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Abstract 15 

 16 

While climate models broadly agree on the changes expected to occur over the Arctic with global warming on a pan-Arctic 17 

scale (i.e., polar amplification, sea-ice loss, increased precipitation), the magnitude and patterns of these changes at regional 18 

and local scales remain uncertain. This limits the usability of climate model projections for risk assessments and their impact 19 

on human activities or ecosystems (e.g., fires, permafrost thawing). Whereas any single or ensemble-mean projection may be 20 

of limited use to stakeholders, recent studies have shown the value of the storyline approach in providing a comprehensive and 21 

tractable set of climate projections that can be used to evaluate changes in environmental or societal risks associated with 22 

global warming.  23 

Here, we apply the storyline approach to a large ensemble of CMIP6 models, with the aim of distilling the wide spread in 24 

model predictions into four physically plausible outcomes of Arctic summertime climate change. This is made possible by 25 

leveraging strong covariability in the climate system, associated with well-known but poorly constrained teleconnections and 26 

local processes: specifically, we find that differences in Barents-Kara Sea warming and lower tropospheric warming over polar 27 

land regions among CMIP6 models explain most of the inter-model variability in pan-Arctic surface summer climate response 28 

to global warming. Based on this novel finding, we compare regional disparities in climate change across the four storylines. 29 

Our storyline analysis highlights the fact that, for a given amount of global warming, certain climate risks can be intensified 30 

while others may be lessened, relative to a “middle-of-the-road” ensemble mean projection. We find this to be particularly 31 

relevant when comparing climate change over terrestrial and marine areas of the Arctic, which can show substantial differences 32 
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in their sensitivity to global warming. We conclude by discussing potential implications of our findings for modelling climate 33 

change impacts on ecosystems and human activities. 34 

1 Introduction 35 

Since the late twentieth century, the surface of the Arctic has warmed 2 to 4 times greater than the global average, which is 36 

referred to as Arctic amplification (hereinafter AA, e.g., Jansen et al., 2020; England et al., 2021; Rantanen et al., 2022). This 37 

warming amplification of the near-surface and troposphere is caused by a number of feedbacks involving oceanic, cryospheric 38 

and atmospheric processes (Previdi et al., 2021). Sea-ice cover loss in the Arctic Ocean explains the bulk of the near-surface 39 

warming, especially over marine areas and coastal terrestrial regions due to its impact on surface energy fluxes and upper 40 

ocean warming (e.g., Screen and Simonds, 2010; Dai et al., 2019; Jenkins and Dai, 2021). Sea-ice loss and sea surface warming 41 

have been singularly strong in the Barents-Kara Sea, which has been identified as a warming hotspot (Lind et al. 2018) and a 42 

mediator of climate change between the North Atlantic and Central Arctic Oceans (Smedsrud et al., 2013). AA is also tied to 43 

tropospheric warming, which is influenced to a greater extent by atmospheric dynamical feedback, such as temperature 44 

feedbacks (Pithan and Mauritsen, 2014) and poleward atmospheric energy transport feedback (e.g., Merlis and Henry, 2018). 45 

Overall, the combined influence of oceanic, cryospheric and atmospheric processes render Arctic climate change and its 46 

surface warming amplification especially complex to predict.  47 

 48 

AA has resulted in extensive loss of land ice, snow cover, and thawing of the permafrost over the Arctic region (e.g., Callaghan 49 

et al., 2011; van den Broeke et al., 2016; Chadburn et al., 2017; Shepherd and IMBIE Team, 2020). These profound changes 50 

to the Arctic climate system have been linked to increases in a range of societal and ecological risks (Yumashev et al., 2019). 51 

For example, past decades have shown an increase in the frequency and intensity of wildfires in many Arctic regions, such as 52 

North America’s boreal forests (Masrur et al., 2018; McCarty et al., 2021), which has been attributed to unusually warm and 53 

dry spring and summer weather conditions (Krikken et al., 2019) as well as increased lightning activity (Veraverbeke et al., 54 

2017). Likewise, the accelerated thawing of permafrost over large swathes of the terrestrial Arctic poses significant challenges 55 

for the integrity of local infrastructure, such as roads and buildings (Hjort et al., 2022). Impacts of climate change in the Arctic 56 

also extend to marine areas. For example, while increased sunlight in the photic zone from sea-ice loss and warmer sea surface 57 

temperature may have boosted marine primary production in the Arctic oceans in past decades (Arrigo and Van Dijken, 2015), 58 

evidence suggests that this is primarily benefiting species typically found at lower latitudes at the expense of native Arctic 59 

species (Ingvaldsen et al., 2021). The changes to the Arctic climate system also have profound impacts beyond this region, 60 

including causing increases in extreme weather over the Northern Hemisphere mid-latitudes (Cohen et al., 2014). Changes to 61 

the Arctic climate system have also been suggested to have caused an increase in the frequency and intensity of certain extreme 62 

weather over the Northern Hemisphere mid-latitudes (Cohen et al., 2014), although the mechanisms of action and broader 63 

importance of such polar-to-midlatitude teleconnections remain controversial (Vavrus, 2018). The loss of glaciers / land ice 64 
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from Greenland, through both increased surface meltwater runoff and increased glacier flow / dynamic ice loss, has been a 65 

major contributor to increased global sea-level rise (e.g., Rignot et al., 2011; Shepard and IMBIE team, 2020).    66 

 67 

Assessing the many impacts of climate change in the Arctic requires a strong understanding of the physical state of the 68 

atmosphere, ocean, and sea ice, and how it will respond to climate change. This, however, has been hampered by future climate 69 

projections from global coupled climate models showing a wide range of possible outcomes (Overland et al., 2019; Notz et 70 

al., 2020; McCrystall et al., 2021; IPCC, 2021), which stems from uncertainties in possible future greenhouse gas emission 71 

scenarios, an incomplete understanding of key climate processes and their imperfect representation in models (model 72 

uncertainty), and natural (internal) variability within the climate system (Hawkins and Sutton, 2009). This lack of certainty 73 

poses considerable challenges for the planning and implementation of effective mitigation strategies by stakeholders impacted 74 

locally or remotely by Arctic climate change. The issue is often poorly addressed through the use of either a single-model or 75 

multi-model mean climate projection (Shepherd et al., 2018). 76 

 77 

The storyline approach overcomes the limitations of the above approaches by identifying and describing physically plausible 78 

and self-consistent pathways that are representative of future climate change, which may be more helpful to develop mitigation 79 

strategies (Shepherd et al., 2018). Storylines express the response of the Arctic climate to global warming conditional on a 80 

range of environmental conditions being realised. They are based on a methodology recently developed for studying the impact 81 

of climate change in other areas, primarily in the midlatitudes, e.g., western and central Europe (Zappa and Shepherd, 2017 82 

[ZS17]) or Southern Hemisphere midlatitude regions (Mindlin et al., 2020 [M20]). In this study, we posit that a substantial 83 

fraction of the variability of the surface climate response to global warming in the Arctic is associated with the warming of the 84 

Barents-Kara Sea and the warming of the Arctic lower troposphere. This is borne out of Barents-Kara Sea warming and the 85 

lower tropospheric warming being strongly influenced by climate variability at lower latitudes, but also being key players in 86 

driving surface warming in the Arctic. The Barents-Kara Sea, while being sensitive to changes in the Atlantic storm track 87 

(Jung et al., 2017) and the tropics (Warner et al., 2020), have long been recognised as a key modulators of climate variability 88 

in Earth’s Northernmost regions (Li et al., 2020; Peings et al., 2023). Likewise, the warming of the Arctic lower troposphere, 89 

which is sensitive to changes in poleward atmospheric heat transport from lower latitudes (Russotto and Biasutti, 2020), 90 

strongly influences the near-surface climate through its impact on the boundary layer stability and surface radiative forcing 91 

(e.g., Previdi et al., 2020).  92 

 93 

Using a range of possible scenarios for the Barents-Kara Sea and Arctic lower tropospheric warming that emerge from climate 94 

model simulations, we devise storylines of future climate change for Arctic regions. Specifically, we compare the climate of 95 

the last 30 years of the 21st century (2070–2099) projected in a high-end global warming scenario (corresponding with 8.5 W 96 

m-2 additional increase in radiative forcing by 2100 relative to preindustrial, the Shared Socioeconomic Pathways 5-8.5, SSP5-97 

8.5; see O’Neill et al. 2016 and Meinshausen et al., 2020), with the last 30 years of the historical experiment (1985–2014). 98 
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SSP5-8.5 represents the upper boundary of the range of scenarios described in ScenarioMIP and is useful to obtain the strongest 99 

possible response to climate change within the framework of the CMIP6; this ensures that the impact of internal climate 100 

variabilities is minimised in our study. We focus on the summer season, due to its relevance to societal and ecological impacts 101 

at high-latitude that peak in the warm part of the year, such as, among others, high-latitude fires, trans-Arctic shipping, and 102 

marine primary production. After describing the dataset and methodology used for our storyline analysis in section 2, we 103 

describe in section 3 how our Arctic storylines differ from the multi-model ensemble mean response, as established by four 104 

target variables we identified as being most relevant for studying climatic impacts in the region. We discuss the relevance of 105 

our findings for evaluating climate impacts in the Arctic region in section 4.  106 

2 Data and Methodology 107 

2.1 Model data 108 

Our analysis uses a set of 44 climate models from CMIP6, which we downloaded from The Earth System Grid Federation 109 

(ESGF; Cinquini et al., 2014; models with members are listed on Table 1). The model and number of ensemble members 110 

(given in parentheses) include: TaiESM1 (1), BCC-CMS2-MR (1), CAMS-CSM1-0 (2), CAS-ESM2-0 (2), FGOALS-f3-L, 111 

FGOALS-g3 (4), (1), IITM-ESM (1), CanESM5 (15), CanESM5-CanOE (3), CMCC-CM2-SR5 (1), CMCC-ESM2 (1), 112 

CNRM-CM6-1 (6), CNRM-ESM2-1 (5), ACCESS-ESM1-5 (15), ACCESS-CM2 (5), E3SM-1-0 (5), E3SM-1-1 (1), E3SM-113 

1-1-ECA (1), EC-Earth3 (15), EC-Earth3-CC (1), EC-Earth3-Veg-LR (3), FIO-ESM-2-0 (3), INM-CM4-8 (1), INM-CM5-0 114 

(1), IPSL-CM6-LR (7), MIROC-ES2L (10), MIROC6 (15), HadGEM3-GC31-LL (4), HadGEM3-GC31-MM (4), UKESM1-115 

0-LL (5), MPI-ESM1-2-LR (15), MRI-ESM2-0 (6), GISS-E2-1-G (14), GISS-E2-2-G (5), GISS-E2-1-H (10), CESM2 (3), 116 

CESM2-WACCM (3), NorESM2-LM (1), NorESM2-MM (1), KACE-1-0-G (3),  GFDL-CM4 (1), GFDL-ESM4 (1), NESM3 117 

(2), CIESM (1), MCM-UA-1-0 (1). For each model, all ensemble members of the historical experiment that were extended 118 

into the SSP5-8.5 scenario are used, capped to a maximum of 15 members per model to limit computational resources needed 119 

to produce ensemble means for the few models that have many members. As most models only have a few members, setting 120 

a maximum of 15 members seems a reasonable trade-off for reducing internal variability while including as many models as 121 

possible. We find little difference in using only a single member or an ensemble-mean of members, as the climate projections 122 

are dominated by the effect of the climate forcing with only a small contribution from natural variability (see Fig. 1b). For 123 

each model, we produce a mean climatology of the ensemble members for both the historical and SSP5-8.5 experiment, in 124 

their respective period of evaluation (i.e., 1985-2014 and 2070-2099), to reduce the weight of internal variability in the climate 125 

projections. Therefore, every model is represented by one climate projection regardless of their number of members, whether 126 

it is a single member or an ensemble-mean of members. As most models only have a few members, setting a maximum of 15 127 

members seems a reasonable trade-off for reducing internal variability while limiting computational resources needed to 128 

produce ensemble means for the few models that have many members.  129 
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2.2 Multivariate Linear Regression Analysis 130 

The climate storyline approach is based on a multivariate linear regression (MLR) analysis that expresses the response to 131 

global warming of any variable, Z (“target variable”), as a linear superposition of its response to changes in N climate indices, 132 

Pi, (“predictor index”). Following the methodology outlined in Zappa and Shepherd (2017), this can be expressed as: 133 

 134 

Δ𝑍(𝑥,𝑚) = Δ𝑍))))(𝑥) + ∑ 	𝛽!(𝑥)	Δ𝑃"/#
!$% (𝑚)    (1a) 135 

where  𝛥𝑃"1(𝑚) = 𝛥𝑃!(𝑚)	− Δ𝑃!                                                (1b) 136 

Here, Δ𝑍 defines changes in target variable 𝑍, 𝛥𝑃! changes in predictor index 𝑃!, and 𝛽! is the response of variable 𝑍 to changes 137 

in 𝑃!. Note that the target variable 𝑍 varies both in space [x] and across models [m], but predictor indices 𝑃! only vary across 138 

models; predictor indices are typically regional averages of variables that are tied to well-known physical features of the 139 

climate. (. ) defines a multi-model ensemble mean (MMM) and (. )/  a deviation from the MMM; Δ defines the difference in 140 

climatology between the 2070–2099 (SSP5-8.5 emission scenario) and 1985–2014 (historical experiment) period, normalised 141 

by a global warming index, (𝑇&&'()( − 𝑇*!&+)	, i.e., 142 

𝛥𝑋	 = 	 (-!!"#$#.-%&'()
(0!!"#$#.0%&'()

	       (2) 143 

Here, 𝑇 is the annual global-mean 2 m air temperature, and 𝑋 defines any target variable or predictor index. Normalisation 144 

ensures that changes in target variables and predictor indices are not directly associated with changes in the global warming 145 

index (𝐺𝑊𝐼, with 𝐺𝑊𝐼 = 𝑇112()( − 𝑇*!&+). Instead, the normalised response describes the variability in target variables or 146 

predictor indices linked to the underlying changes in the dynamics of the atmosphere/ocean/ice triggered by global warming, 147 

rather than the variability directly affected by the model's climate sensitivity.  148 

   149 

Storylines are constructed using the coefficients βi emerging from the MLR analysis (Eq. 1), which are compounded with a 150 

standardised climate response for each predictor. In a 2-predictors MLR analysis, this amounts to the creation of 4 storylines 151 

that are representative of the diversity in the climate change response across CMIP6 models:  152 

 153 

A. Δ𝑍/.,4(𝑥) = 𝑠	(−𝛽%(𝑥) + 𝛽5(𝑥)	)	γ	,   (3a) 154 

B. Δ𝑍/4,4(𝑥) = 𝑠	(+𝛽%(𝑥) + 𝛽5(𝑥)	)	𝛤 ,   (3b) 155 

C. Δ𝑍/.,.(𝑥) = s	(−𝛽%(𝑥) − 𝛽5(𝑥)	)	𝛤	,   (3c) 156 

D. 	Δ𝑍/ 4,.(𝑥) = s	(+𝛽%(𝑥) − 𝛽5(𝑥)	)	γ,    (3d) 157 

where 𝛤 = %
5
	%.6

)

%.6
 and 𝛾 = %

5
	%.6

)

%46
.                                        (3e) 158 
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Here, 𝑠 defines the standardised climate response, whose value is set to 1.26. This value is derived from a Chi-square 159 

distribution for 2 degrees of freedom and evaluated on the edge of the 80% confidence boundary region; this distribution is 160 

applied to the standardised intermodel spread in our 2 predictors from the large ensemble of CMIP6 simulations described in 161 

section 2.1. In simpler terms, 𝑠 defines a standardised deviation from the MMM of equal magnitude in our 2 predictor indices, 162 

which we deem plausible and yet not so extreme to be unlikely, based on the projection spread across CMIP6 simulations. To 163 

account for a weak positive correlation between both predictor indices, the storylines in Eq. (3) also contain factors 𝛤 and 𝛾, 164 

which depends on the correlation coefficient 𝑟 (see M20 for more details). 165 

 166 

The MLR framework of Eq. (1) and (3) seeks to predict the inter-model variability in the projections, and not the multi-model 167 

ensemble mean climate response; this is borne out of our storylines’ aim, that is to explore a range of possible climate 168 

realisations representative of the diversity in model projections. While the MLR framework is compatible with using any 169 

number of predictor indices, the exponential increase in storylines with the number of predictors (2N storylines can be produced 170 

for a set of N predictors) prompts us to use as few predictors as necessary, to keep the number of storylines tractable. We limit 171 

ourselves to two predictors and four storylines, as our analysis demonstrates that this configuration can explain a large fraction 172 

most of the intermodel spread in the warming response of the Arctic (Table 1).   173 

2.3 Choice of target variables 174 

Due to their relevance to a broad array of climate risks, we select 2 m temperature, precipitation rate, 850 hPa zonal wind, and 175 

sea-ice fraction as target variables for understanding the impact of Arctic climate change (Lee et al., 2002). Note that the 850 176 

hPa zonal wind is considered to be a good proxy of the near-surface wind while being less sensitive to the physical 177 

parameterization of surface processes (e.g., ZS17). This choice of variables is highly relevant to many key climate-driven risks 178 

in the Arctic, including wildfires, permafrost thawing, sea-ice loss, and marine heatwaves (Anisimov and Nelson, 1997; Pabi 179 

et al., 2008; Arrigo and Van Dijken, 2015; Melia et al., 2016). For instance, Arctic wildfires are sensitive to warm, dry, and 180 

windy conditions, which implies a dependence on near-surface air temperature, near-surface wind, and precipitation accrued 181 

during the warm season (Dowdy et al., 2010). We define 2 m temperature as our reference target variable because of its 182 

preponderance in driving those climate risks. This means that our storylines are optimised to represent the variability in the 2 183 

m temperature.  184 

2.4 Choice of predictor indices 185 

Using the MLR approach the target variables’ response to global warming may be regressed upon the two climate indices that 186 

we consider optimal for explaining differences in climate change projections between the CMIP6 model simulations. In this 187 

study, we select Arctic atmospheric amplification and Barents-Kara Sea warming as our predictors, which we refer to 188 

respectively as ‘ArcAmp’ and ‘BKWarm’. ArcAmp is defined as the 850 hPa temperature change averaged over all areas 189 

poleward of 55° N, and BKWarm as the sea-surface temperature change averaged over the Barents-Kara Sea (its outline is 190 
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shown on Fig. 2). Both ‘ArcAmp’ and ‘BKWarm’ are defined over the extended summer season (May to October). As 191 

explained below, we choose those two predictors owing to (i) their ability to explain a large fraction of the inter-model 192 

variability in climate change projections, and to (ii) their connection to a wide array of climatic phenomena in the Arctic and 193 

in midlatitude regions, especially near-surface warming.  We choose these two predictors owing to their ability to explain a 194 

large fraction of the inter-model variability in climate change projections in the Arctic, specifically the warming of the 195 

boundary layer over marine and terrestrial regions. Indeed, comparing 850 hPa temperature against surface temperature in the 196 

Arctic regions shows a strong covariability over land but weak covariability over marine areas (see Fig. 2a,b), consistent with 197 

the thermal decoupling of the marine boundary layer from the free troposphere in summer (e.g., Tjernström and Graversen, 198 

2009). Over ocean regions, the warming of the marine boundary layer is found to warm coherently across the Central Arctic, 199 

Barents-Kara, and North Atlantic regions (Fig. 2a), in agreement with a coherent increase in sea surface temperature across 200 

those regions. Due to its role as a climate gateway between the North Atlantic and the Arctic Ocean (e.g. Smedsrud et al., 201 

2013), we select the Barents-Kara Sea as our reference region for defining our ocean warming predictor in the Arctic. 202 

Conversely, we select the 850 hPa Arctic mean temperature warming as our second predictor due to its high degree of 203 

covariability with the warming of the terrestrial boundary layer and low degree of covariability with the marine boundary layer 204 

warming (see Table B1). The processes tying temperature anomalies in the free troposphere to those of the surface over land 205 

likely involve multiple atmospheric feedback, such as radiative or boundary layer mixing changes, which is beyond the scope 206 

of this study. Likewise, while our study leverages the connections between the North Atlantic Ocean, Barents-Kara Sea and 207 

Central Arctic Ocean warming to produce a predictor for marine boundary layer warming (see Table B2), it does not seek to 208 

identify a mechanism connecting these three regions, as it would require an in-depth analysis of changes in ocean current, 209 

upper-ocean mixing, and surface fluxes. 210 

3 Results 211 

Figure (1a) shows the intermodel spread in ArcAmp, BKWarm and GWI, which is of comparable magnitude to their MMM 212 

value for all three indices; yet we note that the spread is larger for ArcAmp and BKWarm than GWI. This large spread reflects 213 

known uncertainties in the warming of the Barents-Kara Sea and the lower Arctic troposphere in climate models, which are 214 

associated with poorly constrained physical processes and teleconnections influencing the Arctic climate (e.g., Previdi et al., 215 

2021). Figure (1b) shows ArcAmp and BKWarm for all CMIP6 models, which shows a weak correlation in their values (𝑟5 =216 

0.08); this is made evident by the elliptically shaped confidence boundary region on Fig. 1b, which accounts for the larger 217 

spread in variance along the direction of correlation (the ellipticity is determined by the 𝛤 and 𝛾 factors in Eq. 3). This nearly 218 

satisfies an important condition of orthogonality necessary for the effective combined use of ArcAmp and BKWarm as 219 

predictors in the MLR framework (Eq. 1). The near independence in the changes of ArcAmp and BKWarm suggests that the 220 

sensitivity of the Barents-Kara Sea and that of the lower troposphere (850 hPa) to global warming are controlled by different 221 

physical processes--even if changes in both predictor indices are ultimately driven by global warming. 222 
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 223 

 224 
Figure 1: (a) Boxplot showing the Global Warming Index (GWI), and the two predictor indices used for the storylines (ArcAmp and 225 
BKWarm). GWI is defined as the global and annual-mean response of the 2 m temperature, ArcAmp the response of the 850 hPa 226 
temperature averaged over all regions poleward of 55° N, and BKWarm the response of the sea surface temperature averaged over 227 
the Barents-Kara Sea (units: K). Both ArcAmp and BKWarm are defined for the extended summer season (May to October). 228 
Response is defined as the climatological-mean difference of the last 30 years of the current century (2070-2099) with that of the 229 
historical period (1985-2014). The lowest and highest values are shown at the extremities of each box; box delimiters define the 25th 230 
and 75th percentiles, while the median value (50th percentile) is shown by an orange line. (b) ArcAmp and BKWarm normalised by 231 
the GWI and with the MMM value removed for each model. Note that each predictor index is rescaled by its standard deviation, 232 
and thus non-dimensionalised (e.g., a value of 1 means a difference of one-standard deviation from the MMM value). The solid 233 
ellipse delimits the 80% confidence region of the model response in ArcAmp and BKWarm (Eq. 3). Dots on the ellipse show the 4 234 
storylines defined in Eq. (3a-d).  235 
 236 

Applying the 2-predictors MLR framework described in Eq. (1), we find that the inter-model variance in the 2 m temperature 237 

explained by ArcAmp and BKWarm describes more than close to half of its overall inter-model variance over the Arctic (54 238 

41%, see Table 1). This is close to about two-thirds of the theoretical maximum that can be explained using a 2-predictors 239 

MLR (62 64%), which we evaluated as the variance explained by the first two components of a principal component analysis 240 

(PCA) applied on the normalised change in 2 m temperature (Table 1; top row). Applying the same framework to explain 241 

changes in the 850 hPa zonal wind, precipitation rate, and sea-ice fraction, we find that the amount of variance explained by 242 

our 2-predictors MLR is substantially lower (~20 15%) for these variables, even if it is not insignificant. Nevertheless, 243 

evaluating the fraction of variance explained by the MLR framework on regional-scale changes (either over the Arctic or 244 

broader Northern Hemisphere high latitudes) generally indicates that our storylines have a larger explanatory power when 245 

applied to spatially coherent changes in our target variables, strengthening the relevance of our Arctic storylines to variables 246 
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other than 2-m temperature (Table 1; bottom row). This highlights the fact that our storylines are tailored to quantitatively 247 

describe changes in the near-surface warming and can only provide a qualitative picture of the changes in those three variables.  248 

 249 

 250 

 2 m temperature 850 hPa zonal wind precipitation rate sea-ice fraction  

2-PCA variance [%] 62 64 66 56 61 55 79 45 

MLR variance [%] 54 41 17 14 22 18 23 12 

Arctic MLR 
variance [%]  

68 35 33 11 

Table 1: Explained variance for 2-m temperature, sea-ice fraction and precipitation rate over the Arctic (poleward of 55° N) and 251 
850-hPa zonal wind over the Northern Hemisphere high latitude regions (poleward of 40° N) for each target variable in the extended 252 
boreal summer (May to October), expressed as a percentage of the total variance across model projections. Each column shows a 253 
target variable. The first row is the amount of variance explained by the first 2 modes of a PCA on the respective target variable, 254 
which is the maximum amount of variance that could be explained by a 2-predictors MLR. The second row is the amount of variance 255 
explained by our 2-predictors MLR (Eq. 1), with ArcAmp and BKWarm as predictors.  The third row is the amount of variance 256 
explained by our 2-predictors MLR averaged over the Arctic (2-m temperature, precipitation rate, sea-ice fraction) and NH high 257 
latitude regions (850-hPa zonal wind). 258 
 259 
Figure 2 shows the normalised response of each target variable in the extended summer season to each predictor index, that is 260 

the response per degree of global warming, for a one-standard deviation in the intermodel spread of the predictor index. A 261 

warm anomaly in the Barents-Kara Sea (BKWarm) is associated with the following: a warm anomaly in the 2 m temperature 262 

over the Central (marine) Arctic (Fig. 2a); a dipolar anomaly in the 850 hPa zonal wind changes, with weaker winds over the 263 

Atlantic sector of the Arctic but stronger winds over the Pacific sector (Fig. 2c); positive anomalies in precipitation rates across 264 

all Arctic regions, especially so over land areas (Fig. 2e); and accelerated rates of sea-ice loss in the Atlantic sector of the 265 

Central Arctic, but with little influence reduced rates of sea-ice loss the Pacific sector of the Arctic and Barents-Kara Sea (Fig. 266 

2g). We note that sea-ice extent in the Barents Sea region appears to be increasing in response to Barents-Kara Sea warming 267 

(Fig. 2g), a counter-intuitive finding that is likely an artefact of the low number of models having sea-ice cover in summer in 268 

this region, as suggested by the lack of statistical significance in the response. 269 

 270 

These normalised response patterns strongly contrast with that associated with warm anomalies of the lower troposphere in 271 

the Arctic (ArcAmp). For warm anomalies in ArcAmp, we find: 2 m temperature increases over most terrestrial areas (Fig. 272 

2b); the 850 hPa zonal wind weakens over most areas around the Arctic but strengthens in the Central Arctic (Fig. 2d); 273 

precipitation rates are reduced over most high-latitude land areas except over Greenland and the Bering Strait regions (Fig. 274 
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2f); and sea-ice loss is reduced in the Central Arctic and the Pacific sector of the Arctic basin (Fig. 2h). Both 2 m temperature 275 

and precipitation rates response to ArcAmp are opposite to that associated with warm anomalies over the Barents-Kara Sea. 276 

This difference in the normalised response to BKWarm and ArcAmp reflects important differences in how our two predictor 277 

indices can modulate climate change and explain the diversity of model projections found under the SSP5-8.5 scenario 278 

forcings.   279 

 280 

           281 
Figure 2: Normalised response of (from left to right) 2 m temperature [K K-1], 850 hPa zonal wind [m s-1 K-1], precipitation rate [mm 282 
day-1 K-1], and sea-ice fraction [% K-1], to a one-standard deviation in each of the predictor index for BKWarm (top row) and 283 

ArcAmp (bottom row). The normalised response is the product of the regression coefficient 𝛽𝒊 in Eq. (1) with 𝜎7𝑷𝒊8  , a one-standard 284 

deviation anomaly in the associated predictor index. Stippling indicates statistical significance at the 95% confidence level using 285 
Student's t test (i.e., p-value less than 0.05). The green dashed line delineates the outline of the Barents-Kara Sea. 286 
 287 

Using these normalised responses to each predictor index, we produce four storylines for each of the four target variables 288 

according to Eq. (3). Specifically, we describe the following four storylines, referenced from A to D and defined in Eq. (3): A: 289 

ArcAmp− / BKWarm+, B: ArcAmp+ / BKWarm+, C: ArcAmp− / BKWarm−, D: ArcAmp+ / BKWarm−. Figure 3 shows 290 

the storylines of 2 m temperature change. First, we note that the storylines’ patterns are qualitatively similar to those obtained 291 

from the two first modes of the PCA on 2 m temperature change (compare Fig. 3a-d with A1a-d); this confirms that our 292 

ArcAmp and BKWarm predictors capture well the dominant modes of variability that drive the intermodel spread in surface 293 

warming projections. Consistent with the normalised response patterns (Fig. 2a-b), the main difference in 2 m temperature 294 
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between the four storylines is the rate of warming between marine and terrestrial areas of the Arctic (Fig. 3). In the MMM, the 295 

2 m temperature is found to increase by about 1.5 to 2 K K-1 over most oceanic and terrestrial areas of the Arctic (Fig. 3e), 296 

showing a relative uniformity in magnitude across the Arctic. For positive anomalies in both BKWarm and ArcAmp, i.e., 297 

storyline B, the rate of warming is increased over most Arctic areas (Fig. 3b); the opposite situation is found in storyline C, 298 

i.e., negative BKWarm and ArcAmp anomalies, with a reduced rate of warming over most Arctic areas (Fig. 3c). For positive 299 

(negative) anomalies in BKWarm but negative (positive) anomalies in ArcAmp, i.e., storyline A (D), the rate of warming is 300 

increased (reduced) over marine areas but reduced (increased) over terrestrial areas when compared to the MMM (compare 301 

Fig. 3a with 3d). Changes are stronger over marine areas, especially in the northern part of the Barents-Kara Sea and the 302 

Western North Atlantic basin, where values can depart by up to 30% compared to the MMM. Out of all four storylines, 303 

storylines A and D show the largest deviation in warming rates between terrestrial and marine areas (Fig. 3a,d). Beyond an 304 

amplification or dampening of the MMM climate response, our analysis suggests a decoupling of the near-surface temperature 305 

warming between terrestrial and marine areas, with the former being associated with the lower-tropospheric warming and the 306 

latter connected to changes in the Barents-Kara and North Atlantic basin.  307 

 308 

           309 
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Figure 3: (a)-(d) Storylines of climate change for 2 m temperature as defined in Eq. (3a-d) and (e) its MMM projection. Units: K K-310 
1. Stippling on (e) indicates areas where at least 80% of the models agree on the sign of change, and grey solid contours indicate the 311 
MMM present-day climatology. The green dashed line delineates the outline of the Barents-Kara Sea.  312 
 313 

In comparison with the 2 m temperature, changes in the 850 hPa zonal wind show more complexity in the spatial pattern of 314 

changes between the four storylines. In the MMM, change in the 850 hPa zonal wind (U850) shows westerly tendencies across 315 

a wide area in the circumpolar regions, spanning eastward from the Bering Sea to the Barents-Kara Sea, with a maximum over 316 

the North Atlantic between Southern Greenland and Scandinavia. The westerly tendencies extend to the Pacific sector of the 317 

Arctic Ocean, forming an arch stretching from the Beaufort Sea to the Laptev Sea. On the other hand, easterly tendencies are 318 

found in the midlatitude regions of Central Siberia. Overall, those changes suggest that in the MMM, westerly winds shift 319 

poleward and strengthen around the subpolar front and in the Central Arctic, in qualitative agreement with previously noted 320 

changes in the Northern Hemisphere mid- and high-latitude regions (Harvey et al., 2020). Going beyond the multi-model mean 321 

changes, storylines indicate a strong modulation of those changes, with storyline changes being up to 50% of the MMM. As 322 

for the 2 m temperature, storylines of U850 show modulation of the MMM response departing from a simple amplification 323 

response. Storylines B and C show a bipolar pattern (Fig. 4b,c), with easterly (westerly) tendency in the circumpolar regions 324 

but westerly (easterly) tendencies over the Arctic ocean in B (C). Likewise, storylines A and D show an apparent bipolar 325 

pattern in climate response, with changes in the subpolar regions being of opposite signs of that found in the Norwegian and 326 

Barents Sea (Fig. 4a,d). Relative to the multi-model mean changes, the poleward shift in the North Atlantic storm tracks is 327 

influenced primarily by Arctic atmospheric warming both our predictor indices, hence linking the large uncertainty in its 328 

prediction across climate models to the intermodel spread in BKWarm and ArcAmp. For instance, a strengthening of the 850 329 

hPa zonal wind in the subpolar region occurs when ArcAmp weakens, consistent with polar atmospheric warming weakening 330 

the storm tracks (e.g. Smith et al., 2019).   For instance, a strengthening of the 850 hPa zonal wind in the subpolar regions can 331 

occur when the strength of changes in ArcAmp and BKWarm act to either oppose each other (storylines A, Fig. 4a), or 332 

complement each other (storylines C, Fig. 4c). This contrasts with the Beaufort Gyre, which shows an amplification or 333 

dampening only when ArcAmp and BKWarm act in concert with each other (Fig. 4b,c). Even if our storylines account for 334 

only a fraction of the model spread in the 850 hPa zonal wind projections, the different outcomes outlined by our storylines 335 

suggest markedly different impacts of global warming on the low-level winds, with implications for changes in synoptic 336 

storms’ tracks and intensity changes. 337 

 338 
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           339 
Figure 4: Storylines of climate change for the 850 hPa zonal wind (a)-(d) and its MMM projection (e). Units: m s-1 K-1. Same 340 
convention as Fig. 3 applies.  341 
 342 

Figure 5 confirms the expected increase in precipitation rate changes in the high-latitude regions, in the MMM. This increase 343 

is most pronounced over mountain ranges found on the western sides of continents, which are on the paths of the Atlantic and 344 

Pacific storm tracks, e.g., the North American coastal ranges, Western Greenland, Scandinavian coastal ranges (Fig. 5e). This 345 

increase in precipitation rate contrasts with the drying tendency found over most of the midlatitude and subtropical regions of 346 

Eurasia and North America. Storylines show that projections can differ substantially from this pattern, by up to 50% of the 347 

MMM values. In particular, precipitation rate increases over most of the Arctic for positive anomalies in BKWarm (Fig. 5a,b), 348 

but decreases for negative anomalies in BKWarm (Fig. 5c,d). Changes over terrestrial areas are generally of greater amplitude 349 

than over marine areas across all storylines, and most particularly over regions of strong rainfall in the present-day climate. 350 

Overall, storylines of precipitation rates are modulated primarily by change in BKWarm, with only specific regions--notably 351 

Greenland and Siberia--showing a response to ArcAmp.  352 

 353 
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           354 
 Figure 5: Storylines of climate change for precipitation (a)-(d) and its MMM projection (e). Same convention as Fig. 3 applies.  355 
 356 

Figure 6 confirms the expected decline in sea-ice across the Arctic in the MMM, with sea-ice fraction displaying loss by at 357 

least 15% (cf. Fig. 6e). However, our storylines reveal a more complex picture than suggested by the MMM. On one hand, a 358 

pan- Central Arctic wide amplification/dampening of these changes occur when BKWarm and ArcAmp changes are additive 359 

(Fig. 6b,c). On the other hand, large regional contrasts can appear when BKWarm and ArcAmp changes are of opposite sign 360 

(Fig. 6a,d): this is especially obvious when comparing the Atlantic and Pacific sector of the Arctic. Those changes appear to 361 

be associated largely with the Arctic atmospheric warming, with the Barents-Kara Sea warming playing a more local role with 362 

its effect being felt primarily in the Atlantic sector of the Arctic ocean near the Barents-Kara Sea.  363 

 364 
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           365 
Figure 6: Storyline of climate change for sea-ice fraction (a)-(d) and its MMM projection (e). 366 

4 Discussion and Conclusions 367 

We produced four summertime climate change storylines for the Arctic region, for the four target variables that we consider 368 

to characterise seasonal change in the surface climate: 2 m temperature, precipitation rate, zonal wind at 850 hPa level, and 369 

sea-ice fraction over the Arctic region. We devised those storylines using an established methodology, previously applied to 370 

develop storylines across various midlatitude regions of both hemispheres (ZS17, ML20). We combined this framework with 371 

the realisation that Arctic climate change in summer is tightly associated with two climate indices, the Barents-Kara Sea 372 

warming (BKWarm) and Arctic atmospheric amplification (ArcAmp), which we used as predictors. Our choice of 373 

methodology and predictors was guided by two criteria: (i) our storylines should be representative of the diversity in model 374 

projections, and (ii) our predictors should be connected to physical processes. Criterion (i) ensures that the storylines capture 375 

a meaningful set of possible climate change realisations, while criterion (ii) allows for a scientific understanding of what drives 376 

this diversity in model projections. Criterion (i) is critical to the viewpoint of the end-users who need a plausible range of 377 

climate change scenarios, for instance to develop mitigation strategies, while criterion (ii) is of greater interest to scientists 378 

who desire insights regarding the drivers of climate change in the Arctic. When based on those two criteria, storylines can be 379 
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used to study possible impacts of climate changes, as well as categorise climate models by storylines; as such storylines are an 380 

efficient way of identifying a few climate models most representative of the diversity of CMIP6 projections. 381 

 382 

Our storylines are particularly successful at capturing the spread in model projections for the 2 m temperature: our primary 383 

finding is the differential warming rates between terrestrial and marine areas, which we find to be a major source of divergence 384 

in model projections. Our storyline analysis can be applied We also applied our storyline analysis to other variables, to a 385 

varying degree of success: the relevance of storylines to each target variable must be assessed case-by-case, as different target 386 

variables may be controlled by distinct processes. Likewise, our predictors are less successful at capturing changes in seasons 387 

other than the extended boreal summer. The specificity of storylines to variables, seasons and regions is an important limitation 388 

of this methodology, as it relies on careful tuning to comprehensively represent changes.  389 

 390 

Using this methodology, we produced the four Arctic climate change: ArcAmp- / BKWarm+ (A), ArcAmp+ / BKWarm+ (B), 391 

ArcAmp- / BKWarm- (C), ArcAmp+ / BKWarm- (D). Our storylines show noticeably different paths for Arctic climate 392 

change, which deviate substantially from the multi-model ensemble mean. Compared to the MMM, cooler surface temperature 393 

in storylines A and C suggests fewer fire risks and less extensive permafrost thawing, if undergoing the same amount of global 394 

warming. Storylines B and D present the opposite outcome, with more intense land warming that may lead to greater fire risks 395 

and more permafrost thawing. Concomitant changes in precipitation rates and surface wind are expected to modulate those 396 

trends: for instance, a wetter summer could imply a reduced fire risk in storyline B compared to D, even if both storylines 397 

show similar rates of warming over land. The combined impacts of physical changes at the surface on climate risks such as 398 

fires and permafrost thaw can only be evaluated with a quantitative analysis that is beyond the scope of our study. Furthermore, 399 

our analysis also shows that enhanced risks over land may or may not translate into enhanced impacts over marine areas. For 400 

instance, storyline A--which showed a lessening of climate risks over land---is tied to an enhanced warming of the Arctic 401 

Ocean and an amplified loss in sea-ice cover, suggesting a more navigable Arctic Ocean and greater disruptions in marine 402 

primary production compared to the MMM. Beyond changes that may be consistent across the entire Arctic, storylines also 403 

suggest futures in which regional contrasts are enhanced. For instance, storylines A and D show sea-ice cover shrinking may 404 

have pronounced differences between the Pacific and Atlantic sectors of the Arctic Ocean; such changes would likely entail 405 

regional differences in the volume of Arctic shipping or marine primary production. Overall, we demonstrate that storylines 406 

can be used to better understand the range of possible climate outcomes for the Arctic that emerge from coupled climate 407 

models, a critical step toward planning for climate mitigation adaptation strategies.  408 
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Appendix A: Empirical storylines 409 

We also tested an empirical method for producing storylines, in which predictor indices emerge from a principal component 410 

analysis (PCA). This is achieved by finding the first two components of a PCA applied to each target variable (von Storch and 411 

Zwiers, 2002), and using those as predictors. Specifically, we can express changes in a target variable 𝛥𝑍 as: 412 

 413 

Δ𝑍(𝑥,𝑚) = Δ𝑍(𝑥) +	∑ 𝐸𝑂𝐹!(𝑥)	𝑃𝐶!(𝑚)#
!$%    (A1) 414 

Here, 𝐸𝑂𝐹! is the eigenmode and 𝑃𝐶! the eigenvalues of the i-th mode, and the summation is done over 𝑁 principal 415 

components. As in the MLR storylines (Eq. 1), the PCA storylines describe the inter-model variability in model projections, 416 

that is with respect to the MMM changes. Comparing the two frameworks, we find that eigenmode 𝐸𝑂𝐹!(𝑥) in Eq. (A1) is 417 

analogue to coefficient 𝛽!(𝑥) in Eq. (1), and 𝑃𝐶!(𝑚) in Eq. (A1) to climate predictor 𝛥𝑃"1	(𝑚) in Eq. (1). Following the same 418 

methodology to the physical storylines, we produce four “empirical” storylines: 419 

 420 

Δ𝑍/4,4 = 𝑠(+𝐸𝑂𝐹%(𝑥) + 𝐸𝑂𝐹5(𝑥))    (A2a) 421 

Δ𝑍/4,. = 𝑠(+𝐸𝑂𝐹%(𝑥) − 𝐸𝑂𝐹5(𝑥))    (A2b) 422 

Δ𝑍/.,4 = 𝑠(−𝐸𝑂𝐹%(𝑥) + 𝐸𝑂𝐹5(𝑥))    (A2c) 423 

Δ𝑍/.,. = 𝑠	(−𝐸𝑂𝐹%(𝑥) − 𝐸𝑂𝐹5(𝑥))   (A2d) 424 

As in Eq. (3), 𝑠 defines the standardised climate response in Eq. (A2), which is derived from a Chi-square distribution for 2 425 

degrees of freedom and evaluated on the edge of the 80% confidence boundary region (𝑠 = 1.26). Compared to the 2-predictors 426 

MLR storylines (Eq. 3), the 2-components PCA storylines (Eq. A2) will better discriminate the spread in model projections, 427 

since the variance explained by the first two components of a PCA maximises the variance that can be explained in the 428 

intermodel spread from any two predictors. While PCA predictors present the advantage of being strictly orthogonal to each 429 

other by construction, they are not directly relatable to specific climate indices or physical processes, which is a substantial 430 

drawback for interpreting changes.  For these reasons, empirical storylines may be useful for providing a representative range 431 

of climate outcome to end-users (perhaps even more so than the MLR storylines, if judging solely from the amount variance 432 

explained); however, they are likely to be less relevant for understanding the underlying processes driving the diversity in 433 

climate outcomes.  434 
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 435 
Figure A1: EOF Storyline of climate change for: 2 m temperature, 850 hPa zonal wind, precipitation, and sea-ice fraction. 436 
 437 

Empirical storylines show qualitative similarities with the storylines presented in our study (see Fig. A1) to those found in our 438 

physical storylines for most target variables (Fig. 3-6), even if physical storylines consistently underperform empirical ones 439 
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with regards to the amount of explained variance in model projections. This is particularly true for the 2 m temperature, which 440 

shows very similar patterns between empirical storylines and our storylines (compare Fig. A1 and 3).   441 

Appendix B: Optimizing Arctic storylines’ predictors 442 

We selected the predictors for our Arctic storylines based on their ability to represent changes in key surface climate variables 443 

in a linear regression framework. This entails that our two predictors should maximize the variance explained by the MLR 444 

model while being as weakly correlated as possible (orthogonality of predictors is not strictly necessary but remains convenient 445 

for interpreting changes). We already motivated in Section 2.4 that lower tropospheric temperature change (represented by 446 

ArcAmp) and sea surface warming at high latitudes (represented by BKWarm) are the most relevant factors for defining our 447 

two predictors; however, we did not explain the specific choices of pressure level or area for evaluating ArcAmp or BKWarm.  448 

 449 

Table B1 shows the variance explained by the MLR model when using as predictors BKWarm (as defined in 2.4) and ArcAmp 450 

(as defined in 2.4 but using the pressure level value shown in top row); Table B1 also shows the correlation coefficient between 451 

BKWarm and ArcAmp at various levels.  452 

 453 

 1000 hPa 925 hPa 850 hPa 700 hPa 600 hPa 500 hPa 
Explained variance (R2) 0.40 0.43 0.41 0.35 0.32 0.30 
Predictors correlation (r2) 0.38 0.14 0.08 0.05 0.06 0.09 

Table B1: (top row) Explained variance for the 2-m air temperature over the Arctic by the multivariate linear regression model, 454 
using BKWarm and ArcAmp as predictors, for various evaluation levels of ArcAmp. (bottom row) Correlation R2 of BKWarm with 455 
ArcAmp, for various levels of evaluation of ArcAmp (columns) ranging from the lowest model level (1000 hPa; leftmost column) to 456 
the mid-troposphere (500 hPa; rightmost column). 457 
 458 
Compared with other vertical levels, Table B1 shows that temperature at the 850 hPa level is only weakly correlated with the 459 

Barents-Kara sea warming (0.08, see bottom row in Table B1) and also nearly maximizes the MLR explained variance (0.41, 460 

see top row in Table B1). Specifically, MLR explained variance is found to decreases from a maximum value of 0.43 at 925 461 

hPa to lower values higher in the troposphere, while the predictor correlation decreases swiftly above the lowest tropospheric 462 

level (1000 hPa), which makes the 825 hPa level a reseasonable choice for defining ArcAmp. We also note that the 825 hPa  463 

pressure level was selected to define Arctic Amplification in past studies (e.g., Manzini et al., 2014; ZS17). 464 
 465 
Similarly to Table B1, we compare the variance explained by the MLR model and correlation coefficient when using as 466 

predictors ArcAmp (as defined in 2.4) and sea surface warming averaged over various areas of the Northern Hemisphere 467 

(including the Barents-Kara sea), as shown in Table B2. In addition to the Barents-Kara sea, we tested the Central Arctic and 468 
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North Atlantic ocean warming because of their covariability with Barents-Kara sea warming (Fig, 2a) and being areas where 469 

intermodel variability in sea surface warming is the strongest at high latitudes (Fig. A1, a-d). 470 
 471 

 Barents-Kara Sea Central Arctic Ocean North Atlantic Ocean 
Explained variance (R2) 0.41 0.40 0.45 
Predictor correlation (r2) 0.08 0.09 0.13 

Table B2: same as Table 1 but using various oceanic regions for our ‘BKWarm’ predictor: Barents-Kara sea (left column; [65°N, 472 
80°N, 26°E, 95°E]; ocean only), Central Arctic ocean (middle column; [70°N, 90°N, 180°W, 180°E]; ocean only), North Atlantic 473 
ocean (right column; [45°N, 60°N, 70°W, 0°]; ocean only). 474 
 475 
Table B2 shows similar values for the MLR explained variance and predictor correlation when selecting either Central Arctic, 476 

North Atlantic or Barents-Kara sea warming. Based on this criterion alone, any of those three region could have been chosen 477 

as predictors for our Arctic storylines. Ultimately, we selected the Barents-Kara Sea as the reference area for defining our 478 

predictor because of its mediating role between the North Atlantic and the Arctic Ocean warming (e.g. Smedsrud et al., 2013), 479 

as explained in Section 2.4. 480 

Appendix C: storyline patterns - including the multi-model mean change  481 

Nearly all studies using the storyline approach show the total storyline patterns (e.g. ZS17), which corresponds to the response 482 

of the target variables to each predictor added upon the multi-model mean (MMM) change. Showing the full response is most 483 

relevant to the end-users to study climate risks but can make it more challenging to distinguish what differentiate storylines, 484 

because storylines’ patterns are strongly influenced by the common MMM change. For convenience, we provide the total 485 

storyline patterns, defined by adding the MMM change (normalized by the global and annual-mean 2-m air temperature) to 486 

the storyline pattern defined in Eqns. 3a-d and shown in Figs. 3-6, for: 2-m air temperature (Fig. C1, a-d), 850 hPa zonal wind 487 

(Fig. C1, e-h), precipitation rate (Fig. C1, i-l), and sea-ice fraction (Fig. C1, m-p). We comment on what differs between 488 

storylines in Sections 3-4.   489 
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 490 
Fig. C1: “Overall storylines” of climate change for 2-m temperature, 850 hPa zonal wind, precipitation and sea-ice fraction. 491 
“Overall storylines” are defined by combining the multi-model ensemble mean change (Figs. 3-6, e) with our climate change 492 
storylines, as defined in Equation 3 and with patterns shown on panels a, b, c, d of Figures 3-6. 493 
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