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Abstract 32 

 33 

Systematic, routine, and comprehensive evaluation of Earth System Models (ESMs) facilitates benchmarking 34 

improvement across model generations and identifying the strengths and weaknesses of different model 35 

configurations. By gauging the consistency between models and observations, this endeavor is becoming increasingly 36 

necessary to objectively synthesize thousands of simulations contributed to the Coupled Model Intercomparison 37 

Project (CMIP) to date. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) Metrics Package 38 

(PMP) is an open-source Python software package that provides "quick-look" objective comparisons of ESMs with 39 

one another and with observations. The comparisons include metrics of large- to global-scale climatologies, tropical 40 

inter-annual and intra-seasonal variability modes such as El Niño-Southern Oscillation (ENSO) and Madden-Julian 41 

Oscillation (MJO), extratropical modes of variability, regional monsoons, cloud radiative feedbacks, and high-42 

frequency characteristics of simulated precipitation, including its extremes. The PMP comparison results are produced 43 

using all model simulations contributed to CMIP6 and earlier CMIP phases. An important objective of the PMP is to 44 

document performance of ESMs participating in the recent phases of CMIP, together with providing version-45 

controlled information for all data sets, software packages, and analysis codes being used in the evaluation process. 46 

Among other purposes, this also enables modeling groups to assess performance changes during the ESM development 47 

cycle in the context of the error distribution of the multi-model ensemble. Quantitative model evaluation provided by 48 

the PMP can assist modelers in their development priorities. In this paper, we provide an overview of the PMP 49 

including its latest capabilities, and discuss its future direction.  50 
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1 Introduction  51 

Earth System Models (ESMs) are key tools for projecting climate change and conducting research to enhance 52 

our understanding of the Earth system. With the advancements in computing power and the increasing importance of 53 

climate projections, there has been an exponential growth of diversity of ESM simulations. During the 1990’s, the 54 

Atmospheric Model Intercomparison Project (AMIP; Gates, 1992; Gates et al., 1999) was a centralizing activity within 55 

the modeling community, which led to the creation of the Coupled Model Intercomparison Project (CMIP; Meehl et 56 

al., 1997, 2000, 2007; Covey et al., 2003; Taylor et al., 2012). Since 1989, the Program for Climate Model Diagnosis 57 

and Intercomparison (PCMDI) has worked closely with the World Climate Research Programme’s (WCRP) Working 58 

Group on Coupled Models (WGCM) and Working Group on Numerical Experimentation (WGNE) to design and 59 

implement these projects (Potter et al., 2011). The most recent phase of CMIP (CMIP6; Eyring et al., 2016) provides 60 

a set of well-defined experiments that most climate modeling centers perform, and subsequently makes results 61 

available for a large and diverse community to analyze.  62 

Evaluating ESMs is a complex endeavor, given the vast range of climate characteristics across space and 63 

time scales. A necessary step involves quantifying the consistency between ESMs with available observations. Climate 64 

model performance metrics have been widely used to objectively and quantitatively gauge the agreement between 65 

observations and simulations to summarize model behavior with a wide range of climate characteristics. Simple 66 

examples include either the model bias or the pattern similarity (correlation) between an observed and simulated field 67 

(e.g., Taylor, 2001). With the rapid growth in the number, scale, and complexity of simulations, the metrics have been 68 

used more routinely as exemplified by the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports 69 

(e.g., Gates et al., 1995; McAvaney et al., 2001; Randall et al., 2007; Flato et al., 2014; Eyring et al., 2021). A few 70 

studies have been exclusively devoted to objective model performance assessment using summary statistics. Lambert 71 

and Boer (2001) evaluated the first set of CMIP models from CMIP1 using statistics for the large-scale mean climate. 72 

Gleckler et al. (2008) identified a variety of factors relevant to model metrics and demonstrated techniques to quantify 73 

the relative strengths and weaknesses of the simulated mean climate. Reichler and Kim (2008) attempted to gauge 74 

model improvements across the early phases of CMIP. The scope of objective model evaluation has greatly broadened 75 

beyond the mean state in recent years (e.g., Gleckler et al., 2016; Eyring et al., 2019), including attempts to establish 76 

performance metrics for a wide range of climate variability (e.g., Kim et al., 2009; Sperber et al., 2013; Ahn et al., 77 

2017; Fasullo et al., 2020; Lee et al., 2021b; Planton et al., 2021) and extremes (e.g., Sillmann et al., 2013; Srivastava 78 

et al., 2020; Wehner et al., 2020, 2021). Guilyardi et al. (2009) and Reed et al. (2022) emphasized that metrics should 79 

be concise, interpretable, informative, and intuitive. 80 

With the growth of data size and diversity of ESM simulations, there has been a pressing need for the research 81 

community to become more efficient and systematic in evaluating ESMs and documenting their performances. To 82 

respond to the need, PCMDI developed the PCMDI Metrics Package (PMP) and released its first version in 2015 (see 83 

Code and Data Availability section for all versions). A centralizing goal of the PMP then and now is to quantitatively 84 

synthesize results from the archive of CMIP simulations via performance metrics that help characterize the overall 85 

agreement between models and observations (Gleckler et al., 2016). For our purposes, “performance metrics” are 86 

typically (but not exclusively) well-established statistical measures that quantify the consistency between observed 87 
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and simulated characteristics. Common examples include a domain average bias, a root-mean-square error (RMSE), 88 

a spatial pattern correlation, or others, typically selected depending on the application. Another goal of the PMP is to 89 

further diversify the suite of high-level performance tests that help characterize the simulated climate. The results 90 

provided by the PMP are frequently used to address two overarching and recurring questions: 1) What are the relative 91 

strengths and weaknesses between different models? and 2) How are models improving with further development? 92 

Addressing the second question is often referred to as “benchmarking” and this motivates an important emphasis of 93 

the effort described in this paper—striving to advance the documentation of all data and results of the PMP in an open 94 

and ultimately reproducible manner.  95 

In parallel, the current progress towards systematic model evaluation remains dynamic, with evolving 96 

approaches and many independent paths being pursued. This has resulted in the development of diversified model 97 

evaluation software packages. Examples in addition to the PMP include the ESMValTool (Eyring et al., 2016, 2019, 98 

2020; Righi et al., 2020), the Model Diagnostics Task Force (MDTF) Diagnostics package (Maloney et al., 2019; 99 

Neelin et al., 2023), the International Land Model Benchmarking (ILAMB) Software System (Collier et al., 2018) that 100 

focuses on land surface and carbon cycle metrics, and the International Ocean Model Benchmarking (IOMB) Software 101 

System (Fu et al., 2022) that focuses on surface and upper ocean biogeochemical variables. Some tools have been 102 

developed with a more targeted focus on a specific subject area, such as the Climate Variability Diagnostics Package 103 

(CVDP) that diagnoses climate variability modes (Phillips et al., 2014; Fasullo et al., 2020), and the Analyzing Scales 104 

of Precipitation (ASoP) that focuses on analyzing precipitation scales across space and time (Klingaman et al., 2017; 105 

Martin et al., 2017; Ordonez et al., 2021). The regional climate community also has actively developed metrics 106 

packages such as the Regional Climate Model Evaluation System (RCMES; Lee et al., 2018a; Whitehall et al. 2012). 107 

Separately, a few climate modeling centers have developed their own model evaluation packages to assist in their in-108 

house ESM development, e.g., the E3SM Diags (Zhang et al., 2022). There also have been other efforts to enhance 109 

the usability of in-situ and field campaign observations in ESM evaluations, such as Atmospheric Radiation 110 

Measurement (ARM) GCM Diag (Zhang et al., 2018, 2020) and Earth System Model Aerosol–Cloud Diagnostics 111 

(ESMAC Diags; Tang et al., 2022, 2023). While they all have their own scientific priorities and technical approaches, 112 

the uniqueness of the PMP is its focus on the objective characterization of the physical climate system as simulated 113 

by community models. An important prioritization of the PMP is to advance all aspects of its workflow, in an open, 114 

transparent, and reproducible manner, which is critical for benchmarking. The PMP summary statistics characterizing 115 

CMIP simulations are version-controlled and made publicly available as a resource to the community. 116 

In this paper, we describe the latest update of the PMP and its focus on providing a diverse suite of summary 117 

statistics that can be used to construct “quick-look” summaries of ESM performance from simulations made publicly 118 

available to the research community, notably CMIP. The rest of the paper is organized as follows. In Sect. 2, we 119 

provide a technical description of the PMP and its accompanying reference datasets. In Sect. 3, we describe various 120 

sets of simulation metrics that provide an increasingly comprehensive portrayal of physical processes across time 121 

scales ranging from hours to centurial. In Sect. 4, we introduce the usage of PMP for model benchmarking. We discuss 122 

the future direction and the remaining challenges in Sect. 5 and conclude with a summary in Sect. 6. To assist the 123 

reader, the table in Appendix A summarizes the acronyms used in this paper.  124 
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 125 

2 Software package and data description 126 

The PMP is a Python-based open-source software framework (https://github.com/PCMDI/pcmdi_metrics) 127 

designed to objectively gauge the consistency between ESMs and available observations via well-established statistics 128 

such as those discussed in Sect. 3. The PMP has been mainly used for the evaluation of CMIP-participating models. 129 

A subset of CMIP experiments, those conducted using the observation forcings such as “Historical” and “AMIP” 130 

(Eyring et al., 2016), is particularly well suited for comparing models with observations. The AMIP experiment 131 

protocol constrains the simulation with prescribed sea surface temperature (SST), and the “Historical” experiment is 132 

conducted using coupled model simulations driven by observed varying natural and anthropogenic forcings. Some of 133 

the metrics applicable to these experiments may also be relevant to others (e.g., multi-century coupled control runs 134 

called “PiControl” and idealized “4xCO2” simulations that are designed for estimating climate sensitivity).  135 

The PMP has been applied to multiple generations of CMIP models in a quasi-operational fashion as new 136 

simulations are made available, new analysis methods are incorporated, or new observational data become accessible 137 

(e.g., Gleckler et al. 2016; Planton et al., 2021; Lee et al., 2021b; Ahn et al. 2022). Shortly after simulations from the 138 

most recent phase of the CMIP (i.e., CMIP6) became accessible, PMP quick-look summaries were provided on the 139 

PCMDI’s website (https://pcmdi.llnl.gov/metrics/), offering a resource to scientists involved in CMIP or others 140 

interested in the evaluation of ESMs. To facilitate this, at PCMDI the PMP is technically linked to the Earth System 141 

Grid Federation (ESGF) that is the CMIP data delivery infrastructure (Williams et al., 2016). 142 

The primary deliverable of the PMP is a collection of summary statistics. We strive to make the baseline 143 

results (raw statistics) publicly available and well-documented, and continue to make advances with this objective in 144 

priority. For our purposes, we are referring to model performance “summary statistics” and “metrics” interchangeably, 145 

although in some situations we consider there to be an important distinction. For us, a genuine performance metric 146 

constitutes a well-defined and established statistic that has been used in a very specific way (e.g., a particular variable, 147 

analysis, and domain) for long-term benchmarking (see Sect. 4). The distinction between summary statistics and 148 

metrics is application-dependent and evolving as the community advances efforts to establish quasi-operational 149 

capabilities to gauge ESM performance. Some visualization capabilities described in Sect. 3 are made available 150 

through the PMP. Users can also further explore the model data comparisons using their preferred visualization 151 

methods or incorporate the results into their own studies from the summary statistics from the PMP. Noting the above, 152 

the scope of the PMP is fairly targeted. It is not intended to be “all-purpose”, e.g. by incorporating the vast range of 153 

diagnostics used in model evaluation. 154 

The PMP is designed to readily work with model output that has been processed using the Climate Model 155 

Output Rewriter (CMOR; https://cmor.llnl.gov/), which is a software library developed to prepare model output 156 

following the CF Metadata Conventions (Hassell et al., 2017; Eaton et al., 2022, http://cfconventions.org/) in Network 157 

Common Data Form (NetCDF) format. The CMOR is used by most modeling groups contributing to CMIP, ensuring 158 

all model output adheres to the CMIP data structures that themselves are based on the CF conventions. It is possible 159 

to use the PMP on model output that has not been prepared by CMOR, but this usually requires additional work, e.g., 160 

mapping the data to meet the community standards.  161 

https://github.com/PCMDI/pcmdi_metrics
https://pcmdi.llnl.gov/metrics/
https://cmor.llnl.gov/
http://cfconventions.org/
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For reference datasets, the PMP uses observational products processed to be compliant with the Observations 162 

for Model Intercomparison Projects (obs4MIPs; https://pcmdi.github.io/obs4MIPs/). The obs4MIPs effort was 163 

initiated circa 2010 (Gleckler et al., 2011) to advance the use of the observations in model evaluation and research. 164 

Substantial progress has been made in establishing obs4MIPs data standards that technically align with CMIP model 165 

output (e.g., Teixeira et al., 2014; Ferraro et al., 2015), with the data products published on the ESGF (Waliser et al., 166 

2020). Obs4MIPs-compliant data were prepared with CMOR, and the data directly available via obs4MIPs are used 167 

as PMP reference datasets. 168 

The PMP leverages other Python-based open-source tools and libraries such as xarray (Hoyer and Hamman, 169 

2017), eofs (Dawson, 2016), and many others. One of the primary fundamental tools used in the latest PMP version 170 

is the Python package, Xarray Climate Data Analysis Tools (xCDAT; Vo et al., 2023; https://xcdat.readthedocs.io). 171 

The xCDAT is developed to provide a more efficient, robust, and streamlined user experience in climate data analysis 172 

when using xarray (https://docs.xarray.dev/). Portions of the PMP rely on the precursor of the xCDAT, a Python 173 

library called Community Data Analysis Tools (CDAT, Williams et al., 2009; Williams, 2014; Doutriaux et al., 2019), 174 

which has been fundamental since the early development stages of the PMP. The xarray software provides much of 175 

the functionality of CDAT (e.g., I/O, indexing, and subsetting). However, it lacks some key climate domain features 176 

that have been frequently used by scientists and exploited by the PMP (e.g., regridding, utilization of spatial/temporal 177 

bounds for computational operations) which motivated the development of the xCDAT. Completing the transition 178 

from CDAT to xCDAT is a technical priority for the next version of PMP. 179 

To help advance open and reproducible science, the PMP has been maintained with an open-source policy 180 

with accompanying metadata for data reproducibility and reusability. The PMP code is distributed and released with 181 

version control. The installation process of PMP is streamlined and user-friendly, leveraging the Anaconda distribution 182 

and the conda-forge channel. By employing conda and conda-forge, users benefit from a simplified and efficient 183 

installation experience, ensuring seamless integration of PMP's functionality with minimal dependencies. This 184 

approach not only facilitates a straightforward deployment of the package but also enhances reproducibility and 185 

compatibility across different computing environments, thereby facilitating the accessibility and widespread adoption 186 

of PMP within the scientific community. The pointer to the installation instructions can be found in the Code and Data 187 

Availability section. The PMP’s online documentation (http://pcmdi.github.io/pcmdi_metrics/) also includes 188 

installation instructions and user demo Jupyter Notebooks. A database of pre-calculated PMP statistics for all AMIP 189 

and Historical simulations in the CMIP archive are also available online. The archive of these statistics, stored as 190 

JSON files (Crockford, 2006; Crockford and Morningstar, 2017), includes versioning details for all codes, and 191 

dependencies and data that were used for the calculations. These files provide the baseline results of the PMP (see the 192 

Code and Data Availability section for details). Advancements in model evaluation along with the number of models 193 

and complexity of simulations motivate more systematic documentation of performance summaries. With PMP 194 

workflow provenance information being recorded and the model and observational data standards maintained by 195 

PCMDI and colleagues, PMP strives to make all its results reproducible. 196 

 197 

https://pcmdi.github.io/obs4MIPs/
https://xcdat.readthedocs.io/
https://docs.xarray.dev/
http://pcmdi.github.io/pcmdi_metrics/
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3 Current PMP capabilities  198 

The capabilities of the PMP have been expanded beyond its traditional large-scale performance summaries 199 

of the mean climate (Gleckler et al., 2008; Taylor, 2001). Various evaluation metrics have been implemented to the 200 

PMP for climate variability such as El Niño-Southern Oscillation (ENSO) (Planton et al., 2021; Lee et al., 2021a), 201 

extratropical modes of variability (Lee et al., 2019, 2021b), intra-seasonal oscillation (Ahn et al., 2017), monsoons 202 

(Sperber and Annamalai, 2014), cloud feedback (Zelinka et al., 2022), and the characteristics of simulated 203 

precipitation (Pendergrass et al., 2020; Ahn et al., 2022, 2023) and extremes (Wehner et al., 2020, 2021). These PMP 204 

capabilities were built upon model performance tests that have resulted from research by PCMDI scientists and their 205 

collaborators. This section will provide an overview of each category of the current PMP evaluation metrics with their 206 

usage demonstrations. 207 

 208 

3.1 Climatology 209 

Mean state metrics quantify how well models simulate observed climatological fields at a large scale, gauged 210 

by a suite of well-established statistics such as RMSE, mean absolute error (MAE), and pattern correlation that have 211 

been used in climate research for decades. The focus is on the coupled “Historical” and atmospheric-only AMIP (Gates 212 

et al., 1999) simulations which are well-suited for comparison with observations. The PMP extracts seasonally and 213 

annually averaged fields of multiple variables from large-scale observationally based datasets and results from model 214 

simulations. Different obs4MIPs-compliant reference datasets are used depending on the variable examined. When 215 

multiple reference datasets are available, one of them is considered as a “default” (e.g., see Table 1) while others are 216 

identified as “alternatives”. The default datasets are typically state-of-the-art products, but in general, we lack 217 

definitive measures as to which is the most accurate, so the PMP metrics are routinely calculated with multiple 218 

products so that it can be determined what difference the selection of alternative observations makes to judgment made 219 

about model fidelity. The suite of mean climate metrics (all area weighted) includes spatial and spatiotemporal RMSE, 220 

centered spatial RMSE, spatial-mean bias, spatial standard deviation, spatial pattern correlation, and spatial and 221 

spatiotemporal MAE of the annual or seasonal climatological time-mean (Gleckler et al., 2008). Often, a space-time 222 

statistic is used that gauges both the consistency of the observed and simulated climatological pattern as well as its 223 

seasonal evolution (see Eq. 1 from Gleckler et al., 2008). By default, results are available for selected large-scale 224 

domains, including: “Global”, “Northern Hemisphere (NH) Extratropics” (30oN-90oN), “Tropics” (30oS-30oN), and 225 

“Southern Hemisphere (SH) Extratropics” (30oS-90oS). For each domain, results can also be computed for the land 226 

and ocean, land only, or ocean only. These commonly used domains highlight the application of the PMP mean climate 227 

statistics at large to global scales, but we note that PMP allows users to define their own domains of interest, including 228 

at regional scales. Detailed instructions can be found on the PMP’s online documentation 229 

(http://pcmdi.github.io/pcmdi_metrics). 230 

Although the primary deliverable of the PMP is the metrics, the PMP results can be visualized in various 231 

ways. For individual fields, we often first plot Taylor Diagrams, a polar plot leveraging the relationship between the 232 

centered RMSE, the pattern correlation, and the observed and simulated standard deviation (Taylor, 2001). The Taylor 233 

Diagram has become a standard plot in the model evaluation workflow across modeling centers and research 234 

http://pcmdi.github.io/pcmdi_metrics
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communities (see Sect. 5). To interpret results across CMIP models for many variables, we routinely construct 235 

normalized Portrait Plots or Gleckler Plots (Gleckler et al., 2008) that provide a quick-look examination of the 236 

strengths and weaknesses of different models. For example, in Figure 1, the PMP results display quantitative 237 

information of simulated seasonal climatologies of various meteorological model variables via a normalized global 238 

spatial RMSE (Gleckler et al., 2008). Variants of this plot have been widely used for presenting model evaluation 239 

results, for example, in the IPCC Fifth (Flato et al., 2014, Figures 9.7, 9.12, and 9.37) and Sixth Assessment Reports 240 

(Eyring et al., 2021, Chapter 3, Figure 3.42). Because the error distribution across models is variable dependent, the 241 

statistics are often normalized to help reveal differences, in this case via the median RMSE across all models (see 242 

Gleckler et al. 2008 for more details). This normalization enables a common color scale to be used for all statistics on 243 

the Portrait Plot, highlighting the relative strengths and weaknesses of different models. In this example (Fig. 1), an 244 

error of -0.5 indicates that a model’s error is 50% smaller than the typical (median) error across all models, whereas 245 

an error of 0.5 is 50% larger than the typical error in the multi-model ensemble. In many cases, the horizontal bands 246 

in the Gleckler plots show that simulations from a given modeling center have similar error structures relative to the 247 

multi-model ensemble. 248 

The Parallel Coordinate Plot (Inselberg, 1997, 2008, 2016; Johansson and Forsell, 2016) that retains the 249 

absolute value of the error statistics is used to complement the Portrait plot. Some previous studies have utilized 250 

Parallel Coordinate Plots for analyzing climate model simulations (e.g., Steed et al., 2012; Wong et al., 2014; Wang 251 

et al., 2017), but to date, only a few studies have applied it to collective multi-ESM evaluations (e.g., see Fig. 7 of 252 

Boucher et al., 2020). In the PMP, we generally construct Parallel Coordinate Plots using the same data as in a portrait 253 

plot. However, a fundamental difference is that metrics values can be more easily scaled to highlight absolute values 254 

rather than the normalized relative results of the portrait plot. In this way, the Portrait and Parallel Coordinate plots 255 

complement one another, and in some applications, it can be instructive to display both. Figure 2 shows the 256 

spatiotemporal RMSE, defined as the temporal average of spatial RMSE calculated in each month of the annual cycle, 257 

of CMIP5 and CMIP6 models in the format of Parallel Coordinate Plot. Each vertical axis represents a different scalar 258 

measure gauging a distinct aspect of model fidelity. While polylines are frequently used to connect data points from 259 

the same source (i.e., metric values from the same model, in our case) in Parallel Coordinate Plots, we display results 260 

from each model using an identification symbol to reduce visual clutter on the plot and help identify outlier models. 261 

In the example of Fig. 2, each vertical axis is aligned with the median value midway through its max/min range scale. 262 

Thus, for each axis, the models in the lower half of the plot perform better than the CMIP5-CMIP6 multi-model 263 

median, while in the upper half, the opposite is true. For each vertical axis that is for a different model variable, we 264 

have added violin plots (Hintze and Nelson, 1998) to show probability density functions representing the distributions 265 

of model performance obtained from CMIP5 (shaded in blue, left side of the axis) and CMIP6 (shaded in orange, right 266 

side of the axis). Medians of each CMIP5 and CMIP6 group are highlighted using polylines, which indicates that the 267 

RMSE is reduced in CMIP6 relative to CMIP5 in general for the majority of the subset of model variables. 268 

 269 
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3.2 El Niño-Southern Oscillation 270 

The El Niño-Southern Oscillation (ENSO) is Earth’s dominant interannual mode of climate variability, which 271 

impacts global climate via both regional oceanic effects and far-reaching atmospheric teleconnections (McPhaden et 272 

al., 2006, 2020). In response to increasing interest in a community approach to ENSO evaluation in models (Bellenger 273 

et al., 2014), the International Climate and Ocean Variability, Predictability and Change (CLIVAR) Research Focus 274 

on ENSO in a Changing Climate, together with the CLIVAR Pacific Region Panel, developed the CLIVAR ENSO 275 

Metrics Package (Planton et al., 2021) which is now utilized within the PMP. The ENSO metrics used to 276 

assess/evaluate the models are grouped into three categories: Performance (i.e., background climatology and basic 277 

ENSO characteristics), Teleconnections (ENSO's worldwide teleconnections), and Processes (ENSO's internal 278 

processes and feedback). Planton et al. (2021) found that CMIP6 models generally outperform CMIP5 models in 279 

several ENSO metrics in particular for those related to tropical Pacific seasonal cycles and ENSO teleconnections. 280 

This effort is discussed in more detail in Planton et al. (2021), and detailed descriptions of each metric in the package 281 

are available in the ENSO Package online open-source code repository on its GitHub Wiki pages (see 282 

https://github.com/CLIVAR-PRP/ENSO_metrics/wiki).  283 

Figure 3 demonstrates the application of the ENSO metrics to CMIP6, showing the magnitudes of inter-284 

model and inter-ensemble spreads, along with observational uncertainty varying across metrics. For a majority of the 285 

ENSO Performance metrics model error and inter-model spread are substantially larger than observational uncertainty 286 

(Figs. 3a-n). This highlights the systematic biases like the double intertropical convergence zone (ITCZ) (Fig. 3a) that 287 

are persisting through CMIP phases (Tian and Dong, 2020). Similarly, ENSO Processes metrics (Figs. 3t-w) indicate 288 

large errors in the feedback loops generating SST anomalies, indicating a different balance of processes in the model 289 

and in the reference and possibly compensating errors (Bayr et al., 2019, Guilyardi et al. 2020). In contrast, for ENSO 290 

Teleconnection metrics, the observational uncertainty is substantially larger, thus challenging validation of model 291 

error (Figs. 3o-r). For some metrics, such as the ENSO duration (Fig. 3f), the ENSO Asymmetry metric (Fig. 3i), and 292 

the Ocean driven SST metric (Fig. 3s), there are larger inter-ensemble spreads than the inter-model spreads. From 293 

such results, Lee et al. (2021a) examined the inter-model and inter-member spread of these metrics from the large 294 

ensembles available from CMIP6 and the US CLIVAR Large Ensemble Working Group. They argued that to robustly 295 

characterize baseline ENSO characteristics and physical processes, larger ensemble sizes are needed, compared to 296 

existing state-of-the-art ensemble projects. By applying the ENSO metrics to historical and piControl simulations of 297 

CMIP6 via the PMP, Planton et al. (2023) developed equations based on statistical theory to estimate the required 298 

ensemble size for a user-defined uncertainty range. 299 

 300 

3.3 Extratropical Modes of Variability 301 

The PMP includes objective measures of the pattern and amplitude of extratropical modes of variability from 302 

PCMDI’s research, which has expanded beyond its traditional large-scale performance summaries to include 303 

interannual variability, considering increasing interest in setting an objective approach for the collective evaluation of 304 

multiple modes. Extratropical modes of variability (ETMoV) metrics in the PMP were developed by Lee et al. (2019a) 305 

that stem from earlier works (e.g., Stoner et al., 2009; Phillips et al., 2014). Lee et al. (2019a) illustrated a challenge 306 

https://github.com/CLIVAR-PRP/ENSO_metrics/wiki
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when evaluating modes of variability using the traditional empirical orthogonal functions (EOF). In particular, when 307 

a higher-order EOF of a model more closely corresponds to a lower-order observationally based EOF (or vice versa), 308 

it can significantly affect conclusions drawn about model performance. To circumvent this issue in evaluating the 309 

interannual variability modes, Lee et al. (2019a) used the Common Basis Function (CBF) approach that projects the 310 

observed EOF pattern onto model anomalies. This approach has been previously applied for the evaluation of 311 

intraseasonal variability modes (Sperber, 2004; Sperber et al., 2005). In the PMP, the CBF approach is taken as a 312 

default method, and the traditional EOF approach is also enabled as an option for the ETMoV metrics calculations.  313 

The ETMoV metrics in the PMP measure simulated patterns and amplitudes of ETMoV, and quantify their 314 

agreement with observations (e.g., Lee et al., 2019a, 2021b). The PMP’s ETMoV metrics evaluate 5 atmospheric 315 

modes – the Northern Annular Mode (NAM), North Atlantic Oscillation (NAO), Pacific North America pattern 316 

(PNA), North Pacific Oscillation (NPO), and Southern Annular Mode (SAM), and 3 ocean modes diagnosed by the 317 

variance of sea-surface temperature – Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), 318 

and Atlantic Multi-decadal Oscillation (AMO). The AMO is included for experimental purposes, considering the 319 

significant uncertainty in detecting the AMO (Deser and Philips 2021; Zhao et al., 2022). The amplitude metric, 320 

defined as the ratio of standard deviations of the model and observed principal components, has been used to examine 321 

the evolution of the performance of models across different CMIP generations (Fig. 4). Green shading predominates, 322 

indicating where the simulated amplitude of variability is similar to observations. In some cases, such as for SAM in 323 

September-October-November (SON), the models overestimate the observed amplitude.  324 

The PMP’s ETMoV metrics have been used in several model evaluation studies. For example, Orbe et al. 325 

(2020) analyzed models from U.S. climate modeling groups including the U.S. Department of Energy (DOE), National 326 

Aeronautics and Space Administration (NASA), National Center for Atmospheric Research (NCAR), and National 327 

Oceanic and Atmospheric Administration (NOAA), where they found that the improvement in the ETMoV 328 

performance is highly dependent on mode and season, when comparing across different generations of those models. 329 

Sung et al. (2021) examined the performance of models run at the Korea Meteorological Administration (K-ACE and 330 

UKESM1) in reproducing ETMoVs from their Historical simulations, and concluded that these models reasonably 331 

capture most ETMoVs. Lee et al. (2021b) collectively evaluated ~130 models from CMIP3, 5, and 6 archive databases 332 

using their ~850 Historical and ~300 AMIP simulations, where they found the spatial pattern skill improved in CMIP6 333 

compared to CMIP5 or CMIP3 for most modes and seasons, while the improvement in amplitude skill is not clear. 334 

Arcodia et al. (2023) used the PMP to derive PDO and AMO to investigate their role in decadal variability of 335 

subseasonal predictability of precipitation over the western coast of North America and concluded that no significant 336 

relationship was found. 337 

 338 

3.4 Intraseasonal Oscillation 339 

The PMP has implemented metrics for the Madden-Julian Oscillation (MJO; Madden and Julian, 1971, 1972, 340 

1994). The MJO is the dominant mode of tropical intraseasonal variability, characterized by a pronounced eastward 341 

propagation of large-scale atmospheric circulation coupled with convection with a typical periodicity of 30-60 days. 342 
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Selected metrics from the MJO diagnostics package, developed by the CLIVAR MJO Working Group (Waliser et al., 343 

2009), have been implemented in the PMP following Ahn et al. (2017).  344 

We have particularly focused on metrics for the MJO propagation: East/West power Ratio (EWR) and East 345 

power normalized by Observation (EOR). The EWR is proposed by Zhang and Hendon (1997) which is defined as 346 

the ratio of the total spectral power over the MJO band (eastward propagating, wavenumber 1-3 and period of 30-60 347 

days) to that of its westward propagating counterpart in the wavenumber-frequency power spectra. The EWR metric 348 

has been widely used in the community, to examine the robustness of the eastward propagating feature of the MJO 349 

(e.g., Hendon et al., 1999; Lin et al., 2006; Kim et al., 2009; Ahn et al., 2017). The EOR is formulated by normalizing 350 

a model’s spectral power within the MJO band by the corresponding observed value. Ahn et al. (2017) showed EWRs 351 

and EORs of the CMIP5 models. Using daily precipitation, the PMP calculates EWR and EOR separately for boreal 352 

winter (November to April) and boreal summer (March to October). We apply the frequency-wavenumber 353 

decomposition method to precipitation from observations (GPCP-based; 1997-2010) and the CMIP5 and CMIP6 354 

Historical simulations for 1985-2004. For disturbances with wavenumbers 1-3 and frequencies corresponding to 30-355 

60 days, it is clear in observations that the eastward propagating signal dominates over its westward propagating 356 

counterpart with an EWR value of about 2.49 (Fig. 5a). Figure 5b shows the wavenumber-frequency power spectrum 357 

from CMIP5 IPSL-CM5B-LR as an example, which has an EWR value that is comparable to the observed value. 358 

Figure 6 shows the EWR from individual models’ multiple ensemble members and their average. The average 359 

EWR of the CMIP6 model simulations is more realistic than that of the CMIP5 models. Interestingly, a substantial 360 

spread exists across models and also among ensemble members of a single model. For example, while the average 361 

EWR value for the CESM2 ensemble is 2.47 (close to 2.49 from the GPCP observations), the EWR values of the 362 

individual ensemble members range from 1.87 to 3.23. Kang et al. (2020) suggested that the ensemble spread in the 363 

propagation characteristics of the MJO can be attributed to the differences in the moisture mean state, especially its 364 

meridional moisture gradient. A cautionary note should be given to the fact that the MJO frequency and wavenumber 365 

windows are chosen to capture the spectral peak in observations. Thus, while the EWR provides an initial evaluation 366 

of the propagation characteristics of the observed and simulated MJO, it is instructive to look at the frequency-367 

wavenumber spectra, as in some cases the dominant periodicity and wavenumber in a model may be different than in 368 

observations. It is worthwhile to note that the PMP can be used to obtain EWR and EOR of other daily variables for 369 

MJO analysis, such as outgoing longwave radiation (OLR) or zonal wind at 850 hPa (U-850) or 250 hPa (U-250), as 370 

shown in Ahn et al. (2017). 371 

 372 

3.5 Monsoons 373 

Based on the work of Sperber and Annamalai (2014), skill metrics in the PMP quantify how well models 374 

represent the onset, decay, and duration of regional monsoons. From observations and Historical simulations, the 375 

climatological pentad data of precipitation are area-averaged for six monsoon domains: All-India Rainfall, Sahel, Gulf 376 

of Guinea, North American Monsoon, South American Monsoon, and Northern Australia (Fig. 7). For the domains in 377 

the Northern Hemisphere, the 73 climatological pentads run from January to December, while for the domains in the 378 

Southern Hemisphere, the pentads run from July to June. For each domain, the precipitation is accumulated at each 379 
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subsequent pentad and then divided by the total precipitation to give the fractional accumulation of precipitation as a 380 

function of pentad. Thus, the annual cycle behavior is evaluated irrespective of whether a model has a dry or wet bias. 381 

Except for the Gulf of Guinea, the onset and decay of monsoon occur for a fractional accumulation of 0.2 and 0.8, 382 

respectively. Between these fractional accumulations, the accumulation of precipitation is nearly linear as the monsoon 383 

season progresses. Comparison of the simulated and observed onset, duration, and decay are presented in terms of the 384 

difference in the pentad index obtained from the model and observations (i.e., model minus observations). Therefore, 385 

negative values indicate that the onset or decay in the model occurs earlier than in observations, while positive values 386 

indicate the opposite. For duration, negative values indicate that for the model it takes fewer pentads to progress from 387 

onset to decay compared to observations (i.e., the simulated monsoon period is too short), while positive values 388 

indicate the opposite.  389 

For CMIP5, we find systematic errors in the phase of the annual cycle of rainfall. The models are delayed in 390 

the onset of summer rainfall over India, the Gulf of Guinea, and the South American Monsoon, with early onset 391 

prevalent for the Sahel and the North American Monsoon. The lack of consistency in the phase error across all domains 392 

suggests that a ‘‘global’’ approach to the study of monsoons may not be sufficient to rectify the regional differences. 393 

Rather, regional process studies are necessary for diagnosing the underlying causes of the regionally specific 394 

systematic model biases over the different monsoon domains. Assessment of the monsoon fidelity in CMIP6 models 395 

using the PMP is in progress.  396 

 397 

3.6 Cloud feedback and mean-state 398 

Uncertainties in cloud feedback are the primary driver of model-to-model differences in climate sensitivity 399 

– the global temperature response to a doubling of atmospheric CO2. Recently, an expert synthesis of several lines of 400 

evidence spanning theory, high-resolution models, and observations was conducted to establish quantitative 401 

benchmark values (and uncertainty ranges) for several key cloud feedback mechanisms. The assessed feedbacks are 402 

those due to changes in high-cloud altitude, tropical marine low-cloud amount, tropical anvil cloud area, land cloud 403 

amount, middle latitude marine low-cloud amount, and high latitude low-cloud optical depth. The sum of these six 404 

components yields the total assessed cloud feedback, which is part of the overall radiative feedback that fed into the 405 

Bayesian calculation of climate sensitivity in Sherwood et al. (2020). Zelinka et al. (2022) estimated these same 406 

feedback components in climate models and evaluated them against the expert-judgment values determined in 407 

Sherwood et al. (2020), ultimately deriving a root mean square error metric that quantifies the overall match between 408 

each model’s cloud feedback and those determined through expert judgment.  409 

Figure 8 shows the model-simulated values for each individual feedback computed in amip-p4K simulations 410 

as part of CMIP5 and CMIP6 alongside the expert judgment values. Each model is color-coded by its equilibrium 411 

climate sensitivity (determined using abrupt-4xCO2 simulations as described in Zelinka et al., 2020), and the values 412 

from an illustrative model (GFDL-CM4) are highlighted. Among the key results apparent from this figure is that 413 

models typically underestimate the strength of both positive tropical marine low-cloud feedback and the negative anvil 414 

cloud feedback relative to the central expert assessed value. The sum of all six assessed feedback components is 415 
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positive in all but two models, with a multimodel mean value that is close to the expert-assessed value, but exhibits 416 

substantial intermodel spread.  417 

In addition to evaluating the ability of models to match the assessed cloud feedback components, Zelinka et 418 

al. (2022) investigated whether models with less erroneous mean-state clouds tend to have smaller errors in their 419 

overall cloud feedback RMSE. This involved computing the mean-state cloud property error metric developed by 420 

Klein et al. (2013). This error metric quantifies the spatiotemporal error in climatological cloud properties for clouds 421 

with optical depths greater than 3.6, weighted by their net top-of-atmosphere (TOA) radiative impact. The 422 

observational baseline against which the models are compared comes from the International Satellite Cloud 423 

Climatology Project H-series Gridded Global (ISCCP HGG) dataset (Young et al., 2018). Zelinka et al. (2022) showed 424 

that models with smaller mean-state cloud errors tend to have stronger but not necessarily better (less erroneous) cloud 425 

feedback, which suggests that improving mean-state cloud properties does not guarantee improvement in the cloud 426 

response to warming. However, the models with the smallest errors in cloud feedback tend also to have less erroneous 427 

mean-state cloud properties, and no models with poor mean-state cloud properties have feedback in good agreement 428 

with expert judgment. 429 

The PMP implementation of this code computes cloud feedback by differencing fields from amip-p4K and 430 

amip experiments and normalizing by the corresponding global mean surface temperature change rather than from 431 

differencing abrupt-4xCO2 and piControl experiments and computing feedback via regression (as was done in Zelinka 432 

et al., 2022). This choice is made to reduce the computational burden and also because cloud feedbacks derived from 433 

these simpler atmosphere-only simulations have been shown to closely match those derived from fully coupled 434 

quadrupled CO2 simulations (Qin et al., 2022). The code produces figures in which the user-specified model results 435 

are highlighted and placed in the context of the CMIP5 and CMIP6 multi-model results (e.g., Fig. 8). 436 

 437 

3.7 Precipitation  438 

Recognizing the importance of accurately simulating precipitation in ESMs and a lack of objective and 439 

systematic benchmarking for it, and motivated by discussions with WGNE and WGCM working groups of WCRP, 440 

the DOE has initiated an effort to establish a pathway to help modelers gauge improvement (U.S. DOE, 2020). The 441 

2019 DOE workshop “Benchmarking Simulated Precipitation in Earth System Models” generated two sets of 442 

precipitation metrics: baseline and exploratory metrics (Pendergrass et al., 2020). In the PMP, we have focused on 443 

implementing the baseline metrics for benchmarking simulated precipitation. In parallel, a set of exploratory metrics 444 

that could be added to metrics suites including PMP in the future was illustrated by Leung et al. (2022) to extend the 445 

evaluation scope to include process-oriented and phenomena-based diagnostics and metrics.  446 

The baseline metrics gauge the consistency between ESMs and observations, focusing on the holistic set of 447 

observed rainfall characteristics (Fig. 9). For example, the spatial distribution of mean state precipitation and seasonal 448 

cycle are outcomes of the PMP’s Climatology metrics (described in Sect. 3.1), which provides collective evaluation 449 

statistics such as RMSE, standard deviation, and pattern correlation over various domains (e.g., global, NH and SH 450 

extratropics, and tropics, with each domain as a whole, and over land and ocean, in separate). Evaluation of 451 

precipitation variability across many timescales with PMP is documented in Ahn et al. (2022); we summarize some 452 
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of the findings here. The precipitation variability metric measures forced (diurnal and annual cycles) and internal 453 

variability across timescales (subdaily, synoptic, subseasonal, seasonal, and interannual) in a framework based on 454 

power spectra of 3-hourly total and anomaly precipitation. Overall, CMIP5 and CMIP6 models underestimate the 455 

internal variability, which is more pronounced in the higher frequency variability, while they overestimate the forced 456 

variability (Fig. 10). For the diurnal cycle, PMP includes metrics from Covey et al. (2016). Additionally, the intensity 457 

and distribution of precipitation are assessed following Ahn et al. (2023). Extreme daily precipitation indices and their 458 

20-year return values are calculated using a non-stationary Generalized Extreme Value statistical method. From the 459 

CMIP5 and CMIP6 historical simulations we evaluate model performance of these indices and their return values in 460 

comparison with gridded land-based daily observations. Using this approach, Wehner et al. (2020) found that at 461 

models’ standard resolutions, no meaningful differences were found between the two generations of CMIP models. 462 

Wehner et al. (2021) extended the evaluation of simulated extreme precipitation to seasonal 3-hourly precipitation 463 

extremes produced by available HighResMIP models and concluded that the improvement is minimal with the models’ 464 

increased spatial resolutions. They also noted that the order of operations of regridding and calculating extremes 465 

affects the ability of models to reproduce observations. Drought metrics developed by Xue and Ullrich (2021) are not 466 

implemented in PMP directly, but are wrapped by the Coordinated Model Evaluation Capabilities (CMEC; Ordonez 467 

et al. 2021), which is a parallel framework for supporting community-developed evaluation packages. Together, these 468 

metrics provide a streamlined workflow for running the entire baseline metrics via the PMP and CMEC that is ready 469 

for use by operational centers and in the CMIP7. 470 

 471 

3.8 Relating metrics to underlying diagnostics 472 

Considering the extensive collection of information generated from the PMP, efforts have supported 473 

improved visualizations of metrics using interactive graphic user interfaces. These capabilities can facilitate the 474 

interpretation and synthesis of vast amounts of information associated with the diverse metrics and the underlying 475 

diagnostics from which they were derived. Via the interactive navigation interface, we can explore the underlying 476 

diagnostics behind the PMP’s summary plots. On the PCMDI website, we provide interactive graphical interfaces to 477 

enable navigating the supporting plots to the underlying diagnostics of each model’s ensemble members and their 478 

average. For example, on the interactive mean climate plots (https://pcmdi.llnl.gov/metrics/mean_clim/), hovering the 479 

mouse cursor over a square or triangle in the Portrait Plot, or over the markers or lines in the Parallel Coordinate Plot, 480 

reveals the diagnostic plot from which the metrics were generated. It allows the user to toggle between several metrics 481 

(e.g., RMSE, bias, and correlation) and regions (e.g., global, Northern/Southern Hemisphere, and Tropics), along with 482 

relevant provenance information. Users can click on the interactive plots to get dive-down diagnostics information for 483 

the model of interest which provides detailed analysis to better understand how the metric was calculated. As with the 484 

PMP’s mean climate metrics output, we currently provide interactive summary graphics for ENSO 485 

(https://pcmdi.llnl.gov/metrics/enso/), extratropical modes of variability 486 

(https://pcmdi.llnl.gov/metrics/variability_modes/), monsoon (https://pcmdi.llnl.gov/metrics/monsoon/), MJO 487 

(https://pcmdi.llnl.gov/metrics/mjo/), and precipitation benchmarking (https://pcmdi.llnl.gov/metrics/precip/). We 488 

plan to expand this capability to other metrics in the PMP, such as the cloud feedback analysis. The majority of the 489 

https://pcmdi.llnl.gov/metrics/mean_clim/
https://pcmdi.llnl.gov/metrics/enso/
https://pcmdi.llnl.gov/metrics/variability_modes/
https://pcmdi.llnl.gov/metrics/monsoon/
https://pcmdi.llnl.gov/metrics/mjo/
https://pcmdi.llnl.gov/metrics/precip/
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PMP’s interactive plots have been developed using Bokeh (https://bokeh.org/), a Python data visualization library that 490 

enables the creation of interactive plots and applications for web browsers.  491 

 492 

4 Model Benchmarking 493 

While the PMP originally focused on evaluating multiple models (e.g., Gleckler et al., 2008), in parallel there 494 

has been increasing interest from model developers and modeling centers to leverage the PMP to track performance 495 

evolution in the model development cycle, as discussed in Gleckler et al. (2016). For example, metrics from the PMP 496 

have been used to document performance of ESMs developed in the U.S. DOE Exascale Earth System Model (E3SM; 497 

Caldwell et al., 2019; Golaz et al., 2019; Rasch et al., 2019; Hannah et al., 2021; Tang et al., 2021), NOAA 498 

Geophysical Fluid Dynamics Laboratory (GFDL; Zhao et al., 2018), Institut Pierre-Simon Laplace (IPSL; Boucher et 499 

al., 2020; Planton et al., 2021), National Institute of Meteorological Sciences-Korea Meteorological Administration 500 

(NIMS-KMA; Sung et al., 2021), University of California, Los Angeles (Lee et al., 2019b), and the Community 501 

Integrated Earth System Model (CIESM) project (Lin et al., 2020). 502 

To make the PMP more accessible and useful for modeling groups, efforts are underway to broaden workflow 503 

options. Currently, a typical application involves computing a particular class of performance metrics (e.g., mean 504 

climate) for all CMIP simulations available via ESGF. To facilitate the ability of modeling groups to routinely use the 505 

PMP during their development process, we are working to provide a customized workflow option to run all the PMP 506 

metrics more seamlessly on a single model, and to compare these results with a database of PMP results obtained from 507 

CMIP simulations (see Code and Data Availability section). Via the PMP-documented and pre-calculated metrics 508 

from simulations in the CMIP archive, it is possible to readily incorporate CMIP results into the assessment of new 509 

simulations, without retrieving all CMIP simulations and recomputing the results. The resulting quick-look feedback 510 

can highlight model improvement (or deterioration) and can assist in determining development priorities or in the 511 

selection of a new model version.  512 

As an example, here, we show PMP results obtained from GFDL-CM3 from CMIP5 and GFDL-CM4 from 513 

CMIP6, for a demonstration of using the Taylor Diagram to compare versions of a given model (Fig. 11). One 514 

advantage of the Taylor Diagram is that it collectively represents three statistics (i.e., centered RMSE, standard 515 

deviation, and correlation) in a single plot (Taylor, 2001), which synthesizes the performance intercomparison of 516 

multiple models (or different versions of a model). In this example, four variables were selected to summarize 517 

performance evolution (shown by arrows) in multiple seasons. Except for boreal winter, both model versions are 518 

nearly identical in terms of net TOA radiation, however in all seasons the longwave cloud radiative effect is clearly 519 

improved in the newer model version. The TOA flux improvements likely contributed to the precipitation 520 

improvements, by improving the balances of radiative cooling and latent heating. The improvement in the newer 521 

model version is consistent with that documented by Held et al., (2019) and evident via the arrow directions pointing 522 

to the observational reference point. 523 

Parallel Coordinate Plots can also be used to summarize the comparison of two simulations for their 524 

performance. In Fig 12, we demonstrate the comparison of selected metrics: the mean climate (see Sect. 3.1), ENSO 525 

(Sect. 3.2), and ETMoV (Sect. 3.3). To facilitate comparison of a subset of models, a few models can be selected and 526 

https://bokeh.org/
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highlighted as connected lines across individual vertical axes on the plot. A proposed application of it from PMP is to 527 

select two models or two versions of a model to contrast their performance (solid lines) against the backdrop of results 528 

from other models, shown as violin plots for the distribution of statistics from other models on each vertical axis. In 529 

this example, we contrast the performance of two GFDL models: GFDL-CM3 and GFDL-CM4. Fig 12a is a modified 530 

version of Figure 2 that is designed to highlight the difference in performance more efficiently. Each vertical axis 531 

indicates performance for each metric defined for climatology of variables (i.e., temporally averaged spatial RMSE 532 

of annual cycle climatology patterns, Fig. 12a), ENSO characteristics (Fig. 12b), or interannual variability mode 533 

obtained from seasonal or monthly averaged time series (Fig. 12c). It is shown that GFDL-CM4 is superior to GFDL-534 

CM3 for most cases across selected metrics (downward arrows in green) while inferior for a few cases (upward arrows 535 

in red), which is consistent with previous findings (Held et al., 2019; Planton et al., 2021; Chen et al., 2021). Such 536 

applications of the Parallel Coordinate Plot can enable quick overall assessment and tracking of the ESM performance 537 

evolution during its development cycle. More examples showing other models are available in the Supplementary 538 

material (Figs. S1 to S3).  539 

It is worth noting that there have been efforts to coalesce objective model evaluation concepts used in the 540 

research community (e.g., Knutti et al., 2010). However, the field continues to evolve rapidly with definitions still 541 

being debated and finessed. Via the PMP, we produce hundreds of summary statistics, enabling a broad net to be cast 542 

in the objective characterization of a simulation, at times helping modelers identify previously unknown deficiencies. 543 

For benchmarking, efforts are underway to establish a more targeted path which likely involves a consolidated set of 544 

carefully selected metrics.  545 

 546 

5 Discussion 547 

Efforts are underway to include new metrics into the PMP to advance the systematic objective evaluation of 548 

ESMs. For example, in coordination with the World Meteorological Organization (WMO)’s WGNE MJO Task Force, 549 

additional candidate MJO metrics for PMP inclusion have been identified to facilitate more comprehensive 550 

assessments of the MJO. Implementation of metrics for MJO amplitude, periodicity, and structure into the PMP is 551 

planned. An ongoing collaboration with NCAR aims to incorporate metrics related to the upper atmosphere, 552 

specifically the Quasi-Biennial Oscillation (QBO) and QBO-MJO metrics (e.g. Kim et al., 2020). We also have plans 553 

to grow the scope of PMP beyond its traditional atmospheric realm, for example including the ocean and polar regions 554 

through collaboration with the U.S. DOE’s project entitled High Latitude Application and Testing of ESMs (HiLAT, 555 

https://www.hilat.org/). In addition, the PMP framework is also well poised to contribute to high-resolution climate 556 

modeling activities, such as the High-Resolution Model Intercomparison Project (HighResMIP; Haarsma et al., 2016) 557 

and the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND; 558 

Stevens et al., 2019). This motivates the development of specialized metrics for high-resolution models, targeting the 559 

simulation features enabled by high-resolution models. Another potential avenue for the PMP involves leveraging 560 

Machine Learning (ML) techniques, and other state-of-the-art data science techniques being used for process-oriented 561 

ESM evaluation works (e.g., Nowack et al., 2020; Labe and Barnes, 2022; Dalelane et al., 2023). Applications of ML 562 

detection, such as for storms using TempestExtremes (Ullrich and Zarzycki 2017; Ullrich et al., 2021) and fronts (e.g, 563 

https://www.hilat.org/
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Biard and Kunkel, 2019), can enable additional specialized storm metrics for high-resolution simulations. For 564 

convection-permitting models, yet more storm metrics can be applied such as Mesoscale convective systems. 565 

Atmospheric blocking metrics and atmospheric river evaluation metrics using the ML pattern detection capabilities in 566 

the latest TempestExtremes (Ullrich et al., 2021) are currently under development to be implemented into the PMP. 567 

These example enhancements of the PMP are indicative of an increasing priority to target regional simulation 568 

characteristics. With a deliberate emphasis on processes intrinsic to specific regions, this may lead to enabling 569 

potential applications of the PMP within the regional climate modeling activities such as the Coordinated Regional 570 

Downscaling Experiment (CORDEX; Gutowski Jr. et al., 2016). 571 

The comprehensive database of PMP results offers a resource for exploring the range of structural errors in 572 

CMIP class models and their interrelationships. For example, examination of cross-metric relationships between 573 

mean-state and variability biases can shed additional light on the propagation of errors (e.g., Kang et al., 2020; Lee et 574 

al., 2021b). There continues to be interest in ranking models for specific applications (e.g., Ashfaq et al., 2022; 575 

Goldenson et al., 2023; Longmate et al., 2023; Papalexiou et al., 2020; Singh and AchutaRao, 2020) or to “move 576 

beyond one model one vote” in multi-model analysis to reduce uncertainties in the spread of multi-model projections 577 

(e.g., Knutti, 2010; Knutti et al., 2017; Sanderson et al., 2017; Herger et al., 2018; Hausfather et al., 2022; Merrifield 578 

et al., 2023). While we acknowledge potential interests in using the results of the PMP or equivalent to rank models 579 

or identify performance outliers (e.g., Sanderson and Wehner, 2017), we believe the many challenges associated with 580 

model weighting are application dependent, and thus leave it up to users of the PMP to make those judgments. 581 

In addition to the scientific challenges associated with diversifying objective summaries of model 582 

performance, there is potential to leverage rapidly evolving technologies, including new open-source tools and 583 

methods available to scientists. We expect that the ongoing PMP code modernization effort to fully adapt the xCDAT 584 

and xarray will facilitate greater community involvement. As the PMP evolves with these technologies we will 585 

continue to maintain rigor in the calculation of statistics for the PMP metrics, for example by incorporating the latest 586 

advancements in the field. A prominent example in the objective comparison of models and observations involves the 587 

methodology of horizontal interpolation, and in future versions of the PMP we are planning a more stringent 588 

conservation method (Taylor, 2024). To improve the clarity of key messages from multivariate PMP metrics data, we 589 

will consider implementing the advances in high-dimensional data visualization, e.g., the circular plot discussed in 590 

Lee et al. (2018b) and variations of Parallel Coordinate Plots proposed in this paper and by Hassan et al. (2019) and 591 

Lu et al. (2020). 592 

Current progress towards systematic model evaluation is exemplified by the diversity of tools being 593 

developed (e.g., the PMP, ESMValTool, MDTF, ILAMB, IOMB, and other packages). Each of these tools has its own 594 

scientific priorities and technical approaches. We believe that this diversity has made, and will continue to make, the 595 

model evaluation process even more comprehensive and successful. The fact that there is some overlap in a few cases 596 

is advantageous because it enables the cross-verification of results, which is particularly useful in more complex 597 

analyses. Despite possible advantages, having no single best or widely accepted approach for the community to follow, 598 

does introduce complexity to the coordination of model evaluation. To facilitate the collective usage of individual 599 

evaluation tools, the CMEC has initiated the development of a unified code base that technically coordinates the 600 
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operation of distinct but complementary tools (Ordonez et al. 2021). Currently, the PMP, ILAMB, MDTF, and ASoP 601 

have become CMEC-compliant by adopting common interface standards that define how evaluation tools interact 602 

with observational data and climate model output. We expect that CMEC can also help the model evaluation 603 

community to establish standards for archiving the metrics output, much as the community did for the conventions to 604 

describe climate model data (e.g., CMIP application of CF Metadata Conventions (http://cfconventions.org/); Hassell 605 

et al., 2017; Eaton et al., 2022). 606 

 607 

6 Summary and Conclusion 608 

The PCMDI has actively developed the PMP with support from the U.S. DOE to improve the understanding 609 

of ESMs and to provide systematic and objective ESM evaluation capabilities. With its focus on physical climate, the 610 

current evaluation categories enabled in the PMP include seasonal and annual climatology of multiple variables, 611 

ENSO, various variability modes in the climate system, MJO, monsoon, cloud feedback and mean state, and simulated 612 

precipitation characteristics. The PMP provides quasi-operational ESM evaluation capabilities that can be rapidly 613 

deployed to objectively summarize a diverse suite of model behavior with results made publicly available. This can 614 

be of value in the assessment of community intercomparisons like CMIP, the evaluation of large ensembles, or the 615 

model development process. By documenting objective performance summaries produced by the PMP and making 616 

them available via detailed version control, additional research is made possible beyond the baseline model evaluation, 617 

model intercomparison, and benchmarking. The outcomes of PMP's calculations applied to the CMIP archive 618 

culminate in the PCMDI Simulation Summary (https://pcmdi.llnl.gov/metrics/) that has served as a comprehensive 619 

data portal for objective model-to-observation comparisons and model-to-model benchmarking and intercomparisons. 620 

Special attention is dedicated to the most recent ensemble of models contributing to CMIP6. By offering a diverse and 621 

comprehensive suite of evaluation capabilities, the PMP framework equips model developers with quantifiable 622 

benchmarks to validate and enhance model performance. 623 

We expect that the PMP will continue to play a crucial role in benchmarking ESMs. Improvements in the 624 

PMP, along with progress in interconnected MIP community projects, will greatly contribute to advancing the 625 

evaluation of ESMs including in connection to the community efforts (e.g., the CMIP Benchmarking Task Team). 626 

Enhancements in version control and transparency within obs4MIPs are set to enhance the provenance and 627 

reproducibility of PMP results, thereby strengthening the foundation for rigorous and repeatable performance 628 

benchmarking. The PMP's collaboration with the CMIP Forcing Task Team, through the Input4MIPs (Durack et al., 629 

2018) and the CMIP6Plus projects, will further expand the utility of performance metrics in identifying problems 630 

associated with the forcing dataset and their application and use in reproducing the observed record of historical 631 

climate. Furthermore, as ESMs advance towards more operationalized configurations to meet the demands of decision-632 

making processes (Jakob et al., 2023), the PMP holds significant potential to provide interoperable ESM evaluation 633 

and benchmarking capabilities to the community.  634 

http://cfconventions.org/
https://pcmdi.llnl.gov/metrics/
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Appendix A: Table of acronyms 635 

 636 

Acronym Description 

AMIP Atmospheric Model Intercomparison Project 

AMO Atlantic Multi-decadal Oscillation 

ARM Atmospheric Radiation Measurement 

ASoP Analyzing Scales of Precipitation 

CBF Common Basis Function 

CDAT Community Data Analysis Tools 

CIESM Community Integrated Earth System Model 

CLIVAR Climate and Ocean Variability, Predictability and Change 

CMEC Coordinated Model Evaluation Capabilities 

CMIP Coupled Model Intercomparison Project 

CMOR Climate Model Output Rewriter 

CVDP Climate Variability Diagnostics Package 

DOE U.S. Department of Energy 

ENSO El Niño-Southern Oscillation 

EOF Empirical Orthogonal Functions 

EOR East power normalized by Observation 
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ESGF Earth System Grid Federation 

ESM Earth System Model 

ESMAC Diags Earth System Model Aerosol–Cloud Diagnostics 

ETMoV Extratropical modes of variability 

EWR East/West power Ratio 

GFDL Geophysical Fluid Dynamics Laboratory 

ILAMB International Land Model Benchmarking 

IOMB International Ocean Model Benchmarking 

IPCC Intergovernmental Panel on Climate Change 

IPSL Institut Pierre-Simon Laplace 

ISCCP HGG International Satellite Cloud Climatology Project H-series Gridded Global 

ITCZ Intertropical Convergence Zone 

JSON JavaScript Object Notation 

MAE Mean Absolute Error 

MDTF Model Diagnostics Task Force 

MIPs Model Intercomparison Projects 

MJO Madden-Julian Oscillation 

NAM Northern Annular Mode 
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NAO North Atlantic Oscillation 

NASA National Aeronautics and Space Administration 

NCAR National Center for Atmospheric Research 

NetCDF Network Common Data Form 

NH Northern Hemisphere  

NIMS-KMA National Institute of Meteorological Sciences-Korea Meteorological Administration 

NOAA National Oceanic and Atmospheric Administration 

NPGO North Pacific Gyre Oscillation 

NPO North Pacific Oscillation 

PCMDI Program for Climate Model Diagnosis and Intercomparison 

PDO Pacific Decadal Oscillation 

PMP PCMDI Metrics Package 

PNA Pacific North America pattern 

RCMES Regional Climate Model Evaluation System 

RMSE Root-Mean-Square Error 

SAM Southern Annular Mode 

SH Southern Hemisphere 

SST Sea Surface Temperature 
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TOA Top of Atmosphere 

WCRP World Climate Research Programme 

WGCM Working Group on Coupled Models 

WGNE Working Group on Numerical Experimentation 

xCDAT Xarray Climate Data Analysis Tools 

  637 
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Code and Data Availability 638 

The source code of the PMP (Lee et al., 2023b) is available as an open-source Python package: 639 

https://github.com/PCMDI/pcmdi_metrics (last access: 21 February 2024) with all released versions archived on 640 

Zenodo DOI: https://doi.org/10.5281/zenodo.592790 (last access: 21 February 2024). The online documentation is 641 

available at http://pcmdi.github.io/pcmdi_metrics (last access: 21 February 2024). The PMP results database (Lee et 642 

al., 2023a) that includes calculated metrics is available on the GitHub repository at 643 

https://github.com/PCMDI/pcmdi_metrics_results_archive (last access: 21 February 2024) with versions archived on 644 

Zenodo DOI: https://doi.org/10.5281/zenodo.10181201. PMP’s installation process is streamlined using the Anaconda 645 

distribution and the conda-forge channel (https://anaconda.org/conda-forge/pcmdi_metrics, last access: 21 February 646 

2024). The installation instructions are available at http://pcmdi.github.io/pcmdi_metrics/install.html (last access: 21 647 

February 2024). The interactive visualizations of the PMP results are available on the PCMDI website at 648 

https://pcmdi.llnl.gov/metrics (last access: 21 November 2023). The CMIP5 and CMIP6 model outputs and obs4MIPs 649 

datasets used in this paper are available via the Earth System Grid Federation at https://esgf-node.llnl.gov/ (last access: 650 

21 February 2024). 651 
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Table 1. List of variables and observation datasets used as reference datasets for the PMP’s 1215 
mean climate evaluation in this paper (Sect. 3.1 and Figs. 1-2). A ditto mark (“) indicates the 1216 
same as above. 1217 
 1218 

Variable Variable full name Product Reference 

ps Precipitation GPCP-2-3 Adler et al. (2018) 

psl Sea level pressure ERA-5 Hersbach et al. 
(2020) 

rlds Surface Downwelling Longwave Radiation CERES-EBAF-4-
1 

Loeb et al. (2018) 

rltcre Longwave cloud radiative effect "   

rlus Surface Upwelling Longwave Radiation "   

rlut Upwelling longwave at the top of 
atmosphere 

"   

rsds Surface Downwelling Shortwave Radiation "   

rsdt TOA Incident Shortwave Radiation "   

rstcre Shortwave cloud radiative effect "   

rsut Upwelling shortwave at the top of 
atmosphere 

"   

rt Net radiative flux "   

ta-200, ta-850 Air temperature at 850 and 200 hPa ERA-5 Hersbach et al. 
(2020) 

tas 2-m air temperature "   

tauu Surface zonal wind stress ERA-INT Dee et al. (2011) 

ts Surface temperature ERA-5 Hersbach et al. 
(2020) 

ua-200, ua-
850 

Zonal wind component at 850 and 200 hPa "   

va-200, va-
850 

Meridional wind component at 850 and 200 
hPa 

"   

zg-500 Geopotential height at 500 hPa "   
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 1219 
Figure 1. Portrait plot for spatial RMSE (uncentered) of global seasonal climatologies for (a) 1220 
CMIP5 (models ACCESS1-0 to NorESM1-ME on the ordinate) and (b) CMIP6 (models 1221 
ACCESS-CM2 to UKESM1-1-LL on the ordinate) for 1981-2005 epoch. The RMSE is calculated 1222 
for each season (shown as triangles in each box) over the globe including both land and ocean, 1223 
and model and reference data were interpolated to a common 2.5x2.5 degree grid. The RMSE 1224 
of each variable is normalized by the median RMSE of all CMIP5 and 6 models. A result of 0.2 1225 
(-0.2) is indicative of an error that is 20% greater (lesser) than the median RMSE across all 1226 
models. Models in each group are sorted in alphabetical order. Full names of variable names on 1227 
the abscissa and their reference datasets can be found in Table 1. Detailed information for 1228 
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models can be found at the Earth System Documentation (ES-DOC, https://search.es-doc.org/; 1229 
Pascoe et al., 2020). The interactive version of the Portrait plot in this figure is available on the 1230 
PMP result pages on the PCMDI website (https://pcmdi.llnl.gov/metrics/mean_clim/).  1231 

https://search.es-doc.org/
https://pcmdi.llnl.gov/metrics/mean_clim/
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 1232 
 1233 
Figure 2. Parallel Coordinate Plot for spatio-temporal RMSE (Gleckler et al., 2008) from mean 1234 
climate evaluation. Each vertical axis represents a different variable. Results from each model 1235 
are displayed as symbols. Middle of each vertical axis is aligned with the median statistic of all 1236 
CMIP5 and CMIP6 models. The cross-generation model distributions of model performance are 1237 
shaded on the left (CMIP5, blue) and right (CMIP6, orange) sides of each axis. Also, medians 1238 
from CMIP5 (blue) and CMIP6 (orange) model groups are highlighted as lines. Full names for 1239 
model variables on the abscissa and their reference datasets can be found in Table 1. Time 1240 
epoch used for this analysis is 1981-2005. Detailed information for models can be found at the 1241 
Earth System Documentation (ES-DOC, https://search.es-doc.org/; Pascoe et al., 2020). The 1242 
interactive version of the Portrait plot in this figure is available on the PMP result pages on the 1243 
PCMDI website (https://pcmdi.llnl.gov/metrics/mean_clim/).  1244 

https://search.es-doc.org/
https://pcmdi.llnl.gov/metrics/mean_clim/
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 1245 
Figure 3. Application of ENSO metrics to CMIP6 models. Model names with an asterisk (*) 1246 
indicate that 10 or more ensemble members were used in this analysis. Dots indicate metric 1247 
values from individual ensemble members while bars indicate the average of metric values 1248 
across the ensemble members. Bars colored for easier identification of model names at the 1249 
bottom of the figure. Metrics were grouped into three Metrics Collections: (a-n) ENSO 1250 
Performance, (o-r) ENSO Teleconnections, and (s-w) ENSO processes. Names of individual 1251 
metrics and default reference datasets being used are noted on top of each panel, and 1252 
observational uncertainty by applying the metrics for alternative reference datasets noted on the 1253 
upper right of each panel is shown as gray-shaded. Detailed descriptions for each metric can be 1254 
found at https://github.com/CLIVAR-PRP/ENSO_metrics/wiki.  1255 

https://github.com/CLIVAR-PRP/ENSO_metrics/wiki
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 Figure 4. Portrait plots of the amplitude 1256 
of extratropical modes of variability 1257 
simulated by CMIP3, 5, and 6 models in 1258 
their historical or equivalent simulations, 1259 
as gauged by the ratio of spatiotemporal 1260 
standard deviations of the model and 1261 
observed PCs, obtained using the CBF 1262 
method in the PMP. Columns (horizontal 1263 
axis) are for mode and season, and 1264 
rows (vertical axis) are for models from 1265 
CMIP3 (top), CMIP5 (middle), and 1266 
CMIP6 (bottom), separated by thick 1267 
black horizontal lines. For sea level 1268 
pressure–based modes (SAM, NAM, 1269 
NAO, NPO, and PNA) in the upper-left 1270 
hand triangle the model results are 1271 
shown relative to NOAA-20CR. For 1272 
SST-based modes (NPGO and PDO), 1273 
results are shown relative to 1274 
HadISSTv1.1. Numbers in parentheses 1275 
following model names indicate the 1276 
number of ensemble members for the 1277 
model. Metrics for individual ensemble 1278 
members were averaged for each 1279 
model. White boxes indicate missing 1280 
value.  1281 
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 1282 
(a) Observation 1283 

 1284 
(b) Model 1285 

 1286 
 1287 
Figure 5. MJO EWR diagnostics – wavenumber-frequency power spectra – from (a) GPCP v1.3 1288 
(Huffman et al., 2001) and (b) IPSL-CM5B-LR model of CMIP5. The EWR is defined as the ratio 1289 
of eastward power (averaged in the box on the right) to westward power (averaged in the box 1290 
on the left) from the 2-dimensional wavenumber-frequency power spectra of daily 10°S–10°N 1291 
averaged precipitation in November to April (shaded, mm2 day-2). Power spectra are calculated 1292 
for each year and then averaged over all years of data. The units of power spectra for the 1293 

precipitation is 𝑚𝑚2 𝑑𝑎𝑦−2 per frequency interval per wavenumber interval.  1294 
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 1295 
 1296 
Figure 6. MJO East-West Power Ratio (EWR, unitless) from CMIP5 and CMIP6 models, 1297 
models in two different groups (CMIP5: blue, CMIP6: orange) are sorted by the value of the 1298 
metric and compared to two observation datasets (purple, GPCP v1.2 and v1.3; Huffman et al., 1299 
2001). Horizontal dashed lines indicate EWR from the default primary reference observation 1300 
(i.e., GPCP v1.3, black), averages of CMIP5 and CMIP6 models. The interactive plot is 1301 
available at https://pcmdi.llnl.gov/research/metrics/mjo/ where the horizontal axis can be 1302 
resorted by CMIP group or model names as well. Hover mouse over boxes will show tooltips for 1303 
metric values and a preview of dive-down plots that are shown in Figure 5.  1304 
 1305 

https://pcmdi.llnl.gov/research/metrics/mjo/
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 1306 
Figure 7. Demonstration of the monsoon metrics obtained from observation datasets (GPCP 1307 
v1.3 and CMORPH v1.0 (Joyce et al., 2004; Xie et al., 2017)) and a CMIP6 model’s Historical 1308 
simulation conducted using CNRM-CM6-1. The results are obtained for monsoon regions: All-1309 
India Rainfall (AIR), Sahel, Gulf of Guinea (GoG), North American Monsoon (NAM), South 1310 
American Monsoon (SAM), and Northern Australia (AUS). The regions are defined in Sperber 1311 
and Annamalai (2014). Metrics for onset (On), Duration (Du), and Decay (De) derived as 1312 
differences to the default observation (GPCP v1.3) in pentad indices (observation minus model) 1313 
are shown at lower right of each panel. Pentad indices for onset and decay of each region are 1314 
also shown as vertical lines.  1315 
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 1316 

 1317 
Figure 8. Cloud feedback components estimated in amip-p4K simulations from CMIP5 and 1318 
CMIP6 models. Symbols indicate individual model values, while horizontal bars indicate multi-1319 
model means. Each model is color-coded by its ECS, with color boundaries corresponding to the 1320 
likely and very likely ranges of ECS as determined in Sherwood et al (2020). Each component's 1321 
expert-assessed likely and very likely confidence intervals are indicated with black error bars. An 1322 
illustrative model (GFDL-CM4) is highlighted.   1323 
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 1324 

 1325 
 1326 
 1327 
Figure 9. Proposed suite of baseline metrics for simulated precipitation benchmarking (figure 1328 
reprinted from workshop report; US DOE, 2020). 1329 
 1330 
  1331 
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 1332 
 1333 
Figure 10. Example (a) an underlying diagnostic and (b) its resulting metrics for precipitation 1334 
variability across timescales. (a) Power spectra of 3-hourly total (left) and anomaly (right) 1335 
precipitation from IMERG (black), TRMM (gray), CMORPH (silver), CMIP5 (blue), and CMIP6 1336 
(red) averaged over the tropics (30°S-30°N). The colored shading indicates the 95% confidence 1337 
interval for each observational product and for the CMIP5 and CMIP6 means. (b) Metrics for 1338 
forced and internal precipitation variability based on power spectra. The reference observational 1339 
product displayed is GPM IMERG (Huffman et al., 2015). The gray boxes represent the spread 1340 
of the three observational products (“X” for IMERG, “-” for TRMM, and “+” for CMORPH) from 1341 
the minimum to maximum values. Blue and red boxes indicate the 25th to the 75th percentile of 1342 
CMIP models as a measure of spread. Individual models are shown as thin dashes, the 1343 
multimodel mean as a thick dash, and the multimodel median as an open circle. Details for the 1344 
diagnostics and metrics are described in Ahn et al. (2022). 1345 
  1346 
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 1347 
Figure 11. Taylor Diagram contrasting performance of an ESM in their two different versions 1348 

(i.e., GFDL-CM3 from CMIP5 and GFDL-CM4 from CMIP6) in its Historical simulation for 1349 

multiple variables (precipitation [pr], longwave cloud radiative effect [rltcre], shortwave cloud 1350 

radiative effect [rstcre], and total radiation flux [rt]) in their climatology over the globe for (a) DJF, 1351 

(b) MAM, (c) JJA and (d) SON seasons. The arrow is directed toward the newer version of the 1352 

model from the older version (i.e., GFDL-CM3 → GFDL-CM4).  1353 
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 1354 

 1355 

 1356 
Figure 12. Parallel Coordinate Plot contrasting performance of two different versions of the 1357 
GFDL model (i.e., GFDL-CM3 from CMIP5 and GFDL-CM4 from CMIP6) in their Historical 1358 
experiment for errors from (a) mean climate, (b) ENSO, and (c) extratropical modes of 1359 
variability. Improvement (degradation) in the later version of the model is highlighted as a 1360 
downward green (upward red) arrow between lines. Middle of each vertical axis is set to the 1361 
median of the group of benchmarking models (i.e., CMIP5 and CMIP6), with the axis range 1362 
stretched to maximum distance to either minimum or maximum from the median for visual 1363 
consistency. The inter-model distributions of model performance are shown as shaded violin 1364 
plots along each vertical axis. 1365 
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