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Abstract 28 

Due to the lockdown during the COVID-19 pandemic in China from late January to early April in 29 

2020, a significant reduction of primary air pollutants has been identified by satellite and ground 30 

observations. However, this reduction is in contrast with the increase of surface O3 concentration 31 

in many parts of China during the same period. The reasons for this contrast are studied here from 32 

two perspectives: emission changes and inter-annual meteorological variations. Based on top-33 

down constraints of NOx emissions from TROPOMI measurements and GEOS-Chem model 34 

simulations, our analysis reveals that NOx and volatile organic compound (VOC) emission 35 

reductions as well as meteorological variations lead to 8%, -3%, and 1% changes in O3 over North 36 

China, respectively. In South China, however, we find that meteorological variations cause ~30% 37 

increases in O3, which is much larger than -1% and 2% changes due to VOC and NOx emission 38 

reductions, respectively, and the overall O3 increase is consistent with the surface observations. 39 

The higher temperature is the main reason that leads to the surface O3 increase in South China. 40 

Overall, inter-annual meteorological variations have a larger impact than emission reductions on 41 

the aggravated surface O3 pollution in China during the early lockdown period of COVID-19 42 

pandemic. 43 

 44 

1. Introduction 45 

Surface ozone (O3), an important air pollutant that is harmful to human health (Jerrett et 46 

al., 2009) and stomatal conductance of green vegetations (Gong et al., 2020), is produced by 47 

photochemical reactions of nitrogen oxides (NOx) and volatile organic compounds (VOC) (Liu et 48 

al., 1987; Sillman et al., 1990). In addition to emissions,  meteorological conditions, such as 49 

temperature, solar radiation and relative humidity, also have large impacts on surface O3 formation 50 

(Lu et al., 2019). 51 

Ground observations show that surface O3 increased dramatically during the COVID-19 52 

lockdown period in China by around 40% on average (Tong et al., 2023) and even larger than 100% 53 

(Shi and Brasseur, 2020; Liu et al., 2021) depending on the time period and region. The reduction 54 

of economic activities during the lockdown period led to a significant decrease of several primary 55 

air pollutants emissions. The NO2 vertical column density (VCD) from satellite measurements and 56 

surface NO2 concentration from ground measurements were reduced by 40% - 60% in China 57 

during the lockdown period (Bauwens et al., 2020; Shi and Brasseur, 2020; Liu et al., 2020a; Zhang 58 
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et al., 2020). A lower but discernible reduction of sulfur dioxide (SO2), carbon monoxide (CO), 59 

and formaldehyde (HCHO) have also been identified by satellite or ground-based observations in 60 

China (Shi and Brasseur, 2020; Levelt et al., 2022; Ghahremanloo et al., 2021). However, during 61 

this period surface O3 concentrations increased, and the respective roles of meteorological factor 62 

and emission reduction for the aggravated surface O3 pollution during the lockdown in China need 63 

to be further quantified. 64 

This study provides a quantitative analysis of the causes for the unexpectedly aggravated 65 

surface O3 pollution in China during the early lockdown period of the pandemic from two 66 

perspectives using GEOS-Chem model. One is anthropogenic emission reduction of NOx and 67 

VOC in response to the lockdown possibly under a VOC-limiting chemical regime of surface O3 68 

production (Guo et al., 2023), while the other is the impact of natural variability of meteorological 69 

conditions. Previous studies have reported the enhanced surface O3 due to NOx emission decline 70 

during the lockdown period in North China using chemical transport model (CTM) simulations 71 

without controlling for the impacts of meteorological variability (Zhang et al., 2021; Huang et al., 72 

2020; Miyazaki et al., 2020). Other studies quantified or excluded the meteorological impacts on 73 

the surface O3 using statistical analysis instead of CTM that account for the physical and chemical 74 

processes (Venter et al., 2020; Bi et al., 2022; Tong et al., 2023). Although a few studies have 75 

investigated the contributions from both emission reduction and meteorological variability to 76 

surface O3 increase using CTMs, most of their results have uncertainties due to the limitations of 77 

their analysis. For example, some of them keep the emissions unchanged (Zhao et al., 2020) or 78 

assume an arbitrarily uniform emission reduction instead of constraining the emission based on 79 

observations (Le et al., 2020; Liu et al., 2021). In cases where the emissions were constrained by 80 

the observations, the focus was limited to several cities in China (Liu et al., 2020b). Furthermore, 81 

in the past studies, the surface O3 increase during the lockdown period of 2-4 weeks is quantified 82 

in reference to the time period right before the lockdown instead of the same period in previous 83 

years; such comparisons by design cannot exclude the possibility that the seasonal variation of 84 

meteorology from early January to early April may have dominated the cause for the surface O3 85 

increase. A comprehensive analysis of the contributions from emission reductions and 86 

meteorological variations to the surface O3 increase during the first round of the lockdown period 87 

with respect to the same time period in previous years in China is therefore overdue.  88 
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Here, we apply a top-down method to update NOx and VOC emission in February and 89 

March in 2020 based on the TROPOMI NO2 and formaldehyde (HCHO) product. A set of GEOS-90 

Chem model simulations with NOx and VOC emissions and meteorological fields in different time 91 

periods are then conducted. Based on the difference in surface O3 concentration in different 92 

modeling sensitivity experiments, we quantitatively assess the respective roles of emission and 93 

meteorology in regulating surface O3 concentration in continental China. The ground observations 94 

of surface O3 and NO2 concentration are compared with the model simulations to verify our 95 

analysis. Section 2 introduces the satellite and ground-based measurements, NOx emission update 96 

scheme, and the configurations of GEOS-Chem simulation experiments. Section 3 provides an 97 

evaluation of the constrained NOx emission and surface O3 simulations. The analysis of the 98 

mechanism of the aggravated surface O3 pollution is presented in Section 4, followed by the 99 

summary and conclusions in Section 5. 100 

 101 

2. Datasets and Methods 102 

2.1 TROPOMI NO2 and HCHO product 103 

 We used tropospheric NO2 and HCHO level 2 VCD product provided by the Tropospheric 104 

Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite (Veefkind et 105 

al., 2012). S5P is a sun-synchronous polar orbit satellite launched on 13 October 2017, which 106 

covers the near-global domain in a single day. TROPOMI provides NO2 and HCHO retrievals at 107 

an approximately 7 km x 3.5 km spatial resolution (5.5km x 3.5 km since 6 August 2019) from the 108 

ascending orbit with an equatorial crossing time of ~13:30 local time (Van Geffen et al., 2020; De 109 

Smedt et al., 2018). The datasets were obtained from the NASA Goddard Earth Sciences Data and 110 

Information Services Center (https://daac.gsfc.nasa.gov). A quality control procedure similar to 111 

Bauwens et al. (2020) but with slightly stricter criteria is adopted for TROPOMI NO2 and HCHO 112 

data. The TROPOMI retrievals under one or more than one of the following conditions are 113 

screened out for data quality control. (1) Quality assurance value is no larger than 0.5; (2) cloud 114 

radiance fraction within NO2 or HCHO retrieval window is larger than 0.3; (3) solar zenith angle 115 

is larger than 70; and (4) viewing zenith angle is larger than 70. 116 

 117 

2.2 Ground O3 and NO2 measurements 118 
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 Surface measurements of O3 and NO2 were collected from ~1600 operational air quality 119 

monitoring stations over the mainland China managed by the China National Environmental 120 

Monitoring Center (http://www.cnemc.cn/en/). We calculated daily maximum 8-hour average 121 

(MDA8) O3 concentration from hourly in situ measurements. Surface O3 are measured by 122 

ultraviolet photometric method and Indigo disulfonate spectrophotometry, following the national 123 

environmental standards of HJ 590-2010 and HJ 504-2009. Surface NO2 concentrations are 124 

measured by the chemiluminescence method (Zhang and Cao, 2015), which can cause a positive 125 

bias in the NO2 measurements (Steinbacher et al., 2007). The true NO2 concentrations only account 126 

for 43%-76% and 70%-83% of measured values for rural and urban sites (Steinbacher et al., 2007). 127 

Following Wang et al. (2020b), we also applied a correction factor but with a lower value of 0.75 128 

to the measured NO2, considering that we included both rural and urban sites. The sampling ports 129 

are placed at 3 to 15 meters above the ground following the national environmental monitoring 130 

method standard HJ 664-2013. The measured data are reported in the unit of µg m-3 under standard 131 

temperature (273.15 K) and pressure (101.325 kPa) according to national environmental standards 132 

GB 3095-2012. 133 

 134 

2.3 GEOS-Chem model and its adjoint 135 

The global 3-D chemical transport model GEOS-Chem (Bey et al., 2001) version 12.7.2 is 136 

used here. We apply the nested-grid version of GEOS-Chem (Chen et al., 2009; Wang et al., 2004) 137 

with the horizontal resolution of 0.250.3125 and 47 vertical hybrid-sigma levels over East Asia 138 

(70E-140E, 15N-55N). The boundary conditions are obtained from the 22.5 global 139 

simulation. The model is driven by the GEOS-FP meteorological field provided by NASA Global 140 

Modeling and Assimilation Office (GMAO). A detailed O3-NOx-hydrocarbon chemistry (Mao et 141 

al., 2010; Mao et al., 2013; Travis et al., 2016) is included in the GEOS-Chem model. The altitude 142 

of the surface O3 output from GEOS-Chem is specified at 9 meters above the ground to match the 143 

in-situ measurements (Travis et al., 2017; Zhang et al., 2012).  Through our sensitivity test using 144 

GEOS-Chem, the variation of surface O3 from 3 to 9 meters above the surface is generally less 145 

than 0.723 ppb (75th percentile), and the median bias is 0.283 ppb. Travis et al. (2017) reported 146 

from 60 m to 10 m above the ground, the MDA8 O3 could decrease by ~3 ppb. Therefore, when 147 

comparing GEOS-Chem surface O3 with in-situ measurements, the differences caused by 148 

inconsistent reported altitudes (9 m versus 3-15 m) can be ignored. 149 
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The global anthropogenic emission used in GEOS-Chem model is the Community 150 

Emissions Data System (CEDS) inventory (Hoesly et al., 2018), which is replaced by the MIX 151 

inventory (Li et al., 2017) over the Asian region. Biogenic emissions for VOCs follows the Model 152 

of Emissions of Gases and Aerosols from Nature (MEGAN) inventory (Guenther et al., 2012). 153 

Natural NOx emissions includes biomass burning from GFED4 inventory (Van Der Werf et al., 154 

2017), soil NOx emissions (Hudman et al., 2012) and lightning sources (Murray et al., 2012; Ott 155 

et al., 2010). 156 

The adjoint of the GEOS-Chem model (Henze et al., 2007; Henze et al., 2009) is a 157 

component of the 4D-Var inversion method that can efficiently optimize spatially disaggregated 158 

aerosol and gas emissions. This is done through iterative minimization of a cost function using the 159 

model adjoint to calculate the gradient of the cost function with respect to a large number of model 160 

parameters (such as anthropogenic NOx emissions in each grid box) simultaneously. The cost 161 

function is the sum of the error weighted difference between forward model outputs and 162 

observations and the divergence of posterior model parameters from the prior estimate (Section 163 

2.4). We developed and validated the observation operator for TROPOMI NO2 in the GEOS-Chem 164 

adjoint model version 35n similar to Wang et al. (2020a) and used it to optimize the anthropogenic 165 

NOx emission during the lockdown period in China. The NOx emission optimization is 166 

implemented using the 4D-Var method with GEOS-Chem adjoint at the nested grid with the 167 

resolution of 0.250.3125. The prior anthropogenic NOx emission used in the GEOS-Chem 168 

adjoint is HTAP version 2 (Janssens-Maenhout et al., 2015), which is equivalent to the MIX 169 

inventory in East Asia (Li et al., 2017).   170 

 171 

2.4 NOx and VOC emission updates 172 

Two approaches are used to update the emissions during the lockdown period in 2020. The 173 

first is a simple mass balance approach (Leue et al., 2001; Martin et al., 2003; Vinken et al., 2014) 174 

for updating the NOx emission by assuming a constant NOx lifetime and NOx/NO2 ratio. In the 175 

period from 2010 to 2019, the anthropogenic NOx emissions have declined significantly as a result 176 

of the clean air actions of Chinese government (Zheng et al., 2018). We scale the anthropogenic 177 

NOx emission from year 2010 to 2019 using the spatially gridded ratio of mean TROPOMI 178 

tropospheric NO2 VCD in Feb.-Mar. 2019 to GEOS-Chem simulated NO2 column with default 179 

MIX 2010 emission (Appendix A), to obtain the baseline anthropogenic NOx emission in 2019, 180 
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which is denoted as MIX 2019. To derive anthropogenic NOx emissions in 2020 in China during 181 

the COVID-19 lockdown (MIX 2020), the spatially gridded ratio of mean TROPOMI tropospheric 182 

NO2 VCD in 2020 Feb.-Mar. to that in 2019 Feb.-Mar. is taken as a scaling factor for the updated 183 

baseline anthropogenic NOx emission in 2019 (MIX 2019). The two-month mean of TROPOMI 184 

NO2 VCD in 2019 and 2020 are calculated with the physical oversampling procedure (Sun et al., 185 

2018). Scaling factors in regions where mean TROPOMI tropospheric NO2 VCD in 2019 Feb.-186 

Mar. is less than 0.1 Dobson unit (DU) are set to 1 for emission updates in both 2020 and 2019, 187 

assuming that the lockdown only affects the populated areas (that have high NO2 in 2019).  188 

The second method for updating NOx emission is 4D-Var via the GEOS-Chem adjoint 189 

model. The anthropogenic NOx emissions in 2020 lockdown period derived from the GEOS-Chem 190 

adjoint is denoted as 2020 Adjoint. Following Wang et al. (2020a), the cost function 𝐽  for 191 

optimizing the NOx emission is defined as 192 

𝐽 =
1

2
∑[𝐻(𝒄) − 𝒔]T𝑺obs

−1 [𝐻(𝒄) − 𝒔]

𝒄∈𝛺

+
1

2
𝛾(𝝈 − 𝝈𝑎)

T𝑺𝑎
−1(𝝈 − 𝝈𝑎) (1) 193 

where 𝒔 is the tropospheric slant column density of TROPOMI NO2, which is the product of 194 

TROPOMI NO2 VCD and air mass factor. 𝐻 is the TROPOMI NO2 observation operator that maps 195 

the modeled NO2 concentrations 𝒄  to the observations in time and space and calculates the 196 

corresponding slant column density to make an apple-to-apple comparison of the model to 197 

TROPOMI. 𝛺 is the spatial and temporal domain where both model simulations and observations 198 

are available. 𝝈 is the scaling factor of anthropogenic NOx emissions to be optimized, and 𝝈𝑎 is 199 

the prior emission scaling factors, which equals 1. 𝑺obs and 𝑺𝑎 are observational and prior error 200 

covariance matrices, respectively. 𝛾 is the regularization factor that balances the weights of the 201 

observational term and prior term. We assumed 𝑺obs to be diagonal following Wang et al. (2020a) 202 

with the diagonal values calculated as the square of the standard error of tropospheric NO2 slant 203 

column density from the TROPOMI product. The prior error of the NOx emissions is assumed to 204 

be 100%. The spatial correlation of NOx emissions is considered in this study, and the off-diagonal 205 

elements of 𝑺𝑎 are computed by assuming an exponentially decaying error correlation with a fixed 206 

decaying distance of 150 km following Qu et al. (2017). The 𝛾 value was determined as 500 via 207 

the total error minimization and L-curve test (Henze et al., 2009; Qu et al., 2017). 208 

We developed the observation operator for TROPOMI NO2 product in the GEOS-Chem 209 

adjoint model with GEOS-Chem NO2 vertical profiles and TROPOMI NO2 averaging kernel 210 
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applied to minimize the discrepancies between the assumptions in TROPOMI NO2 retrieval and 211 

GEOS-Chem model simulation. See Appendix B for additional details. The observation operator 212 

has been validated using the finite difference method (Appendix C).  213 

For anthropogenic VOC emissions update, we only applied the mass balance method based 214 

on the TROPOMI HCHO data. The default anthropogenic VOC emissions used in the GEOS-215 

Chem is also MIX 2010 (Li et al., 2017). We ignore the change of anthropogenic VOC emissions 216 

from 2010 to 2019. The baseline VOC emission in 2019 (MIX 2019) is identical to that of MIX 217 

2010. The updated anthropogenic VOC emissions during the lockdown period is denoted as MIX 218 

2020. HCHO is one species of VOC and may not be able to represent other VOC species. Different 219 

from NOx, biogenic sources, meteorological impacts, and large retrieval uncertainty of HCHO due 220 

to its low optical depth prevent accurately quantifying the emission decline due to lockdown from 221 

satellite retrievals (Levelt et al., 2022). To optimize the signal, we spatially aggregate the ratio of 222 

TROPOMI HCHO during the lockdown period to that before the lockdown to the resolution of 223 

0.5, which are used as the scaling factors for updating the anthropogenic VOC emissions during 224 

the lockdown period he aggregation is based on the oversampling of TROPOMI HCHO at 0.01 225 

resolution, and the ratio is computed as the mean of  the lowest 25th percentile of all ratios at 0.01 226 

resolution in each 0.50.5 grid box, which ensures that only statistically significant changes are 227 

considered. We assumed the change of anthropogenic VOC emissions over sparsely populated 228 

areas (TROPOMI NO2 in 2019 Feb.-Mar. less than 0.1 DU) is insignificant and assigned the ratio 229 

values as one. To further evaluate the uncertainties associated with this approach, we also 230 

conducted sensitivity study by using different threshold in the aggregation.   231 

We assess the results from model experiments (as described in Section 2.5) adopting the 232 

updated NOx emission by comparing mean tropospheric NO2 VCD from GEOS-Chem and from 233 

TROPOMI observations in Feb.-Mar. of 2019 and 2020. The averaging kernel of TROPOMI NO2 234 

is applied to modeled NO2 column for this comparison, following Sha et al. (2021). Further 235 

quantitative evaluation of the model results also used the surface observation of O3 and NO2. 236 

 237 

2.5 GEOS-Chem model experiments 238 

A series of sensitivity experiments is conducted over China with different NOx and VOC 239 

emissions and GEOS-FP meteorological fields in different years using GEOS-Chem (v12.7.2) 240 

model. All simulations are conducted from Jan. 15 to Mar. 31. The 17 days before Feb. 1 are used 241 
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for spin up, and the model output for Feb. and Mar. are used for the analysis. The configurations 242 

of different simulations are listed in Table 1. 243 

 244 

Table 1. Configurations of model sensitivity experiments. 245 

Experiments Abbreviation Meteorology NOx Emission VOC Emission 

Baseline (2019) 2019B GEOS-FP 2019 MIX 2019 MIX 2019 

2020 Default 2020D GEOS-FP 2020 MIX 2019 MIX 2019 

2020 NOx 2020N GEOS-FP 2020 MIX 2020 MIX 2019 

2020 VOC 2020V GEOS-FP 2020 MIX 2019 MIX 2020 

2020 Lockdown 2020L GEOS-FP 2020 MIX 2020 MIX 2020 

2020 Adjoint 2020A GEOS-FP 2020 Adjoint 2020 MIX 2020 

 246 

We use the following equations to quantify the contributions from NOx and VOC emission 247 

reduction due to COVID-19 and meteorological variation to the increase of surface O3. 248 

∆𝑂3
NOx =

𝑂3
2020A − 𝑂3

2020V

𝑂3
2019B × 100% (2) 249 

∆𝑂3
VOC =

𝑂3
2020L − 𝑂3

2020N

𝑂3
2019B × 100% (3) 250 

∆𝑂3
ems =

𝑂3
2020A − 𝑂3

2020D

𝑂3
2019B × 100% (4) 251 

∆𝑂3
met =

𝑂3
2020D −𝑂3

2019B

𝑂3
2019B

× 100% (5) 252 

Where ∆𝑂3
NOx, ∆𝑂3

VOC and ∆𝑂3
ems are the relative differences in surface O3 concentration caused 253 

by emission decline of NOx, VOC, and both NOx and VOC resulting from COVID-19. ∆𝑂3
met 254 

represents the relative contribution to the surface O3 change from the meteorological variation 255 

between 2 years. 𝑂3
2019B, 𝑂3

2020D, 𝑂3
2020N, 𝑂3

2020V, 𝑂3
2020L and 𝑂3

2020A are mean MDA8 surface 256 

O3 concentration simulated by modeling experiments Baseline (2019), 2020 Default, 2020 NOx, 257 

2020 VOC, 2020 Lockdown and 2020 Adjoint, respectively (Table 1). 258 

The difference in simulated surface O3 between 2020 and 2019, is the result of both 259 

emission reductions and meteorological variations and is denoted as ∆𝑂3
all . It is calculated as 260 
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follows and is evaluated against the observed relative difference of mean MDA8 O3 in Feb. to Mar. 261 

between 2019 and 2020 at all ground sites: 262 

∆𝑂3
all =

𝑂3
2020A − 𝑂3

2019B

𝑂3
2019B

× 100% (6) 263 

 264 

3. Results of model development, emissions, and validation 265 

3.1 Changes of NOx and VOC emissions during COVID 266 

We updated the anthropogenic NOx emissions during the COVID lockdown using both 267 

4D-Var and mass balance methods (Fig. 1 and 2). The NOx emissions from the 4D-Var inversion 268 

share a similar spatial pattern and magnitude with those found using the mass balance method (Fig. 269 

1). However, the NOx emissions from the 4D-Var inversion are lower overall than those from the 270 

mass balance method over North China by ~10% and larger over central China by ~40%. Fig. 2(a-271 

b) shows that the 4D-Var NOx emission reduction is more severe over urban regions and displays 272 

a smoother spatial pattern than that from the mass balance approach, which is caused by the 273 

arbitrary cut off with 0.1 DU of NO2 VCD in the latter. Furthermore, the 4D-Var inversion 274 

captured the NOx emission decline in Northeast China where the mass balance approach did not 275 

because of the low NO2 VCD. During Feb.-Mar. 2020, the anthropogenic NOx emissions in East 276 

China decreased by ~30% compared to those in the same period in 2019. We also scale the 277 

anthropogenic VOC emissions based on the TROPOMI HCHO data (Fig. 2(c)). The VOC 278 

emissions decrease by ~20%-30% in East and South Asia. The anthropogenic VOC emission 279 

changes in sparsely populated areas over Northwest China are neglected.  280 
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 281 

Figure 1. Updated anthropogenic NOx emission during Feb.-Mar. 2020 from (a) mass balance 282 

method, (b) 4D-Var method and (c) their relative difference. 283 

 284 

 285 

Figure 2. Scaling factors for anthropogenic NOx emission in Feb.-Mar. from 2019 to 2020 as 286 

derived from (a) 4D-Var, (b) mass balance. Scaling factors for anthropogenic VOC emissions from 287 

the mass balance are in (c). 288 

 289 

3.2 Validation of NO2 simulations 290 

We further assess our updated anthropogenic NOx emissions by comparing the NO2 VCD 291 

from TROPOMI with that from GEOS-Chem with the anthropogenic NOx emissions before and 292 

after the scaling (Fig. 3 and 4). Before updating the NOx emissions, the 2020 Default (Fig. 3(b)) 293 

simulation significantly overestimates the NO2 VCD compared to the TROPOMI NO2 294 

observations (Fig. 3(a)). With the NOx emissions updated, the simulations 2020 NOx (Fig. 3(c)) 295 
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and 2020 Adjoint (Fig. 3(d)) exhibit a much better agreement with TROPOMI NO2 observation 296 

than 2020 Default. However, Fig. 3(c) shows the GEOS-Chem simulation with the NOx emissions 297 

from mass balance approach overestimated the NO2 VCD over Beijing and southwest of Hebei 298 

Province (pink and black circles in Fig.3) compared with TROPOMI data. The reason is that 299 

scaling factors are applied only to anthropogenic NOx emissions, not total NOx emissions, so it is 300 

expected that the model may still overestimate the NO2 column after scaling part of the total NOx 301 

emission. With the anthropogenic NOx emissions optimized by the 4D-Var method, the 302 

overestimation of NO2 VCD over Beijing and southwest of Hebei Province (pink and black circles 303 

in Fig. 3) is mitigated compared with the NOx emissions from mass balance approach.  304 

Fig. 4 further displays the statistics for the comparison between the TROPOMI NO2 and 305 

GEOS-Chem simulations via the scatterplot. The Baseline (2019) simulation captures the 306 

magnitude of NO2 VCD observations in 2019 well (Fig. 4(a)). The root-mean-square-error (RMSE) 307 

and mean bias error (MBE) for the simulation with 2020 NOx emission derived from mass balance 308 

method (Fig. 4(b)) decreased by 0.050 DU and 0.057 DU as compared to the 2020 Default (Fig. 309 

4(c)). Compared with the result from GEOS-Chem simulation 2020 NOx, emissions from 2020 310 

Adjoint (Fig. 4(d)) further led to the reduction of the MBE of the NO2 VCD by 0.006 DU and 311 

improve the correlation coefficient by 0.003. The significant overestimation of several pixels with 312 

TROPOMI NO2 VCD larger than 0.4 DU by the simulation 2020 NOx is also mitigated by 2020 313 

Adjoint. The MBE between GEOS-Chem and TROPOMI for Baseline (2019), 2020 NOx and 314 

2020 Adjoint are -0.004, 0.015 and 0.009 DU, respectively. The corresponding relative bias are 315 

1.9%, 10% and 6.0%, which are all less than the relative uncertainty of ~30% for TROPOMI 316 

tropospheric NO2 VCD over East China (Van Geffen et al., 2022). The improved agreement 317 

between the simulation with updated NOx emission and TROPOMI NO2 provides a basis for 318 

further analyzing the mechanism of aggravated surface O3 pollution. 319 
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 320 

Figure 3. Comparison of tropospheric NO2 VCD from (a) TROPOMI product in 2020 Feb.-Mar 321 

with that from GEOS-Chem simulations (b) 2020 Default, (c) 2020 NOx and (d) 2020 Adjoint. 322 

The pink and black circles mark the areas where NOx emissions from 4D-Var mitigated the NO2 323 

overestimation by mass balance method. The emissions and meteorology configurations for 324 

GEOS-Chem simulations 2020 Default, 2020 NOx and 2020 Adjoint are listed in Table 1. 325 

 326 
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 327 

Figure 4. Scatter plot of TROPOMI NO2 VCD versus the GEOS-Chem simulations for (a) 328 

Baseline (2019), (b) 2020 Default, (c) 2020 NOx and (d) 2020 Adjoint, respectively. TROPOMI 329 

data in Feb.-Mar. of 2019 was used in (a), and that of 2020 was used in (b-d). The emissions and 330 

meteorology configurations for GEOS-Chem simulations are listed in Table 1. Only pixels with 331 

TROPOMI NO2 VCD in 2019 Feb.-Mar. larger than 0.1 DU are included in all comparisons. 332 

 333 

 334 
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 Fig. 5 and Fig. 6 show the comparison of surface NO2 between ground measurements and 335 

GEOS-Chem simulations. The GEOS-Chem simulations Baseline (2019) (Fig. 5(b)) and 2020 336 

Adjoint (Fig. 5(d)) both capture the spatial pattern and magnitude of surface NO2 measurements 337 

in Feb.-Mar. of 2019 (Fig. 5(a)) and 2020 (Fig. 5(c)) well, respectively. Fig. 6 further displays the 338 

good agreements of surface NO2 from Baseline (2019) (Fig. 6(a)) and 2020 Adjoint (Fig. 6(b)) to 339 

the in-situ measurements via scatter plots. Table 2 displays the evaluation statistics, including the 340 

correlation coefficient (R), MBE, RMSE and the slope and intercept of the linear regression, for 341 

the simulated surface NO2 from various simulation experiments compared with the in-situ 342 

measurements. The correlation coefficient, MBE and RMSE between the simulation Baseline 343 

(2019) and ground measurements in 2019 Feb.-Mar. are 0.724, 1.572 µg m-3 and 8.49 µg m-3, 344 

respectively. Without updating the NOx emissions in 2020, the simulation 2020 Default 345 

overestimate the ground measurements of surface NO2 in 2020 Feb.-Mar (Table 2). The slope for 346 

the linear regression is 1.19, and the MBE and RMSE are 6.021 µg m-3 and 10.43 µg m-3, 347 

respectively (Table 2). After updating the NOx emissions, the GEOS-Chem simulations 2020 NOx 348 

and 2020 Adjoint have good agreements with the in-situ measurements in 2020 Feb.-Mar. The 349 

correlation coefficient between the simulation 2020 Adjoint versus the in-situ measurements is 350 

0.651, higher than that of 0.608 for the simulation 2020 NOx versus the ground measurements 351 

(Table 2). The MBE and RMSE of 2020 Adjoint (0.683 µg m-3 and 6.68 µg m-3) are lower than 352 

those of 2020 NOx (1.726 µg m-3 and 7.74 µg m-3) (Table 2). This result further indicates the 353 

superiority of 4D-Var for optimizing NOx emissions compared with the mass balance method 354 

(Cooper et al., 2017; Streets et al., 2013).  355 

 356 
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 357 

Figure 5. Comparison of surface NO2 concentrations from ground measurements for (a) 2019 358 

Feb.-Mar. and (c) 2020 Feb.-Mar. versus those from GEOS-Chem simulations (b) Baseline (2019) 359 

and (d) 2020 Adjoint. Grey color means no data is presented. 360 

 361 
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 362 

Figure 6. Scatter plots for comparing the surface NO2 concentrations from GEOS-Chem 363 

simulations and ground measurements. (a) GEOS-Chem simulation Baseline (2019) versus ground 364 

measurements in 2019 Feb.-Mar. (b) GEOS-Chem simulation 2020 Adjoint versus ground 365 

measurements in 2020 Feb.-Mar. Note: the number of ground sites differ in these two years. 366 

 367 

 368 

Table 2. Evaluation statistics for modeled surface NO2 compared with the in-situ measurements*. 369 

Experiments R MBE (µg m-3) RMSE 

(µg m-3) 

Slope Intercept 

(µg m-3) 

Baseline (2019) 0.724 1.572 8.49 1.01 1.43 

2020 Default 0.661 6.021 10.43 1.19 2.95 

2020 NOx 0.608 1.726 7.74 0.92 3.03 

2020 Adjoint 0.651 0.683 6.68 0.91 2.22 

* The simulation experiment Baseline (2019) is compared with the ground measurements in 2019 370 

Feb.-Mar. Other three experiments are compared with the ground measurements in 2020 Feb.-Mar. 371 

 372 

 Fig. 7 (a) is the Taylor diagram for evaluating the GEOS-Chem simulations of surface NO2 373 

concentrations from 2020 Default, 2020 NOx and 2020 Adjoint using the in-situ measurements. 374 
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The simulation 2020 Adjoint (inverted triangle in Fig. 7(a)) has the best performance among these 375 

three simulations with the lowest relative bias and lowest normalized centered RMSE. Without 376 

updating the NOx emission, 2020 Default features a relative bias of ~37%. After updating the NOx 377 

emissions, 2020 NOx reduces the relative bias, normalized centered RMSE and normalized 378 

standard deviation from around 37%, 1.38 and 1.80 to around 10%, 1.20 and 1.51 compared with 379 

2020 Default, but the correlation coefficient also decreases. By using 4D-Var method, 2020 380 

Adjoint further reduces the relative bias, normalized centered RMSE and normalized standard 381 

deviation and increases the correlation coefficient compared with 2020 NOx.  382 

 383 

Figure 7. Taylor diagram for evaluating the GEOS-Chem simulations of (a) surface NO2 and (b) 384 

surface O3 during lockdown period (2020 Feb.-Mar.) using ground observations for different 385 

simulation experiments listed in Table 1. The evaluation of surface O3 only includes the areas 386 

where the NOx emissions optimized by 4D-Var reduced by more than 10%. 387 

 388 

 389 

3.3 Evaluation of surface O3 simulations 390 

 We evaluated the GEOS-Chem simulations of MDA8 surface O3 from different simulation 391 

experiments listed in Table 1 using ground measurements. Fig. 7(b) is the Taylor diagram for 392 

comparing the surface O3 concentrations during 2020 Feb.-Mar. from ground measurements and 393 
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GEOS-Chem simulations. We focused on areas with significant NOx emissions reduction to better 394 

assess the role of updated NOx emissions in improving surface O3 simulations. The ground sites 395 

where the NOx emissions from 4D-Var decline by less than 10% are excluded. The correlation 396 

coefficient between the simulation Baseline (2019) and ground observations is ~0.53 and the 397 

relative bias is around -25%. By applying 2020 meteorological fields and scaling the VOC 398 

emissions, the correlation coefficients decreased to ~0.40 for model simulations 2020 Default and 399 

2020 VOC, with little reduction in the relative bias. By updating the NOx emissions, the relative 400 

bias reduced to around -10% while the correlation coefficients remain at ~0.50 for model 401 

simulations 2020 NOx, 2020 Lockdown and 2020 Adjoint. This indicates the NOx emission 402 

updates significantly improve the surface O3 simulations. Comparing the simulations 2020 Default 403 

and 2020 VOC, or 2020 NOx and 2020 Lockdown, the results show that scaling VOC emissions 404 

does not improve the surface O3 simulations significantly over the continental China, but over 405 

South China, VOC emissions update reduces the relative bias by 3%. Among all simulations, 2020 406 

Adjoint exhibits the best performance with the lowest normalized centered RMSE, largest 407 

correlation coefficient and a low relative bias of ~10%. This result further confirms the superiority 408 

of the 4D-Var with respect to the mass balance method for optimizing NOx emissions. Therefore, 409 

we used the 2020 Adjoint to evaluate the impacts of NOx emission on surface O3 in the following 410 

analysis.  411 

Fig. 8 compares the modeled surface O3 in Feb.-Mar. of 2019 (Fig. 8(a)) and 2020 (Fig. 412 

8(b)) and the relative difference (Fig. 8(c)) computed from Equation (6) with the in-situ 413 

measurements (Fig. 8(d-f)). The ground observations show that the highest level of surface O3 414 

pollution occurs in North China and southwest of China. The average MDA8 O3 in two months 415 

can reach up to ~110 µg m-3 at STP (~51.4 ppbv), which is higher than the China National Ambient 416 

Air Quality Standard daily maximum 8-hour Grade I standard of 100 µg m-3. GEOS-Chem model 417 

underestimates the surface O3 over North China for both years compared with ground observations, 418 

which could be a result of the out-of-date VOC emissions, but it captures the magnitude and spatial 419 

distribution of surface O3 and the increasing trend in South China well. In South China, the 420 

measured surface O3 in 2020 Feb.-Mar. increases by 30-50%, while over North China, it increases 421 

generally by less than 20% even decreases in some regions. The relative differences of simulated 422 

surface O3 between two years is comparable to the ground observations over South China (green 423 

box in Fig. 8(c, f)). Over North China (pink box in Fig. 8(c, f)), the average relative difference 424 
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between two years from the model and observation are 4.27% and -3.01%, respectively, both of 425 

which are much smaller than their counterparts in South China. While the relative difference from 426 

model simulations has different signs as compared to that of observations on average, both the 427 

change of O3 is indeed small and the model is able to capture the part of O3 decrease in the 428 

southwest part of the North China domain (Fig. 8(c)). We note that some previous studies showed 429 

large increase of O3 in North China, but such increase is in comparison with the O3 in the month 430 

right before the lockdown (not the same time in 2019; (Shi & Brasseur, 2020; Y. M. Liu et al., 431 

2021). 432 

 433 

 434 

Figure 8. Comparison of MDA8 surface O3 in 2019 and 2020 Feb.-Mar. and the relative difference 435 

between two years from GEOS-Chem model (a-c) versus ground observations (d-f). GEOS-Chem 436 

mean MDA8 O3 at 9 m above the surface under standard temperature and pressure (STP; 273.15 437 
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K, 101.325 kPa) from (a) Baseline (2019) and (b) 2020 Adjoint simulation (Table 1) together with 438 

(c) their relative difference. Ground observed mean MDA8 surface O3 under STP in (d) 2019 Feb.-439 

Mar.; (e) 2020 Feb.-Mar. and (f) their relative difference. The pink and green boxes in (c) and (f) 440 

define the North China and South China domain. 441 

 442 

 443 

4. Mechanism of aggravated surface O3 pollution 444 

4.1 Relative contribution from declining emissions and meteorological variations 445 

From equations (2)-(5) we can analyze the mechanism of surface O3 increase in China 446 

during the COVID-19 pandemic (Fig. 9). NOx emission reduction as a result of COVID-19 447 

lockdown leads to a ~8% increase in the mean MDA8 surface O3 over North China (pink boxes in 448 

Fig. 9) between 2019 and 2020 Feb.-Mar. (Fig. 9(a)), while the VOC emission decline causes ~3% 449 

of O3 decrease (Fig. 9(b)). The average contribution of the meteorological variations to the surface 450 

O3 change is less than 1% in North China (Fig. 9(d)). However, in South China, the inter-annual 451 

meteorological variations dominate the surface O3 increases, causing a ~30% increase (Fig. 9(d)), 452 

while the NOx and VOC emission reduction has little impacts. The overall magnitude of emissions 453 

contribution to the surface O3 change over North China is ~5%, similar to that of the 454 

meteorological effects, but meteorological variations lead to both O3 increases and decreases in 455 

different regions. Over South China, the meteorological effect is much larger than the net effects 456 

of declining emissions. Overall, the impact of inter-annual meteorological variations between 2019 457 

and 2020 is almost 30 times larger than the overall emissions impacts on the aggregated surface 458 

O3 pollution in China. Our results are consistent with the conclusion from Zhao et al. (2020) that 459 

meteorological variation has larger impacts than emissions reduction on surface O3 in the southern 460 

city of Guangzhou, but in Beijing, emission reduction has a larger impact during 23-29 January. 461 

Liu et al. (2020b) reported that the surface O3 increase in the major cites of the Yangtze River 462 

Delta region were driven by both emission reduction and meteorological variations to a similar 463 

degree from pre-lockdown period (Jan. 1-22, 2020) to lockdown period (Jan. 23-Feb. 29, 2020). 464 

However, Zhao et al. (2020) and Liu et al. (2020b) only focused on the lockdown period of one 465 

week in reference to the time period right before the lockdown instead of the same period in 466 

previous years, which cannot exclude the effects of seasonal variation of meteorology and did not 467 

provide a comprehensive analysis over the whole lockdown period. Moreover, Liu et al. (2020b) 468 
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only analyzed four representative cities instead of showing the analysis at a national scale. Further, 469 

Zhao et al. (2020) did not update the anthropogenic emissions during the lockdown period, which 470 

brings significant uncertainties to their analysis. 471 

 472 

 473 

 474 

Figure 9. Relative difference in simulated surface O3 caused by (a) NOx emission reduction, (b) 475 

VOC emission reduction, (c) overall emission reduction and (d) meteorological variations due to 476 

COVID-19 lockdown. The pink and green boxes in each panel define the North China and South 477 

China domain. 478 

 479 

 480 
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4.2 Higher temperature leading to aggravated surface O3 pollution in South China 481 

 The positive correlation between the surface O3 and temperature is widely observed and 482 

reported in the literature (Pusede et al., 2015). Higher temperature leads to higher concentrations 483 

of surface O3 because it improves the O3 production rate by affecting the organic reactivity, 484 

production of HOx radicals, formation and decomposition of peroxy nitrates and alkyl nitrates 485 

(Pusede et al., 2015). We calculated the daily difference in Feb.-Mar. between 2020 and 2019 486 

(excluding Feb. 29, 2020) for the daily mean of MDA8 O3 from ground measurements and 2-meter 487 

air temperature from GEOS-FP data used in our GEOS-Chem simulations for the South China 488 

(106E - 118E, 22N - 31N, green box in Fig. 10(a)) and North China (111E - 123E, 33N - 489 

40N, pink box in Fig. 10(a)). Fig. 10 displays the difference of 2-month mean 2-meter air 490 

temperature in Feb.-Mar. between 2020 and 2019 (Fig. 10(a)) and the scatter plot between the 491 

daily difference of measured surface O3 concentration and 2-meter air temperature over both South 492 

China (green dots in Fig. 10(b)) and North China (pink dots in Fig. 10(b)). We found the 2-meter 493 

air temperature increased by ~2.3C in South China, and the daily difference of surface O3 494 

concentration and 2-meter air temperature are well correlated with a positive correlation 495 

coefficient of 0.612. Therefore, the significant aggravated surface O3 pollution in South China 496 

could be attributed to the temperature increase. The reason for the temperature increase is the lower 497 

cloud fraction. Via analyzing the GEOS-FP data, we found the cloud fraction decreases by ~5%, 498 

and the downward visible direct flux at surface increased by 5 W m-2 over South China. The lower 499 

cloud fraction increases the downward solar radiation at the surface during the lockdown period, 500 

leading to higher surface air temperature. The enhanced solar radiation at the surface could also 501 

promote the production of O3 via photochemical reactions. In North China, 2-meter air temperature 502 

also increased by 1.8C, but the measured surface MDA8 O3 decreased by 3% (Fig. 8(f)). Fig. 503 

10(b) shows the daily difference of MDA8 O3 and 2-meter air temperature over North China also 504 

has a high correlation coefficient of 0.731. However, the intercept of the linear regression line is 505 

negative, so that the surface O3 could decrease even though the temperature increases. The 506 

predicted average change of surface MDA8 O3 in South China and North China are marked by the 507 

green and pink open squares respectively in Fig. 10(b) based on the linear regression. Because of 508 

the different intercepts, the predicted MDA8 O3 in South China increases by ~9.0 µg m-3, while it 509 

decrease by 2.2 µg m-3 in North China, although the average temperature increased in both South 510 

and North China.   511 
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 512 

 513 

Figure 10. (a) The change of 2-meter air temperature from 2019 Feb.-Mar. to 2020 Feb.-Mar. (b) 514 

The scatter plots between the daily difference of surface O3 measurements and 2-meter air 515 

temperature in Feb.-Mar. between 2020 and 2019 over South China (green dots) and North China 516 

(pink dots). The green and pink open squares mark the predicted average change of surface MDA8 517 

O3 in South China (green open square) and North China (pink open square), respectively, based 518 

on the linear regression against temperature change. 519 

  520 

5. Summary 521 

A significant reduction in primary air pollutants has been identified by surface and satellite 522 

observations during the COVID-19 pandemic in China (Bauwens et al., 2020; Miyazaki et al., 523 

2020), which is in contrast to the increase of surface O3. In this study, we analyzed the reasons for 524 

the enhanced surface O3 pollution from two perspectives: anthropogenic emissions reduction and 525 

inter-annual meteorological variations. We constrain the NOx emissions based on the TROPOMI 526 

NO2 product using both the mass balance and 4D-Var methods. The VOC emissionw were also 527 

updated based on the TROPOMI HCHO product via the mass balance approach. We analyzed the 528 

contributions from emissions reduction and meteorological variations to surface O3 increases 529 

through a series of sensitivity simulations using the GEOS-Chem model. 530 
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The updated NOx emissions from the 4D-Var and mass balance approaches share a similar 531 

spatial pattern. However, the NOx emissions from 4D-Var are lower than those from the mass 532 

balance method over North China by ~10% but larger over central China by ~40%. The evaluation 533 

of the simulations with the updated emissions against the TROPOMI NO2, in-situ measurements 534 

of surface NO2 and O3 indicate that the NOx emissions from the 4D-Var inversion leads to better 535 

model performance than that from the mass balance approach. 536 

The anthropogenic NOx emission decreased by ~30% over East China during 2020 Feb.-537 

Mar. compared to the same period in 2019. Over North China, NOx emission reduction leads to a 538 

~8% increase in the mean MDA8 surface O3, while the VOC emissions decline causes O3 to 539 

decrease by ~3%. The average contribution of meteorological variations to the surface O3 change 540 

is less than 1% in North China. However, in South China, the inter-annual meteorological variation 541 

dominates the surface O3 increase, causing a ~30% increase, while the NOx and VOC emission 542 

reduction has nearly no impacts on O3. Overall, the impact of inter-annual meteorological 543 

variations between 2019 and 2020 is almost 30 times larger than the impact of emissions  on the 544 

enhanced surface O3 pollution in China. 545 

The significant increase of surface O3 in South China could be attributed to the higher 546 

temperature during the lockdown period, which is caused by the lower cloud fraction. The lower 547 

cloud fraction increases the downward solar radiation at the surface during the lockdown period, 548 

leading to higher surface air temperature. The enhanced solar radiation at the surface could also 549 

promote the production of O3 via photochemical reactions. 550 

 551 

 552 

Appendix A: NOx emission reduction in China from 2010 to 2019 553 

The default anthropogenic NOx emission over East Asia in GEOS-Chem is MIX 2010 (Li 554 

et al., 2017).To generate the anthropogenic NOx emission in 2019, we calculated the ratio of mean 555 

TROPOMI tropospheric NO2 VCD in Feb.-Mar. 2019 to GEOS-Chem simulated NO2 VCD with 556 

the default MIX 2010 emission as the scaling factor (Fig. A1). The scaling factors in regions where 557 

mean TROPOMI tropospheric NO2 VCD in 2019 Feb.-Mar. less than 0.1 DU are set to 1. From 558 

2010 to 2019, the anthropogenic NOx emission has declined significantly as a result of the clean 559 

air actions of Chinese government (Zheng et al., 2018). 560 

 561 
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  562 

Figure A1. The scaling factor of anthropogenic NOx emission from year 2010 to 2019. 563 

 564 

 565 

Appendix B: Applying the TROPOMI NO2 averaging kernel in the observation 566 

operator 567 

 To optimize the NOx emissions and minimize the cost function (Equation (1)) with the 4D-568 

Var method, GEOS-Chem adjoint needs to compute the derivative of the cost function with respect 569 

to the model parameters to be optimized, which is the scaling factors of the anthropogenic NOx 570 

emissions in this study. An essential step is to calculate the adjoint forcing 𝑭 , which is the 571 

derivative of the cost function with respect to the modeled NO2 concentration shown as Equation 572 

(B1).  573 

𝑭 =
𝜕𝐽

𝜕𝒄
= 𝑺obs

−1 [𝐻(𝒄) − 𝒔]
𝜕𝐻(𝒄)

𝜕𝒄
(B1) 574 

For each single TROPOMI NO2 observation, the adjoint forcing component 𝑓 and cost function 575 

component 𝑗 are computed as Equation (B2) and Equation (B3).  576 

𝑓 =
𝑀gc𝑣gc −𝑀obs𝑣obs

𝑒obs𝑀obs
𝑀gc (B2) 577 

𝑗 =
0.5𝑓(𝑀gc𝑣gc −𝑀obs𝑣obs)

𝑀gc

(B3) 578 
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Here 𝑀gc is GEOS-Chem air mass factor applying the GEOS-Chem NO2 vertical profiles and 579 

TROPOMI NO2 averaging kernel. 𝑀obs  is TROPOMI air mass factor. 𝑣gc  and 𝑣obs are the 580 

tropospheric NO2 VCD from GEOS-Chem model and TROPOMI observation, respectively. The 581 

product of air mass factor and NO2 VCD is NO2 slant column density. 𝑒obs is the standard error of 582 

TROPOMI tropospheric NO2 VCD. 583 

 We calculated the GEOS-Chem air mass factor 𝑀gc as Equation (B4) following Qu et al. 584 

(2019).  585 

𝑀gc =
∑ 𝑐𝑖

gc
∆𝑝𝑖

gc
𝑤𝑖
gc

𝑖∈trop.

∑ 𝑐𝑖
gc
∆𝑝𝑖

gc
𝑖∈trop.

(B4) 586 

Here 𝑐𝑖
gc

 is GEOS-Chem NO2 mixing ratio at vertical layer i, ∆𝑝𝑖
gc

 is the pressure difference 587 

between the GEOS-Chem vertical layer i and i+1. 𝑤𝑖
gc

 is the scattering weight at the GEOS-Chem 588 

vertical layer i, which is calculated by the linear interpolation of the scattering weights at the 589 

vertical coordinate of the model TM5 used for TROPOMI NO2 retrieval. The scattering weight at 590 

the TM5 vertical layer l (𝑤𝑙
TM5) is computed as the product of TROPOMI air mass factor and the 591 

TROPOMI averaging kernel at the TM5 vertical layer l (𝐴𝑙
TM5) using Equation (B5) (Eskes and 592 

Boersma, 2003). 593 

𝑤𝑙
TM5 = 𝑀obs𝐴𝑙

TM5 (B5) 594 

 595 

Appendix C: Validation of the TROPOMI NO2 observation operator 596 

We validated the observation operator by comparing the sensitivity of the cost function 597 

with respect to the emission scaling factor from GEOS-Chem adjoint and a finite difference 598 

estimation as shown in Equation (C1). We shut down the transport and exclude a priori term from 599 

the cost function for the validation, so that the gradient of cost function component in each grid 600 

cell to the local emission scaling factor equals to the gradient of total cost function to the emission 601 

scaling factor in the same grid cell. 602 

𝜕𝐽(ln 𝜎)

𝜕 ln 𝜎
≈
𝐽(ln(𝜎 + 0.05)) − 𝐽(ln(𝜎 − 0.05))

ln(𝜎 + 0.05) − ln(𝜎 − 0.05)
(C1) 603 

 Fig. C1 compared the cost function sensitivities calculated from GEOS-Chem adjoint and 604 

the finite difference method for the nested grids with the spatial resolution of 0.250.3125. The 605 

spatial pattern and magnitude of the cost function sensitivities from the two methods match with 606 
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each other with a correlation coefficient of 0.97. The statistics show that the agreement of the 607 

adjoint sensitivities and finite difference sensitivities in this study is comparable to that in Wang 608 

et al. (2020a) although we constrain the NOx emission at a much finer resolution of 0.250.3125 609 

than in their study (22.5).  610 

 611 

 612 

Figure C1. Comparison of adjoint sensitivities and finite difference sensitivities. (a) Scatter plot 613 

of the adjoint sensitivity of the cost function with respect to the logarithm of NOx emission scaling 614 

factor versus the finite difference sensitivities. The color scheme for panel (a) encodes the number 615 

of samples (the legend on the right of panel (a)). (b) Map of finite difference sensitivity. (c) Map 616 

of adjoint sensitivity. 617 

 618 
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