
We thank two anonymous reviewers for their constructive comments. Below we provide a point by point 

response (blue, italics) to the individual reviewer comments (black). 

 

Reviewer 1: 

This is an interesting study on different bias-correction methods applied to CMIP6 Earth System Models 

(ESMs) surface-ozone results. The analysis explores the performance of each applied statistical bias-

correction method, to what extent this is sensitive to each individual ESM, and finally the nature and 

origin of the errors. The manuscript is well organized with qualitative and efficient presentation of the 

results. Yet, there are some points that need clarification and further investigation. I believe the study may 

be a valuable addition to the literature once the following comments are addressed. 

We thank the reviewer for the positive assessment of our manuscript and the valuable comments provided 

that helped strengthen our study. Please find our point by point response to the individual comments 

below. 

Main Comments 

1. More information on the gridded observational ozone dataset (used here for the evaluation) is needed. 

Do the authors use the Schnell et al. (2014) data? This assessment is for the 2000-2009 period. Is this an 

extension of this dataset? Is this dataset publicly available? Please describe (briefly) in the manuscript 

how this dataset was constructed. Is the inhomogeneous network of observations over Europe and USA 

affecting the results of your evaluation and how? This should be discussed. I suggest including a 

subsection in the Data & Methods Section about the gridded observational ozone data and relevant 

information. 

We thank the reviewer for this comment. We use an updated and extended version of the data set 

presented in Schnell et al. (2014). The data set comprises surface ozone observations from monitoring 

networks in Europe and the US. Precisely, for the US the data set is based on the EPA’s Air Quality 

System (AQS) and Clean Air Status and Trends Network (CASTNET), and Environment Canada’s 

National Air Pollution Surveillance Program (NAPS), while for Europe the data set combines the EMEP 

and the European Environment Agency’s AirBase network (excluding stations designated as traffic). 

Records from EMEP and AirBase are reported as μg m
−3

 and are converted to parts per billion (ppb = 

10
−9

 mol mol
−1

 = nmol mol
−1

) using a temperature of 20 °C. The gridded product is created following the 

procedures described in Section 2 of Schnell et al. (2014). We have included the following additional text 

in the revised manuscript: 

“We also obtain observed MDA8 O3 with a spatial resolution of 1° x 1° per grid cell for both the 

European and the US domain using an extended dataset constructed using the methods of Schnell et al. 

[2014; 2015] and Schnell and Prather [2017], one which was designed specifically to compare against 

gridded CCMs. The dataset is constructed using an inverse distance weighted interpolation method that 

includes a declustering component similar to kriging; i.e., clustered (within 100 km) observations’ 

weights are reduced such that those stations (often located around urban centers) are not 

disproportionately used in the interpolation. For the US domain, point based observations that are used 

in the interpolation include the US EPA’s Air Quality System (AQS), the US EPA Clean Air Status and 



Trends Network (CASTNET), and Environment Canada’s National Air Pollution Surveillance Program 

(NAPS); for the European Domain we include the EMEP and European Environment Agency’s AirBase 

network (excluding stations designated as traffic). The exponent for the distance component is 2.5 and a 

maximum distance of 500 km is used for the weights. Parameters were estimated using a leave-N-out 

cross-validation technique. Estimations are made at 25 equally spaced points within each 1° x 1° cell and 

trapezoidally averaged. Other recent work has used this extended dataset [e.g., Ducker et al., 2018; 

Garrido-Perez et al., 2019, Guo et al, 2018]. Schnell et al. [2014] estimated an RMSE of 6-9 ppb for 

individual stations and 0-3 ppb for the grid cell averages; Ducker et al. [2018] estimated a mean bias of 

5-10 ppb with the updated dataset over their study locations. For the analysis here the interpolation is 

performed on hourly abundances and the MDA8 O3 is estimated using the interpolated hourly fields. 

Note, we apply the nomenclature of the European Union for the calculation of the MDA8 O3 values in 

both domains, i.e. the eight hour average for a given hour is derived using the data of that specific hour 

and the preceding seven hours [EUR-LEX, 2008]. For convenience, the data is provided along with this 

article, see data statement below. To allow for an optimal comparison, the model data is regridded using 

an ordinary inverse distance weighting algorithm to match the spatial extent of the observations.” 

2. To explore the error sources, the authors select the daily maximum temperature and radiation for 

sensitivities to meteorology. Yet, wind and especially for high-ozone events stability (stagnation) are also 

important drivers. How are these two represented by the individual ensemble members? Attributing 

model error mainly to precursors emissions needs more evidence. What are the NOx and VOC PDFs for 

the ensemble members? Are there any model diagnostics for ozone production (PO3) and loss (PO3) to 

support this? 

We thank the reviewer for this comment. Following the reviewer’s suggestion we have included 

additional meteorological and chemical variables available from the CESM2-WACCM6 simulations in 

the analysis. These are daily mean wind speed, monthly mean concentrations of NO2, NO and HCHO (as 

VOC proxy). We detail this expanded analysis now in our manuscript in the revised section 3.4. We agree 

with the reviewer that ozone production and ozone loss would be useful terms, however those are 

unfortunately not available (as not archived) for the ensemble but only a single ensemble member. 

Therefore, these metrics could not be included in the analysis here.  

3. It would be interesting to see results for MDA8 O3 using a different gridded observational ozone 

dataset (if available). Moreover, since the ultimate purpose of the study is to support reliability of ozone-

health studies, the recent Global Burden of Disease (GBD) report (2019) applies the ozone season daily 

maximum 8 hour mixing ratio (OSDMA8) metric to estimate excess mortality from long-term ozone 

exposure. Gridded observational OSDMA8 data, as described in DeLang et al. (2021), are publicly 

available at https://zenodo.org/records/8320001. Are the statistical methods used here applicable for a 

long-term effect ozone metric like OSMDA8?  

Following the reviewer’s suggestion we have expanded the analysis towards OSDMA8. To this end we 

have computed OSDMA8 from our data set following the method described in DeLang et al. (2021).  

Our results show a varying OSDMA8 bias across CCMs for the periods 2005-2009 and 2010-2014 (see 

Figure R1). This is in agreement with the bias in MDA8 O3 we report on. As for MDA8 O3, after applying 

individual correction techniques the bias is substantially reduced (see Figures R2 and R3). For OSDMA8 



however, the individual bias correction techniques (despite all being able to substantially reduce the bias) 

show no pronounced difference in performance. We attribute this to properties of the OSDMA8 metric 

itself, which represents the annual maximum value of the running 6-month average of monthly mean 

MDA8 O3, i.e., a single value per calendar year. Given the long-term averaging time span considered for 

the OSDMA metric we do expect also no major difference among techniques explored here. More 

illustrative for the performance of the correction techniques across the full range of the ozone burden is 

the evaluation of the residual bias in the MDA8 O3 distribution function explored in Fig. S5 and S8 in our 

original manuscript. Therefore, for clarity and focus of the present study we prefer to restrict the analysis 

to MDA8 O3.   

 

Fig. R1: Boxplots of the residual bias in OSDMA8 pooled across grid cells in the individual CCMs in 

2005-2009 and 2010-2014 for the EU (a,b) and US domain (c,d). 



 

Fig. R2: Boxplots of the residual bias in OSDMA pooled across grid cells for individually bias corrected 

CCMs in 2005-2009 for the EU (a,b,c,d) and US domain (e,f,g,h). Blue, Green and red colour indicate 

the MB, RB and QM correction methods respectively.  



 
 

Fig. R3: as Fig. R2 but for 2010-2014. 



Comments 

L18-19: This is a strong statement as this is not explicitly shown from the results. See also main comment 

#2.  

Following the suggestion of the referee, we have included further available meteorological and chemical 

covariates in the analysis. These show all strong uniformity across the CESM2-WACCM6 ensemble, 

confirming our original postulated hypothesis. However, as we agree with the referee that we cannot 

show the root cause of model bias in full explicity, and only have a large ensemble for one global model 

available, we further have included a limiting qualifier in this abstract statement: “Ensemble simulations 

available for one CCM indicate that model ozone biases are likely more sensitive to the process 

representation embedded in chemical mechanisms or emissions rather than to meteorology.” 

L21-26: Tropospheric and therefore surface ozone has also a natural source, the transport from the 

stratosphere (Stohl et al., 2003) which over specific regions (Lin et al., 2015) or occasionally (Akritidis et 

al., 2010) contributes significantly. 

Thank you for this comment. We have updated the introduction section respectively. 

L26: “O3 is associated with a variety of detrimental human health effects”. I suggest including here a 

couple of recent references on ozone effects on human health like Murray et al. (2020) and Pozzer et al. 

(2023). 

Thank you for this comment. We have included several references regarding health effects of ozone. 

L40: maybe “meteorology and deposition” 

Thank you, done. 

L65-66: Please clarify why only the first member of the ensemble is used in the main study. 

We have included the clarification in the revised manuscript. Please see also our response to comment 4 

of Reviewer 2. 

L68: The period 1993 to 2014 is referred here. Are there any data used in the analysis except from the 

2005-2009 and 2010-2014 periods? Please clarify. 

No observational data beyond 2005-2014 has been used in our study. Note, we have overall revised 

section 2.1 following the comments provided by both referees.   

L183: Remove t. 

Thank you for spotting this typo. 

L285-286: As this is not explicitly shown to be related with precursors emissions but rather assumed I 

suggest rephrasing accordingly. 



We have revised this sentence accordingly. 

L360:  EB depends 

Thank you, done. 

L361: EB is 

Thank you, done. 

L363: “the strong base period performance”, maybe “the strong performance for the base period”? 

We have revised this sentence accordingly. 
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Reviewer 2: 

The study presents different bias correction methods for surface ozone and apply them to four 

CMIP6generation Earth System Models (ESMs). The performance of each applied method is investigated 

along with the sensitivities of each individual ESM to these methods, and finally recommendations. The 

manuscript is well-organized and easy to follow. There are few points that need further clarification 

before it can be accepted in ACP. 

We thank the reviewer for the positive assessment of our manuscript and the valuable comments provided 

that helped strengthen our study. Please find our point by point response to the individual comments 

below.  

General comments 

1. More information is needed on the gridded observational ozone dataset, including how this dataset was 

generated briefly, referring to the observation networks in Europe and USA. 

https://doi.org/10.1073/pnas.1614453114


Thank you for this comment. Following your comment and the comments of Ref #1 we have included the 

text below in the revised manuscript. 

“We also obtain observed MDA8 O3 with a spatial resolution of 1° x 1° per grid cell for both the 

European and the US domain using an extended dataset constructed using the methods of Schnell et al. 

[2014; 2015] and Schnell and Prather [2017], one which was designed specifically to compare against 

gridded CCMs. The dataset is constructed using an inverse distance weighted interpolation method that 

includes a declustering component similar to kriging; i.e., clustered (within 100 km) observations’ 

weights are reduced such that those stations (often located around urban centers) are not 

disproportionately used in the interpolation. For the US domain, point based observations that are used 

in the interpolation include the US EPA’s Air Quality System (AQS), the US EPA Clean Air Status and 

Trends Network (CASTNET), and Environment Canada’s National Air Pollution Surveillance Program 

(NAPS); for the European Domain we include the EMEP and European Environment Agency’s AirBase 

network (excluding stations designated as traffic). The exponent for the distance component is 2.5 and a 

maximum distance of 500 km is used for the weights. Parameters were estimated using a leave-N-out 

cross-validation technique. Estimations are made at 25 equally spaced points within each 1° x 1° cell and 

trapezoidally averaged. Other recent work has used this extended dataset [e.g., Ducker et al., 2018; 

Garrido-Perez et al., 2019, Guo et al, 2018]. Schnell et al. [2014] estimated an RMSE of 6-9 ppb for 

individual stations and 0-3 ppb for the grid cell averages; Ducker et al. [2018] estimated a mean bias of 

5-10 ppb with the updated dataset over their study locations. For the analysis here the interpolation is 

performed on hourly abundances and the MDA8 O3 is estimated using the interpolated hourly fields. 

Note, we apply the nomenclature of the European Union for the calculation of the MDA8 O3 values in 

both domains, i.e. the eight hour average for a given hour is derived using the data of that specific hour 

and the preceding seven hours [EUR-LEX, 2008]. For convenience, the data is provided along with this 

article, see data statement below. To allow for an optimal comparison, the model data is regridded using 

an ordinary inverse distance weighting algorithm to match the spatial extent of the observations.” 

2. The dataset is divided into two for evaluation and projections. It would be useful to show if projections 

would give similar results if other datasets would be used, or the projections would be applied in other 

regions such as Asia. In addition, would the conclusions change if another metric was used to evaluate the 

performance. 

We agree with the reviewer that expanding to additional data sets or study regions would be of interest. 

However, we consider this beyond the scope of the present work. We have chosen to restrict the analysis 

here to the data product included here given that 1) to the best of our knowledge no other gridded 

observational data set for MDA8 O3 is freely available for multiple other world regions and/or created 

across regions with a uniform methodological framework; and 2) no other consistent gridded data 

products for MDA8 O3 are available for both the EU and the US.  

3. Daily maximum temperature and radiation are selected for sensitivity to meteorology. I would 

recommend looking at winds to account for transport. Is there a reason why it is not included? Another 

important source is stratospheric ozone, which should be discussed. 

We thank the reviewer for this comment. Following your and reviewer 1’s suggestion we have included 

additional variables, including information on mean wind speed, and also NO, NO2 and HCHO in the 



analysis focusing on meteorological vs. chemical driving of model biases. We detail this expanded 

analysis now in our manuscript in the revised section 3.4.  

4. Why did you only use the first member of the ensemble. This should be clarified and justified. 

In the main body of the manuscript we explicitly analyze only the first ensemble member, in analogy to 

the other CCMs, where also one ensemble member has been used (driven by inhomogeneous availability 

of members per model). In section 4.3, focusing on the chemical vs. meteorological driving of model bias 

we include the entire CESM2-WACCM6 ensemble, comprising 13 members. We provide this clarifying 

information in the revised manuscript.  

 


