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Abstract. The role of the land carbon cycle in climate change remains highly uncertain. A key source of projection spread is

related to the assumed response of photosynthesis to warming, especially in the tropics. The optimum temperature for pho-

tosynthesis determines whether warming positively or negatively impacts photosynthesis, thereby amplifying or suppressing

CO2 fertilisation of photosynthesis under CO2-induced global warming. Land carbon cycle models have been extensively cal-

ibrated against local eddy flux measurements, but this has not previously been clearly translated into a reduced uncertainty5

in how the tropical land carbon sink will respond to warming. Using a previous parameter perturbation ensemble carried out

with version 3 of the Hadley Centre coupled climate-carbon cycle model (HadCM3C), we identify an emergent relationship

between the optimal temperature for photosynthesis, which is especially relevant in tropical forests, and the projected amount

of atmospheric CO2 at the end of the century. We combine this with a constraint on the optimum temperature for photosyn-

thesis, derived from eddy-covariance measurements using the adjoint of the JULES land-surface model. Taken together, the10

emergent relationship from the coupled model and the constraint on the optimum temperature for photosynthesis define an

emergent constraint on future atmospheric CO2 in the HadCM3C coupled climate-carbon cycle under a common emissions

scenario (A1B). The emergent constraint sharpens the probability density of simulated CO2 change (2100-1900) and moves its

peak to a lower value: 497 ± 91 compared to 607 ± 128 ppmv when using the equal-weight prior. Although this result is likely

to be model and scenario dependent, it demonstrates the potential of combining the large-scale emergent constraint approach15

with parameter estimation using detailed local measurements.

1 Introduction

One of the key sources of uncertainty in future climate projections is the evolution of the land carbon sink (Friedlingstein et al.,

2006; Cox et al., 2000; Arora et al., 2020; Canadell et al., 2021). As climate change elevates global temperatures and CO2

conditions, the rate and efficiency of vegetation photosynthesis and respiration changes, influencing the capacity of the land to20

act as a repository for anthropogenic CO2 (Medlyn et al., 1999; Cox et al., 2000; Friedlingstein et al., 2006). The structure and

distribution of vegetation may also change in response to associate climate change, such as changes in precipitation patterns
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(Trenberth, 2011). These responses provide a feedback on the initial climate change signal, potentially leading to key transitions

and tipping points in the land biosphere. Notable examples include a global carbon sink to source transition, Amazon rainforest

dieback (Cox et al., 2004), shifting of the boreal forests (Chapin et al., 2004), and greening of the Sahel (Claussen et al., 2002).25

Despite the increasing complexity of the climate-carbon cycle models developed for the latest IPCC (International Panel

on Climate Change) Assessment Report (AR6), there is still a significant spread in projections of vegetation and soil carbon

under common trajectories of atmospheric greenhouse gases and aerosols (Canadell et al., 2021). This spread arises partly

from different climate projections within the host climate model and partly from uncertainties in the land surface models

themselves. Indeed, for the Joint U.K. Land Environment Simulator (JULES) land-surface model (Clark et al., 2011; Best30

et al., 2011) under one of the IPCC Special Report on Emissions Scenarios (SRES - A1B; Nakicenovic et al. (2000)), the

atmospheric CO2 change by the end of the century (∆CO2) was found to range from 373.8 ppmv to 845.7 ppmv (Booth

et al., 2012). This range was achieved simply by perturbing some of the model parameters related to the sensitivities of plant

photosynthesis and soil respiration to temperature; stomatal conduction; soil water availability and surface evaporation; and

plant competition. The key source of projection spread was found to be related to the assumed response of photosynthesis to35

warming, especially in the tropics (Kattge and Knorr, 2007; Booth et al., 2012; Cox et al., 2013; Mercado et al., 2018). Indeed,

the optimum temperature for photosynthesis (Topt) is a common parameter in land-surface models that determines whether

warming has a positive or negative impact on photosynthesis, thereby either amplifying or suppressing CO2 fertilisation of

photosynthesis under CO2-induced global warming (Friedlingstein et al., 2006; Arora et al., 2020).

There is an urgent need to reduce such parametric uncertainties to make reliable and believable climate projections. Usu-40

ally, to reduce uncertainty in model simulations, models are confronted with observations. However, although there is now an

unprecedented amount of in situ and Earth Observation (EO) data with which to confront the models, the relatively shorter

timescales mean these cannot be directly used to create constraints on changes in the Earth System over the next century.

Furthermore, it is extremely computationally expensive to run complex land carbon cycle models (also known as land-surface

models - LSMs), within Earth System Models (ESMs) to produce multiple climate-carbon cycle projections. Instead, com-45

putationally efficient ways to translate short-term constraints into reductions in long-term projection uncertainty need to be

developed.

Emergent constraints are used to bridge the gap between short-term contemporary observations and long-term future predic-

tions (Cox et al., 2013; Wenzel et al., 2014, 2016; Hall et al., 2019; Williamson et al., 2021). Using the constraints provided

by observations and physical understanding available today, emergent constraints can be used to assess the relative likelihood50

of different long-term trends (Allen et al., 2002). Emergent constraints identified in the carbon cycle include the sensitivity of

the annual growth rate of atmospheric CO2 to tropical temperature anomalies (Cox et al., 2013), and the changing amplitude

of the CO2 seasonal cycle to the projected land photosynthesis (Wenzel et al., 2016; Hall et al., 2019; Williamson et al., 2021).

Data assimilation has been shown to be a useful and versatile tool to constrain the response of the carbon cycle in LSMs in the

short term. DA techniques use contemporary observations to improve the performance of a model by optimising two different55

components; either the values of unknown parameters (parameter estimation) or the predictions of the model according to a

given data set (state estimation). In both cases, this is achieved by trying to find an optimal match between the model and
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the observations by varying the properties of the model. In numerical weather prediction, DA has predominantly been used

to optimise the state whilst keeping the parameters fixed. This is because the physics are mostly known and well-understood.

However, in terrestrial carbon cycle models, where most of the equations are unknown, finding the correct set of parameters60

is more pertinent. These models can have over a hundred internal parameters representing the environmental sensitivities of

the various land-surface and plant functional types. These parameters are generally chosen to represent measurable real-world

quantities (e.g. surface albedo, plant root depth). This allows observationally-based estimates of these parameters to be made in

the early stages of the model development process. However, the detailed performance of an LSM can be very sensitive to such

internal parameters and so it is common for land-surface modellers to calibrate their models against available observations.65

Since optimisations give the best possible values of parameters given the model parameterisation and structural errors, the

results are more reliable than field measurements of the same parameters, often taken a different spatial scales than model

resolution.

In this study, we show how we can combine parameter optimisation with emergent constraint techniques to reduce un-

certainty in future projections. Specifically, we derive an emergent constraint between a linear regression across the possible70

JULES Topt values between the change in CO2 by the end of the century (∆CO2), and the posterior distribution of parameter

Topt optimised against GPP and LE in situ measurements.

2 Methods

2.1 A relationship between Topt and ∆CO2

In Booth et al. (2012)’s study, a large range of climate-carbon cycle feedbacks was found by perturbing the model parameters75

in the land surface component of the Hadley Centre global circulation model (version 3, HadCM3C). This experiment was

conducted under the common climate scenario, A1B, which describes a future world of very rapid economic growth, a global

population that peaks in the mid-century and declines after that, and the rapid introduction of new and more efficient technolo-

gies, with a balance of fossil intensive and non-fossil energy sources (Nakicenovic et al., 2000). One of the parameters perturbed

in Booth et al. (2012) was Topt, which corresponds to the optimal temperature for non-light limited photosynthesis for broadleaf80

forests.
::
In

:::::::
JULES,

::::::::
non-light

::::::
limited

::::::::
leaf-level

:::::::::::::
photosynthesis

:
is
:::::::::

controlled
:::
by

:::
the

:::::::::::
carboxylation

::::
rate

::::::::
following

:::
the

::::::
models

:::
of

:::::::::::::::::::::
Collatz et al. (1991, 1992)

::::
with

::::
Topt ::::::::::

representing
:::

the
:::::::::::

temperature
::
at

:::::
which

::::
the

:::::::::::
carboxylation

::::
rate

:::::::
reaches

:
a
:::::::::
maximum.

:
This

parameter was identified as the most important in controlling the carbon response of the model. Indeed, a statistically highly

significant (p=0.000153) relationship between Topt and net CO2 change by 2100 (∆CO2) was found, whereas the rest of the

parameters perturbed in the experiment showed little to no correlation with this change (Booth et al., 2012). Topt and ∆CO285

were shown to be anti-correlated, with higher values of Topt resulting in lower values of ∆CO2. This implies that when the

optimal temperature for photosynthesis for broadleaf trees is high, more CO2 is predicted to be removed from the atmosphere

through increased CO2 fertilisation. This is particularly relevant in the tropics, where in a warming world, ambient tempera-

tures have the potential to exceed optimal photosynthetic temperature persistently, and where broadleaf trees represent large

carbon stocks (Booth et al., 2012).90
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Using linear regression, we can exploit this relationship to calculate a probability distribution function (PDF) for the distri-

bution of ∆CO2 given Topt, i.e., P{∆CO2|Topt}. The contours of equal probability density around the best-fit linear regression

follow a Gaussian probability density

P{∆CO2|Topt}=
1√
2πσ2

f

exp

{
− (∆CO2 − f(Topt))

2

2σ2
f

}
(1)

where f is the function describing the linear regression between ∆CO2 and Topt, and σf is the “prediction error" of the95

regression.

2.2 A constraint on Topt using local eddy-flux measurements

The land-surface component of HadCM3C was the Met Office Surface Exchange Scheme (MOSES, Cox et al. (1999)), which

became the Joint U.K. Land Environment Simulator (JULES). The adJULES system (Raoult et al., 2016) was developed

specifically to optimise the internal parameter of the JULES land surface model using data assimilation. Data assimilation100

allows the integration of multiple types of data (y) in order to optimise model parameters (x) while making allowance for

associated uncertainties. It is a powerful tool which allows for objective and repeatable calibrations. A Bayesian framework is

used to include prior knowledge about the parameters (xb). All errors are assumed to be Gaussian distributed (with R and B the

prior error covariance matrices for the observations and parameters, respectively). The optimisation corresponds to minimising

the mismatch (J) between the model outputs and the observed data with respect to x:105

J(x) =
1

2
[(y−M(x))TR−1(y−M(x))− (x−xb)

TB−1(x−xb)] (2)

where M(x) is the model output vector given x. Methods for minimising the cost function range from stochastic random

search algorithms to deterministic gradient-based methods.

This second class of methods was integrated into the adJULES system (Raoult et al., 2016). The adJULES system uses

the adjoint of the JULES model, a computationally efficient way used to calculate the gradient of Eq. 2. The adjoint allows110

for efficient and repeatable optimisations utilising the gradient information. The quasi-Newton algorithm L-BFGS-B (limited

memory Broyden–Fletcher–Goldfarb–Shanno algorithm with bound constraints; see Byrd et al., 1995) is used to minimise the

cost function iteratively. At each iteration of the algorithm, the cost function and its gradient with respect to each parameter

are evaluated. The adjoint also allows for the accurate calculation of the Hessian (second derivative of the cost function) at the

optimum. The Hessian determines the posterior error covariance matrix, which is used to calculate the posterior uncertainties115

associated with the best-fit parameters (in the form of PDFs).

Deriving the adjoint of a model as complex as JULES is extremely costly. Fortunately, this has been done for JULES v2.2,

which uses the same photosynthesis model as MOSES, allowing us to optimise the same parameters and photosynthesis model

as used in HadCM3C and, therefore, in Booth et al. (2012)’s perturbation experiment. In Raoult et al. (2016), adJULES was

used to improve the model performance at a wide range of broadleaf sites by optimising the key land surface parameters120

perturbed in Booth et al. (2012). Each parameter was assigned a wide prior distribution, allowing the parameters to take values
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from a large range of credible values elicited from expert opinion. The optimisation was performed using monthly in situ gross

primary productivity (GPP) and latent heat (LE) data from CO2 eddy-fluxes measured at FluxNet sites (Baldocchi et al., 2001;

Pastorello et al., 2020). The optimisation
::::::
FluxNet

::::::::
database

:::::::
contains

:::::
more

::::
than

::::
500

::::::::
locations

:::::::::
worldwide,

::::
and

::
all

:::
of

:::
the

::::
data

::
are

:::::::::
processed

::
in

::
a
::::::::::
harmonised

:::::::
manner

:::::
using

:::
the

:::::::
standard

:::::::::::::
methodologies

::::::::
including

::::::::::
correction,

:::::::::
gap-filling,

::::
and

::::::::::
partitioning125

::::::::::::::::
(Papale et al., 2006)

:
.
::
A

::::
large

:::::::
number

::
of

::::::::
broadleaf

::::
sites

:::::
were

:::::::
selected

::::
from

::::
this

:::::::
database

:::
(27

::
in

:::::
total;

:::
see

:::::::::::::::::
Raoult et al. (2016)

::
for

:::::::
details).

::::
The

::::::::::
optimisation

::::
was

:::::::::
performed

::
in

::::::::
multi-site

::::::::::::
configuration,

:::
i.e.,

:::::::::::::
simultaneously

::::
over

:::
all

:::::::
selected

::::
sites,

:::
as

::::
well

::
as

:::
over

:::::
both

:::::
fluxes,

::
to
::::
find

::
a

:::::
single

:::
set

::
of

::::::
best-fit

:::::
model

::::::::::
parameters

:::
and

::::
their

:::::::::
associated

:::::::::::
uncertainties.

::::
The

:::::::::::
optimisation returned

best-fit parameters with posterior distributions much narrower than the prior, reducing the range of viable parameter values.

From these posterior distributions, we obtain an observational-constrained PDF for Topt, i.e., P (Topt).130

2.3 Calculation of the PDF for ∆CO2

We follow the method used by Cox et al. (2018) to bring these two elements together and calculate the PDF for ∆CO2. The

PDF for ∆CO2 is calculated by numerically integrating over the product of two PDFs, P{∆CO2|Topt} and P (Topt):

P (∆CO2) =

∞∫
−∞

P{∆CO2|Topt}P (Topt)dTopt. (3)

3 Results and discussion135

Figure 1 shows how the distribution of likely Topt values, i.e., P (Topt), changes when the JULES LSM is optimised against

local measurements of photosynthesis (GPP) and latent heat (LE) using the adJULES system (Raoult et al., 2016). We can see

that the posterior distribution is much more pronounced than the prior and suggests a higher parameter value than previously

used. Values of Topt taken from this distribution, when used in the JULES model, will result in the best fit of the model to local

measurements of photosynthesis (GPP) and latent heat (LE), and therefore improve the model’s credibility.140

As well as displaying the results found by optimising simultaneously over all of the broadleaf sites found in Raoult et al.

(2016), Fig. 1 also considers distributions of Topt found optimising at each individual broadleaf site. Though none of these

gives such a narrow distribution, the majority do suggest that the optimal value for the parameter (shown by the peak of the

distributions) is higher than previously used in the JULES model. This gives confidence in the posterior distribution found

by calibrating over all sites. Furthermore, one of the known limitations of gradient-based methods is their tendency to get145

stuck in local minima (i.e., not finding the ‘true’ global minimum). Optimisations over multiple sites have been shown to be

more robust, with the additional constraints from each site acting to smooth the cost function, thus making local minima less

common. As such, multi-site optimisations are more reliable in finding the true best-fit parameters and associated PDFs. For

the remainder of this study, we will solely use the posterior distribution found by calibrating over all sites.

:::::::
Through

:::
this

:::::::::
multi-site

:::::::::
calibration,

:::
we

::::
find

:::
Topt:::::

(i.e.,
:::
the

::::::
optimal

::::::::::
temperature

:::
for

::::::::::
non-limited

:::::::::::::
photosynthesis

:::
for

::::::::
broadleaf150

::::::
forests)

::
to

:::
be

::::::
around

:::::
35◦C

::::
with

:::
an

::::::::::
uncertainty

::
of

::::::::::::
approximately

::::::::
±0.9◦C.

::::
This

:::::
value

::::
falls

::::
well

::::::
within

:::
the

::::::
typical

::::::::
30-40◦C

::::::::::
temperature

::::
range

::::::::
observed

::
in

::::
most

::::::::
leaf-scale

:::::::::::::::::::::::
photosynthetic-temperature

:::::::
response

::::::
curves

::::::::::::::::::::
(Kattge and Knorr, 2007)

:
.
::::::::
However,
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Figure 1. Different PDFs of P (Topt) found when using the adJULES system to optimise the JULES land-surface model against Fluxnet data.

The prior distribution (red) of the parameter is compared to the posterior distribution (purple) found by calibrating simultaneously over the

27 broadleaf FluxNet sites considered in Raoult et al. (2016) (i.e., a multi-site optimisation), as well as the individual posterior distributions

found by calibrating at each site separately (i.e., single-site optimisations). All distributions are modelled by a Gaussian curve. Note the range

used in optimisation (entire x-axis) is greater than the range used in Booth et al. (2012) (vertical black lines). Initial value of Topt in JULES

is highlighted by the dashed red line.

:::
land

:::::::
surface

::::::
models

:::
are

:::
not

:::::::::
commonly

:::
run

::
at

::::::::
leaf-scale

:
-
:::::::::
especially

:::
not

::::
when

::::
run

:::::
within

:::::
wider

:::::
Earth

::::::
System

:::::::
Models

::
to

::::::
predict

::::::
climate

::::::
change.

:::::::::::
Furthermore,

::::
Topt ::

at
::::::::
leaf-scale

:::
has

::::
been

:::::
shown

::
to

:::::
differ

::::
from

::::
Topt ::

at
::::::::
ecosystem

:::::
level

::::::::::::::::::::::::::::::
(Field et al., 1995; Huang et al., 2019)

:
,
:::::
where

::::::::
additional

:::::::::
processes

::::::
limiting

:::::::::::::
photosynthesis

::::
may

::
be

::::::::
impacted

::
by

::::::::::
temperature

:::::::
changes

:::::
(e.g.,

:::::::::
accelerated

::::
leaf

::::::
ageing

::
at155

::::
high

::::::::::
atmospheric

::::::::::::
temperatures).

:::::
While

:::::::::::::::::
Huang et al. (2019)

::::::
showed

::::
that

::
the

::::::
global

:::::
mean

::
of

::::
Topt ::

at
:::::::::
ecosystem

::::
scale

::::
was

:::::
lower

:::
(23

::
±

::::
6◦C)

::::
than

::::::::
leaf-level

::::::
values

:
-
::::
they

::::
also

:::::::
showed

:::
that

:::::::
warmer

::::::
regions

::::
had

:::::
higher

:::::::::
ecosystem

:::::
scale

::::
Topt :::::

values
::::
than

::::::
cooler

::::
ones.

::::::
Indeed

:::
for

:::
the

::::::
tropics

:
-
:::::
these

::::::
values

::::
were

:::::
found

::
to
:::
be

:::::
close

::
to

:::::::::::::
growing-season

:::
air

::::::::::
temperature,

::::
and

::::
again

:::::::
similar

::
to

:::
the

:::::
values

::
of

::::
Topt :::::::

obtained
:::::::
through

:::
the

::::::::
adJULES

::::::::::
calibration.

We can now translate the reduction the uncertainty in the Topt into a reduction of uncertainty in carbon-climate feedbacks.160

Instead of running computationally expensive climate models with a new set of the parameter ensembles generated from the
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Figure 2. Contours of probability density for the linear regression adapted from Booth et al. (2012). The
:::
red

:::
dots

:::::
show

:::
the

:::::::::
relationship

::::::
between

:::::::
different

:::
Topt :::::

values
:::
and

::
the

:::::::
resulting

::::::
change

::
in

::::::::::
CO2

::::
CO2 by

::
the

:::
end

::
of

:::
the

::::::
century

::::
from

::
the

::::::::
parameter

:::::::::
perturbation

:::::::::
experiment

::
of

::::::::::::::
Booth et al. (2012)

:::
(see

::::
Table

:::
A1

::
of

::::
these

::::::
values).

::::
The thin black dashed-line shows the best-fit linear regression, and the thick

:::
think

:
black

lines show plus and minus the prediction error (see Methods). The vertical blue lines show the observational constraint on Topt value, with

the best fit shown by the thin dashed blue line, and the thick
::::
think vertical dashed lines showing plus and minus one standard error about this

value. The continuous contours are the product of these two underlying PDFs. The integral of these contours across the x-axis variable leads

to the Topt-constrained PDF shown in Figure 3a.

posterior distribution, this posterior PDF in Topt can be directly translated into a PDF for atmospheric carbon change using

the carbon cycle sensitivity identified in Booth et al. (2012) as an emergent constraint. The linear relationship between Topt

and CO2 change is shown in Fig. 2. The vertical blue lines included in this figure show the Topt constraint from adJULES.

These lines are found at the upper-end of the figure and select a narrow range of Topt values. Using this constraint, we can165

derive tighter bounds on the CO2 response of the model. The linear regression and Topt constraint can then be used to generate

contours from the product of the two PDFs, and hence the Topt-constrained PDF of CO2 change between 1900 and 2100.
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(a) The probability density histogram for the unconstrained Topt values

(orange) and the conditional PDF arising from the emergent constraint

(black).
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Figure 3. Emergent constraint on the sensitivity of Topt to the magnitude of future carbon cycle response. The horizontal dot-dashed lines

show the 95% confidence limits on the CDF plot. The orange histograms (both panels) show the prior distributions that arise from equal

weighting of parameter perturbation experiment in 500 ppmv bins.

Figure 3a shows this PDF. This PDF is compared to the histogram arising from assuming that all of the Topt values in the

ensemble are equally likely to be true. The emergent constraint from the Topt optimisation sharpens the PDF of CO2 change

(2100-1900) and moves its peak to a lower values: 496.5 ± 91 compared to 606.6 ± 128 ppmv when using the equal-weight170

prior. Figure 3a shows the resulting cumulative density function (CDF), which gives the probability of CO2 change (2100-

1900) taking a value lower than the value shown on the x-axis. The 95% confidence limits (shown by the black horizontal

lines) range from 300 ppmv to 650 pmv. We see that values higher than 650 ppmv become extremely unlikely. The Topt

constraint, therefore, reduces the estimated probability of CO2 change values, predicting a slightly stronger carbon sink over

broadleaf trees than previously suggested by the JULES climate predictions and reducing the range of possible responses by175

30% and discounting higher values of CO2 change.
:::::::
Although

::::
both

:::
the

:::::::::
calibration

::
of

::::
Topt :::::::::::::::::

(Raoult et al., 2016)
::
and

:::
the

:::::::::
parameter

::::::::::
perturbation

:::::::::
experiment

:::::
were

::::::::
conducted

:::::::
globally

::::::::::::::::
(Booth et al., 2012)

:
,
:::
the

::::
latter

::::::
found

:::
that

:::
the

::::::::
dominant

:::::
cause

::
of

:::
the

::::::
spread

::
in

:::::
future

::::
CO2::::

was
:::
due

::
to

:::
the

:::::::
tropical

::::
land,

::::
and

:::::::::
specifically

::::
due

::
to

:::
the

:::::::
assumed

::::::::
optimum

::::::::::
temperature

:::
for

::::::::::::
photosynthesis

:::::::
tropical

::::::
forests.

4 Conclusions180

Data assimilation and emergent constraints are two powerful techniques which can enable more precise projections of climate

change. By bridging the gap between both techniques, we have shown that optimisations can be used not only to improve the
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current state of the model but also to constrain climate predictions. Short-scale half-hourly observations spanning only a few

years can be used to inform us about expected changes in the next century. By severely reducing the uncertainty in Topt, we

have reduced the uncertainty in the CO2 change predicted by JULES under HadCM3C for the end of the century under the185

A1B climate scenario.
:::::
These

::::::
results

:::
are

::
no

::::::
doubt

:::::
model

::::
and

:::::::
scenario

::::::::::
dependent.

:::::::::::
Nevertheless,

::::
this

:::::
study

::::::::
highlights

::
a
::::
new

:::::::::::
methodology

::
to

:::
use

::::::
should

:::::
future

:::::::
models

:::::
show

:::::
strong

::::::::
emergent

:::::::::::
relationships

:::::::
between

::::::
model

:::::::::
parameters

::::
and

:::::
future

:::::::
climate

::::::
change.

:

JULES is a complex and ever-evolving land-surface model, with more processes regularly added. Newer versions JULES

now exist, so an updated parameter perturbation experiment would need to be conducted to understand the new sensitivities190

of the model to future climate change. However, running JULES coupled with a climate-carbon model like HadGEM3 (the

successor to HadCM3C) to test these sensitivities requires a lot of time and resources. Instead, we may need to rely on different

tools such as the IMOGEN (Integrated Model Of Global Effects of climatic aNomalies, Huntingford et al. (2010)) system,

an emulator of climate change using pattern-scaling. Furthermore, developing the adjoint of the newest version of JULES is

complicated. Deriving the adjoint of complex models like JULES is costly and becomes quickly outdated as the model versions195

advance. Fortunately, newer optimisation schemes have become available (e.g., LAVENDAR, Pinnington et al. (2020)), which

still allows for posterior PDFs to be generated after each optimisation.

This study acts as a proof of concept, a blueprint for constraining future projections of a land-surface model. We have shown

that observational datasets are crucial in helping us understand and reduce uncertainty large-scale climate feedback. With the

growing amount of observational data available, both from in situ and satellite, there is a unique opportunity to perform multiple200

data stream optimisations, increasing the credibility of the posterior parameter distributions. There are many data sets we could

use to constrain the carbon cycle, including the inter-annual variability of leaf area index, solar-induced fluorescence and

atmospheric CO2. Furthermore, due to the strong coupling between the carbon-water-energy cycles, we could move to other

constraints
::
use

:::::
other

:::::::::
constraints

:::
to

:::::::
optimise

:::
the

::::::
model

:::::::::
parameters, such as soil moisture and land surface temperature.

::::
Note

:::
that

::::::
unlike

:::
the

::::
more

::::::::
orthodox

:::::::::
application

:::
of

:::
DA

::
in

:::::::
weather

::::::::::
forecasting,

:::
the

::::::::::::::::
Raoult et al. (2016)

:::::
study

::::
used

::::
DA

:::
for

:::::::::
parameter205

::::::::
estimation

:::
to

:::::
derive

::::::::
optimum

::::::
JULES

::::::::::
parameters

::
to

::
fit

::::::::
FluxNet

:::::::::::
observational

::::
data

:::::
rather

:::::
than

::
to

:::::
nudge

:::::
state

::::::::
variables.

::::
The

::::
paper

::::::
shows

::::
that

:::
the

:::::::
resulting

:::::::::
constraint

::
on

:::
the

::::::::
optimum

::::::::::
temperature

:::
for

:::::::::::::
photosynthesis

:::::
(Topt)::

in
::::
turn

:::::::
provides

:::
an

::::::::
emergent

::::::::
constraint

::
on

:::
the

:::::::
increase

::
in

::::::::::
atmospheric

:::::
CO2

::
by

:::::
2100

::
in

:
a
:::::::
coupled

::::::::::::
climate-carbon

:::::
cycle

:::::
model

::::::::::::::::
(Booth et al., 2012)

:
.
::::::::
Although

:::
this

::::
clear

::::
link

::
is

::::
very

:::::
likely

::
to

::
be

::::::
model

:::::::::
dependent,

:::
we

::::::
present

:
it
::::
here

::
as

::
a
:::
first

::::::::
example

::
of

::::
how

::::
local

:::::
model

:::::::::
calibration

::::
and

:::
the

:::::::
emergent

:::::::::
constraint

::::::::
technique

:::
can

:::
be

::::
used

::
to

::::::::
constrain

:::::
global

:::::::::::::
climate-carbon

::::
cycle

::::::::::
projections.

:
210

Code and data availability. The code and data used in this paper are available in the following online repository: https://github.com/NRaoult/

adJULES
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Table A1.
:::::
Results

::::
from

::::::::::::::
Booth et al. (2012)

:
’s
::::::::
parameter

:::::::::
perturbation

:::::::::
experiment.

::
Topt: ::::

CO2 :::::
change

::::::::::
(2100-1900)

::::::
31.0000

: ::::::
589.773

:

::::::
33.6667

: ::::::
597.978

:

::::::
36.3333

: ::::::
373.826

:

::::::
35.6667

: ::::::
392.767

:

::::::
27.6667

: ::::::
616.082

:

::::::
31.6667

: ::::::
599.082

::::::
27.0000

: ::::::
817.798

::::::
29.0000

: ::::::
845.664

::::::
29.6667

: ::::::
720.893

::::::
33.0000

: ::::::
492.605

::::::
32.3333

: ::::::
616.539

::::::
37.0000

: ::::::
534.170

::::::
34.3333

: ::::::
506.310

::::::
28.3333

: ::::::
742.913

::::::
30.3333

: ::::::
573.196

::::::
35.0000

: ::::::
581.707

:
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