a leave-N-out cross-validation technique. 

Estimations are made at 25 equally spaced points within each 1° x 1° cell and trapezoidally averaged. 

Other recent work has used this extended dataset [e.g., Ducker et al., 2018; Garrido-Perez et al., 2019, 

Guo et al, 2018]. Schnell et al. [2014] estimated an RMSE of 6-9 ppb for individual stations and 0-3 ppb 

for the grid cell averages; Ducker et al. [2018] estimated a mean bias of 5-10 ppb with the updated 

dataset over their study locations. For the analysis here the interpolation is performed on hourly 

abundances and the MDA8 O3 is estimated using the interpolated hourly fields. Note, we apply the 

nomenclature of the European Union for the calculation of the MDA8 O3 values in both domains, i.e. the 

eight hour average for a given hour is derived using the data of that specific hour and the preceding 

seven hours [EUR-LEX, 2008]. For convenience, the data is provided along with this article, see data 

statement below. To allow for an optimal comparison, the model data is regridded using an ordinary 

inverse distance weighting algorithm to match the spatial extent of the observations. 



2. The dataset is divided into two for evaluation and projections. It would be useful to show if projections 

would give similar results if other datasets would be used, or the projections would be applied in other 

regions such as Asia. In addition, would the conclusions change if another metric was used to evaluate the 

performance. 

We agree with the reviewer that expanding to additional data sets or study regions would be of interest. 

However, we consider this beyond the scope of the present work. We have chosen to restrict the analysis 

here to the data product included here given that 1) to the best of our knowledge no other gridded 

observational data set for MDA8 O3 is freely available for multiple other world regions and/or created 

across regions with a uniform methodological framework; and 2) no other consistent gridded data 

products for MDA8 O3 are available for both the EU and the US.  

3. Daily maximum temperature and radiation are selected for sensitivity to meteorology. I would 

recommend looking at winds to account for transport. Is there a reason why it is not included? Another 

important source is stratospheric ozone, which should be discussed. 

We thank the reviewer for this comment. Following your and reviewer 1’s suggestion we have included 

additional variables, including information on mean wind speed, and also NO, NO2 and HCHO in the 

analysis focusing on meteorological vs. chemical driving of model biases. We detail this expanded 

analysis now in our manuscript in the revised section 3.4.  

Having illustrated the MDA8 O3 biases of various CMIP6 models, the performance of various statistical 

bias techniques as well as the influence of the model response to changes in e.g. emissions on the 

performance of bias correction we turn here to shed light on the underlying cause of biased MDA8 O3 

model outputs. To this end we analyse the 13 members of the CESM2-WACCM6 ensemble in more detail, 

in order to examine for consistency within the individual realizations as well as a possible dominant 

cause(s) for the bias in the modelled surface ozone fields. Here two likely prime candidates exist: 1) 

issues with the sensitivity in chemical mechanisms to local/regional precursor emissions (note, 

anthropogenic emissions are consistent across individual models), 2) issues in meteorology simulated by 

the free running CCM. For the latter, we further include three climatological key drivers for ozone 

production/accumulation in our analysis, i.e. daily maximum temperature (TSMX), daily average down 

welling short wave radiation (FSDS) and daily average wind speed (WSPD), in order to differentiate 

whether the bias is predominantly driven by sensitivity to meteorology or chemistry. As chemical 

covariates we include monthly averages of NO, NO2, HCHO, the latter we consider as bulk proxy for 

VOCs [e.g. Shen et al., 2019; Zhu et al., 2017]. 

Figures 6 and 7 illustrate the PDFs of MDA8 O3, NO, NO2, HCHO, TSMX, FSDS, and WSPD for the 

individual ensemble members during spring and summer in 2005-2009 (the PDFs for 2010-2014 are 

shown in the supplemental Fig. S11 and 12). MAM and JJA MDA8 O3 (Fig. 6a,e) show a very similar 

distribution across ensemble members for both domains. For example the median MDA8 O3 value ranges 

across ensemble members roughly between 50 and 52 ppb (MAM) and 45 to 47 ppb (JJA) in the EU. For 

the US the median MDA8 O3 values are found to be slightly higher than in the EU, but the differences 

within the ensemble lie in the same narrow range (53 to 55 ppb for MAM and 54 to 55 ppb for JJA). 

Similarly, compact PDFs across the ensemble are found for NO, NO2 and HCHO. Interestingly 

differences emerge for HCHO in the US but not Europe which represents a larger influence of biogenic 

emissions.  



Similar results are found for the meteorological variables. Although slight variations occur for surface 

temperature radiation, and wind speed (which one would expect from a model generating its own 

meteorology), the PDFs are widely homogenous across the ensemble, thereby explaining the similarity of 

surface ozone distributions within the ensemble (as all ensemble members are driven with the same set of 

precursor emissions) in both domains. The analysis of the MDA8 O3, NO, NO2, HCHO, TSMX, FSDS, 

and WSPD distributions over the second time period (2010-2014, Figs. S11 and S12) yields similar 

results, thereby providing confidence for the robustness of our findings.  

The strong similarity across ensemble members indicates that the MDA8 O3 bias identified in CESM2-

WACCM6 stems most likely from sensitivities in the chemical mechanism and/or emissions and not from 

meteorological drivers and their variability. As the models use the same anthropogenic emissions, the 

differences are more likely to stem from the chemistry, which could include different mixes of emitted 

VOCs…. 

4. Why did you only use the first member of the ensemble. This should be clarified and justified. 

In the main body of the manuscript we explicitly analyze only the first ensemble member, in analogy to 

the other CCMs, where also one ensemble member has been used (driven by inhomogeneous availability 

of members per model). In section 4.3, focusing on the chemical vs. meteorological driving of model bias 

we include the entire CESM2-WACCM6 ensemble, comprising 13 members. We provide this clarifying 

information in the revised manuscript.  

For most of our study, we use only the first ensemble member of CESM2-WACCM6 in analogy to the 

other CCMs given the overall heterogeneity in the number of members available per model. In section 

4.3, we focus on the chemical vs. meteorological driving of model biases and utilize the entire CESM2-

WACCM6 ensemble. 


